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ABSTRACT

Acoustic sensing has proved effective as a foundation for
applications in health and human behavior analysis. In this
work, we focus on detecting in-person social interactions in
naturalistic settings from audio captured by a smartwatch. As
a first step, it is critical to distinguish the speech of the indi-
vidual wearing the watch (foreground speech) from all other
sounds nearby, such as speech from other individuals and am-
bient sounds. Given the considerable burden of collecting and
annotating real-world training data and the lack of existing
online data resources, this paper introduces a dataset for fore-
ground speech detection of users wearing a smartwatch. The
data is collected from 39 participants interacting with family
members in real homes. We then present a benchmark study
for the dataset with different test setups. Furthermore, we
explore a model-free heuristic method to identify foreground
instances based on transfer learning embeddings.

Index Terms— foreground detection, transfer learning,
wearable sensing, social interactions.

1. INTRODUCTION

Researchers have recently shown that off-the-shelf smart-
watches can serve as an effective platform to recognize var-
ious forms of human behaviors and activities of daily living
[1, 2]. In our research, we are particularly interested in
exploring whether the acoustic sensing capability of smart-
watches can be used to detect face-to-face social interactions.
A critical step towards this is to distinguish speech instances
of an individual (i.e., an individual wearing a smartwatch)
from other sounds. Because of the dynamic noise conditions
in real-world situations, this task is extremely challenging,
and a typical voice activity detection system is not designed
for modeling this speaker difference [3]. In wearable sensing,
speech produced by the person wearing a smart device (e.g.,
a smartwatch) is usually referred to as the foreground, while
all other forms of noise such as the speech of others, natu-
ral sounds, man-made sounds, music, and silence are often
referred to as the background [4]. Hence, the problem of fore-
ground detection in wearable sensing is binary classification
of foreground speech versus background sounds.

Intuitively, one approach to detecting the foreground

speech is to employ a speaker verification system so that one
can map speech to one or more speakers [5]. Similar efforts
include estimating a binary mask of target speech [6]. How-
ever, these techniques are based on specific user or channel
information, i.e., a known apriori. This is often not possible
in non-deterministic real-world settings, when conversations
and interactions cannot be anticipated ahead of time [7].
Hence, the recent focus of foreground analysis for wearable
sensing is to build supervised models that directly learn to
identify foreground instances [3, 7, 8]. Due to the lack of
annotated training sets in the relevant domain, however, such
studies mostly aim at meeting scenarios or controlled envi-
ronments. Public meeting datasets such as the ICSI [9] and
the AMI [10] are not sufficient for studies in the wild where
varying speech characteristics, unanticipated noise types, and
human artifacts such as body movements are often expected.

The goal of this work is to mitigate the challenge of fore-
ground detection for wearable sensing in unconstrained daily
living situations. Specifically, we make the following contri-
butions:

• A dataset1 containing over 110K (31 hours) audio in-
stances of foreground speech and background sound
classes recorded by smartwatches, annotated at one sec-
ond granularity. The data is collected from 39 partici-
pants, formulating 18 social groups, in real homes.

• A benchmark study for our dataset based on different
setups. We specifically discuss the challenge of fore-
ground detection in the wild and address the needs of
model development on real-world datasets.

• Exploration of leveraging transfer learning embeddings
for foreground detection, which inspires a method to
identify the foreground instances without relying on su-
pervised detectors.

2. DATASET

Our study is conducted towards real-world situations and with
commercial smart wearables. This section describes the de-
tails of the dataset we collected in the study.

1https://doi.org/10.18738/T8/IKWZPW



Session Description

Telephone Call The wearer placed a telephone call.
Watch TV The wearer watched content on a

TV/laptop with the sound on for 10 min.
Chat Indoors All participants played the NASA

decision-making game [11] together.
Chat Outdoors All participants walked outdoor for at

least 5 min and chatted on any topics.
Meal All household members cooked and ate

together for dinner.

Table 1. The studied interaction sessions in homes.

