
Activiome: A System for Annotating First-Person
Photos and Multimodal Activity Sensor Data

Edison Thomaz
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX USA

ethomaz@utexas.edu

Abstract—Recognizing human activities in everyday environ-
ments remains a significant challenge in ubiquitous computing
research. In this paper, we present Activiome, an end-to-end
system designed to facilitate label annotation for activity recog-
nition in real-world settings. It captures and processes in-situ
multimodal sensor data and associated ground truth labels in
the form of first-person photos. Participants can annotate their
own data through a private web application interface. In addition
to the Activiome system, which we are making available to the
research community, our contributions include a detailed account
of challenges and opportunities we encountered while developing
and using the system over the last 5 years; this includes an evalu-
ation of the Activiome mobile application’s battery performance,
a discussion of human concerns such as privacy, and a survey-
based examination of comfort and perception issues affecting
everyday usage of the system. We believe Activiome represents a
valuable contribution to the community and its ongoing efforts
to scale up activity recognition research beyond the walls of the
laboratory.

I. INTRODUCTION

Despite remarkable advances in sensors, mobile computing
technologies and machine learning methods over the last
decade, building systems that recognize complex human ac-
tivities and behaviors in everyday environments remains a
significant challenge. The problem stems in large part from
the difficulty in obtaining reliable ground truth measures in
naturalistic environments, which are required to train activity
classifiers [1]. Directly observing individuals is considered to
be the best method for compiling a log of activities performed
in-the-wild, but it is not practical and could, in principle,
alter the person’s natural behavior. Prompting individuals to
self-report daily activities with a journal or logbook has
been a commonly-used strategy for estimating ground truth
data in naturalistic settings [2]. Popular self-report techniques
include the Experience Sampling Method (ESM) [3] and the
Day Reconstruction Method (DRM) [4]. Unfortunately, these
approaches can be highly disruptive, susceptible to biases, and
difficult to sustain in the long term.

A new promising method for experience capture involves
instrumenting individuals with wearable cameras. First-person
perspective photographs depict individuals performing every-
day activities and are rich in contextual detail. These char-
acteristics make first-person photos well-suited as a source
of ground truth. While obtaining first person images with
wearable cameras can be done automatically, annotating thou-

sands of images with ground truth labels, and associating them
with multimodal sensor data streams is a significant challenge
and burden. To facilitate this process, we developed a system
called Activiome. It offers an end-to-end solution for capturing
and processing in-situ sensor data and associated ground truth
labels, which are obtained by reviewing first-person photos. It
is comprised of three components: a mobile phone application,
a web application, and a web back-end infrastructure. To this
day, Activiome has contributed to research efforts totaling
more than 100 participants spread across 6 in-the-wild studies;
the majority of these studies focused on recognizing health
behaviors such as eating and activities of daily living. As part
of these experiments, more than 70,000 first-person images
have been collected, reviewed and annotated.

In additional to Activiome, which we are making available
to the research community, our contributions also include a
detailed account of challenges and opportunities we encoun-
tered while developing and using the system. This analysis is
highlighted with an evaluation of the Activiome mobile appli-
cation’s battery performance, a discussion of human concerns
such as privacy, and a survey-based examination of comfort
and perception issues affecting everyday usage of the system.

II. RELATED WORK

Over the years, a variety of capture and access technologies
aimed at the acquisition and visualization of human experi-
ences have been developed [5]. Most of these systems were
created for individual use targeting specific applications, such
as helping people understand factors that influence their sleep
environment [6] or emotional state [7]. One of the most
ambitious efforts in this space was MyLifeBits [8], which
explored whether all media reflecting a person’s life, such as
audio, video, documents, emails, phone calls, etc. could be
captured, stored and made accessible for future use. Although
these systems captured, analyzed and visualized sensor data,
they were not designed as general purpose platforms for
activity recognition.

Numerous research-oriented platforms have been developed
to facilitate capture of experience samples. Froehlich et al.
built MyExperience to enable studies of mobile technology
usage and evaluation [9]. The system collected objective and
subjective data on mobile devices, such as statistics on device
usage, and featured context-triggered experience sampling.



