
DYNAMIC SPEECH ENDPOINT DETECTION WITH REGRESSION TARGETS

Dawei Liang⋆, Hang Su†, Tarun Singh†, Jay Mahadeokar†, Shanil Puri†, Jiedan Zhu†,
Edison Thomaz⋆, Mike Seltzer†

⋆ University of Texas at Austin, † Meta AI.

ABSTRACT

Interactive voice assistants have been widely used as input
interfaces in various scenarios, e.g. on smart home devices,
wearables and on AR devices. Detecting the end of a speech
query, i.e. speech end-pointing, is an important task for voice
assistants to interact with users. Traditionally, speech end-
pointing is based on pure classification methods along with
arbitrary binary targets. In this paper, we propose a novel
regression-based speech end-pointing model, which enables
an end-pointer to adjust its detection behavior based on the
context of user queries. Specifically, we present a pause mod-
eling method and show its effectiveness for dynamic end-
pointing. Based on our experiments with vendor-collected
smartphone and wearables speech queries, our strategy shows
a better trade-off between end-pointing latency and accuracy,
compared to the traditional classification-based method. We
further discuss the benefits of this model and generalization
of the framework in the paper.

Index Terms— end-pointing, end-of-query, interactive
voice assistant.

1. INTRODUCTION

With the rapid development of speech technologies in recent
years, interactive voice assistants have been widely adopted as
a mainstream for intelligent user interface [1, 2, 3, 4]. By tak-
ing users’ speech queries, these systems are able to perform
a variety of tasks from basic question answering, music play-
ing, calling and messaging, to device control. As an initial
step, a voice assistant needs to determine the time point when
a user finishes the query so that it knows when to close the
microphone and continue downstream processing, e.g., auto-
mated speech recognition (ASR) and taking action. This pro-
cess is often referred to as speech endpoint detection or end-
pointing. In practice, the challenge for speech end-pointing
lies in the conflicting goals of response latency and accuracy
(avoiding early cuts of user speech). On the one hand, a rapid
close of the microphone and a timely response to user queries
brings a better user experience. On the other hand, however,
this inevitably increases the risk of early cuts of user queries.
The performance of an end-pointing system is thus evaluated
on how this conflict is resolved in practical cases.

Canonically, voice activity detection (VAD) has been
used for speech end-pointing [5, 6]. A VAD model can be
used to distinguish speech from non-speech segments, in-
cluding silence and background noises [7, 8, 9]. The end of
the query can then be determined if a fixed duration of silence
is observed by the VAD system. However, this approach is
not reliable enough [10, 11]. The fact that a VAD system
is not typically trained to distinguish within-query pauses
and end-of-query pauses prevents the system from capturing
enough acoustic cues related to end-of-query detection, such
as speaking rhythm or filler sounds [11].

Recent research on speech end-pointing mostly focuses
on classification methods, where a dedicated end-pointer is
developed to classify audio frames as end-of-query frames
and others [11, 12]. The success of the Long Short-Term
Memory (LSTM) [13] architecture contributes to this method.
Some other efforts leverage additional text decoding features
[14] or user personalized i-vectors [15] to better fit the end-
pointer for specific acoustic environments. In an end-to-end
ASR system, the end-pointer may also be jointly optimized
with the recognition model [16]. Despite the promising re-
sults, all the above work focuses on binary detection of speech
endpoints with hard labels (i.e. 0 and 1). In real scenarios,
however, an end-pointer should adjust its end-pointing ag-
gressiveness based on semantics, prosody or other speaking
patterns in the query. The traditional binary targets for classi-
fication can be less flexible in this respect.

In this paper, we study a novel speech end-pointing strat-
egy based on regression. Specifically, an end-pointer is opti-
mized to fit soft-coded targets during training, and the train-
ing targets are adjusted with the expected pause given the se-
mantic context of queries. By testing on 14.4M smartphone
speech queries and 467K queries from wearables, we show
that our proposed method effectively reduces the response de-
lay of end-pointing while maintaining a comparable accuracy
performance as the conventional classification-based method.