2.1. Data Collection Protocol and Procedures

Our data collection was semi-controlled. This IRB-approved
study took place in 18 distinct homes, each containing at
least two participants. For each group, one of the participants
was asked to wear a Fossil smartwatch for continuous audio
recording, and this participant was referred to as the wearer of
the study. The other participant(s) in the home engaged in a
set of social activities with the wearer following a pre-defined
study script of activity sessions (Table 1).

The study period was from 3:30 pm to 8 pm in a day,
where there was a 30-minute gap between each session. To
maintain the naturalistic aspect of the interaction process, the
watch was left recording continuously throughout the entire
study period, and we did not specify a set time for the conver-
sations to end. However, the wearer was asked to note down
the approximate end time of each session. The acoustic envi-
ronments were left as usual, where sounds of home appliances
and other non-participating household members were allowed
to be included anytime throughout the study.

On the day of the study, the study materials, including the
smartwatch, reading materials and study script were delivered
by a researcher. Right before the study began, the researcher
connected with the participants via Zoom to introduce the
study and procedure. The researcher then logged out and col-
lected the materials after the entire study was completed. An
audio recording app was pre-installed on the watch to enable
continuous audio recording. Our preliminary test showed that
the app can continuously record audio for up to 8 hours, so the
battery was not a problem. The data was saved on the watch
in PCM format with one 16-bit channel at 16 kHz.

In total, we collected data from 18 homes (groups).
Groups 8, 9 and 10 consist of three participants including
the wearer. The remaining groups consist of two, resulting
in a total of 39 participants. The total number of household
members per group varies from two to five. The participants
age from 15 to 59, with various occupations. Besides, 19 /
39 of the participants are male, and 15 / 18 of the wearers are
right-handed. All study participants are fluent in English or
native English speakers.

Sound Type Percentage

Non-vocal noise 38%
Television 22%
Wearer speech 20%
Non-wearer speech 13%
Mixed (wearer&others) speech 3%
Telephone voice 2%
Ambiguous sounds 1%
Baby sounds 1%

Table 2. Instance size distribution of sound classes.

2.2. Annotation

We annotated the audio on a server after the collection by lis-
tening back to the audio clips. The gap between the sessions
was not used. We annotated the audio with a temporal win-
dow of one second with no overlap. The annotation labels we
used included wearer speech, non-wearer speech, telephone
voice, television, mixed speech, baby sounds, non-vocal noise
and ambiguous sounds. Specifically, class wearer speech in-
dicated the case if the speech turn within an instance was ex-
clusively held by the wearer, and mixed speech indicated an
overlap between the wearer and other speech. Non-wearer
speech was used when the speech turn was only held by phys-
ical participants not wearing the watch. Other observed vocal
sounds included telephone voice, television, or baby sounds.
Instances of silence or non-vocal background noise were la-
beled as non-vocal noise. Ambiguous sounds was used if
the annotators were not confident about the sound type. Fol-
lowing the previous definition, we categorized classes wearer
speech and mixed speech both as the foreground speech type,
whereas instances of all other vocal and non-vocal classes
were counted as the background type.

To annotate the audio, three human annotators were re-
cruited, including a trained researcher. The quality of annota-
tion was evaluated by comparing the pairwise inter-rater reli-
ability between the researcher and the other annotators based
on a randomly selected interaction session. Specifically, a
mean of 0.907 Cohen’s kappa was observed. The kappa value
indicates a good agreement of annotation [12].

We obtained a total of 31 hours (111,423 1-second in-
stances) of audio in our dataset. We categorized 23.5% of
the total instances as the foreground speech instances. Am-
biguous instances accounted for only 1% of the total. Table
2 shows the temporal size distribution of the collected sound
classes based on the fine-grained annotation. The imbalance
in temporal distribution of the sound classes indicates the na-
ture of people’s unconstrained social behaviors.

2.3. Released Data

To facilitate customized model development in relevant stud-
ies, we release the raw audio instances with our dataset. Due



to the IRB and study requirements, we applied certain post-
processing steps to the data instead of publicizing the original
smartwatch recordings. The first step was removing ambigu-
ous instances during the annotation process. After this, the
audio segments were randomized. Once the entire session-
level recordings were annotated, specifically, we randomly
shuffled the temporal order of the 1-second clips. This can
be an effective approach to prevent the leakage of user sensi-
tive speech information [13]. In the third step, we randomly
mixed the participant groups’ data to formulate three folds in
the dataset. It is noted that there is no overlap of participant
groups between folds so that they can be independently used
for supervised model training and validation. The number
of participant groups in each fold remains the same. In our
dataset, the 1-second audio clips are segmented and released
individually with a file name formatted as label idx, where
label is either 0 (background) or 1 (foreground), and idx is
a pure count mark without any semantic meanings related to
the sessions or participant IDs.