AndWellness collected passive mobile phone sensor data and
active user experience samples for health and behavior assess-
ment [10]. Ramanathan et al. proposed ohmage, which offered
similar functionality to AndWellness and was also motivated
by opportunities in health research [11]. More recently, Xiong
et al. built Sensus, a system designed specifically for mobile
crowdsourcing with support for hardware and software sen-
sors, automatic deployment of sensor-triggered surveys, and
interface with a mobile platform [12].

The key difference between Activiome and systems like
MyExperience, AndWellness and Sensus is that instead of
relying on traditional experience sampling techniques for
obtaining a measure of ground truth, our approach centers
on the use of passively-captured first-person photos. Byrne
et al. found these types of photographs to be particularly
well-suited for task observations since it does not intrude
into people’s environment [13]. Indeed, this method has been
extensively used in a variety of research applications [14]. For
instance, Kelly et al. used it to evaluate travel-related patterns
[15]; Image-Diet Day used automatically captured first-person
photos in the context of dietary monitoring [16]; and Marcu
et al. showed the value of such photos to support children
with autism [17]. Our aim with Activiome is to provide a
technological foundation for facilitating these types of research
efforts.

III. DESIGN REQUIREMENTS

Built specifically for activity recognition research, Activ-
iome was implemented around four design requirements; these
were determined based on our experience with sensor data
collection and annotation in real-world settings:

Real-Time Data Processing: There are many applications
where it is desirable to react to incoming sensor data. For
example, Just-in-Time Adaptive Interventions (JITAI) is an ap-
proach that targets problematic smoking and eating behaviors
in the moment, and require the detection of activities in real-
time [18]. An additional benefit of real-time data processing
is being able to instantly identify if and when data collection
problems occur, minimizing data loss.

Integration with Wearables: Leveraging off-the-shelf de-
vices with embedded sensors devices is compelling because
it facilitates long-term data collection with large populations,
and in real-world settings. This contrasts with methods based
on specialized sensors that are typically not as appealing to
study participants and necessitate application-specific imple-
mentation and integration.

Low Annotation Effort: User burden is one of the most
challenging aspects of gathering annotations in everyday set-
tings. Although eliminating the annotation step altogether is
not feasible, our goal was to minimize the time and effort
involved in the labeling task as much as possible.

Privacy Protection: First-person photographs depict in-
dividuals performing everyday activities with unparalleled
richness in detail and objectivity when compared to self-report
methods. However, this method can pose a privacy threat
to study participants. Therefore, it is critical to design an

Fig. 1. The Activiome on-body sensors: a mobile phone sitting on a lanyard
around the neck captures first-person photos, GPS location, inertial data from
the phone’s sensors and short audio clips. Accelerometer and gyroscope data
from two Movesense wearables are also collected by the Activiome mobile
app.

annotation workflow where only participants are allowed to
review and label their own data.

IV. SYSTEM COMPONENTS

The Activiome system is made up of 3 high-level compo-
nents: a mobile phone application, a web application, and a
web back-end infrastructure. In addition to collecting multi-
modal sensor data, the mobile application also integrates with
the Movesense wearable device 1.

All sensor data and first-person photos acquired by the
Activiome mobile phone application are uploaded in real-
time to the Activiome web back-end infrastructure, which
is organized around a web server and database. On top of
the back-end infrastructure lies the web application, which
researchers and individuals (e.g., study participants) use to
review and annotate photos and sensor data.

A. Mobile Phone and Application

The mobile application is a key element of the system,
capturing and aggregating multi-modal sensor data and first-
person photos. The Activiome mobile app was implemented
on the iOS platform at first, and we plan to port to the Android
operating system in the future. Since the mobile phone running
the app is programmed to function as a wearable camera,
it must be worn continuously and thus requires a dedicated
device. To minimize the impact of this requirement, we
designed the app such that it does not need a top-of-the-line
device; this allows older phones, such as the iPhone 4s running
iOS version 7.0, to be re-purposed for this application.

