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ABSTRACT
First-person point-of-view (FPPOV) images taken by wear-
able cameras can be used to better understand people’s eat-
ing habits. Human computation is a way to provide effec-
tive analysis of FPPOV images in cases where algorithmic
approaches currently fail. However, privacy is a serious con-
cern. We provide a framework, the privacy-saliency ma-
trix, for understanding the balance between the eating in-
formation in an image and its potential privacy concerns.
Using data gathered by 5 participants wearing a lanyard-
mounted smartphone, we show how the framework can be
used to quantitatively assess the effectiveness of four au-
tomated techniques (face detection, image cropping, loca-
tion filtering and motion filtering) at reducing the privacy-
infringing content of images while still maintaining evidence
of eating behaviors throughout the day.
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INTRODUCTION
Over the last few years, wearable cameras have emerged as a
new way to capture and record a wide variety of experiences
from a first-person point-of-view (FPPOV) perspective. Due
in large part to improvements in camera, battery and stor-
age technologies, wearable cameras can be now packaged
in a form factor that allows them to be lightweight, unob-
trusive, and easy to mount or carry without restricting the
wearer’s activity. The first truly usable wearable camera was
the Microsoft SenseCam (now available as the Vicon Re-
vue), originally designed to explore the domain of passive
media capture and personal data management [9]. Recent
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consumer wearable cameras include the GoPro, Replay and
Contour, which are designed specifically for sports activi-
ties, and the Looxcie and Memoto, aimed at recording ev-
eryday moments for archival and future review. Google’s
Glass Project has also fueled the excitement for general pur-
pose consumer wearable cameras.

Motivated by the wearable camera’s ability to directly and
continuously observe and record real-world settings, researc-
hers have begun to explore the potential of FPPOV images
in a number of domains, such as autism support [15], travel
behavior [12], and activity recognition [19]. Our work is
situated in the context of eating behavior recognition, since
one of the most promising applications of first-person per-
spective photos has been automated dietary analysis [18]. A
variety of specialized devices have been designed for this
purpose, such as the e-Button [4], and various approaches
centered on FPPOV have been studied, from assisting peo-
ple with the recall of their meals over a 24hr period [2] to
automatically recognizing an individual’s eating activities
throughout the day.

Accompanying the exciting possibilities of wearable cam-
eras are a host of technical and nontechnical challenges. One
of the fundamental issues is how to process the volumes of
data (continuous video or sequence of images taken over the
course of a day). Analyzing these images for activities of in-
terest involves reviewing photos manually, a tedious, time-
consuming and error-prone task. Although much progress
has been achieved in the area of computer vision, state-of-
the-art algorithms do not yet yield the automated perfor-
mance on real-world images that is required for many prac-
tical applications. In light of these limitations, an approach
that has been embraced by researchers is to use human com-
putation techniques to analyze FPPOV images, using ser-
vices like Amazon Mechanical Turk or other commercial so-
lutions.

Although human computation has proved to be a viable im-
age analysis alternative to manual or algorithmic techniques,
it introduces some challenges of its own, in particular pri-
vacy. Privacy is always front and center when it comes to
collecting FPPOV images from wearable cameras [8]. These
images might capture sensitive information of the person
wearing the camera or reveal the identity of others who are
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Figure 1. Participants in the study were provided with a mobile phone and a lanyard for wearing around the neck. A custom application on the
phone took first-person point-of-view photos every 30 seconds.

captured in the photos as well. If these images were to re-
main in the exclusive possession of the individual wearing
the camera, privacy risks would be kept to a minimum. How-
ever, if they are uploaded to be inspected by non-trustworthy
third-parties, such as Amazon Mechanical Turk workers, ad-
ditional precautionary steps must be taken to reduce or, ide-
ally, eliminate the possibility of privacy violations.

Although privacy in FPPOV images has been recognized by
the community as an area that deserves furthers exploration,
additional studies are needed to examine techniques for mit-
igating the privacy risk that is inherent in this type of image
capture. In this paper, we present a framework, the privacy-
saliency matrix, to guide our understanding of removing
imagery that poses a threat to privacy while retaining (the
subset of) imagery that is salient to the analysis of the im-
age, in our case eating behavior. To demonstrate the use of
the framework, we quantify how four simple yet practical
automated techniques — face detection, image cropping, lo-
cation filtering, and motion filtering — address the privacy
challenge. While we do not expect any of these techniques
to be perfect, it is the goal of this work to examine just how
good they are in practice, and at what cost.

