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Audio-Based Activities of Daily Living (ADL) Recognition with
Large-Scale Acoustic Embeddings from Online Videos
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Over the years, activity sensing and recognition has been shown to play a key enabling role in a wide range of applications,
from sustainability and human-computer interaction to health care. While many recognition tasks have traditionally employed
inertial sensors, acoustic-based methods offer the benefit of capturing rich contextual information, which can be useful when
discriminating complex activities. Given the emergence of deep learning techniques and leveraging new, large-scale multi-
media datasets, this paper revisits the opportunity of training audio-based classifiers without the onerous and time-consuming
task of annotating audio data. We propose a framework for audio-based activity recognition that can make use of millions
of embedding features from public online video sound clips. Based on the combination of oversampling and deep learning
approaches, our framework does not require further feature processing or outliers filtering as in prior work. We evaluated
our approach in the context of Activities of Daily Living (ADL) by recognizing 15 everyday activities with 14 participants
in their own homes, achieving 64.2% and 83.6% averaged within-subject accuracy in terms of top-1 and top-3 classification
respectively. Individual class performance was also examined in the paper to further study the co-occurrence characteristics
of the activities and the robustness of the framework.
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1 INTRODUCTION
Sensing and recognizing human daily activities has been demonstrated to be useful in many areas, from sustain-
ability to health care. For example, older adults in their own homes can benefit from proactive assistance and
monitoring as a way to "live-in-place" and not be forced to move to an assisted-living or nursing facility. While
on-body inertial sensors such as accelerometers and gyroscopes are popular in many human activity recognition
applications, prior work suggests that they are not effective at recognizing complex and multidimensional activi-
ties on their own [2, 18, 29]. Audio, on the other hand, offers much promise in this respect; many daily activities
generate characteristic sounds that can be captured with any off-the-shelf device with a microphone. Hence,
researchers have proposed several different types of audio event recognition frameworks over the years, from
applications on wearable and mobile devices [30, 37] to home-based sensor systems [5, 21]. With the development
of deep neural networks in recent years, several efforts have been made by researchers to model large-scale
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acoustic events. These include the usage of deep learning for sound classification on existing datasets [33] and
the recognition of acoustic categories in the wild [19]. However, most such frameworks suffer from the laborious
collection of ground truth training data. Some researchers have explored the use of crowd-sourced data to alleviate
the problem, such as Nguyen et al. and Rossi et al. [27, 31]. Despite encouraging results, these methods have
proven difficult to scale as they partially rely on human input or interaction.
Large-scale, open-source audio collections now offer a rich source of audio data reflecting a large number of

everyday activities. In this work, we present a novel scheme to recognize activities of daily living in the home.
Instead of directly collecting ground truth data and labels from users as in most prior research, we explored the
feasibility of using large scale of audio embeddings from general-sourced YouTube videos as the only training set.
Due to the considerable size and highly unbalanced characteristics of the on-line data, our method combines
both oversampling and deep learning approaches. The contributions of this work can be summarized as:

• A novel ambient audio-based framework for recognizing activities of daily living that relies exclusively on
519,270 audio embedding features of online Youtube videos from a large-scale audio dataset.

• An evaluation of the framework with 14 subjects in their homes and 15 activities of daily living, including a
performance analysis of the impact of balanced vs. unbalanced audio classes and embedding segmentation.
The proposed method showed promising results using off-the-shelf smart phones and was robust to
environmental variability.

2 RELATED WORK
Activity recognition is centered on sensor data collection and processing. For the most part, recognition problems
have been framed around specific activities and the utilization of single sensing methods. While multiple sensing
modalities can often improve recognition, the utilization of multiple sensors introduce new challenges across the
entire pipeline, such as lack of sufficient training data, constraints around power and computing, and difficulty
synchronizing sensor data for processing and annotation. Subject and location sensitivity can also make it harder
for the generalization of activity models [39].

2.1 Inertial Sensing
A large number of activity recognition approaches rely on inertial sensors such as accelerometers and gyroscopes
embedded in smartphones [2, 18], smart watches [35, 36] and wearables [29]. For example, Kwapisz et al. [18]
managed to recognize walking, jogging, going upstairs, going downstairs, sitting and standing by sensing with a
smartphone in subjects’ pockets. Thomaz et al.[36] proposed the usage of 3-axis accelerometers embedded in
an off-the-shelf smart watch for detecting eating moments. Similarly, Ravi et al. [29] showed the feasibility of
attaching a sensor board to the human body for simple movement classification.

