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ABSTRACT
Modern commercial wearable devices are widely equipped with in-
ertial measurement units (IMU) and microphones. The motion and
audio signals captured by these sensors can be used for recognizing
a variety of user physical activities. Compared to motion data, au-
dio data contains rich contextual information of human activities,
but continuous audio sensing also poses extra data sampling bur-
dens and privacy issues. Given such challenges, this paper studies a
novel approach to augment IMU models for human activity recog-
nition (HAR) with the superior acoustic knowledge of activities.
Specifically, we propose a teacher-student framework to derive an
IMU-based HAR model. Instead of training with motion data alone,
an advanced audio-based teacher model is incorporated to guide
the student HAR model. Once trained, the HAR model only takes as
inputs motion data for inference. Based on a semi-controlled study
with 15 participants, we show that an IMU model augmented with
the proposed framework outperforms the original baseline model
without augmentation (74.4% versus 70.0% accuracy) for recogniz-
ing 23 activities of daily living. We further discuss a few insights
regarding the difference of model performance with and without
our framework and possible trade-offs for actual deployment.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing.
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1 INTRODUCTION
Automated human activity recognition (HAR) has many appli-
cations, such as health monitoring [9], context awareness [16],
and assisted technologies [7]. Over the years, the use of inertial
measurement units (IMU) has been mainstream for HAR studies
[3, 17, 22, 33]. While IMUs are powerful for capturing human body
movements, many human activities of daily living are associated
with unique sound fingerprints that are hard to be sensed from mo-
tion data alone. As a result, thanks to the ubiquity of microphones
in mobile devices, acoustic sensing has been increasingly explored
in recent years in HAR applications [15, 16, 20, 21].

Compared to motion data, however, continuous audio sensing
raises important practical challenges. For example, passive record-
ing of soundsmay capture audio and speech that might pose privacy
concerns [12, 19]. Additionally, audio recording is often captured at
a high sampling rate, which results in significant power consump-
tion overhead; this is a major issue for wearable and edge devices
with compact and small batteries.

To mitigate these concerns, we study a novel approach that
makes use of the rich contextual knowledge expressed in human
activity sounds while relying on inertial sensor data for modeling.
The approach is based on a teacher-student framework for training
an IMU-based HAR model with guidance from an acoustic model
during the model development phase. At inference, the HAR model
only takes motion data as input. Our experiments show that our
framework offers superior performance over a model trained only
with inertial data. The specific contributions of this work are:

• A method to augment HAR IMU models with a teacher-
student framework; the models can benefit from acoustic
teacher guidance without needing audio data for inference.

• An evaluation of the method based on 23 finely-grained daily
activities captured from 15 participants with a commercial
smartwatch. Our results show an improvement of HAR per-
formance from 70.0% accuracy with inertial-based models to
74.4% accuracy with the proposed framework.

• Public access to our source code and study data to encourage
validation and further development of our approach.

2 RELATEDWORK
2.1 IMU- and Audio-Based Activity Recognition
HAR based on motion and audio data has been extensively studied.
For example, researchers have explored the usage of motion sig-
nals captured by wrist-worn devices to recognize human activities
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related to hand movements [17, 22, 30, 33]. Kwapisz et al. [14] used
accelerometer data collected from a cell phone to recognize coarse
body movements such as walking or biking. By using sounds col-
lected from the body, Yatani et al. [36] proposed the Bodyscope
system to recognize four throat activities with an accuracy of 71.5%.
Thomaz et al. [31] detected eating based on sounds collected from
the wrist with an accuracy over 80%. By using audio signals col-
lected from smartphones [15, 20, 21] or smart speakers [1, 16, 34],
it is also possible to infer various human activities and contexts.
Recent studies have shown the benefits of combining IMU and au-
dio inputs for HAR [4, 6, 26, 37]. The most recent work proposed
by Bhattacharya et al. [6] fused acoustic signatures of human ges-
tures with motion signals for hand activity recognition. Richoz et
al. [25] also studied the fusion of motion, audio, and vision signals
for transportation mode recognition.

Despite the benefits, continuous capture of audio or multi-modal
signals at inference time raises several practical concerns, including
privacy issues and data sampling burdens. Researchers such as
Liang et al. [19] and Iravantchi et al. [10] have explored methods
to preserve audio privacy, but power consumption requirements
for continuous audio recording remains a challenge.