We present an empirical study in which FPPOV imagery
from 5 participants over an average of 3 days each is coded
for the saliency of each image with respect to eating behav-
iors as well as the potential for privacy concerns. We then
apply the four automated techniques to see how much of the
privacy-sensitive content can be removed while still retain-
ing the salient images for identifying eating behaviors. This
is achieved through the privacy-saliency matrix.

RELATED WORK
There is no question that individuals carrying wearable cam-
eras are vulnerable from a privacy perspective, but arguably
the group of individuals who are often at most risk when it
comes to privacy are secondary participants. These individ-
uals are captured in FPPOV photos as the wearer of the cam-
era frequents physical spaces such as restaurants, parks and
public transportation. To make matters worse, these individ-
uals are typically unaware that they are being photographed.
Generally, in public spaces in the United States, photos may
be taken of others, but there are instances where an indi-
vidual might have a “reasonable expectation of privacy.” In

this case, photography or any kind of recording, is a social
and potentially legal concern. Langheinrich suggests a set
of principles for guiding system design, based on a set of
fair information practices common in most privacy legisla-
tion in use today: notice, choice and consent, proximity and
locality, anonymity and pseudonymity, security, and access
and recourse [14]. Several of these principles are challenged
with FPPOV imagery used on a continual basis.

A useful way to characterize the dimensions of the prob-
lem is through Boyle and Greenberg’s theory of privacy [5],
which was originally conceived in terms of video-augmented
media spaces. It suggests that privacy can be compromised
in terms of three modalities of control: solitude, confiden-
tiality and autonomy. Solitude refers to control over interac-
tions between the self and the environment. When someone
would like to be left alone, but is forced into some type of
interaction, loss of control is established and privacy is com-
promised. Confidentiality has to do with control over what
others know about oneself. An invasion of privacy might oc-
cur when personal photos or documents expose an individual
in public, for example. Finally, autonomy is the control of
one’s own behavior and actions, including behaviors around
the definition of self and identity. In the context of FPPOV
images of everyday experiences, privacy revolves primarily
around confidentiality and autonomy issues. When an indi-
vidual is photographed in public by someone else, the image
is kept in the possession of the photographer, leaving no con-
trol for the photographed.

Nguyen et al. recognized the need to further understand
the impact of recording technologies in and of everyday life
[17]. They conducted an extensive cross-cultural study ex-
amining how individuals who might be captured in such im-
ages perceive and react to this type of photography. Us-
ing a paratyping technique [1], they were able to get highly
contextualized feedback from hundreds of people regarding
the acceptance, characteristics, processes, and policies sur-
rounding FPPOV images. One of the key findings of this re-
search was that people would prefer to be notified about the
recordings, if at all possible, but would be unlikely to con-
front the individual wearing the camera. Also, they would
like to be asked for permission in case their images are to be
shared with others.
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Figure 2. Privacy-saliency matrix provides a framework for studying
the balance between privacy concerns and evidence of eating in images.

An effort to address the ethical considerations of wearable
cameras in the context of health research was put forth by
Kelly et. al [13]. They proposed a set of guidelines in the
form of a framework whose aim is to protect all involved
when FPPOV photos are being recorded. Extending well
beyond privacy concerns, the framework touches on issues
ranging from how to educate study participants during the
process of gathering informed consent, to best practices that
should be followed to keep the autonomy of third-parties.

THE PRIVACY-SALIENCY MATRIX
One of the most constructive ways to address privacy and
technology is to make explicit the balance between the pos-
itive value proposition of a technology and the negative im-
pact on privacy concerns. Iachello and Abowd portrayed this
kind of analysis in ubicomp as a proportionality argument
[10]. For FPPOV imagery, the balance is between whether
an image contains information considered to be a privacy
concern and if that image contains information salient to a
particular task at hand, such as eating. For a set of images,
we can visualize this balance in a 2-by-2 matrix, the privacy-
saliency matrix (see Figure 2).

The two dimensions of the matrix, as the name suggests, re-
flect the presence of privacy concerns and content salience.
In this work, content salience corresponds to evidence of eat-
ing behavior or not. Any FPPOV image taken throughout the
daily life of an individual can be uniquely placed into a sin-
gle quadrant of the matrix. Images in Quadrant 1 (Q1) con-
tain evidence of eating and exhibit no privacy concerns. For
example, these images show people eating by themselves or
the camera only captures evidence of the food in front of a
person and not any evidence of others who might be around.
Images in Quadrant 2 (Q2) contain evidence of eating be-
havior but also exhibit some information that would be con-
sidered a privacy concern. Usually, these photos capture
people eating with others who can be identified (e.g. friends
or family also eating across the table, or strangers who are
nearby). Images in Quadrant 3 (Q3) do not reveal any eat-
ing behavior, nor do they pose any privacy threat. Sending
these images to a human computation service is not a prob-
lem for privacy reasons, but having too many of them makes

the human computation task more expensive and, depend-
ing on the information task being presented to the workers,
more susceptible to misclassifications. Images in Quadrant
4 (Q4) similarly do not reveal any eating behavior, but they
do pose a privacy threat.