2.2 Audio Sensing
Researchers have also proposed activity recognition methods leveraging audio and video resources. Microphones
have the benefits of simplicity and flexibility for implementation. Eronen et al. [8] proposed a pilot study to
recognize activity context based on sounds by using statistical learning methods. Yatani and Truong [40] explored
the recognition of 12 activities related to throat movement such as eating, drinking, speaking and coughing
by acoustic data collected around the neck and throat region. This was achieved by using a wearable headset
consisting of a tiny microphone and a Bluetooth module. Another study showed that human eating activity
can also be effectively inferred by using wrist-mounted acoustic sensing [37]. This implies the practicality of
simple audio-based activity recognition with off-the-shelf devices such as smartwatches. With rapidly improving
smartphones in recent years, phone-based acoustic sensing also shows great promise for activity recognition
tasks. The AmbientSense application [30] is an example. It is an Android app that can process ambient sound data
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in real-time either on the device or on an server. It was tested on mainstream smartphones (i.e., Samsung Galaxy
SII, Google Nexus One) and yielded satisfactory results on the classification of 23 context of daily life. In 2009,
Lu et al. [24] developed SoundSense to detect speech, music and ambient sound categories based on a mobile
platform. Acoustic sensing can also be used for indoor scenarios, especially when video-based methods may bring
privacy concerns. Laput et al.[21] described the concept of general-purpose sensing where multiple sensor units
including a microphone were embedded in a single home-oriented sensor tag. Chen et al. [5] provided an audio
solution for detection of 6 common activities in the bathroom based on MFCC features. This work targets elder
care and is aimed at replacing more direct behavioral observations, which individuals might not be comfortable
sharing with clinicians. More recently, acoustic sensing and recognition have been significantly improved based
on the usage of deep learning techniques. Salamon and Bello [33] proposed an architecture combining feature
augmentation and a CNN to evaluate on-line audio data. Lane et al. [19] developed DeepEar to classify multiple
categories for different sensing tasks based on a well-tuned fully connected network.

2.3 Audio-Based Classification Using Online Data
Most of the prior work requires manual collection of ground truth audio data from individual users. This can be
quite laborious especially when targeting multiple classes of activities. Also, it is unreasonable to have to rely on
end-users to train the model on their own before using it. Hence, Hwang and Lee [16] introduced a crowd-sourcing
framework for the problem. They developed a mobile platform to collect audio data from multiple users. The
platform could then generate a global K-nearest neighbors (KNN) classifier based on Gaussian histogram of MFCC
features to recognize basic audio scenes. However, this still requires collection of user data and the performance
of the system highly depends on the size and quality of the training set. General-purposed acoustic database, on
the other hand, can potentially serve as an ideal data source to existing systems.

Over the past several years, the Freesound database1 [10] has been one of the most commonly used databases
for audio research. Started in 2005 and currently maintained by the Freesound team, it is a crowd-sourced
dataset consisting of over 120,000 annotated audio recordings. Variants of Freesounds have also been created;
Salamon et al. [34] released the UrbanSound database containing 18.5 hours of urban sound clips selected from
Freesound. Säger et al. [32] improved the Freesound recordings by adding adjective-noun and verb-noun pairs to
the audio tags and constructed a new AudioPairBank dataset. Rossi et al. [31] first attempted context recognition
based on MFCC features extracted from the on-line Freesound database by using a Gaussian Mixture Model
(GMM). However, due to the limited size of the training set (4678 audio samples for 23 target context), the top-1
classification accuracy based on dedicated sound recordings was just 38%. The performance was improved to 57%
by manually filtering over one third of the samples as outliers. Nguyen et al. [26, 27] leveraged semi-supervised
learning methods to combine the on-line Freesound data with users’ own recordings. After manually filtering
outliers for quality, they trained a semi-supervised GMM on MFCC features extracted from 163 Freesound audio
clips for 9 context classes. The model was then applied to unlabeled user-centric data recorded by smart phones
with a headset microphone. The performance was evaluated based on the second half of the user data with an
average accuracy of 54% for 7 users. To further improve the performance, Nguyen et al. [26] also presented
two active learning mechanisms, where a supervised GMM was first trained on the same Freesound data or
well-labeled user data and then interactively queried users for labeling the unlabeled user-centric data. Clearly,
from the prior work we can see that the existing crowd-sourced datasets do not generalize well-enough across
users, and previous research still needs to rely on user data and manual filtering of outliers for better performance.

With the introduction of large audio datasets such as the AudioSet database [12], the idea of domain adaptation
from the web has been developed in several activity recognition research. Hu et al. [15] proposed to use web
search text as a bridge for similarity measures between sensor readings. Fast et al. [9] developed Augur, a system

1https://freesound.org/
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leveraging contexts from on-line fictions to predict human activities in the real world. In terms of audio-based
classification, Aytar et al. [3] described the SoundNet framework for knowledge transfer between large-scaled
videos and target sounds based on a deep CNN. To the best of our knowledge, however, very few attempts have
been made to adapt such tremendous scale of on-line audio samples for real-world activity recognition, and
this can be even challenging when leveraging YouTube sound features due to the ambiguous source of the raw
videos from movies, cartoons to crowd-sourced data. The most relevant up-to-date achievement was proposed by
Laput et al. [20], where the researchers developed a mixed process of audio augmentation for a deep network
and combined online sound effect libraries with the Audio Set data for audio context classification. Their work
shows promising results when applying the augmentation process with the online sound effect data. However,
the performance of the framework dropped significantly when using only the video sounds (i.e. the Audio Set
[12] data) without augmentation. Moreover, their work mainly focused on the classification of environmental,
and not individual, context. In our research, we aimed to study the feasibility and performance reported from the
perspective of individual activity recognition by leveraging only online video sound clips for training. Our in-lab
and multi-subject studies showed that the proposed framework was able to yield promising performance even
without any feature augmentation or semi-supervised learning techniques.