2.2 Teacher-Student Knowledge Transfer
Transferring supplementary knowledge from a source domain to a
target domain can be useful for the target task [29]. Canonically,
knowledge transfer across features of different dimensions includes
feature mapping to a common subspace [28, 35] or direct feature
transform [18, 32]. In recent studies, researchers have shown that
knowledge transfer across feature types may also be realized based
on a teacher-student architecture [5, 11, 38]. The basic idea is to
enforce a compact neural network (student) to mimic the outputs
of a sophisticated network (teacher) so that the student can obtain
high-level abstraction of features without an extensive model size
[8]. Zhao et al. [38] first explored the usage of the architecture for
a radio-based pose estimator with supervision from vision models.
Bhalla et al. [5] applied the architecture to minimize the data anno-
tation efforts of Doppler signals based on annotated IMU datasets.
Similarly, Islam et al. [11] presented a method for breath detection
with unlabeled audio by using labels generated by synchronized
IMU inputs. To enhance IMU-based HAR, a possible direction is to
transfer knowledge from synchronized vision signals [27]. Differ-
ent from the above efforts, our study aims to enhance IMU-based
activity recognition in a relatively low-cost manner by using the
acoustic modality and only in the model development phase.

3 METHODOLOGY
3.1 Overview
The procedure of our study is composed of two phases: 1) Devel-
opment of the HAR models; and 2) Inference (Figure 1). Phase 1
develops two neural network classifiers, i.e., an audio-based teacher
model and the target motion-based HAR model. The teacher model
is a neural network taking as inputs either pure audio or multi-
modal (audio + motion) data. Once the teacher model is developed,
it is then used as a knowledge extractor to guide the motion-based
HARmodel, i.e., the student. The student model takes as inputs only
synchronized motion data of the corresponding activities and is

Figure 1: The overall procedure of our method. In phase 1,
a motion-based HAR model is trained to minimize a loss
function incorporating both the outputs of an audio-based
teacher model and the ground truth. In phase 2, only the
motion-based HAR model is used for inference.

Figure 2: Our motion-based HAR model, inspired by [23].
It consists of two individual branches of DeepConvLSTM,
taking raw acceleration and gyroscope inputs, respectively.

trained to minimize a loss function incorporating both the outputs
of the teacher model and the ground truth labels of the activities.
This process enables the studentmodel to gain the extra information
obtained by the audio-based teacher model. During the inference
phase, the teacher model is removed, and only the motion-based
student model is used for inference.

3.2 Motion-Based HAR Model
The activity recognition model we used was inspired by the Deep-
ConvLSTM architecture, as it demonstrates promising performance
in activity recognition with inertial data [23]. In our study, both
acceleration and gyroscope inputs were included, so we deployed
separate branches of DeepConvLSTM for each input type. The out-
puts of the branches were then concatenated for model prediction.
Figure 2 shows the detailed design. The model fits with raw accel-
eration and gyroscope data based on 10s sliding windows with 50%
overlap. The window size is chosen empirically for better synchro-
nization between our motion and acoustic model inputs. As shown
in Figure 2, each input branch consists of four 2D convolutional
layers and a long short-term memory (LSTM) layer. The stride of
the convolutional layers is 1, with no padding added to the outputs.
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Figure 3: The teacher models. We tested two teacher models
in our study, one with audio inputs only and the other with
multi-modal (audio + IMU) inputs.

Each convolutional layer also comes with batch normalization. The
output of the branches is flattened and concatenated before passing
to a final fully-connected (FC) layer.

3.3 Audio-Based Teacher Model
As previously stated, the motivation of introducing a teacher model
is to provide additional information gained from audio that the
original HAR model is not able to learn by itself based on the
IMU data. Once a teacher model is developed, it is then fixed as a
knowledge extractor for the HAR model. In our experiments, we
explored two teacher architectures - a neural network taking pure
audio inputs and the other taking synchronized multi-modal (audio
+ motion) inputs (Figure 3). We adopted a VGG-like convolutional
neural network (CNN) from prior work [13] to encode the audio
inputs, which we refer to as Audio CNN in the paper. Similarly,
we segmented the audio into 10s clips with 50% overlap. We then
extracted the log-mel spectrogram features from the audio segments
using a sliding window size of 1024, a hop size of 320, and 64 bins.
Details of Audio CNN are as follows:

Input→Conv[64]→Conv[128]→Conv[256]→Conv[512]
→Conv[1024]→Conv[2048]→ FC[2048]→Average pooling

where ConvX[𝐾] denotes a convolutional block of two 2D con-
volutional layers, each with 𝐾 channels, and intermediary average
pooling layers at the end of the block. The kernel size of each con-
volutional layer is (3×3). FC[𝐾] denotes a fully-connected layer of
size 𝐾 activated by the ReLU activation [2]. The output of the last
convolutional layers is not flattened, but globally pooled after the
FC layer, resulting in 1D outputs of shape 2048 from Audio CNN.

