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Abstract— Recent work in Automated Dietary Monitoring
(ADM) has shown promising results in eating detection by
tracking jawbone movements with a proximity sensor mounted
on a necklace. A significant challenge with this approach,
however, is that motion artifacts introduced by natural body
movements cause the necklace to move freely and the sensor
to become misaligned. In this paper, we propose a different
but related approach: we developed a small wireless inertial
sensing platform and perform eating detection by mounting
the sensor directly on the underside of the jawbone. We
implemented a data analysis pipeline to recognize eating
episodes from the inertial sensor data, and evaluated our
approach in two different conditions: in the laboratory and in
naturalistic settings. We demonstrated that in the lab (n=9),
the system can detect eating with 91.7% precision and 91.3%
recall using the leave-one-participant-out cross-validation
(LOPO-CV) performance metric. In naturalistic settings, we
obtained an average precision of 92.3% and a recall of 89.0%
(n=14). These results represent a significant improvement
(>10% in F1 score) over state-of-the-art necklace-based
approaches. Additionally, this work presents a wearable device
that is more inconspicuous and thus more likely to be adopted
in clinical applications.

I. INTRODUCTION

Obesity rates continue to rise around the world. The
latest estimates suggest that close to 40% of U.S. adults are
obese. This decades-long trend has been fueling the sharp
increase of obesity-related diseases such as type-2 diabetes,
heart disease, stroke, asthma, and cancer. The impact of this
pandemic has been devastating: tens of millions of people
die each year, and annual medical costs in the range of 150
billion dollars in the U.S. alone [1]. Also linked with dietary
intake, eating disorders have emerged as serious illnesses
with long-lasting consequences. For example, anorexia and
bulimia nervosa have been linked with osteoporosis and
medical issues tied to the gastrointestinal, cardiovascular,
and endocrine systems [2], [3], [4]. In light of these diet-
related conditions, health researchers and technologists have
long looked for practical methods to objectively track dietary
intake; these methods could be part of interventions to assist
people in weight loss, or serve as a screening mechanism to
identify individuals (e.g., high-school students) who may be
at risk for eating disorders.

With advances in mobile and embedded computing tech-
nologies, the vision of Automated Dietary Monitoring
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Fig. 1. The figure shows our Bluetooth-enabled wireless sensing device
placed over a quarter for comparison. The button cell battery is underneath
the board on the left, and next to it on the right. The device samples
acceleration data at a rate of 20 Hz.

(ADM) with mobile and wearable devices has become in-
creasingly more viable. Critically, ADM can bring objectivity
to the food logging process. Today, food tracking is based
on self-reports such as paper- or mobile phone-based food
diaries. These approaches have many shortcomings; they
require people to enter detailed information about foods
consumed, which is burdensome at best and inaccurate at
worst. Health researchers and nutritional epidemiologists
have been relying on food frequency questionnaires and
24-hour food for decades. However, these validated survey
instruments have similar weaknesses: the data they collect
can be unreliable and prone to recall biases [5].

A significant body of work has been dedicated to ADM,
and many approaches leveraging acoustic and inertial sensing
have been proposed for eating detection. For instance, there
have been attempts to detect eating moments by listening to
chewing and swallowing sounds using microphones [6], [7].
Also wrist-mounted trackers have been used to detect food
intake gestures [8].

In recent years, researchers have experimented with ADM
methods whose sensors are attached to a necklace sitting
at the base of the neck [9], [10]. Using proximity sensing,
these approaches infer eating activities by continuously mea-
suring the distance between the sensor and the jawbone. In
studies conducted in free-living environments, precision and
recall measurements over 70% were obtained. Despite these
encouraging results, this approach to eating detection was
found to have important shortcomings. Chun et al. reported
that as people performed daily activities such as walking,
changes in body position caused the device to move slightly
from side to side, causing the sensor to misalign with the
tip of the jawbone as its distance point of reference, which
resulted in inaccurate measurements and performance loss.
Another difficulty involves the use of light-based proximity
sensors; they are highly susceptible to ambient light [9].

In this study, we propose a small-scale, wireless wearable



device, shown in Figure 1, that permits continuous and direct
jawbone motion tracking with an inertial sensor. Motivated
by prior work showing the successful use of mastication as
a proxy for eating activities, we attach our device to the
underside of the jawbone with an adhesive bandage (See
Figure 2) [11], [9]. Our studies in lab and naturalistic settings
show that our method represents an improvement of over
10% (F1 score) over state-of-the-art necklace-based eating
detection approaches.

II. MASTICATION AS PROXY FOR EATING

Mastication is an essential part of the digestive process
that helps the breakdown of food and its mixing with saliva
containing enzymes. As a distinctive behavioral marker of
eating, chewing provides useful information about eating,
eating patterns, and possibly other contextual cues, e.g., the
texture of food being consumed [12]. We hypothesize that
tracking jawbone movements with a sensor directly attached
to the jawbone is more robust to motion artifacts, resulting
in superior eating detection performance in naturalistic envi-
ronments.