3 IMPLEMENTATION

3.1 AudioSet
In 2017, Google’s SoundUnderstanding team released a large-scale acoustic dataset, i.e., AudioSet [12], endeavoring
to bridge the gap in data availability between image and audio research. The AudioSet contains over 2 million
audio soundtracks drawn from general YouTube videos. The dataset is structured as a hierarchical ontology
consisting of 527 class labels. All audio clips are equally chunked as 10 seconds long and labeled by human
experts.

The dataset does not provide original waveforms of the audio clips. Instead, the samples are presented in the
form of both source indexes and bottleneck embedding features. The audio index contains information of the
audio ID, URL, class labels, and start and end time of the sample within the corresponding source video. The
embedding features are generated from a VGG-like deep neural network (DNN) architecture [14] trained on the
YouTube-100M dataset. The generation frequency is roughly 1Hz (96 10ms audio frames, i.e. 0.96 seconds of audio
per embedding vector). In other words, one embedding vector can describe one second of audio clip, and therefore
there are 10 embedding vectors for each audio clip within the dataset. Before released, the embedding vectors
have also been post-processed by principle component analysis (PCA) and whitening as well as quantization to 8
bits per embedding element. Only the first 128 PCA coefficients are kept and released.
The original vectors are all stored within TensorFlow [1] Record files. Given the significant size of the

embeddings and the lack of convenience for data processing, Kong et al. [17] provided a converted Python Numpy
version of the raw embeddings which are adopted in our research. Their converted dataset has been released
publicly online2.

3.2 Class Selection and Labeling
Before implementation, we needed to consider the range of target activities and how to associate class labels
in the AudioSet with them. We narrowed our scope to common activities that frequently take place in a home,
and activities of daily living (ADL) in particular. Also, the range of our target classes was limited to target
activities that are suitable for audio-based recognition. Here ‘suitable’ means that the sound of the activity
could be featured and easily captured in practice. Classes such as ’silence’ were also not chosen because the
corresponding attributes can be ambiguous from sleeping, standing, to maybe just absence of a person in the
2https://github.com/qiuqiangkong/ICASSP2018_audioset
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Table 1. Target activities and association with AudioSet [12] labels

Category Activity Class Associated AudioSet Labels
Bathing/Showering Bathtub (filling or washing)
Washing hands and face Sink (filling or washing); Water tap, faucet

Bathroom Flushing toilet Toilet flush
Brushing teeth Toothbrush
Shaving Electric shaver, electric razor
Chopping food Chopping (food)
Frying food Frying (food)

Kitchen Boiling water Boiling
Squeezing juice Blender
Using microwave oven Microwave oven
Watching TV Television

Living/Bed room Listening to music Piano
Floor cleaning Vacuum cleaner
Chatting Conversation; Narration, monologue

Outdoor Strolling Walk, footsteps; Wind noise (microphone)

room. Body movement with very weak sound features is not suitable for audio-based recognition as well. Further
more, it is not always possible to find an exact matching between the AudioSet labels and the actual activities. In
such cases, we adopted an indirect matching process. That is, we first determined the most relevant objects and
environmental context associated with the target activities. We then chose AudioSet classes of such objects and
contexts as representation of the activities. For example, we used class ’water tap’ and ’sink’ as representation of
’washing hands and faces’ as all three classes involve usage of water and the features are similar. This is actually
a subjective process as there is no quantized measurement to determine the similarity between such relevant
classes and the actual target classes. For the class ’listening to music’, we focused on studying only piano-related
musics as examples.
It is noted that the dataset provides a quality rating of audio labels based on manual assessment. Most of the

labels have been assessed by experts based on a random check of 10 audio segments within the label. The samples
of each label are actually divided into three subsets (evaluation, balanced training, and unbalanced training) for
training and evaluation purposes. The evaluation and balanced training sets are of much smaller size than the
rest unbalanced training set, and due to the considerable size of samples and factors such as misinterpretation
or confusibility, many class labels of the unbalanced training sets are actually of poor rating results. In our
framework, we did not consider the sample ratings and we incorporate all three evaluation, balanced training
and unbalanced data for our training set.

We therefore determined 15 common home-related activities for the framework. They are associated with 18
AudioSet labels. Table 1 shows the association between our target activities and the AudioSet class labels, and all
audio embeddings of the listed AudioSet classes are used as the only training data in our proposed scheme.