The privacy-saliency matrix makes it clear how we can un-
derstand the opportunities for technology to address the pri-
vacy concern for using human computation to identify eating
for FPPOV imagery. It also provides a way to quantitatively
assess the impact of any given technique or set of techniques.
In the context of eating activities, these techniques can be as-
sessed by the following guidelines:

• Keep images in Q1: We would like to keep as many im-
ages in Q1 as possible, since they show an eating activity
without privacy concerns.

• Eliminate images in Q3 and Q4: Images in Q3 and Q4
can be eliminated completely since they do not depict an
eating activity. As we described above, it is important to
remove Q4 images because of privacy concerns. Remov-
ing images from Q3 has other non-privacy advantages.

• Move images from Q2 to Q1: It would be advantageous
to to keep the images in Q2, since they also capture an
eating activity. The issue with Q2 images is that they con-
tain one or more elements that pose a privacy risk. The
ideal scenario would be to purge the visual component
that constitutes that privacy risk while keeping the rest of
the image, and thus the evidence of eating behavior, in-
tact. In effect, this corresponds to moving the image from
Q2 to Q1.

• Eliminate images in Q2: Depending on the approach, it
might not be possible to fully suppress the privacy risks of
images in Q2 and move them to Q1. A less desirable alter-
native is to simply delete these images, since they cannot
be reviewed by human computation workers. In this case,
we want some assurance that the episode of eating evi-
dence by that image removed from Q2 is reflected by an
image in Q1 already. For example, if taking pictures every
30 seconds during a meal, it is likely that images within
some temporal window of another image might reveal the
same eating behavior. This may not hold for shorter dura-
tion eating activities, like a snack.

It is important to note that since the ultimate goal is to op-
timize the multi-variate balance between privacy and con-
tent salience for a given application, single-objective mea-
sures such as precision and recall are not adequate. The field
of multi-objective optimization, also known as Pareto op-
timization, is concerned with reaching optimality of more
than one objective function, and thus comes closest to ad-
dressing the privacy-saliency compromise we present in this
paper [16]. One way to solve a Pareto optimization problem
is by supporting an expert decision maker decide on a solu-
tion path to pursue and this is, in effect, the role that we see
the privacy-saliency matrix play.
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Figure 3. A high-level view of the user study, image coding, and evaluation process. Once participants reviewed and released their images for
analysis, the images were coded for evidence of eating behaviors and privacy concerns. Four privacy mitigation techniques were applied on the
images separately, and each of the resulting matrices were compared to the privacy-saliency matrix reflecting the images’ ground truth.

Participant Age Gender # of Images

P1 31 Male 1230
P2 24 Male 5360
P3 21 Male 2528
P4 23 Male 1958
P5 25 Male 3346

Table 1. We recruited 5 participants to be part of the study. A total of
14,422 first-person point-of-view images were captured and analyzed.

USER STUDY
An IRB-approved user study was conducted with graduate
student participants (n = 5, all male) from our university (Ta-
ble 1). The only criteria that we set for participating in the
study was that participants had to be familiar with the op-
eration of a smartphone device and be able and willing to
recharge the phone every night. Participants were asked to
wear the phone for 3 days.

After going over the study protocol, participants were pro-
vided with an iPhone 3GS smartphone preloaded with a cus-
tom application that took geo-tagged photos automatically
every 30 seconds using the phone’s camera. Additionally,
the application also received events from the phone’s ac-
celerometer sensor continuously and saved it on the device.
The sensor data was collected together with the images at
the conclusion of the study.

Participants were asked to wear the device as much as possi-
ble for the duration of the study; we told them that they could
turn off the phone, or take it off, if they did not feel com-
fortable wearing the device in certain places or situations.
All images captured by the mobile application were saved
in the phone’s default photo library, so participants could re-
view and delete photos whenever they wished. Finally, at the
end of the study, participants had the opportunity to review,
delete, and get a copy of all captured photos before releas-
ing the images to us. In total the number of FPPOV images
collected across all participants was 14422.

