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Abstract: Despite our understanding of the impact of lifestyle on 
human health, we lack tools and techniques that capture 
individuals' behavioral exposures such as diet, sleep  and exercise 
over time. My current work focuses specifically on capturing 
eating habits, where I am currently exploring semi-automated 
food journaling approaches.
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Introduction

Over the last 10 years, there has been much excitement about the potential of our 
newly-acquired knowledge of the human genome towards understanding human 
health and the underlying cause of disease. However, as we now know, genetics 
appears to account for only 10% of diseases, whereas the remaining 90% seem to 
be attributed to environmental factors, the so-called "exposome". Unfortunately, 
our understanding of the impact of environmental and lifestyle factors on human 
health is very limited. The main reason for this is because we lack tools and 
techniques to collect detailed longitudinal data characterizing one’s lifestyle (e.g. 
sleep, exercise) at scale.

One of the key  factors affecting an individual’s health is diet. In 2008, one third of 
all adults in the U.S were overweight or obese, with other countries observing 
similar trends [13]. It is believed that an effective method to monitor eating habits 
could provide insights into this seriously  growing problem. One of the fundamental 
problems in characterizing eating habits is that there is not an efficient way to 
collect dietary information that is objective, ecologically valid and that does not 
pose a major burden on individuals. Today, the “state-of-the-art” in personal food 
logging lives within the domain of mobile phones and mobile phone apps. There 
are a myriad of applications that let users take photos and notes of their meals, 
some of which go a step  further and even display the nutritional value or the health 
score of a meal through crowdsourcing techniques, such as MealSnap. The key 
challenge with these applications is that people need to remember to use them, 
which proves to be particularly hard to do in the long term. Additionally, even when 
people remember to use these applications, there is a cost associated with 
fetching a smartphone, unlocking it, launching an app and taking a photo or typing 
notes. It is inevitable that even the most engaged users might forget to log a snack 
or meal occasionally, or grow weary of dutiful logging over the long run. The truth 
is, these applications are simply not practical enough for sustained use. 

Research in the area of food recognition dates back to the 1980s when 
researchers tried to detect chews and swallows using oral sensors in order to 
measure the palatability and satiating value of foods [25]. Other sensor-based 
techniques involve detecting eating and drinking actions from inertial sensors 
attached to the upper and lower arms [1] and monitoring caloric intake using on-
body or mobile phone-based sensors {Chen:wl}. While sensor-based approaches 
are able to derive information directly from body  motions, they are obtrusive and do 
not make use of the valuable visual cues. 

Recently, the ubiquity and popularization of a number of technologies from sensors 
to wearable devices has made it possible to envision systems that completely 
automate the capture of dietary intake. In practice, however, these systems have 
also been extremely difficult and complex to implement. Analyzing food images 
with computer vision algorithms, and addressing privacy concerns are some 
examples of tasks that have been explored with promising results by researchers 



but that need to be further developed to be deployable in real-world settings. 
Furthermore, even if the capture of dietary intake could be fully automated, it might 
not desirable in many cases since it would exclude individuals from the process of 
data collection. This is because it has been shown that self-monitoring contributes 
to positive health outcomes not only in terms of weight-loss but well being in 
general. In other words, getting individuals to be engaged in the logging of their 
dietary intake is important.

In my current line of work I am exploring the space in-between manual and fully 
automated food journaling with the goal of leveraging the best characteristics of 
both approaches. I refer to this technique as semi-automated food journaling. I rely 
on sensing technologies, wearable devices, and interactive machine learning 
techniques to infer patterns and instances of eating activity and subsequently 
prompt individuals for details about these eating activities.

There are three research threads within this work:

1. Aggregation of human activity-centric sensor data

2. Inference of eating activity patterns

3. Design of a wrist-based device to improve ability to complete a food journal

Aggregation of Human Activity-Centric Sensor Data

Thanks to advances in sensing and mobile technologies over the last decade, 
researchers have employed a wide variety of sensors to automatically  infer many 
aspects of human activity [14] [17] [15] [9]. Recently, wearable devices that 
leverage sensor and communication technologies to log physical activity have 
advanced beyond research labs to become very popular in the consumer market. 
Some of these devices include the Fitbit, the Nike FuelBand and the Garmin 
Forerunner. 