3.3 Oversampling
A typical characteristic of the AudioSet data is the unbalanced distribution in terms of the class size. In our
implementation, we also removed samples with label co-occurrence among the target classes to ensure mutual
exclusiveness, and table 2 shows the number of embedding vectors per class in our raw training set without any
sampling process. The totals include embeddings from all three subsets (evaluation set, balanced training set and
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unbalanced training set). The actual size for some classes is slightly smaller than they appear in the released
AudioSet since we adopted the converted Python Numpy version of features as mentioned. Classes ’chatting’ and
’listening to music’ have the most embeddings (174,220 and 115,200 respectively) while class ’brushing teeth’ has
the least (1230), which accounts for 0.7% of the largest class. In other words, the two majority classes account
for over half of the whole training set. The unbalanced distribution of the class size leads to highly unbalanced
training in our study. As we will see in the dedicated test section, the distribution of training class can heavily
affect the recognition performance; therefore, we implemented two oversampling processes to address this issue.

The unbalanced distribution of labels can be affected by two factors. Firstly, the distribution actually reflects the
diversity and frequency of the class labels within the source YouTube videos. For example, elements of chatting or
music can be captured in a large amount of video topics, from advertisement and news to cartoons. Brushing teeth,
on the contrary, appears much less, and typically just in some movie scenes or daily life recordings. Chatting
can also involve several modalities according to the speaker’s gender, age and the context of the speech, while
brushing activities seem to be much more similar among each. Secondly, we are using only samples without
label co-occurrence among the target classes. The size of the remaining disjoint data can also affect the actual
distribution in our training set.

The effects of unbalanced training on classification have been discussed in past work [4, 13, 23]. Without prior
knowledge of the unbalanced priors, a classifier tends to predict the majority classes, and so there should be a
higher cost for misclassifying the minority classes [23]. In our scheme, we implemented random oversampling
with replacement and synthetic minority oversampling technique (SMOTE) [4] to handle the problem. The
process of random oversampling can be divided into two steps. The first is to calculate the sampling size for
each minority class, i.e. to calculate the difference of size between the target class and the majority class. Then
each minority class is re-sampled with replacement until the sampling size is filled. This method replicates
existing data without introducing any extra information into the dataset. The SMOTE, on the contrary, works
by adding new elements to the minority classes. It leverages the K-nearest-neighbors (KNN) approach to first
generate new data points around the existing data points. Then one of the neighbors is randomly selected as

Table 2. Number of embedding vectors per activity class

Activity Category # of Embedding Vectors
Chatting 174,220
Listening to Music 115,200
Strolling in Courtyard 81,450
Watching TV 22,250
Flushing Toilet 22,190
Floor Cleaning 19,710
Washing Hands and Face 17,080
Frying Food 15,820
Bathing/Showering 14,270
Squeezing Juice 12,600
Shaving 8,570
Using Microwave Oven 8,180
Boiling Water 4,440
Chopping Food 2,060
Brushing Teeth 1,230
Total 519,270
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the synthetic new elements and is introduced to the minority class. In our implementation, the oversampling
process was developed based on the Python imbalanced-learn package [4, 22]. All parameters were set as default
in the imbalanced-learn package version 0.3.3 except that the random state was kept as 0. By the oversampling
processes, we actually obtained 2,613,300 embedding vectors in total for the 15 classes. The total was the same
for both random oversampling and SMOTE.

3.4 Architecture
Deep learning has been proven to be effective for classification when large amounts of training data is available.
Due to the considerable size of audio samples involved in our study, and also to keep the same feature format as
released in the AudioSet, we adopted neural networks in our proposed framework for both embedding feature
extraction and classification. Figure 1 shows the architecture of the framework. Overall, there are two networks
in our design, a pre-trained feature extraction network and a classification network. More specifically, we adopted
the pre-trained VGGish model [14] as the extraction network and all parameters of the network were fixed during
our training process. The classification network consisted of a 1-dimensional convolutional layer and dense layers.
The parameters and weights of the classification network were trained and fine-tuned on the AudioSet data.
Additionally, we added an embedding segmentation process between the two networks to improve recognition
performance.

In AudioSet, the frame-level features of the audio clips were generated by a VGG-like acoustic model pre-trained
on the YouTube-100M dataset. To enable researchers to extract the same format of features, Hershey et al. [14]
provided a TensorFlow version of the model called VGGish. It has been trained on the same YouTube-100M dataset
and can produce the same format of 128-dimensional embeddings for every second of audio sample. The VGGish
model takes as input non-overlapping frames of 64-bin log mel spectrogram lasting 0.96 seconds each from the

Fig. 1. Architecture of our proposed scheme. We applied the VGGish model [14] as the feature extraction network. The
feature network was pre-trained on the YouTube-100M dataset and all parameters were fixed in our training process. The
generated embeddings were then segmented and passed to the classification network. Our classification network consisted
of a plain 1-dimensional convolutional layers and dense layers, and the model was trained and fine-tuned on the oversampled
AudioSet [12] embeddings.
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Fig. 2. Architecture of the classification network. The classification network was constructed as a 3 1-dimensional convo-
lutional layers and 2 fully connect (dense) layers. The network takes as input segmented embedding vectors and outputs
confidence distribution of the activity labels.