2. REGRESSION-BASED ENDPOINT MODELING

2.1. Principle

In traditional classification, a speech end-pointing model is
trained against targets of hard-coded values (0 and 1). During



Fig. 1. Sample targets for end-pointer training based on hard-
coded binary values (target in black) and soft-coded float val-
ues (target in red). EP: endpoint.

inference, a decision threshold is chosen to adjust the model’s
end-pointing confidence. In a regression setting, the inference
stage remains the same, but the training targets are changed
to be continuous float values from 0 to 1, representing the
confidence of a frame being part of the endpoint. Specif-
ically, we apply a transition curve to the area between the
actual and expected (i.e. position where we hope to perform
end-pointing) endpoint position (Figure 1). The motivation of
our regression-based modeling includes: 1) the model should
have an increased confidence in end-pointing as more silence
is observed; 2) the aggressiveness of the end-pointing behav-
ior should be adjustable, which corresponds to the slope of
the transition region. As an extreme case, a regression model
with a zero transition region would have the same targets as a
classification model. The top plot of Figure 1 is an example
where the training targets of a regression model and a classi-
fication model become the same. At the bottom, the regres-
sion target enforces the model to be less aggressive, with a
smoother slope in the transition region.

Figure 2 presents the overall pipeline of end-pointing
with regression. To enable a dynamic output behavior of the
end-pointer, the transition slope of the training targets can be
quantified based on unique patterns (e.g., expected pause) of
individual input queries. In this paper, we propose a method
to compute and leverage the pause statistics of queries for this
purpose (Section 3). During inference, the regression model
shares the same setup as the classification model, i.e., taking
speech features as inputs and applying a decision threshold to
the model outputs for endpoint decision.

2.2. Loss Function

In our study, we used the mean-square-error (MSE) as the loss
function for end-pointer training. The loss function is defined
as below:

l =

∑n
i=1(ŷi − yi)

2

n
(1)

Fig. 2. The overall pipeline of our proposed method.

where i is the ith frame of a query in the dataset, n is the
total number of frames in the dataset, ŷi and yi are the output
of the end-pointer and the true target, respectively. In our
experiments, we found that regression with the binary targets
yields the same performance as the traditional classification
setup. Furthermore, the MSE loss tends to be more stable for
model convergence than the L1 loss.

3. SPEAKER PAUSE MODELING

To enable dynamic adjustments of end-pointing behaviors,
we explore the expected pause following a speech segment.
Our intuition is that ideal end-pointing aggressiveness should
be controlled by the expected pause following a query, and
the expected pause is related to semantics. For example,
the chance of a follow-up speech after a query ”what’s the
weather” should be bigger than that after ”what’s the weather
in Seattle next week”. By calculating the expected pause du-
ration following a speech segment, we can adjust the slope
of the transition region to be smoother for the first query so
that the end-pointer can learn to wait longer for the first query
than for the second before responding. Hence, we hope to
estimate this expected pause duration for each training query
and use it to adjust the targets for these queries.

To this end, we first model the pause duration for a given
text as a Gaussian variable:

TT |C ∼ N (µ, σ2) (2)

Here, TT is the pause duration for the text of a query,
and C is the context of the text. µ and σ are parameters
for the Gaussian variable. The parameters of this model can
be estimated by aggregating pause statistics of queries with a
shared context (prefix). For example, the query ”what is the
weather” can be considered as a prefix for queries ”what is the
weather”, ”what is the weather in Seattle”, and ”what is the
weather today”, and all these queries contribute to the esti-
mation of statistics for the query ”what is the weather”. Note
that in this example, the query ”what is the weather” has zero



end-of-query pause duration, because it is a complete query
itself. In this work, the prefix definition requires a strict match
of transcriptions. Hence, queries ”what is the weather” and
”how is the weather” were considered distinct, though they
are semantically similar and may ideally be grouped together.
Also, we used the 95th percentile statistics in our experiments
for the expected pause estimation rather than the mean µ to
reduce the risk of early-cutting.