METHOD
The methodology for evaluating our privacy mitigating tech-
niques for FPPOV images in the context of eating activity
recognition was comprised of two phases. Figure 3 shows
the overall workflow. In the first phase, the images were
individually coded for evidence of eating behavior and also
for privacy threats using the privacy-saliency matrix. The
goal was to establish a ground truth baseline for the image
set so that we could confidently measure the impact of each
automated technique on an image-by-image basis. In the
second phase, all images were processed with one of the 4
techniques proposed (i.e. face detection, image cropping, lo-
cation filtering and motion filtering), and results were com-
pared to the baseline.

Privacy-saliency coding of initial images
The images were reviewed by 3 coders, 2 of whom are au-
thors. To reduce the learning effect caused by reviewing FP-
POV images in sequential order, we developed a custom im-
age annotation application that arranged images randomly.
Coders viewed images on a grid, and tagged them accord-
ing to privacy and saliency (as defined on a codebook) using
keyboard shortcuts for efficiency. The criteria for a privacy
concern was the presence of a human head in the image or
any body part thereof (e.g. hair, eye, nose). The head could
belong to the participant himself or someone else who hap-
pened to be photographed. Evidence of eating behavior was
determined to be one or more visual cues that indicated that
the participant was engaged in an eating activity, such as the
presence of silverware, food on a plate, food in hand, others
eating nearby, the identification of a restaurant, etc.

The inter-rater agreement amongst coders on the total of
14,422 images was calculated to be 0.73 (Fleiss’ kappa),
indicating general agreement. In the case of disagreement,
we treated privacy and saliency differently. If any one of
the three coders thought that there was a privacy concern in
the image, the image was considered to have a privacy con-
cern. The overall categorization on the eating dimension was
based on a majority vote by the coders.
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PRIVACY MITIGATION TECHNIQUES
In this section, we describe in more detail the four techniques
that we implemented with the goal of automating balancing
privacy against saliency: face detection, cropping, location
filtering and motion filtering.

Face Detection
It is relatively common for faces to be captured in FPPOV
images. When this occurs, the identity of the individuals
whose faces were recorded is completely revealed, a worst-
case scenario in terms of privacy. Ideally, we would like
to be able to flag all FPPOV images that contain faces, the
images found in Q2 and Q4 in the privacy-saliency matrix,
so that they can be either deleted or filtered further. For the
analysis in this paper, we simply assume all flagged images
are deleted.

We evaluated the performance of two face detection algo-
rithms with respect to its impact in the distribution of im-
ages in the privacy-saliency matrix, (1) the one available in
the Core Image framework of Mac OS X (10.7 and above),
and (2) the set of Haar’s cascade classifiers available through
the OpenCV library [6]. For the Core Image detector, we
implemented an application that leveraged the framework’s
API. The Haar classifiers consisted of groups of Haar-like
features that were learned using Viola and Jones’ boosted
cascade approach (AdaBoost) for encoding the contrast and
spatial relationship of facial features within a window. The
Haar Cascade Classifiers were trained on hundreds of face
images at similar orientations. Following training, the clas-
sifiers were applied to images at multiple scales using a slid-
ing window.

Image Cropping
Recognizing eating behavior in a passive, objective and au-
tomated fashion is a hard problem amplified by the fact that
eating is often a social activity. Taking photos from a first-
person perspective will generally result in images that in-
clude other people, such as those sitting across the table or
sharing the same environment (e.g. restaurant), a clear pri-
vacy risk. This is a typical case where it would be desir-
able to crop FPPOV images to exclude undesirable elements
in the scene (e.g. faces) while retaining the salient content
(e.g. evident of eating activity). In the matrix representation
previously discussed, this corresponds to the ‘Move images
from Q2 to Q1’ scenario.

The first cropping technique we considered is perhaps the
simplest, and hinges on the observation that when people
eat, they usually have a plate or food container right in front
of them. Thus, when taking photos from a first-person per-
spective, the bottom-half region of the images is likely rele-
vant to the evidence of eating (Figure 8). The top-half region
of the image is usually where faces are located, and can be
discarded. We later consider how the position of the POV
camera impacts cropping.

We implemented an application in Objective-C for Mac OS
X that cropped the bottom-half of participants’ images, shri-
nking the image height in half. Image cropping not only

has a desirable effect of eliminating privacy risks, it also has
an undesirable potential side effect of deleting the evidence
of eating behavior. Therefore, to calculate exactly how this
technique performed, all cropped images were coded again
for evidence of eating behavior and privacy. Like before, 3
coders reviewed and tagged the images, two of whom are
authors. The inter-rater agreement amongst coders in this
session was calculated to be 0.8 (Fleiss’ kappa).