raw audio waveforms. The source code and weights of the pre-trained VGGish model are available in the public
AudioSet model GitHub repository3. This code repository also includes pre-processing steps for extracting the
log mel spectrogram features to feed the model, post-processing steps for PCA transform, and element-wise
quantization, which have also been adopted on the released AudioSet data. In our implementation, the audio
pre-processing step takes as input audio waveforms with 16 bit resolution, so we manually convert other formats
of audio samples (such as raw recordings from smart phones) to the wave format using a free on-line converter4
before passing the raw audio for processing. The parameters of the VGGish network kept constant during the
whole training and validation process. The network outputs a vector of 128 syntactic embeddings for every input
instance.
Our classification network consisted of 3 convolutional layers and 2 dense (fully connected) layers. The

structure is shown in Figure 2. The convolutional layers were all 1-dimensional tensor with linear activation and
consistent paddings to ensure the same feature size. The number of channels are 19, 20 and 30 respectively for the
3 layers. The kernel size was all set as 5 with a stride of 1. We applied 500 neurons for the first dense layer. The
second dense layer is the output layer, thus there were 15 neurons and the output activation was set as softmax.
A flatten layer was used to connect the convolutional layers and the dense layers. We chose categorical cross
entropy as the loss. In terms of the optimizer, we applied stochastic gradient descent with Nesterov momentum.
The learning rate was set as 0.001 with 1e-6 decay and 0.9 momentum. The network took as input 128-dimensional
segmented and normalized embeddings from the segmentation step of our architecture and output predicted
confidence distribution of the labels. Under the top-1 classification scenario, the label with the highest confidence
was selected as the final prediction. Our classification network was built and compiled on Python Keras API [6]
with the Tensorflow [1] backend. The weights were trained and fine-tuned on normalized AudioSet embeddings.

In addition to the neural network and oversampling steps, we also applied segmentation to change the time
length of the audio instance for recognition. This was necessary because the time length of a single embedding
vector (0.96 seconds) can be too short to some activities and may not be able to capture enough information for
recognition. Also, increasing the instance length can help to alleviate the effects of outliers and noise within the
real world recordings. Hence, we introduced a segmentation process on embeddings between the two networks.
In our architecture, the segmentation is completed by grouping the embedding vectors continuously in time
using a fix-sized window with no overlaps. The vectors are then averaged within each group to yield a new
3https://github.com/tensorflow/models/tree/master/research/audioset
4https://audio.online-convert.com/convert-to-wav
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128-dimensional vector. In other words, each group of audio segment is described by one averaged embedding
vector. Activity labels are then assigned to the averaged vectors and those vectors serve as the actual instances
for classification. The embeddings were converted as float32 and normalized to [-1, 1] by subtracting and dividing
by 128 before fitting to the classification network.
Both the oversampling and training processes were applied using the NVIDIA K40 GPU on the server to

accelerate the training process. The training embeddings were split as 90% for training and 10% for validation
using the Python Scikit-learn package [28]. The TensorFlow version provided was TensorFlow-GPU 1.0.0 [1].
Before training, we set all random seeds as 0 to ensure the same training status. Besides, a batch of 100 embedding
vectors were input each time. The classification network was trained until the validation performance no longer
improved (in our study, 15 to 20 epochs depending on the re-sampling set in use).

4 FEASIBILITY STUDY
We evaluated the feasibility of our framework with a pilot study conducted in the home of one participant. There
were two reasons for conducting this experiment. Firstly, we hoped to verify if our proposed methodology could
actually work on real-world ambient recordings. Although the architecture had been well trained on the AudioSet
data, there could be significant differences in the characteristics of the YouTube video sounds and real-world
ambient sounds. Secondly, we needed a real-world validation set to determine the best combination strategy for
the sampling process and the classifier.

In the pilot study, we collected sounds of target activities by placing an off-the-shelf smart phone (i.e., Huawei
P9) near the location where the activities took place; the context of all activities was well-controlled with low
variability. Specifically, we excluded irrelevant environmental noise such as sounds of toilet fans or air conditioners
during the collection. Also, when a target activity was performed, there were no other on-going activities. The
collection was manually started when the sound of the activity could be clearly captured. Sound recordings for
each activity lasted for 60 seconds, and it was stopped when the proposed time ended. This same process was
repeated for each individual activity until the collection for all 15 activities was completed.
We chose a segmentation window of 10 embedding vectors (9.6 seconds) for the study. The recognition

performance was evaluated based on 3 different sampling processes (raw embeddings input/no oversampling,
random oversampling, and SMOTE). We also tuned and trained a random forest classifier on the same training
sets as a baseline. The random forest was built using the Python Scikit-learn package [28]. We used the overall
accuracy and overall F-score as the performance metrics. In binary classification, the F-score is calculated as 2 *
(precision * recall) / (precision + recall) and it incorporates information for both precision and recall performance.
In our study, the overall F-score across multiple classes can be calculated by finding the weighted average of
F-scores of the individual labels. Table 3 shows the recognition performance based on different architectures.
For convenience, the random forest is abbreviated as RF in the table. From the results we can see that the
random forest without any sampling process yields the worst accuracy and F-score (34.4% and 24.5%). This is

Table 3. Recognition performance leveraging different architectures of implementation.