1https://www.movesense.com
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Fig. 2. The data acquisition cycle of the Activiome mobile app. In this
example, the cycle is set to 60 seconds. After 60 seconds, the app first captures
5 seconds of audio and then takes a picture. Inertial sensor data is captured
throughout the entire cycle. At the completion of data acquisition, the data
is packaged as a HTTP POST request and uploaded to the Activiome server.
This cycle repeats until the application quits.

In terms of form factor and placement, we have had good
experience with a setup where the phone is worn around the
neck on a lanyard with the rear-facing camera pointing for-
ward. To extend the field-of-view of photographs, we usually
instrument the Activiome phones with a wide-angle lens that
attach to the phone case.

1) Sensing Modalities and Data Acquisition: The mobile
application captures photos, audio, inertial sensing data and
location following the data acquisition cycle illustrated in
Figure 2. During the cycle, sensor data is captured at different
rates and at different times. At the end of the cycle, all
aggregated data is uploaded to the server as one HTTP POST
request in the multipart/form-data format. For a six-hour data
collection period, the amount of data uploaded is in the range
of 150MB.

First-Person Photo: When the mobile application is run-
ning, it takes photos with the rear-facing camera at an user-
configurable regular interval, which can be every 30 seconds
or longer. This interval determines the duration of the data
acquisition cycle runs. The photos are resized to 320x480
pixels and compressed to 0.5 quality (JPEG). A typical photo
is around 15kb to 25kb in size. When GPS location is on, the
photos are also geo-tagged with latitude and longitude.

Audio: An audio clip of either 5 or 10 seconds is recorded
immediately prior to when first-person photos are shot. The
audio is recorded in the MPEG4 autio format at a sample rate
of 44.1Khz.

GPS: When enabled, location metadata is obtained with the
iOS CoreLocation framework; latitude and longitude coordi-
nates are set to be accurate to the nearest kilometer. The most
recently updated coordinates are retrieved at the end of each
cycle (i.e., right before the data is uploaded to the Activiome
server).

Inertial: Accelerometer and gyroscope data are captured
from different sources, (1) the iPhone that is running the Activ-
iome mobile application, and (2) up to two Movesense sensors.
In both cases, inertial data collection begins immediately after
the application launches and takes place uninterruptedly even
while the audio clip is being recorded. We have obtained
inertial sensor data on the iPhone and with Movesense at 26Hz
and 52Hz sample rates, respectively. To ease data collection

Fig. 3. The Activiome main screen. Once participants log in, they are shown
a detailed list of recorded activities for the most recent hour

Fig. 4. The Activiome mosaic screen. To facilitate annotating large numbers
of images, I created a photo view that shows thumbnails of the captured first-
person point-of-view images and makes it easy to select and label multiple
images at a time.

in lab studies, inertial data is also saved locally on the phone
as flat files.

B. Web Application Interface and Annotation

Individuals interact with their data using the Activiome web
application. Once individuals log in to their accounts, they see
a list of activity entries for the day. Each entry on the web
app interface includes a first-person photo, the audio clip, a
graphical representation of the sensor data collected, and a
drop-down menu with a pre-defined activity list, as shown in
Figure 3.

A new activity entry gets created and is available for
annotation at the end of each data acquisition cycle, which
can be as short as 30-seconds. While a short acquisition cycle
increases the temporal resolution of the data, as more activity
entries get created, the annotation effort also increases. Each
activity entry can be annotated individually or, to aid the



ground truth labeling process of many entries at a time, the
Activiome web application also offers a mosaic view, where
thumbnails of all first-person photos taken on a given day
are shown together (Figure 4). Using this view, participants
can select multiple photos at a time using the keyboard or
mouse and annotate their corresponding activity entries at
once, reducing the time required for annotation significantly.

C. Server and Database

The backend infrastructure of Activiome was designed
around well-established web technologies; it centers around
a set of PHP scripts and a MySQL database. A PHP script is
called by the mobile application with all the collected data in
the HTTP POST request, and proceeds to parse and validate it.
A new entry is created on the database and is populated with
the sensor data, metadata (i.e., geo-location and timestamps),
and links to the audio and image files. The audio clips and
photographs are saved as flat files.

V. USE CASES

The case studies below illustrate how the combination of
sensor data capture and first-person photo annotation provides
a powerful foundation for activity recognition research in real-
world settings.