Location Filtering
The top of Figure 7 shows the geo-location distribution of
images for one participant. Red areas of the graph indicate
where eating behavior was found in the ground truth cod-
ing, and gray areas of the graph are images with no eating
behavior. What this plot suggests is that eating activity is
localized in space, and this is evident from all of the partic-
ipants in our study. This empirical evidence reinforces our
intuition that routines, such as eating can often be inferred
from location data [3, 11]. Most of the eating behavior can
be mapped to a small number of locations, such as home
and work. Naturally, presence in locations such as restau-
rants and to a lesser degree bars, are highly correlated with
the activity of eating as well. The central idea of this tech-
nique is to reduce privacy exposure by considering only the
photos that maximize the chance of an eating behavior be-
ing recorded. In the privacy-saliency matrix, this technique
is aligned with the goal of eliminating photos in Q3 and Q4,
whose images do not show evidence of eating activity.

This approach leverages the latitude and longitude metadata
embedded in each one of the images captured by partici-
pants over the duration of the study. To demonstrate the
value and performance of this technique, we show how we
can eliminate a significant number of images simply on the
basis of their geo-spatial physical distance from the closest
image that depicts an eating activity. This distance is calcu-
lated from the latitude and longitude of two points using the
Haversine formula:

d = 2r arcsin(
√
sin2 (∆φ

2 ) + cos(φ1)cos(φ2) sin
2(∆λ

2 ))

In a practical application of location filtering, we would infer
the likely locations of eating in two ways. First of all, when
collecting location and FPPOV images for a longer period of
time, previous work shows that it is possible to infer where
home and work are for an individual based on location traces
alone [3, 11]. Secondly, discovering that an individual is or
was at a restaurant can be easily done by looking up the indi-
vidual’s coordinates on a location database, such as the ones
provided by Foursquare, Google Places and Yelp. By com-
bining these two methods, we argue that further locations
could be feasibly inferred through a semi-supervised learn-
ing approach.

Motion Filtering
It is more likely that people are eating when they are not
moving. Based on this insight, we implemented a filter that
disregards images when the level of motion of the individual
wearing the camera around the time the images were taken
exceeds a predefined threshold. The objective was to elimi-
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nate images from Q3 and Q4 in the privacy-saliency matrix,
which do not convey any information as far as eating activi-
ties are concerned.

To collect movement data at the time FPPOV photos were
shot, we instrumented our image capture application to con-
tinuously log the stream of accelerometer events for as long
as the application was running. This enabled us to compile
sensor data at the moment images were captured and also
several seconds before and after. The level of motion, set
for each image, was calculated to be the standard deviation
of the composite 3-axis accelerometer data (i.e. x, y, and z)
over the minute the photo was taken:

Ms =
√

1
N

∑N−1
n=0 |(|xn|+ |yn|+ |zn|)− µ|2 ∗ 100

where N is sampling rate times number of seconds in a
minute. The normalized score value Ms ranged from 0 to
65 and the threshold for eating activities was set to 8. This
was determined empirically, based on the distribution of FP-
POV images of our study participants. As shown in Figure 6,
the distribution of motion intensity for eating images has a
range of 1-21 only, which is distinct from the distribution
of motion intensity seen in non-eating images. Additionally
we verified that these distributions are significantly different
with a Kolmogorov-Smirnov test (p < 0.001).

RESULTS
A total of 14,422 images were captured in our 5-person study.
Figure 4 shows the ground truth coding in terms of the priv-
acy-saliency matrix of the raw FPPOV images. We show
the resulting privacy-saliency matrix after each of the four
automated techniques are applied to those images.

We ran two face detection algorithms on the participants’
images, the one available through the Mac OS X’s Core Im-
age framework and the set of of Haar’s cascade classifiers
available through the OpenCV library. The Haar classifiers
outperformed the Core Image detector by an order of mag-
nitude, therefore we are just reporting results with respect
to this classifier. As shown in Figure 4, Q2 and Q4 in the
privacy-saliency matrix saw the largest decrease in the num-
ber of images, in the range of 35% to 42%. Around 13% to
14% of the images in Q1 and Q3 were flagged for containing
faces, which is indicative that the face detection algorithm
generated false positives, since the images in these quadrants
were previously screened for faces by human coders.