Architecture Accuracy F-Score
Baseline(RF) + Raw Embeddings 34.4% 24.5%
Baseline(RF) + Random Oversampling 36.7% 27.2%
Baseline(RF) + SMOTE 45.6% 37.1%
CNN + Raw Embeddings 52.2% 44.8%
CNN + Random Oversampling 81.1% 80.0%
CNN + SMOTE 73.3% 71.1%
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comparable to the dedicated study by Rossi et al. [31], where the authors trained a GMM on 4678 raw samples
from the crowd-scoured Freesound dataset and obtained 38% overall accuracy for 23 context categories. Clearly,

Fig. 3. Recognition results of the pilot study using random oversampling + CNN (top) versus raw embeddings input + CNN
(bottom). The performance of the framework with the oversampling far exceeds the performance with only raw embeddings.
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the introduction of the classification network significantly improves the recognition performance, especially if
combining with the oversampling processes. The combination of random oversampling and our classification
network yields the best performance (81.1% overall accuracy and 80.0% overall F-score). Generally, classifiers with
oversampling outperform those without one. Figure 3 shows in details the performance of individual classes with
and without oversampling, and the entries have been normalized for each class. As it can be seen, classification
network input with raw embeddings overfits to some of the majority classes such as ’playing music’ and ’strolling’.
Network input with the random oversampled embeddings, on the contrary, yields equally promising results
to most classes. The worst class for the top-1 architecture was ’flushing toilet’ with only 17% class accuracy.
This is probably because the segmentation length was too long to the flushing activity and too much irrelevant
information was captured within the segments.

Fig. 4. F-score performance with different segmentation size per window. The performance was the worst when no segmen-
tation was applied. As the segment size increased, so did the F-score; it stabilized around 80%. The random guess levels were
around 7%.

To determine how the segmentation process can affect the classification performance, we compared the overall
F-score under different sizes of embedding segmentation. The comparison is shown in Figure 4. As reference,
we also plotted the random guess levels (around 7%). From the figure, we can see that the performance was the
worst when no segmentation process was introduced (i.e. 1 embedding vector each segment), with an F-score of
only 65%. By applying a bigger segment size, the F-score value significantly increased to over 80%. In addition,
we can see that a unit segmentation length of 5 embedding vectors enabled the instances to capture enough
information for classification. Further enlargement of the segmentation size no longer improved the overall
recognition performance.

4.1 Transfer Learning and Domain Adaptation
From the perspective of transfer learning, our framework is actually a domain adaptation process where we tried
to find amapping between the source Youtube audio clips and the real-world recordings. Generally speaking, audio
features from on-line videos can be very different from those of real-world collections for activity recognition.
Interestingly, our classification network only yielded 53% validation and training accuracy on the random
oversampled AudioSet embeddings. But the performance of our top-1 scheme reached over 80% on the ambient
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recordings. Moreover, we have noticed that the validation performance on the AudioSet data could have been
further improved by adopting deeper layers. However, increasing the depth of the model would no longer help to
improve the performance on real-world data (it might even harm the performance). A possible reason is that
ambient sounds from the real world (especially in home settings) can generally show different characteristics for
classification compared to YouTube audio. Hence, a best model for the classification of the AudioSet data may
not be the best choice for the classification of real-world sounds.

5 IN-THE-WILD STUDY
With the pilot test, we verified the feasibility of the proposed framework and determined the appropriate combi-
nation of oversampling and segmentation strategies with the proposed networks. However, several parameters in
the study were controlled; (1) there was little environmental noise, (2) the audio samples were recorded by a
smart phone nearby with almost no artificial or ambient disturbance during the processes, (3) the start and end
points of the collection were carefully selected to ensure high quality recordings, and (4) there were almost no
overlaps and co-occurrence among the activities. To generalize the study in more natural settings, we conducted
an IRB-approved in-the-wild study with 14 human subjects in their actual home environments (7 males and 7
females, with the age between 20 to 30).

The in-the-wild study was performed by following a scripted scenario. A key advantage of this approach is that
the process of following the script can simulate the continuous flow of human activities just as in natural home
settings. All target activities were listed in advance in the form of instructions such as "first head to the bathroom,
wash your hands and face" or "after juice is prepared, please warm some food using the microwave oven". Each
subject followed the instructions written on a sheet of paper and freely performed the activities. We adopted
the same off-the-shelf smartphone device (i.e., Huawei P9) for data collection. The smartphone was carried in
the subjects’ arms with a wristband so that the participants could perform the activities without needing to
attend to the device. During data collection, an experimenter (i.e., one of the authors of the paper) followed the
subjects at a distance while they were performing the activities (e.g., waited outside the room while the subject
was cleaning); the experimenter was available to answer questions during the study and, critically, to label and
time the target activities.