For the teacher model 2, we directly adopted the design of our
motion-based HAR model to encode the motion inputs, which is
referred to as the IMU branch of the teacher model. To augment
the performance, we applied the same extra temporal attention
modules following the LSTM outputs of the acceleration and the
gyroscope branches. The outputs of Audio CNN and the IMU branch
are then concatenated and passed to a self-attention layer to learn
the relative importance of the modality outputs.

3.4 Loss Function
Inspired by [8], the design of our loss function aims to incorporate
both the teacher outputs and the ground truth activity labels. In
our paper, we denote the original output of the audio-based teacher
model, the output of the motion-based HAR model, and the ground
truth labels as 𝑦𝑡 , 𝑦𝑠 , and 𝑦, respectively. The model outputs are
first converted into a smoothed form:

𝑞𝑠 = 𝑙𝑛(
𝑒𝑥𝑝 (𝑦𝑠/𝑇 )∑
𝑗 𝑒𝑥𝑝 (𝑦𝑠 𝑗 /𝑇 )

) 𝑞𝑡 =
𝑒𝑥𝑝 (𝑦𝑡/𝑇 )∑
𝑗 𝑒𝑥𝑝 (𝑦𝑡 𝑗 /𝑇 )

(1)

where 𝑗 is the activity class index, and temperature 𝑇 controls the
smoothness of the outputs. Then, the loss function L is defined as:

L = L𝐶𝐸 (𝑦𝑠 , 𝑦) + 𝛼 ∗𝑇 2L𝐾𝐿 (𝑞𝑠 , 𝑞𝑡 ) (2)

where L𝐶𝐸 and L𝐾𝐿 denote the cross-entropy loss and the KL-
divergence loss, respectively; 𝛼 controls the effects of the teacher
outputs on the student model. In our experiments, 𝛼 ranges from
0.1 to 0.9, with a step of 0.1; 𝑇 ranges from 1 to 8, with a step of 1.

3.5 Training Setup
The HAR models were trained with an initial learning rate of 0.001,
decaying every 10 epochs by a factor of 0.9. We used a batch size
of 256 split on two GPUs, except for evaluating the teacher model
2 where the batch size was halved due to system instability. We
used the Adam optimizer with betas (0.9, 0.999) and an epsilon
of 10−8. The maximum learning epoch was 100, and we applied
early stopping if no improvement of accuracy was observed for 20
consecutive epochs on the evaluation set. The teacher models were
trained following a similar strategy, but the learning rate was fixed
at 10−4. Besides, we applied an early stopping of 10 epochs instead
of 20. All models were developed in PyTorch [24]. Our source code
and study data is publicly accessible1.

4 DATA COLLECTION
The data for our study was collected via an IRB-approved semi-
naturalistic user study with 15 participants performing a set of
daily activities in their own homes. A custom Android application
running on a Fossil Gen 4 smartwatch was designed to collect
accelerometer, gyroscope, and acoustic data synchronously and
store it locally on the watch. Inertial data was sampled at 50Hz,
while acoustic data was sampled at 22.05KHz.

The participants’ age ranged from 23 to 64. The 23 study activ-
ities included writing, drawing, cutting paper, typing on keyboard,
typing on phone, browsing on phone, clapping, shuffling cards, scratch-
ing, wiping table, brushing hair, washing hands, drinking, eating
snacks, brushing teeth, chopping, grating, frying, sweeping, vacuum-
ing, washing dishes, filling water, using microwave. Two sessions of
data collection were conducted for each of the 23 activities, and
each activity was performed for a minimum of 30 seconds.

5 RESULTS AND DISCUSSIONS
We used leave-one-participant-out (LOPO) cross-validation to eval-
uate the performance of the HAR models. Following this approach,
14 of the 15 participants were used for model training, and the
remaining one was used to derive checkpoint models. For each of

1https://github.com/Human-Signals-Lab/AudioIMU

46



ISWC ’22, September 11–15, 2022, Cambridge, United Kingdom Liang, et al.

Table 1: Leave-one-participant-out evaluation performance
for 15 participants based on different settings.