Note that we did not measure the performance of the al-
gorithm with respect to its ability to recognize faces. In-
stead, by assuming the removal of images from the quad-
rants when the algorithm detected faces in them, we mea-
sured how the application of the algorithm modified the dis-
tribution of images in the privacy-saliency matrix. One of
the reasons why the face detection method did not perform
better is because first-person perspective images are often
blurry and do not capture faces looking directly at the camera
frequently. Nevertheless, as FPPOV images become more
popular, it is likely that we will see the development of face
detection and other computer vision techniques that are opti-

mized for this type of photography. Also, the privacy criteria
that we employed while coding the images was the presence
of a human head or any visible part thereof, such as hair,
nose, eyes, etc, and not a face. In light of this, many of the
images assigned to Q2 and Q4 in the matrix could have never
been flagged by face detectors.

With regards to cropping the bottom-half region of the im-
ages, it had a positive effect in that it reduced the number
of photos with privacy concerns. The number of images in
Q2 and Q4 fell around 67% and 30% respectively, as shown
in Figure 4. More importantly, the intended effect of having
images transition from Q2 to Q1 materialized. Out of 174
images in Q2, 75 moved to Q1. This represents a best case
scenario since many images depicting eating activities but
compromised by privacy threats had those threats removed
with cropping. A smaller but still significant number of im-
ages (48) moved from Q2 to Q3. This can be interpreted
from two perspectives. On one hand, 48 images that pre-
sented privacy issues before no longer did after cropping.
This meant that they could be examined by human compu-
tation workers without the risk of a privacy violation, for
example. On the other hand, the evidence of eating activities
in the images is no longer present, so from the point of view
of eating behavior recognition, these images do not hold any
useful information anymore.

Location filtering proved to be an effective approach for re-
moving images that do not include evidence of eating activ-
ity. When considering photos within a radius of 0.2 km of a
known eating location, images in Q3 and Q4 fell by 46% and
40.89% respectively. However, as previously discussed, the
condition under which these results were obtained is when
all eating locations are known. If that is the case, all in-
stances of eating activity are accounted for, and thus there
is no loss of images in Q1 and Q2 (no percentage change in
the number of images). Unfortunately, all collected location
data for one of the participants was corrupted and had to be
discarded. This required us to generate ground truth quad-
rant numbers for the privacy-saliency matrix with 4 partic-
ipants instead of 5. This is the reason why the numbers in
Q1 and Q2 differ from those in the ground-truth privacy-
saliency matrix in Figure 4.

Motion filtering performed similarly to location filtering in
terms of the reduction of images in Q3 and Q4. Q3 saw a de-
crease of 35.57% in its images and the number of images in
Q4 fell by 41.49%. Because of the need to establish a range
in the motion score under which an eating behavior is most
likely to occur, it is always the case that some images rep-
resenting eating activities end up outside of that range and
are disregarded. This is why the privacy-saliency matrix for
motion filtering shows a decrease in the number of images
in Q1 (24.47%) and Q2 (20.69%). Without a doubt, this de-
crease is undesirable, but it is less pronounced than the loss
of images in Q3 and Q4. Overall, the collective loss of im-
ages in all quadrants, affecting Q3 and Q4 to a higher degree,
underscores the trade-off between capturing activities of in-
terest and mitigating privacy concerns that lies at the core of
this paper.
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Figure 4. The privacy-saliency matrices showing the coded distribution of images before the application of the privacy mitigation techniques (ground
truth) and after. Note that due to corrupted data, the location filter could be applied to images from 4 participants only. The matrix in the bottom-
right corner shows how images transitioned from one quadrant to another after cropping. The arrows in green show transitions that we consider
‘good’ (e.g. reduction of images with privacy concerns), while red arrows highlight transitions that we consider ‘bad’ (e.g. removal of evidence of
eating behavior).

ADDITIONAL PRIVACY RISKS
Though we followed a strict criteria of marking all the im-
ages that had any part of the head as a privacy threat, we dis-
covered several other categories of threats while coding the
images. In some instances, information captured in an im-
age could be linked back to an individual. For example, per-
sonal id, credit card number, cell phone usage, email screen.
In other cases, the display of jewelry, tattoos, clothes could
help an acquaintance identify an individual. Furthermore,
a silhouette could provide enough information for a friend
or family member to infer identity. A non-obvious threat
emerged as a result of analysis of one participant’s images of
a meeting where under-table shots had potential of providing
compromising information about secondary participants.