To incorporate variability factors in the tests, the experimenter occasionally chatted with participants during
some of the activities such as watching TV, cooking or strolling. To simulate multi-tasking, subjects were allowed
to perform some activities simultaneously such as washing and frying. Moreover, participants were encouraged
to use their own devices or tools (e.g. their own vacuum cleaner, kitchen and toilet appliances) during data
collection.
In our script, most activities were required to be performed only once and the length was determined freely

by the participants. The experimenter setup bacon, cucumbers or carrots in advance for activities ’frying food’,
’chopping food’ and ’squeezing juice’. For the class ’watching TV’, participants were asked to watch 5 different
channels for about 30 seconds each. For the ’enjoying music’ activity, the subjects were asked to play their own
piano or listen to relevant types of musics such as piano solo or symphonies chosen by themselves. Finally, female
participants were not asked to perform the ’shaving’ activity.

5.1 Results and Discussion
In total we obtained 32105 seconds (535 minutes) of audio data. Based on the labeled time stamps, we manually
segmented the target activity data from the raw recordings. Overall, we identified that roughly 12078 seconds
(201 minutes) of the clips were target activity-related, accounting for 37.6% of the total. The resulting sparsity
is comparable to audio-based activity recognition in practice as not all home-related activities can generate
specific sound features and audio-based frameworks are not suitable for them. We applied the best architecture
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of the proposed framework (classification network with random oversampling) for the following evaluation. The
segmentation length was set as 10 embedding vectors (9.6 seconds).
As a baseline, we first evaluated the proposed architecture by training a model with the aggregate of all the

data collected in the in-the-wild study. We obtained this measure by performing 3-fold cross validation. In our
compiled dataset, class ’TV’ accounts for the most (2242 seconds) and class ’flushing’ accounts for the least (166
seconds). By randomly oversampling the user data to equalize the number of samples across all user activities,
we were able to obtain a new user dataset of 33630 seconds in size. To ensure the same input format for the
classification network, we applied the VGGish extractor for embedding transform. For each validation run, 2/3
of the data was used to train the classification network while the remaining 1/3 was used for evaluation. Our
framework yielded 85.55% averaged classification accuracy with 0.72% standard deviation.

Fig. 5. The averaged top-1 and top-3 accuracies are 64.16% and 83.59% respectively for all subjects.

Next, we studied how the proposed framework trained on the AudioSet embeddings performed on the user
test data (12078 seconds). Test results were first evaluated based on each individual participant. Figure 5 shows
the overall classification performance for each subject. Because of the high inequality of segment length among
the activities, we adopted the overall weighted average as the performance metric. In other words, for a given
subject, the contribution of each tested instance to the overall accuracy is inversely proportional to the amount
of tested data within that corresponding activity class. By weighting the instances, each activity class within the
subject can then contribute equally to the overall performance. In our studies, the averaged top-1 classification
accuracy was 64.16% for all tested subjects. In addition to the top-1 classification, we also evaluated the overall
performance using a top-3 classification scenario given the co-occurrence of activities and the variability during
the tests. In the top-3 classification, predicted labels with the top 3 highest confidence are considered as the final
predictions, and a true positive can be counted if any of the 3 labels match the ground truth. It incorporates the
variants of predictions due to possible similarity of sound features or concurrence of the actual activities. From
the figure we can see that the top-3 performance was much better than the top-1 scenario, with an averaged
accuracy of 83.59% for all 14 subjects.

To evaluate the performance of individual activity classes, we also summarized the class accuracies across all
tested subjects. We calculated the average values for both the top-1 and top-3 classification, and Figure 6 and Figure
7 present the statistics for both settings. Instead of directly applying confusion matrices, we adopted a similar
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Fig. 6. Top-1 classification accuracy for individual activity classes (A:Bathing/Showering; B:Flushing; C:Brushing Teeth;
D:Doing Shaver; E:Frying; F:Chopping; G:Microwave Oven; H:Boiling; I:Squeezing Juice; J:Watching TV; K:Playing Music;
L:Floor Cleaning; M:Washing; N:Chatting; O:Strolling)

Fig. 7. Top-3 classification accuracy for individual activity classes (A:Bathing/Showering; B:Flushing; C:Brushing Teeth;
D:Doing Shaver; E:Frying; F:Chopping; G:Microwave Oven; H:Boiling; I:Squeezing Juice; J:Watching TV; K:Playing Music;
L:Floor Cleaning; M:Washing; N:Chatting; O:Strolling)

