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ABSTRACT

This paper presents an approach for automatically detecting
eating activities by measuring deformations in the ear canal
walls due to mastication activity. These deformations are
measured with three infrared proximity sensors encapsulated
in an off-the-shelf earpiece. To evaluate our method, we con-
ducted a user study in a lab setting where 20 participants were
asked to perform eating and non-eating activities. A user de-
pendent analysis demonstrated that eating could be detected
with 95.3% accuracy. This result indicates that proximity
sensing offers an alternative to acoustic and inertial sensing
in eating detection while providing benefits in terms of pri-
vacy and robustness to noise.
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INTRODUCTION

Obesity is a global health problem that is known to be a risk
factor for a number of chronic diseases such as diabetes and
coronary heart disease. Since 1980, the incidence of obesity
has more than doubled, and in 2014, 11% of men and 15% of
women aged 18 years and older were considered obese [2].

One of the most effective methods for combating obesity is
through dietary self monitoring, which has been shown to
correlate positively with weight change. However, long-term
adherence to food journaling is poor. This trend is due to sev-
eral factors, from the inherent difficulty in logging meals and
snacks with current self-tracking tools to individuals simply
forgetting to log consistently [4]. In this context, automat-
ically identifying when eating activities are taking place is
seen as an important mechanism by which the food journal-
ing task can be facilitated.

One difficulty with wearable monitors is compliance. Users
do not want to call attention to themselves by standing out in
public. Embedding eating detection in a socially-acceptable
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device, such as headphones or earbuds, might alleviate these
concerns and lead to more sustained usage.

In this paper, we investigate the use of infrared proximity sen-
sors mounted in a non-occluding earphone to monitor lower
jaw movements associated with eating. The system, called
the Outer Ear Interface (OEI), is shown in Figure 1. OEI
measures the magnitude of deformations in the ear canal dur-
ing speech and mastication activities.
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Figure 1. The current Outer Ear Interface system

RELATED WORK

Amft et al. showed that food intake detection and food
type classification can be done acoustically for sufficiently
“crunchy” foods, with accuracies of 99% for recognition of
intake and between 80% to 100% for estimating food type
[3]. Fontana et al. demonstrated a wearable sensor system for
food intake detection that combines data from a jaw motion
sensor, a hand gesture sensor and an accelerometer. Aver-
age accuracy of 89.8% was achieved [5]. In the more general
case of detecting facial gestures, Kazuhiro et al. developed a
device that utilizes optical sensors placed in the outer ear. [1].

Proximity sensing represents a promising direction for detect-
ing eating and possibly other facial activities since it requires
less processing power, is robust to noise, and imposes no pri-
vacy concerns when compared with auditory sensing.

SYSTEM DESCRIPTION

The OEI interface exploits proximity sensing to identify
mandible location by measuring the volume of deformation
it causes in the ear canal wall. Due to the heterogeneity of
the outer ear phenotype among individuals, it is difficult to
recover the mandible location and motion with one proxim-
ity sensor. As shown in Figure 1-a, OEI utilize a set of three
infrared proximity sensors placed orthogonally with respect
to each other to allow for a wider coverage of the ear canal.
As depicted in Figure 1-b the hardware for eating detection
contains an OEI unit and an Inertial Measuring Unit IMU)
inside the hat for monitoring body movement. Data from the
proximity sensors and the 3D gyroscope are sampled at 100
Hz and are saved in an SD card for off-line analysis.



SYSTEM EVALUATION

We conducted a user study in our laboratory to examine how
well our system distinguished between eating and non-eating
activities. We recruited a total of 23 participants (10 females
and 13 males) with an average age of 24 years. Due to data
collection errors, we had to discard data from 3 participants.
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Figure 2. Laboratory study user survey results

Participants were instructed to begin the study by reading
aloud from a book for 5 minutes, followed by another 5 min-
utes of silent book reading or internet browsing. Next, partic-
ipants were asked to eat a variety of food items. They were
asked to behave as they normally would during eating and
were given the freedom to talk or carry other activities while
they ate. The set of food items offered was controlled and in-
cluded an apple, a banana and M&Ms. Eating typically lasted
between 10 and 15 minutes, and participants were also asked
to drink a glass of water. Afterwards, participants took a 5-
minute walk outside the laboratory in a noisy city environ-
ment accompanied by one of the experimenters. Except for
the walking activity, all activities were video-recorded; the
videos were used for annotation and ground truth estimation.

After the study we asked the participants to fill in a survey in
which they answered questions regarding the comfort and fit
of the device (Figure 2).

ANALYSIS AND RESULTS

For eating activity detection we trained a set of hidden
Markov models using five features extracted from the three
proximity sensors and the 3D gyroscope data. Using empir-
ical methods we selected a 10-state, left-right topology with
no skip states to model “talking” and “silent,” and an 8-state,
left-right topology with additional transitions between (4 —
1) and (7 — 5) to model “eating” and “walking.”

To extract features from the proximity sensors we applied an
averaging window filter with a size of 5 samples to smooth the
data. We then took the first derivative of the values to elimi-
nate the offset effect on the data. To recover jaw motion from
the three proximity sensors, we applied principal component
analysis on the preprocessed data and used the first principle
component as the first feature. We then applied a Short Time
Fourier Transform on a sliding window of 50 samples on the
first feature and used the average energy of the band between
1.2 to 4.6 Hz as our second feature. We found this feature
helpful in distinguishing between mastication and talking ac-
tivities. To help classifying walking, we included the x, y, and
z gyroscope raw data as features.

To evaluate the system in the lab environment, we ran user
dependent tests. We extracted frames from labeled data using

Prediction
Eating Silent Talking Walking

<= | Eating = 7692 97 179 260

5| Silent 133 3551 180 51

& | Talking 347 87 3767 114
Walking 60 27 22 4413

Table 1. Confusion matrix for user dependent testing indicating number
of frames tested and prediction results

15-second sliding windows with 50% overlap. We performed
10-fold (33%-66%) cross validation on each user. The aver-
age accuracy obtained was 95% (precision 93%, recall 96%).

DISCUSSION

From the results obtained on the frame level testing we be-
lieve there is high potential in using the current setup to
achieve a low false positive rate per hour, making the sys-
tem more convenient for food logging. Results from the user
survey indicate that users found the system light-weight and
comfortable. The confusion matrix in Table 1, shows that the
current system is able to classify all classes with above 95%
accuracy. This result indicates the capability of the current
setup in classifying speech, silence and walking activities.
Since our approach only monitors jaw motion, it might im-
pose limitations on its capability to classify food types. How-
ever, our approach might prove complementary with the food
classifying systems developed by Amft et al.

CONCLUSION AND FUTURE WORK

This work shows the feasibility of proximity sensing in the
ear canal for eating detection. We believe this work could be
an important stepping stone towards building systems for nu-
trition monitoring by prompting individuals to log their eating
activity every time it is detected.

In the future we would like to run event level analysis on the
lab dataset and test the real-time viablity of the apparatus in
the wild to evaluate the ecological validity of the system.
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