We then model the expected pause for a given speech
query as follows:

TS = TT ·R (3)

Here, TS is the expected pause duration for a speech
query, and R is the speaking rate. The intuition here is that
different queries may be spoken at different speaking rates,
and the slower a speaker speaks, the longer the expected
pause can be. The speaking rate factor can be estimated us-
ing the ratio between the duration of a speech query and the
average duration of all those queries with the same prefix
(duration of the prefix part only).

4. EXPERIMENTAL SETUP

4.1. Data

We used two datasets to evaluate our method - both were col-
lected by third-party data vendors. The first one was collected
using smartphones whereas the second one was collected us-
ing wearable devices (smart glasses). We refer to the two
datasets as smartphone data and wearables data in this pa-
per, respectively. The smartphone dataset contains clean user
speech that is spoken in a fluent manner, with little back-
ground noise. In total, 14.4M queries were collected, cate-
gorized into 55 domain contexts based on the text transcrip-
tion. The most common contexts are music (1.4M), weather
(1.3M), and device handling (1.2M). The average word count
per query is 6. The wearables dataset was collected when
users interacted with a voice assistant on smart glasses, with
real life noises in the background. A considerable amount of
speech pauses and dis-fluency were identified in this data. It
contains 447K queries, with an average word count of 11 per
query. Both datasets contain speech and ground truth tran-
scriptions. Ground truth speech endpoints were calculated by
aligning speech to transcription and measuring the end time of
the last words. From the alignments, we also collected pause
duration (if any) following each word in the queries.

For both datasets, we randomly split the queries at a ratio
of 95:5 for model development and testing. A training and a
validation set was further split out at random during training
for learning rate adjustment. The training set and testing set
share the same set of speakers.

4.2. Model Configuration

Our end-pointer is an LSTM neural network inspired by prior
work [11, 14]. Specifically, the model consists of three uni-
directional LSTM layers with a hidden unit size of 128 per
layer. For the baseline classification model, the output layer
is a fully-connected layer of two neurons, transformed by log-
softmax activation. For the regression model, the output layer
includes only a single neuron with sigmoid activation. During
training, the baseline model used the regular cross-entropy
loss, while the regression model used MSE loss. The learning
rate was 2 × 10−4 / 2 × 10−3 for each model, and reduced
by a factor of 0.5 if no improvement was observed on the val-
idation set. The Adam optimizer [17] was used with a Beta
of (0.9, 0.999). The mini batch size was 128. Besides, a slid-
ing window of 10 ms was applied to the output of the base-
line model at the inference stage for score smoothing. Both
models were trained for 15 epochs, given the learning rates
dropped below a threshold. All development was conducted
using the PyTorch toolkit [18].

We used 40-dim filter-bank features as inputs to the net-
works. We extracted the features based on a window of 25 ms
and a stride of 10 ms. The sampling rate of the audio was 16
kHz.

5. RESULTS

5.1. Overall Results

In total, we obtained 106K and 18K unique prefixes respec-
tively for the smartphone and the wearables training sets. Fol-
lowing the prior work [11, 14], we applied the early-cut rate
as the model accuracy metric which reports the proportion
of early-cut queries out of the entire test population. We did
not employ common application metrics such as the word er-
ror rate (WER) here because we viewed end-pointing and its
cascaded applications (e.g., ASR) as separate tasks, and the
WER is not a direct indicator of the end-pointing accuracy
and its resulting user experience. For example, an early cut at
the head and tail of an utterance can both lead to interaction
failure, but their resulting WER in ASR can differ greatly. For
the latency measure, we used the 50th, 75th, 90th, and 99th

percentile statistics of latency values out of the predicted re-
sults, noted as P50, P75, P90, and P99, respectively. For both
metrics, a smaller value is more desirable. Tables 1 and 2
summarize the overall model performance of our study. The
decision thresholds in the tables are reported in pairs such
that the early-cut rates between the baseline and the regression
models remain comparable at a given threshold. The model
performance is then examined by the output latency. Due to
space limit, we reported three featured pairs (baseline thresh-
olds 0.5 - 0.7) in each table, and the observations are simi-
lar for the remaining. We can see that the prediction latency
measured by P50, P75, and P90 tends to be improved by the
regression model on both datasets. This demonstrates a better



Threshold Early-cut rate (%) P50 (ms) P75 (ms) P90 (ms) P99 (ms)

0.50 / 0.63 3.39 / 3.38 160 / 120 180 / 150 230 / 210 480 / 530
0.60 / 0.74 2.45 / 2.38 170 / 120 200 / 160 250 / 240 530 / 600
0.70 / 0.82 1.74 / 1.67 180 / 130 210 / 170 280 / 260 590 / 660

Table 1. End-pointing performance with classification / regression-based models for the smartphone dataset.