3. BENCHMARK STUDY

To understand the challenge of foreground speech detection
based on smartwatch recordings from real users and to vali-
date our collected dataset, we conducted a comparative study
based on various settings:

• Speaker voice match: As discussed earlier, speaker
verification addresses the task of partitioning an audio
clip into segments according to who is talking. This
problem is similar to foreground speech detection but
requires extra information from the speakers and the
environment. In this test, we used each participant’s
reading session as voice samples. We then applied
PyAnnote [5] for user voice embedding generation and
compared the similarity between embeddings of the
tested sounds and embeddings of the sample voice.
We applied cosine similarity to measure the feature
distance and a sensitivity threshold of 0.5 as the clas-
sification boundary for all participants. The test was
conducted for each participant group of our dataset,
and we reported the overall performance.

• AMI model: In prior work, Nadarajan et al. [7] ob-
tained promising results for foreground detection in
meeting scenarios with a model trained and refined
on a publicly available meeting corpus. Following
the same approach, we developed the same supervised
neural network classifier based on the raw fast Fourier
transform (FFT) features extracted from the public
AMI dataset. The dataset contains around 100 hours
of close-proximity talk and far-field audio, recorded
by multiple meeting participants using wearable head-
sets and desktop recorders. We then directly tested the
model on individual participant groups of our dataset.

• Personalized model with raw audio features: In
this setting, we developed the AMI model architec-
ture based on our personalized smartwatch data. For
a fair comparison, the model was developed following
a leave-one-group-out (LOGO) scheme, where all but
one group of participants were used to derive a check-
point model, and the checkpoint model was tested for
the remaining group. This process was repeated until
results for all participant groups were obtained.

• Personalized model with transfer learning embed-
dings: In addition to the FFT features, we also de-
veloped and examined models based on transfer learn-
ing embeddings. Our motivation is based on the ben-
efits of transfer learning in various acoustic detection
tasks, especially with neural network embedding fea-
tures [14, 15, 16]. In this test, we examined two types
of speaker voice embeddings derived from the public
VoxCeleb 1 & 2 [17, 18] datasets and the TIMIT [19]
dataset. The test also followed the LOGO scheme.

3.1. Setup of Supervised Training

The FFT features are extracted based on a window size of
50 ms with the same hop and 64 output bins. This results in
FFT features of shape (64×20) per second. We removed max
pooling for the last convolutional layer of the AMI models
to avoid feature size mismatch. For the embedding inputs,
we switched the 2D convolutional layers to 1D. The kernel /
stride is 3 / 1 for the 1D convolutional layers and 2 / 2 for
the 1D max pooling. To train the models, we used the binary
cross-entropy loss and the RMSprop optimizer with a learning
rate of 1×e−4, ρ=0.9, ϵ=0, and momentum=0. The batch size
is 128. Besides, the patience for early-stopping is 15 epochs.

To extract the embedding features, we studied two strate-
gies. The first strategy is based on a speaker model [20]
trained on the public VoxCeleb 1 & 2 speaker datasets which
consist of audio utterances of over 1K celebrities from public
YouTube videos. The second strategy is based on a shallow
neural network [21] that we trained on a random subset (65
males and 35 females) of the public TIMIT clean speech cor-
pus. We also augmented the clean speech utterances by over-
laying them with common household noise. The noise clips
were collected by a researcher using a smartphone placed in
the home. We obtained 1D embeddings of size 512 per audio
instance with the above strategy 1 (emb1) and size 1,000 per
audio instance with strategy 2 (emb2).