A. Automated Dietary Monitoring

One of the studies where the Activiome system played a
major supporting role focused on automated dietary monitor-
ing. The research question addressed in the experiment was:
“Is it possible to identify if a person is having a meal such
as breakfast or lunch based on arm gestures captured with a
smartwatch with inertial sensing capabilities?”. To train a food
intake gesture classifier, data was collected in a lab setting with
20 participants; once the model was built, it was evaluated with
more than 400 hours of sensor data captured in real-world
settings over several days. The first-person images recorded
by the Activiome mobile app and the web annotation interface
were used to compile a ground-truth measure of when eating
activities occurred.

B. Activity Recognition from First-Person Images

Recent advances in object detection with convolution neural
networks has fueled interest in the application of computer
vision techniques towards recognizing everyday activities.
In a recent study, Activiome was used in the capture and
compilation of perhaps the largest annotated dataset of first-
person images. Over 40,000 photos were recorded over a six
month period using the Activiome mobile application; each
photo was labeled as belonging to one of 19 activity classes
with the Activiome web application. This work demonstrated
the feasibility of recognizing a large array of human activities
from first-person photographs and temporal metadata.

Fig. 5. We performed an analysis of battery consumption in naturalistic
environments under different configuration and learned that the frequency at
which first-person photos is captured is the primary factor determining battery
usage.

VI. CHALLENGES & OPPORTUNITIES

Over the last 3 years, Activiome has served as a foundation
for several human behavior analysis research efforts. In this
section we describe challenges we faced, and opportunities
that emerged from our experiences of deploying Activiome
with participants in real-world settings.

A. Battery Life & Performance

Considering the workload of the Activiome mobile applica-
tion, it is not surprising that battery life is a serious concern
when it comes to recording first-person photos, audio clips
and other forms of sensor data. We performed an analysis
of battery consumption in naturalistic environments under
different configuration and learned that the frequency at which
first-person photos is captured, tested at 60 and 30 seconds,
is the primary factor determining battery usage (Figure 5). On
average, the phone battery lasted for 370 and 289 minutes for
the 60 and 30-second configurations, respectively. As a result,
an external battery (5200mAh capacity) plugged to the phone
proved to be a necessity for in-the-wild studies lasting longer
than 6 hours.

From our performance analysis, we observed that audio clip
recording and GPS tracking did not have a meaningful impact
on battery life. Very low battery consumption was also noted
with Movesense, which is powered by a 3V lithium coin cell
battery, and is engineered specifically for low-power use.

B. Data Resolution

Collecting first-person photos and sensor streams every 30
seconds makes it possible to record individuals’ life activities
throughout the day. For many applications, such as inferring
if individuals travel to work by car or public transportation,
this level of resolution is enough. However, there are many
compelling scenarios where increased resolution is required.
In health research, for instance, it is often desirable to spot
eating and smoking gestures. These types of gestures are very



short in duration, in the range of 2 to 5 seconds, so first-person
photographs taken every 30 seconds rarely capture them.

The obvious solution to this problem is to increase the
frequency at which photos are taken, or record video instead
of photographs. Unfortunately, mobile phones today can only
capture photos or videos continuously for a small portion of
the day before the battery is completely drained. To address
this limitation, an external battery can be paired with the
phone, at the cost of additional weight and inconvenience.
Another challenge with data collection at a higher frequency
involves the annotation task; having to label more photos or
review videos makes the annotation task even more onerous
and time consuming.

C. Multiple Labels

Using the web application interface, photos and the under-
lying sensor data can be tagged with only one activity label
at a time. The decision to limit this association to a one-to-
one mapping was made to simplify the annotation process in
line with the stated “Low Annotation Effort” design goal. If
multiple labels could be chosen per photo, individuals would
have to spend more time examining each one, which would
certainly increase burden in the form of cognitive load and
time spent on the task.

From the point of view of accuracy, having to choose only
one label is clearly a limiting factor as people constantly mul-
titask throughout the day. We are investigating techniques that
would allow annotators to select multiple labels quickly and
without a heavy cognitive penalty. In our experience, however,
we found that this limitation could be mitigated by instructing
annotators to choose an activity label that represented the
primary activity depicted in the photo. This approach was
only possible because the annotators were typically the study
participants themselves, and they could recall their activities
from memory.