Threshold Early-cut rate (%) P50 (ms) P75 (ms) P90 (ms) P99 (ms)

0.56 / 0.50 14.83 / 14.81 420 / 350 590 / 450 860 / 810 1990 / 2500
0.60 / 0.59 12.82 / 12.75 470 / 430 670 / 510 970 / 870 2050 / 2500
0.70 / 0.67 10.53 / 10.37 580 / 500 780 / 650 1100 / 1130 2120 / 2500

Table 2. End-pointing performance with classification / regression-based models for the wearables dataset.

balance of end-pointing behavior achieved by the regression
model. For P99, the classification model is consistently bet-
ter. This is in fact reasonable, because P99 shows the very tail
latency of prediction, and the regression model was enforced
to have a very smooth performance for queries of potentially
a high expectation of succeeding pause. For the typical user
experience of latency, regression-based end-pointing is still
more desirable, as demonstrated by P50 and P75.

5.2. Discussions

To study the effects of the design factors, we also examined
the model performance based on a simpler setting. In this
setting, the slope of the training targets was adjusted based
on either the local pause or the total word length of a query.
For some queries, we observed that the output of the regres-
sion model changed as expected, where its output remained
as sharp as the classification baseline for a short query and
became smoother for a longer one (Figure 3). However, we
did not observe superior performance globally (e.g., the P50 /
P75 at an early-cut rate of 2.0% was 180 / 300 ms for the lo-
cal pause method on the smartphone data). This indicates that
the regression method can be generalized to different slope
adjustment strategies as well. However, the local pause or
duration information alone may not be sufficient for optimal
global performance, and including the speaking rate helps to
further improve the model’s performance empirically.

In an extra study, we also noticed that our proposed
method helps to maintain the model stability for end-pointers
of lower complexity. Specifically, we halved the hidden units
of the LSTM layers for our neural end-pointer. Based on
the wearables data, the early-cut rate of the regression model
increased to 18.77% at a threshold of 0.5. The P50, P75,
P90 and P99 also increased to 380 ms, 550 ms, 970 ms, and
2,370 ms, respectively. However, at the closest early-cut rate
(27.95%, threshold = 0.81), the P50, P75, P90 and P99 of
the classification model significantly increased to 1,770 ms,
2,260 ms, 2,480 ms, and 2,690 ms, respectively, much worse
than the regression outputs. A possible explanation is that the

Fig. 3. Sample end-pointer outputs based on classification
(black) and regression (red). The training targets of the re-
gression model were adjusted by local pause of queries.

abstraction of the unique prefixes from the original queries
helps to generalize the end-pointer on the queries. This bene-
fit is meaningful for end-pointing on the edge, especially for
devices with limited computational capabilities.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel regression-based speech
end-pointing model, which points to a new direction for solv-
ing the early-cut issues in end-pointing without sacrificing la-
tency. We describe how we utilize this model for dynamic
end-pointing by adjusting training targets based on expected
pause of speech queries. Based on experiments with speech
data collected by smartphones and wearables, the proposed
model shows a better performance on latency-accuracy trade-
off, with an improved P50, P75 and P90, specifically, while
maintaining a comparable early-cut performance to the tradi-
tional method. This regression-based approach is quite flex-
ible and can be used to incorporate further speaking behav-
iors. A better pause model can also be explored by grouping
queries into semantics rather than pure prefixes in the future.



7. REFERENCES

[1] Martin Porcheron, Joel E Fischer, Stuart Reeves, and
Sarah Sharples, “Voice interfaces in everyday life,” in
proceedings of the 2018 CHI conference on human fac-
tors in computing systems, 2018, pp. 1–12.