weighted approach for the analysis. That is, tested instances from each subject were assigned with weight that
was inversely proportional to the amount of data within them. This enables samples from different subjects and
different tested environments with varying data size to contribute equally to the overall performance of the target
classes. In addition, the figures also indicate the deviations of the class accuracies away from the mean. A smaller
deviation represents a more stable performance of the predictions and further implies a stronger robustness of
the framework towards variants in the actual tests. As indicated from the figures, ’shaving’, ’chopping food’ and
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’using microwave oven’ showed the best performance with almost 100% averaged class accuracy and almost
zero deviation. Class ’floor cleaning’ was also of satisfactory results due to its clear and unique sound features.
On the contrary, however, most of the flushing activities were misclassified by the framework. We hypothesize
this occurred because the process of flushing was too short given the segmentation length. Also, the sounds
of water flushing can largely overlap with those of the washing or frying activities. Also in the figures, some
activities such as ’frying food’, ’boiling water’, ’squeezing juice’ and ’brushing teeth’ deviate highly from the
average. This is reasonable because the modalities of cooking and boiling can vary in practice depending on the
choice of the cooking tools and cooking styles among the participants. The performance of kitchen activities was
also affected by usage of hoods by some of the participants. The brushing activity could mainly be affected by the
noise of toilet fans. Especially, we noticed that our framework failed to recognize almost all brushing activities
with electric toothbrush possibly due to the lack of relevant training samples in the AudioSet. If comparing the
results in both figures, we can also see that the performance of most activities increased significantly from the
top-1 scenarios to the top-3 scenarios, reaching nearly 100% mean accuracy with much smaller deviations. This
implies the existence of activity co-occurrence and overlaps of acoustic features among distinct activities such
as simultaneous chatting with outdoor strolling or a music show on TV, which are also commonly seen in the
natural home settings.

In multi-class activity recognition, a common formulation is to characterize several target classes of interest plus
a so-called NULL class, which represents the part of the signal where none of the target classes are observed. The
NULL class is typically difficult to recognize because it is composed of all activities deemed not interesting. In our
analysis, we evaluated the model performance for the proposed 15 classes but did not train a proper NULL class. A
question that naturally arises in this case is how the classifier behaves when provided with a non-target class, i.e.,
garbage input. To answer this question, we randomly sampled around 20% (4429 seconds) of non-target audio and
labeled it as belonging to a NULL class. The non-target audio was obtained from participants as they transitioned
from one activity to another in the study. We found that the NULL instances were most likely predicted to belong
to class ’chopping’, with averaged confidence of 20.27%. A possible explanation is that the sound of chopping was
similar to the sound of footsteps; study participants were frequently walking inside the home when transitioning
from one activity to another. More importantly, we observed that the predicted distributions of confidence levels
for the non-NULL classes, the 15 target activities, had an averaged true confidence level over 20%. In other words,
20% confidence in a prediction can be seen as a threshold separating a target class from a NULL class. This finding
suggests that we might be able to successfully discriminate activities we are interested against those we are not,
even though our model was not specifically trained with a NULL class.
Because of the difference in terms of evaluation metrics and test conditions, it was challenging to directly

compare the performance of our framework against related work. As reference, Rossi et al. [31] combined a
semi-supervised or manual filtering of outliers with the Gaussian Mixture Model (GMM) to classify 23 acoustic
contexts. They extracted the MFCC features from the Freesound dataset with the sequence length of 30 seconds
for training. The best top-1 classification and top-3 classification performance were 57% and 80% respectively only
if with manual filtering of the outliers. Hershey et al. [14] trained two fully connected networks with and without
the embedding extraction process to classify the AudioSet [12] categories. They adopted the mean Average
Precision (mAP) as the performance metric and obtained the best mAP of 0.31 only if taking the embeddings as
input. Kong et al. [17] completed a similar test using an attention model from a probability perspective, achieving
mAP of 0.327 and AUC of 0.965. The state of the art by Laput at al. [20] reported the classification performance
from several perspectives. Their best model achieved 80.4% overall accuracy for 30 context classes recorded
in the wild, but the framework relied on a mixed process of audio augmentation and combination of sound
effect libraries for training. When using only online video sounds (i.e. the AudioSet [12] data), their framework
yielded the best overall accuracy of 69.5% when check-pointed on the test set and 41.7% when tested directly with
real-world sounds. Correspondingly, our framework was not developed based on any feature augmentation and
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semi-supervised learning processes. The overall classification accuracy of our model was 81.1% for 15 activity
classes in the lab study. Our top-1 and top-3 performance was 64.2% and 83.6% respectively based on multi-subject
tests of 14 participants in their actual home environments.

5.2 Privacy Concerns
A key issue in sound-based activities of daily living recognition is privacy. As pointed out by Christin et al. [7],
audio-based computing frameworks can lead to privacy threats due to the recording of confidential conversations
or sound patterns that uniquely reveal activities and locations. Hence, dedicated efforts are required for the
preservation of user privacy. At a minimum, the raw audio data clips should be deleted from the mobile device
and processing pipeline right after feature extraction so that sensitive information does not persist within the
framework [25]. An approach that should be considered is the extraction and utilization of audio features that
cannot be used to reconstruct the original recorded audio [38]. Also, extracted audio frames can be randomly
split or aggregated in the form of statistics on the server [11]. Although our current audio framework does not
currently implement these audio-based privacy protecting measures, this is an area we plan to explore in future
work.

6 CONCLUSION
The collection and annotation of ground truth user data is often time-consuming and laborious in the field activity
recognition. This paper presents a novel audio-based framework that uses large-scale on-line YouTube video
soundtracks to train activity recognition models. Our framework combines transfer learning, oversampling and a
deep learning architecture without the need for feature augmentation or semi-supervised methods. To evaluate
the performance of this framework, we conducted pilot and in-the-wild studies showing that our proposed
framework can recognize 15 common home-related activities with promising performance and robustness to
environmental variability.
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