Our IRB mandated us to mark all images that contained any
personally identifiable information like face, accessories, and
tattoos. Although we found the IRB requirements to be re-
strictive, our findings suggested a more complex definition
of privacy, one that begs understanding of the relationship
between the secondary participants and third party that looks
at the images. For example, an email of a person becomes
more important than the jewelry or tattoo when an image is
shown to a third person. However, it is not easy to establish
that relationship when an image becomes publicly available
hence most stringent rules should be imposed in those cases.
But in the cases where access is limited to a set of third party

members such as coders or Mechanical Turkers, some crite-
ria could be overlooked without compromising privacy.

An important and somewhat paradoxical condition that our
work does not take into account is when the recording of
an eating activity represents a privacy violation. In a survey
focusing on the activities and habits that people do at home
that they would not want recorded, Choe et al. found that
the “cooking and eating” category ranked third, behind the
self-appearance and intimacy categories [7]. This finding
underscores the complexity of the privacy-saliency balance,
in particular when there is an overlap between the two.

THE IMPACT OF CAMERA POSITION
In this paper, we studied techniques that address concerns in
FPPOV images when these images are taken at chest level
with a mobile phone camera. There are several other lo-
cations where a wearable camera could be mounted in the
body. To gain a better understanding of the impact of cam-
era position on the privacy-saliency balance, one of the au-
thors of the paper wore two wearable cameras, in the head
and neck, for a period of 5 days. The head camera employed
in this informal study was the Contour ROAM Model 1600,
and the neck camera was custom designed through the com-
bination of a Logitech Webcam 210, a Raspberry Pi Model B
and a PowerGen 8400mAh External Battery (Figure 5). The
number of images collected for the head and neck cameras
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Figure 5. We also collected first-person point-of-view images from two additional camera positions, head and neck, and coded them for privacy
concerns and evidence of eating behavior. The neck camera images were particularly interesting, since they often captured the individual eating but
not the features that typically characterize privacy concerns.

Figure 6. We computed a measure of human motion intensity by lever-
aging accelerometer data from the mobile phone camera. By adding up
the number of images in each quadrant of the privacy-saliency matrix
by level of motion, it is possible to see that the most eating activities are
contained within a region of motion that range from 1 to 21.

were 2,905 and 5,144 respectively. Both cameras were set to
take photos every 30 seconds, but battery life prevented them
from operating throughout an entire day. In particular, since
the Contour camera is designed to capture specific moments
in sports activities, it could only record photos for 3 hours
at a time before having to be recharged. This is why there
was a discrepancy in the number of images collected by both
cameras. The author who wore the cameras for the informal
study coded all captured images using the same methodol-
ogy and criteria employed with the images collected in the
5-participant study.

Thanks to its wide angle lens and high-mounting position,
the head camera captured images that reflected not only what
was immediately in front of the person, but also most of the
surrounding context. On the positive side, all eating activi-
ties were recorded, even when the individual was having a
small snack and not sitting on a dining table, which usually
makes it easy to identify an eating activity. On the other
hand, any person in the vicinity of the individual wearing
the head camera was also captured in the photos, which re-

sulted in many images being flagged for privacy concerns.
This was quantified in the ratio of total images to images
with privacy concerns for the head camera, 3.48. For com-
parison, this same ratio for the chest-level FPPOV images
collected in the 5-participant study was 5.45.

The FPPOV images from the neck camera were very promis-
ing. We found the set of neck images to contain fewer blurry
photos compared to the chest and head images, most likely
because the neck camera did not move as much as the other
cameras. In terms of orientation, the inclination caused by
the neck collar made the camera point down when worn,
capturing what was always in front of the individual, but at
a downward angle. This proved to be an excellent way to re-
move many of the privacy issues that affect FPPOV images,
since the photos did not record people’s faces, which were
always above the viewport of the camera. The ratio of total
images to images with privacy concerns for the neck cam-
era amounted to 100.8 (approximately 1 image with privacy
concerns for every 100 images). Additionally, the angled
camera pointed straight at what people were eating in front
of them. These results, though preliminary, provide evidence
that we should investigate camera position in more detail in
future work.

FUTURE WORK
Based on this initial exploration of the space, we see op-
portunities for future work both in terms of extending the
research we have done so far and in improving our method-
ology.