Despite these positive developments, many important dimensions of an individual’s 
everyday lifestyle remain outside the reach of current sensing technologies. This is 
due in large part to the complexity of certain types of activities, such as eating. 
Some of the characteristics of an eating activity that would be desirable to capture 
include (1) when eating is taking place, (2) what is being consumed, and (3) how 
much is being consumed. It is not possible to capture the totality of an eating 
activity  with one sensor automatically. However, by aggregating data from multiple 
sensing sources and incorporating additional lightweight sensing modalities, we 
believe it is possible to recognize an individual’s eating activity  in the moment 
based on a priori sensor values, and also build models that reflect an individual’s 
eating patterns over time. 



For example, by examining an individual’s location from GPS data (e.g. close to 
the office), her amount of physical activity (e.g. little movement), day of week and 
time of day (e.g. Tuesday at 1PM), and on-body acoustic sensing in mouth, neck 
and throat (e.g. indicating chewing, drinking and speaking) [1, 16, 21, 28] [25], it is 
highly likely that the individual is having lunch. Confidence in this inference could 
be raised even more if a lunch event could be observed in the individual’s calendar 
for 12:30PM. 

Once a meal activity  has been identified, several courses of actions might be 
pursued. An automatic trigger could be sent to a wearable camera to take a picture 
of the food [18] [26], the individual could be nudged to add an entry to a food 
logging mobile application [6] [2], or a text message could sent to the individual 
later in the day requesting more details about the meal. As it becomes evident, the 
identification of when a meal takes place is the centerpiece of a number of 
strategies for automatic and semi-automatic food journaling.

The first step  towards this vision involves building an aggregator for multiple 
sensor streams. I am building an aggregator that accept single-point and multi-
point data from two types of sources, devices and services. Single-point and multi-
point refer to the number of data points that a source writes to the aggregator at 
any one time (i.e. one data point at a time vs. multiple data points at a time). The 
aggregator’s database schema will be created to be as simple as possible to use 
and understand, but still able to store data from a variety of sources, as discussed 
below.

Inference of Eating Activity Patterns

Traditionally, activity recognition systems are implemented using supervised 
machine learning (ML) techniques [4, 27]. Using these kinds of algorithms, which 
include Neural Networks, Support-Vector Machines (SVM) and Decision-Trees, 
building an activity classifier requires a training set with annotated data. In most 
cases, however, compiling such a training data set proves to be a challenge. This 
is because annotating data while performing everyday  activities is a time-
consuming and error-prone task. Moreover, given individual differences and 
population variability, one model trained to recognize tasks performed by one 
person may not recognize tasks performed by others. In other words, models built 
this way, and in particular the data used to construct these models, do not 
generalize well.

Alternatively, researchers interested in discovering the structure of people’s 
routines, so called “life patterns”, have relied a number of unsupervised ML 
techniques. Some of these approaches include methods for finding discontinuous 
and varied-order activity  patterns and computing the principal components of an 
individual’s behavioral data [5, 8, 11, 22]. One of the challenges of these 
unsupervised approaches is the amount of data required. Even though they are not 
supervised ML techniques, and thus do not require a labeled training set, they still 
require a substantial amount of data. For example, Eagle and Pentland reported 



being able to obtain 95% accuracy in cluster separation using Expectation-
Maximization after training their model with one month of data from several 
subjects [10]. Another consideration is that once patterns have been detected, it is 
critical to learn what activities the patterns refer to. Interactive machine learning 
techniques, where end-users provide labels or features to guide the process of 
learning, can be used towards this end. 

A practical approach for inferring eating activities patterns from sensor data should 
address the following three questions:

1. How to predict specific life patterns (i.e. eating) from aggregated sensor data?

2. How do we obtain labels and information from end-users with regards to 
particular activity patterns in a way that does not pose a burden and is not 
perceived as disruptive?