D. Privacy Considerations

First-person images offer many opportunities in activity
recognition research but they also pose significant ethical
challenges, particularly with regards to privacy. Obtaining in-
formed consent from third-parties for capturing and reviewing
first-person images remains an open research problem. In
previous work, Nguyen et al. discussed acceptable boundaries
and hurdles for usage of wearable cameras in public settings
[19], and others have proposed frameworks and techniques for
minimizing these challenges [20], [21].

In our experience, we have found that a practical compro-
mise can be reached without explicit third-party consent. The
solution, approved by our study review board and subsequently
incorporated into the design of Activiome, is to have study
participants only review and annotate their own photographs,
which is achieved through individualized login accounts. The
rationale for this approach stems from the observation that
in principle, first-person photos capture moments that the
individuals carrying the mobile device already experienced.
Therefore, any photo that bystanders wished it had not been

captured are merely a representation of a memory held by
the individual carrying the mobile device. This holds true as
long the photo is kept safe and never shared with anyone else.
As an additional layer of privacy, individuals do not need to
provide personally identifiable information when creating an
Activiome account. Therefore, even if a server administrator
were to gain direct access to user data, it would not be obvious
who it belongs to.

E. Comfort and Perception

Considering the instrumentation required by Activiome, a
phone sitting on a lanyard around the neck; a Movesense
wearable on each wrist; and an external battery (only required
for day-long user studies), we were interested in participants’
perception of the system after having used it for a period of
time in real-world settings. Our inquiry focused on the mobile
phone and its unconventional placement.

We asked ten participants who had just completed a 3-
day study to answer a short questionnaire structured around
a five-point Likert scale with two Likert items: “Wearing
the camera was comfortable”, and “I was self-conscious
when wearing the camera in public”. Possible answers were
“Strongly Disagree (SD)”, “Disagree (D)”, “Neither agree
nor disagree (NAND)”, “Agree (A)”, and “Strongly Agree
(SA)”. We chose to describe the mobile phone as a camera
in the statements because we informally identified that the
picture-taking capability of the device was what concerned
participants the most.

The distribution of answers for both items can be see in
Figure 6. Half of the participants agreed that wearing the
phone-camera was comfortable, while 4 neither agreed nor
disagreed. A few participants wrote down notes next to their
ratings; one participant complained that “[the phone] moved
around a lot in its holder”. Another claimed having “issues
with the phone slipping out of the case”. More concerning was
the feedback from one participant who said that the “weight
[of the phone] made my neck a bit tired”. In fact, the only
withdrawal we have ever had in a study with the Activiome
system was for this exact reason: neck pain due to the weight
of the mobile phone. Feelings were more mixed about whether
usage of the device caused self-consciousness; most neither
agreed nor disagreed. A quote from one participant who
was neutral in his Likert-scale response was “sometimes, like
people would ask me why I’m ‘wearing‘ my phone? :-)”.

In light of these findings, we are exploring different form
factors for the Activiome on-body sensors, and the mobile
phone in particular. A smaller and more lightweight design
approach will likely result in comfort improvements and
reduce the self-consciousness effect caused by the presence
of a phone around the neck.

VII. CONCLUSION

The quantity, complexity, and variability of human behav-
iors makes the development of activity recognition systems
a challenging undertaking. A fundamental difficulty is the
acquisition of ground truth labels for training classifiers.



Fig. 6. Five-point Likert scale ratings for 10 participants on two Likert items: “Wearing the camera was comfortable”, and “I was self-conscious when wearing
the camera in public”. Possible answers were Strongly Disagree (SD), Disagree (D), Neither agree nor disagree (NAND), Agree (A), and Strongly Agree
(SA).

Activiome facilitates this task by capturing multimodal sensor
data and offering tools for mapping said sensor data to annota-
tions. Although there are clear opportunites for improvement,
we believe Activiome represents a valuable contribution to
the community and its ongoing efforts to scale up activity
recognition research beyond the walls of the laboratory.
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