In order to detect eating activity from chewing, we employ
the hierarchical method proposed by Chun et al. [9]. In this
approach, eating episodes are decomposed into observable
sub-actions starting with chewing followed by chewing bout,
as described below:

• Chewing: Continuous chewing movement of the jaw
lasting 4 seconds or longer. From empirical observa-
tions, jawbone movements shorter than 4 seconds are
unlikely to correspond to chewing activity and is often
due to talking.

• Chewing Bout: During an eating episode, chewing
is not continuous from the beginning of a meal until
the end; people might take momentary breaks for a
variety of reasons such as to wipe their mouth with
a napkin, take a sip, cough or sneeze, or respond to
questions. In our method, a chewing bout corresponds
to the combination of consecutive chewing and such
non-eating activities that take place within 20 seconds
or shorter of each other. Like with chewing, we came
to the 20-second duration threshold empirically.

• Eating Episode: a group of chewing bouts within 2
minutes of each other. Eating episode is what people
normally call a breakfast, lunch, or dinner. Eating
episode contains not only chewing bouts but also longer
non-eating activities such as a brief conversation with
friends and watching TV, which often arise during
eating.

III. SYSTEM DESIGN

The wearable device was designed to be small (8.6mm-
by-10.5mm), low-power and operate wirelessly. As shown
in Figure 2), it can be easily concealed underneath an ad-
hesive bandage. The system consists of a wireless MCU, an
inertial measurement unit (IMU), and a single rechargeable
lithium ion battery. The wireless MCU enables Bluetooth
communication with an Android device, and the IMU allows

Fig. 2. The wearable was placed on a bandage along with a coin cell
battery. This bandage can be attached on the underside of the jawbone to
track its movement.

acceleration data collection at a sampling rate of 20Hz.
Since the device is intended to be used in contact with the
skin, it was designed around a flexible printed circuit board
(0.13mm) to maximize comfort.

IV. DATA COLLECTION

The system was evaluated in two IRB-approved studies:
a lab study and an in-the-wild study. The lab study was
conducted to test the system in a controlled environment
where each participant was closely monitored and ground
truth could be reliably obtained. The wild study was con-
ducted to evaluate the system in truly naturalistic settings.

A convenience sample of 10 participants (4 males and
6 females, all college students) were recruited for the lab
study through an ad posted on a college campus online
bulletin board. The lab study participants were aged between
20 and 33 years old (24.8 ± 5.03). For the in-the-wild
study, a different set of 15 participants (7 males and 8
females, also college students) were recruited. The ages
of these participants ranged between 19 and 22 years old
(20.3± 0.98).

A. Laboratory Study

Participants performed a combination of eating and non-
eating activities in the lab study. Non-eating activities were
included to train the recognition model with negative exam-
ples. These included watching TV, having a conversation,
performing a light-intensity workout, drawing, taking notes
with pen and paper, web-browsing, and tooth-brushing (3
minutes for each activity), and walking (5 minutes). The food
served for the eating activities included a combination of
soup, nuts, ramen noodles, burrito bowls, yogurt, fruit and ice
cream. These specific foods items were chosen to represent a
variety of food types in terms of viscosity, texture and ease of
chewing and swallowing. For all eating activities, the subject
was free to stop eating whenever he or she wanted. In total,
the lab study lasted for 45 minutes on average. We should
note that although we recruited 10 participants for the study,
data for only 9 participants could be used due to a data
collection error.

B. In-the-Wild Study

The free-living study lasted for 6 hours and did not impose
any requirement neither in terms of activities nor location.
The only request was that participants consumed at least
one meal within the 6-hour session. Participants reported
spending time in a wide variety of ways in the in-the-wild
study, such as performing computer tasks and talking on the



phone. These activities and meals consumed were verified
as part of our annotation process. Out of the 15 participants
recruited for the in-the-wild study, 1 participant did not
consume a meal during the 6-hour session. Therefore, we
discarded the data of this participant from our analysis.

C. Data Annotation

In the lab study, participants were video recorded and
researchers later annotated all chewing activities by closely
reviewing jawbone movements in the video. Inter-rater relia-
bility using Fleiss’ kappa was found to be 0.88 [13]. For the
in-the-wild study, participants wore a front-facing wearable
camera that shot 10-second video clips every minute. These
clips depicted participants’ activities and context in uncon-
strained settings, and provided a reliable measure of ground
truth for eating episodes.

V. DATA ANALYSIS

We applied a three-phase pipeline for inferring eating
episodes from the inertial sensing data captured by the device
(See Figure 3). Phases I, II and III were applied to both the
lab and to the in-the-wild study data sets.

A. Phase I: Pre-Processing and Frame Extraction

The jawbone-mounted wearable device captured accelera-
tion data along the x, y, and z axes at 20Hz. The data was
first normalized using the z-score measure [14], and then
frames were extracted using a 4-second sliding window with
50% overlap.