3. How to infer life pattern (e.g. having lunch) in real-time from sensor data and 
previously built life patterns models?

Predicting life patterns (i.e. eating) from aggregated sensor data

Routine at all temporal scales characterize aspects of human life for many 
individuals [10]. The first step towards predicting specific life patterns involves 
clustering sensor data streams across time. In previous work, we have identified 
that the amount of physical activity  observed by an on-body accelerometer and 
also an individual’s location can be used as predictor for eating activity. I also 
expect that on-body acoustic sensing might be a useful feature in this scenario [1, 
21, 28].

After several days or weeks, depending on the confidence desired to predict 
patterns, a set of clusters will be available for each day. Translating these cluster 
sets into one set that corresponds to an individual’s habitual activities can be 
achieved by  coalescing the clusters on a timeline, through time-alignment. We call 
these coalesced clusters life pattern clusters.

Obtaining life patterns labels

Once life pattern clusters (LPCs) have been identified, the next step involves 
obtaining labels for them. Querying individuals through an SMS messaging 
interface might be one way to achieve this. To avoid overburdening individuals with 
too many messages, only a few queries should be submitted per day. 

Inferring eating activity from sensor data

LPCs correspond to patterns observed from low-level sensor data. Given labeled 
LPCs, it becomes possible to compile a training set that can be used for building 



an LPC classifier using supervised ML techniques. These classifiers can then be 
applied towards the inference of eating activity in real-time.

Wrist-based device to improve ability to complete a food journal 

Nowadays, one of the popular ways to keep track of a food journal is through a 
mobile phone application. The use of mobile apps is compelling because most 
people already carry  their mobile devices with them when outside the home. 
Additionally, there are many food log applications to choose from, suiting a variety 
of personal journaling styles. However, in spite of these factors, adherence to 
mobile food logging is often short-lived and tied to temporary health goals (e.g., 
weight loss). This is caused in large part by the effort required in remembering to 
log every eating activity and then taking the manual steps required to do so, which 
include taking the mobile phone out of pocket, unlocking it, finding the food 
journaling application, etc.

With the emergence of devices such as Google Glass and the Memoto camera, it 
becomes possible to devise systems that capture people’s eating activities 
completely automatically through first-person point-of-view images. In practice, 
there are three key downsides to this approach, (1) lack of control and privacy 
concerns when images are taken automatically, (2) large number of images to 
analyze, and (3) societal norms and pressure against the use of such wearable 
devices in public. 

Over the last 15 years, researchers have been exploring the space of wearable 
devices and micro-interactions to enable new kinds of experiences and facilitate 
the completion of tasks [3, 7, 12, 19, 20, 23, 24]. 

To facilitate the process of food logging in real world settings, I suggest a new 
wearable wrist-based camera device that I call “WristPhoto”. WristPhoto leverages 
micro-interactions to remind individuals to document their meals (i.e. by taking a 
photo of their food), and making it effortless to do so. The device should satisfy 
three important conditions:

Remind individuals to take snapshots during eating activities: A  smartphone-grade 
vibrator motor can be integrated into the device and activate for a very short period 
of time whenever the activity classifier running in WristPhoto recognizes that an 
eating activity is taking place.

Require minimal access time: Access time is of the key aspects that differentiate 
the WristPhoto from a mobile phone when it comes to taking a photo for food 
journaling purposes. Shooting a photo with the device might be as simple as 
pointing to an object, or a plate of food, and performing a quick and intuitive hand 
gesture. A sensor in the device could recognize the gesture and instruct the 
camera to take a snapshot. We expect that the access time of taking a photo to be 
within 1-2 seconds.



Designed in a socially-acceptable form factor: Lately  a number of products such as 
the Nike FuelBand and the Jawbone Up have popularized the wristband form 
factor for activity tracking. The WristPhoto will also sit on the wrist, and in the 
envisioned final form, have the same aesthetics as these other devices.
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