Setting Accuracy F1 score

Baseline HAR model 70.0% 67.9%
HAR (guided by teacher 1) 74.4% 72.4%
HAR (guided by teacher 2) 74.0% 71.6%

Figure 4: Participant-wise results based on different settings.
The range of accuracy is shown from 50% to 100% to better
visualize the performance gain.

the participants, we first obtained the two teacher models indepen-
dently. Then, we derived and reported the best checkpoint HAR
models per participant based on evaluation accuracy. We examined
three training settings: 1) baseline HAR models trained on the IMU
data only; 2) HAR models trained on the IMU data and guided by
outputs of the teacher model 1; and 3) HAR models trained on the
IMU data and guided by outputs of the teacher model 2. For 1), the
HAR models were trained with standard cross-entropy loss. For 2)
and 3), we tested all sets of 𝛼 and 𝑇 for model development and
reported the best performing checkpoint models per participant.

5.1 Overall Results
We computed performance results using both accuracy and F1
score. For the teacher models, we obtained an average of 81.0% /
78.9% recognition accuracy / F1 for the teacher model 1, and 83.7%
/ 82.2% accuracy / F1 for the teacher model 2. Table 1 shows the
averaged LOPO results for the HAR models, with and without
teacher guidance. Overall, HAR models guided by either type of
teacher output outperformed the baseline HAR models without
guidance. The guiding performance of the teacher model 2 was
marginally worse than that of the teacher model 1, probably because
of the reduction of the batch size during student training. For a more
thorough validation, we further repeated the baseline LOPO test 10
times. The average mean absolute deviation of accuracy / F1 per
participant was 0.88% / 1.01%, and the best LOPO accuracy / F1 was
70.7% / 68.2%. The consistency of the results better demonstrates the
difference of performance with and without the teacher guidance.

5.2 Discussions
5.2.1 Further analysis of the student performance. Figure 4 visual-
izes the activity recognition performance for individual participants,

with and without teacher guidance. For 13 out of 15 participants,
the activity recognition performance is improved with both types
of teacher design. To better understand how the teacher models im-
prove training, we analyzed the class-wise performance for sample
participants that consistently benefited from the teachers (e.g., P4,
5 and 11) and obtained a few insights. First, rather than a uniform
improvement of all classes, the teacher enhancement was mostly
addressed on specific classes. For example, we observed an improve-
ment of at least 20% class accuracy for the top three classes of the
student models that benefited most from the acoustic teachers, but
the improvement of the overall accuracy for those subjects was
only around 6%. In other words, the teacher boost on most of the
remaining classes was mild. Besides, the student HAR models could
perform even better than both the baseline motion models and the
teacher models for some classes. For example, the student / teacher
/ baseline class accuracy of drawing for P4 guided by both types of
teachers was 70% / 20% / 60% and 90% / 40% / 60%, respectively. This
indicates that the teacher models may enable a better generalization
of the IMU models even if the class patterns are not well reflected
in the teacher representations.

5.2.2 Trade-offs of introducing teacher models: Although we exper-
imentally showed that the performance of motion-based HAR can
be improved by incorporating audio-based teacher guidance, there
are also extra burdens for deployment. First of all, introduction
of the acoustic teacher models can bring extra computational bur-
dens. For example, the teacher models 1 and 2 have 79,720,919 and
96,404,312 trainable parameters respectively, whereas the baseline
HAR model only has 3,610,007 trainable parameters. Besides, the
introduction of our framework brings extra time costs for model
training. Specifically, the average duration required to train an
epoch is 6.18s for our baseline HAR models (batch size 64, two
NVIDIA Titan Xp GPUs), but it becomes 13.08s with the teacher
model 1 and 15.98s with the teacher model 2, more than twice as
much as originally needed for the accuracy gain from 70% to 74%.
Most importantly, our experiments show that the optimal hyper-
parameters of the loss function are highly sensitive to the model
architecture, participants, and the learning parameters (e.g., learn-
ing rate). An inappropriate selection of the hyper-parameters can
even degrade the student performance. In our test, the optimal 𝛼
value mostly remains between 0.7 to 0.9, while the optimal tempera-
ture tends to be 2, 3 and 5. Searching for these parameters is critical
yet extremely time-consuming. Hence, despite the benefits for HAR
performance with the proposed framework, such trade-offs should
be carefully considered and handled in practical cases.

6 CONCLUSION
In this paper, we present a framework to augment IMU-based HAR
by introducing acoustic knowledge to themodel. Based on a teacher-
student framework, the model benefits from acoustic information
during training while relying on only inertial sensor data for infer-
ence. This approach is compelling because it mitigates the privacy
risks and high data sampling burdens of continuous audio recording.
Based on a studywith 15 participants inwhich they performed 23 ac-
tivities in their homes, we show the extent to which our framework
improved performance and discuss the practical considerations for
deploying our framework.
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