[2] Alisha Pradhan, Kanika Mehta, and Leah Findlater, “”
accessibility came by accident” use of voice-controlled
intelligent personal assistants by people with disabili-
ties,” in Proceedings of the 2018 CHI Conference on
human factors in computing systems, 2018, pp. 1–13.

[3] Radhika Garg and Subhasree Sengupta, “He is just like
me: a study of the long-term use of smart speakers by
parents and children,” Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,
vol. 4, no. 1, pp. 1–24, 2020.

[4] Frank Bentley, Chris Luvogt, Max Silverman, Rushani
Wirasinghe, Brooke White, and Danielle Lottridge,
“Understanding the long-term use of smart speaker as-
sistants,” Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies, vol. 2, no.
3, pp. 1–24, 2018.

[5] Won-Ho Shin, Byoung-Soo Lee, Yun-Keun Lee, and
Jong-Seok Lee, “Speech/non-speech classification us-
ing multiple features for robust endpoint detection,”
in 2000 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat. No.
00CH37100). IEEE, 2000, vol. 3, pp. 1399–1402.

[6] Ramalingam Hariharan, Jula Hakkinen, and Kari Lau-
rila, “Robust end-of-utterance detection for real-time
speech recognition applications,” in 2001 IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing. Proceedings (Cat. No. 01CH37221). IEEE,
2001, vol. 1, pp. 249–252.

[7] Rathinavelu Chengalvarayan, “Robust energy normal-
ization using speech/nonspeech discriminator for ger-
man connected digit recognition,” in Sixth European
conference on speech communication and technology,
1999.

[8] Shuo-Yiin Chang, Bo Li, Gabor Simko, Tara N Sainath,
Anshuman Tripathi, Aäron van den Oord, and Oriol
Vinyals, “Temporal modeling using dilated convolution
and gating for voice-activity-detection,” in 2018 IEEE
international conference on acoustics, speech and sig-
nal processing (ICASSP). IEEE, 2018, pp. 5549–5553.

[9] Dawei Liang, Zifan Xu, Yinuo Chen, Rebecca Adaimi,
David Harwath, and Edison Thomaz, “Automated de-
tection of foreground speech with wearable sensing in
everyday home environments: A transfer learning ap-
proach,” arXiv preprint arXiv:2203.11294, 2022.

[10] Luciana Ferrer, Elizabeth Shriberg, and Andreas Stol-
cke, “A prosody-based approach to end-of-utterance
detection that does not require speech recognition,”
in 2003 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). IEEE, 2003, vol. 1, pp. I–I.

[11] Matt Shannon, Gabor Simko, Shuo-Yiin Chang, and
Carolina Parada, “Improved end-of-query detection for
streaming speech recognition.,” in Interspeech, 2017,
pp. 1909–1913.

[12] Shuo-Yiin Chang, Bo Li, Tara N Sainath, Gabor Simko,
and Carolina Parada, “Endpoint detection using grid
long short-term memory networks for streaming speech
recognition.,” in Interspeech, 2017, pp. 3812–3816.

[13] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[14] Roland Maas, Ariya Rastrow, Chengyuan Ma, Gui-
tang Lan, Kyle Goehner, Gautam Tiwari, Shaun Joseph,
and Björn Hoffmeister, “Combining acoustic embed-
dings and decoding features for end-of-utterance detec-
tion in real-time far-field speech recognition systems,”
in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 5544–5548.

[15] Aditya Jayasimha and Periyasamy Paramasivam, “Per-
sonalizing speech start point and end point detection in
asr systems from speaker embeddings,” in 2021 IEEE
Spoken Language Technology Workshop (SLT). IEEE,
2021, pp. 771–777.

[16] Shuo-Yiin Chang, Rohit Prabhavalkar, Yanzhang He,
Tara N Sainath, and Gabor Simko, “Joint endpoint-
ing and decoding with end-to-end models,” in ICASSP
2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 5626–5630.

[17] Diederik P Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information
processing systems, vol. 32, 2019.