First of all, it is imperative that we validate our methodology
and results with a larger cohort of participants, ideally from
different backgrounds, demographics and social-economic
status. In this study, all participants were graduate students;
follow up studies will include subjects from all walks of life.
More specifically, it would be highly relevant to involve par-
ticipants who are personally motivated in keeping a food
journal and also those who might have a different or broader
perspective on privacy. Second, we estimated ground truth
for eating behaviors and privacy with a group of coders that
included two authors. In an effort to improve the validity of
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Figure 7. The top chart shows a location trace of one of the participants
in the study. Each point in the trace corresponds to a FPPOV image
automatically taken with the wearable camera. From the distribution
of photos, it is possible to see that photos with evidence of eating activity
(red squares) are clustered around a few locations only. The bottom
chart illustrates the positive correlation between the number of images
depicting non-eating activities and the distance between the location
the image was taken and the closest known eating location.

our work, our aim is to compose a larger and more diverse
coding panel in the future. Third, we would like to study
in more detail how to leverage established multi-objective
optimization techniques in our privacy-saliency framework.

In terms of the privacy techniques applied to the FPPOV
images, we chose simple yet practical approaches that con-
tributed to the challenge of privacy mitigation while illus-
trating a real application of privacy-saliency matrix. In our
view, the techniques that we examined can be seen as build-
ing blocks, and it is likely that bringing them together will
lead to more powerful and effective mechanisms for reduc-
ing privacy risks. For instance, the location and motion fil-
ters used in combination can provide more effective removal
of images not related to eating. We did not implement a true
geocode-based location filter in our study, but had we done
so, the location information alone might highlight images
when the user was walking by a restaurant. In that case, the
motion filter would be useful to remove that image. Sim-
ilarly motion at work or in the home might help to remove
images that are not likely to contain eating in those locations.

Face detection is exactly that — it detects a face. However,
the appearance of a head at any orientation relative to the
camera could be considered a privacy risk. So we should
consider using a more general head detection solution. Simi-
larly, we might want to detect any imagery on human skin to
detect distinguishing characteristics like tattoos or jewelry.
Non-human imagery, like computer screen images, credit
card numbers or house numbers could also be detected and
be criteria for deletion or cropping of imagery. We intend
to explore these techniques more rigorously and develop a
framework for combining and assessing their effectiveness.

Figure 8. Several images that contain evidence of eating behavior might
pose a privacy concern. By cropping a portion of the image, it is often
possible to eliminate privacy issues.

Finally, we discussed promising results from an informal
study where cameras were placed in the head and neck of
one of the authors, capturing FPPOV images from those per-
spectives for a period of 5 days. The neck camera proved to
be particularly good at not capturing images with privacy is-
sues, because of its position and orientation on the body. We
plan to run a more rigorous study in the future and report on
the balance between privacy and observing eating behaviors
from those camera angles.

CONCLUSIONS
The overarching impetus for this work was the need and de-
sire to tackle the privacy problem in FPPOV imagery. Al-
though privacy in FPPOV images has been recognized by
the community as an area that deserves furthers exploration,
few studies have investigated this domain in a practical and
quantifiable manner.

The contributions of this paper are threefold. Firstly, we in-
troduce a formulation around FPPOV imagery for studying
and quantifying the balance between a set of images that
might pose a privacy concern versus images that contain in-
formation salient to a particular task of interest. By making
this balance evident, the representation informs what steps
one might take to achieve specific goals, such as retaining
images with certain characteristics while discarding others.
The formulation centers on a 2-by-2 matrix that we call the
privacy-saliency matrix. In our specific case, the privacy-
saliency matrix makes it clear how we can understand the
opportunities for technology to address the privacy concern
for using human computation to identify eating.

Secondly, we show how sensor data such as geolocation and
data streams collected from mobile phone accelerometers
can be combined with FPPOV images in the specific service
of addressing privacy concerns when the goal is to to recog-
nize behaviors of interest (e.g. eating) with wearable cam-
eras. The location and motion filtering techniques demon-
strated in this paper successfully leveraged sensor data to
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determine the likelihood that an eating activity was occur-
ring, thus reducing the need to consider photos that might
introduce privacy issues.

Thirdly, using the privacy-saliency matrix representation, we
evaluated the performance of four simple techniques (i.e.
face detection, cropping, location filtering, and motion filter-
ing) at mitigating the privacy risks incurred when capturing
FPPOV images. This evaluation was based on an empiri-
cal study in which FPPOV imagery from 5 participants was
collected over an average of 3 days, totaling 14,422 images.
As expected, none of these techniques are particularly good
at optimizing both the privacy and saliency of images to de-
sired levels, but they expose the need for mechanisms that
support reasoning about this optimization, which we believe
our proposed framework does.
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