3.2. Results of the Benchmark Study

To evaluate the test performance, we leveraged the macro F1
score and the class-balanced accuracy (unweighted mean of
class accuracy) metrics so that each of the foreground and the
background class can contribute equally to the overall per-
formance. Table 3 shows the results. First of all, we can



Evaluation Setup Macro F1 Accuracy

Speaker Voice Match 62.7% 61.1%
AMI Model 61.4% 68.2%
Personalized + FFT 81.5% 80.4%
Personalized + emb1 77.2% 76.3%
Personalized + emb2 79.7% 78.6%

Table 3. The comparative study and benchmark results.

Fig. 1. Feature distributions of the transfer learning embed-
dings regarding the foreground (blue) and background (red)
classes. Data is mixed from two participant groups.

see that the unsupervised verification setup is not reliable on
our dataset, especially when no prior information can be ac-
cessed ahead of system deployment (e.g., the sensitivity of the
feature distance measure cannot be fine-tuned beforehand).
Secondly, the model trained with the AMI meeting dataset
does not generalize well on our user data as well. This is
expected because the training set was collected in meeting
scenarios with little daily living noise (e.g., sounds of house-
hold appliances, music, public transportation) and human ar-
tifacts wearing a watch unobtrusively. These tests show the
challenge of foreground speech detection in the real world
with commercial wearable devices. As a comparison, mod-
els trained with the LOGO setup perform significantly bet-
ter, which demonstrates the importance of using real-world
data for foreground model development. Specifically, the FFT
models show the best inference performance. This is rea-
sonable because the raw FFT features fully represent the fre-
quency and temporal patterns of the input audio. The speaker
embeddings are slightly worse, since the embedding extrac-
tors are trained for a different task, i.e., speaker classifica-
tion. Nevertheless, there are still benefits of using embed-
dings rather than raw audio features for foreground analysis,
such as less computational burden for long audio segments [3]
and better privacy protection, especially when the embedding
extractors are non-reversible or unknown to attackers [22].

3.3. Further Analysis for Transfer Learning Embeddings

In an extra study, we further explored the reason why the
transfer learning embeddings can enable foreground speech
detection. Figure 1 presents the t-distributed Stochastic

Setup Macro F1 Accuracy

emb1+K-Medoids 64.2% 69.3%
emb1+Spectral 80.4% 78.8%
emb2+K-Medoids 78.1% 78.5%
emb2+Spectral 79.0% 78.9%

Table 4. Foreground detection performance by using heuris-
tic embedding clustering.

Neighbor Embedding (t-SNE) [23] plot of embedding fea-
tures (emb2) for a mixture of two sample participant groups.
We can see that embeddings of the foreground and back-
ground classes formulate two distinct types. This is interest-
ing because the embedding extractor was trained for speaker
classification only, yet the resulting embeddings between the
foreground and background classes are highly distinguishable
despite the mixture of speakers. A possible reason is that the
far-field sound types tend to be a ’null class’ to the extractor,
which results in embeddings of a unique type.

Given this finding, we explored a heuristic way of fore-
ground speech detection without training a supervised model.
Specifically, we applied K-Medoids and spectral clustering
with two output clusters to embedding features extracted from
each group of test data. Once the output clusters were formu-
lated, we compared the average inner-cluster cosine similarity
from centroid for each output cluster to identify its class la-
bel. For every group, we noticed that the output background
cluster always came with a higher inner-cluster similarity than
the corresponding foreground cluster, possibly because of the
high similarity among the null-class embeddings, so we as-
signed the class labels accordingly. Table 4 shows the overall
performance. We can see that the results are generally com-
parable to the best supervised results, and the results are con-
sistent for both embedding types. This extra study provides a
new direction for foreground speech detection when general-
izing a supervised model is challenging, for example, because
of the lack of training data in a new target environment.

4. CONCLUSION

This paper presents a dataset for speaker-agnostic foreground
speech detection with smartwatches in unconstrained daily
living situations. The dataset contains foreground and back-
ground audio of common in-person social event types, col-
lected from 39 participants. We then conducted a compara-
tive study as the benchmark and discussed the challenge of
foreground speech detection in the wild. Furthermore, we ex-
plored the leverage of transfer learning embeddings, which
inspires a heuristic method for foreground detection without
relying on supervised detectors.
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