B. Phase II: Feature Extraction and Classification

We extracted a combination of statistical and spectrum-
based features for each frame, as shown in Table I, and
used it to train a random forests classifier to recognize
chewing. We chose this classification algorithm because
ensemble learning methods such as random forests have been
successfully employed in ADM in prior work [8].

C. Phase III: Clustering

This phase consisted of two sequential grouping steps,
which we named Clustering-1 and Clustering-2:

• Clustering-1: This step processed the stream of chewing
predictions to infer chewing bouts using the DBSCAN
unsupervised learning algorithm [15]. The DBSCAN
algorithm was chosen because it does not require the
number of clusters to be determined a priori.

• Clustering-2: Here, eating episodes were inferred from
chewing bouts using conditional merging. Adjacent
chewing bouts were merged based on the temporal
distance between them to produce labels representing
eating episodes. Specifically, if two adjacent chewing
bouts were separated by no more than 120 seconds, the
two chewing bouts were merged together as an eating
episode.

TABLE I
SUMMARY OF FEATURES

Feature # Description
1-2 max. of y- and z-axis acc.
3-4 min. of y- and z-axis acc.
5-6 skewness of y- and z-axis acc.
7 skewness of the FFT of z-axis

8-9 kurtosis of the FFT of x- and z-axis
10-12 energy of x-, y-, z-axis acc. in f >1.25 Hz band
13-15 max. FFT of x-, y-, z-axis acc. in f >1.25 Hz band

16 covariance of y-axis and z-axis acc.
17 max. FFT of z-axis acc. in 3.75 Hz >f >1.25 Hz band
18 energy of y-axis acc. in f >3.75 band

19-21 energy of x-, y-, z-axis acc. in 2.50 Hz >f >1.25 Hz band
22-23 energy of x-, z-axis acc. in 3.75 Hz >f >2.50 Hz band

24 energy of z-axis acc. in 5.00 Hz >f >3.75 Hz band

TABLE II
SUMMARY OF RESULTS

Study Detection Unit Precision Recall F1 Score
Chewing 0.802 0.474 0.595

Chewing Bout 0.850 0.649 0.736Lab Study
Eating Episode 0.917 0.913 0.914

In-the-Wild Study Eating Episode 0.923 0.890 0.906

VI. RESULTS AND DISCUSSION

A. Laboratory Study

Using Leave-One-Participant-Out Cross Validation
(LOPO-CV), we evaluated the performance of a random
forest classifier (50 estimators) trained on the lab data at
three hierarchical units: chewing, chewing bout, and eating
episode. At the chewing, LOPO-CV resulted in 80.2%
precision and 47.4% recall. At chewing bout, a precision
of 85.0% and a recall of 64.9% were obtained. And the
evaluation at eating episode resulted in a precision of 91.7%
and a recall of 91.3%. A summary of the LOPO-CV results
is given in Table II.

B. In-the-Wild Study

We trained a classifier using the lab study data and applied
the classifier to the data of each participant collected in the
wild. Due to the lack of annotation at the level of chewing
for the in-the-wild study, the evaluation was only performed
at the level of eating episodes, where an average precision of
92.3% and an average recall of 89.0% were obtained. (See
Table II).

C. Parameters

In Phase I of our analysis pipeline, features were extracted
with a sliding window of 4 seconds of sensor data. We
chose this frame duration heuristically; we varied the frame
window size from 2 to 8 seconds at 1-second increments and
applied LOPO-CV to our data sets, comparing classification
performance using the F1 measure. We observed that best
performance was achieved with the window size set to 4
seconds in both the lab and in-the-wild study data.

Similarly, we needed to choose a maximum temporal
distance (MTD) for the conditional merging step in Phase III



Fig. 3. Red, blue, and green colors indicate acceleration data along the x-axis, y-axis and z-axis, respectively. In phase I, the raw data were normalized
using z-scoring and segmented into frames. In phase II, features were extracted from each frame and used for training a classifier. In phase III, predicted
chewing frames were clustered (clustering-1) to infer chewing bout. Then, chewing bouts were merged (clustering-2) to predict eating episode.

(Clustering-2). We compared F1 performance while sweep-
ing the MTD parameter from 20 to 400 seconds in 20 second
increments. From this analysis, we found out that a MTD
of 120 seconds led to the best eating episode classification
performance.

VII. CONCLUSION

In this paper, we put forth an approach for detecting
eating episodes based on a small, discrete, and wireless
inertial sensing device attached to the underside of the
jawbone. In a study conducted in naturalistic environments
with 14 participants, this method showed overall precision
of 92.3% and recall of 89.0%, an improvement of over 10%
(F1 score) over prior work that also leverages mastication
as a proxy for eating detection. We believe our method
represents a promising contribution towards the development
of a practical ADM solution that can be used in everyday
life for clinical and non-clinical applications.
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