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Abstract. The earlier work on predicate detection has assumed that the given
computation is finite. Detecting violation of a liveness predicate requires that
the predicate be evaluated on an infinite computation. In this work, we develop
the theory and associated algorithms for predicate detection in infinite runs. In
practice, an infinite run can be determined in finite time only if it consists of a re-
current behavior with some finite prefix. Therefore, our study is restricted to such
runs. We introduce the concept of d-diagram, which is a finite representation of
infinite directed graphs. Given a d-diagram that represents an infinite distributed
computation, we solve the problem of determining if a global predicate ever be-
came true in the computation. The crucial aspect of this problem is the stopping
rule that tells us when to conclude that the predicate can never become true in
future. We also provide an algorithm to provide vector timestamps to events in
the computation for determining the dependency relationship between any two
events in the infinite run.

1 Introduction

Correctness properties of distributed programs can be classified either as safety prop-
erties or liveness properties. Informally, a safety property states that the program never
enters a bad (or an unsafe) state, and a liveness property states that the program eventu-
ally enters into a good state. For example, in the classical dining philosopher problem
a safety property is that “two neighboring philosophers never eat concurrently” and
a liveness property is that “every hungry philosopher eventually eats.” Assume that a
programmer is interested in monitoring for violation of a correctness property in her
distributed program. It is clear how a runtime monitoring system would check for vi-
olation of a safety property. If it detects that there exists a consistent global state[1] in
which two neighboring philosophers are eating then the safety property is violated. The
literature in the area of global predicate detection deals with the complexity and algo-
rithms for such tasks [2, 3]. However, the problem of detecting violation of the liveness
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property is harder. At first it appears that detecting violation of a liveness property may
even be impossible. After all, a liveness property requires something to be true eventu-
ally and therefore no finite observation can detect the violation. We show in this paper
a technique that can be used to infer violation of a liveness property in spite of finite
observations. Such a technique would be a basic requirement for detecting a temporal
logic formula[4] on a computation for runtime verification.

There are three important components in our technique. First, we use the notion of
a recurrent global state. Informally, a global state is recurrent in a computation γ if it
occurs more than once in it. Existence of a recurrent global state implies that there exists
an infinite computation δ in which the set of events between two occurrences of can be
repeated ad infinitum. Note that γ may not even be a prefix of δ. The actual behavior
of the program may not follow the execution of δ due to nondeterminism. However, we
know that δ is a legal behavior of the program and therefore violation of the liveness
property in δ shows a bug in the program.
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Fig. 1. A finite distributed computation C of dining philosophers

For example, in figure 1, a global state repeats where the same philosopher P1 is
hungry and has not eaten in between these occurrences. P1 does get to eat after the sec-
ond occurrence of the recurrent global state; and, therefore a check that “every hungry
philosopher gets to eat” does not reveal the bug. It is simple to construct an infinite com-
putation δ from the observed finite computation γ in which P1 never eats. We simply
repeat the execution between the first and the second instance of the recurrent global
state. This example shows that the approach of capturing a periodic part of a compu-
tation can result in detection of bugs that may have gone undetected if the periodic
behavior is not considered.

The second component of our technique is to develop a finite representation of the
infinite behavior γ. Mathematically, we need a finite representation of the infinite but
periodic poset γ. In this paper, we propose the notion of d-diagram to capture infinite
periodic posets. Just as finite directed acyclic graphs (dag’s) have been used to represent
and analyze finite computations, d-diagrams may be used for representing periodic infi-
nite distributed computations for monitoring or logging purposes. The logging may be
useful for replay or offline analysis of the computation. Figure 2 shows a d-diagram and
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Fig. 2. (a) A d-diagram and (b) its corresponding infinite poset

the corresponding infinite computation. The formal semantics of a d-diagram is given
in Section 3. Intuitively, the infinite poset corresponds to the infinite unrolling of the
recurrent part of the d-diagram.

The third component of our technique is to develop efficient algorithms for analyz-
ing the infinite poset given as a d-diagram. Two kinds of computation analysis have
been used in past for finite computations. The first analysis is based on vector clocks
which allows one to answer if two events are dependent or concurrent, for example,
works by Fidge[5] and Mattern[6]. We extend the algorithm for timestamping events
of a finite poset to that for the infinite poset. Of course, since the set of events is infi-
nite, we do not give explicit timestamp for all events, but only an implicit method that
allows efficient calculation of dependency information between any two events when
desired. The second analysis we use is to detect a global predicate B on the infinite
poset given as a d-diagram. In other words, we are interested in determining if there
exists a consistent global state which satisfies B. Since the computation is infinite, we
cannot employ the traditional algorithms [2, 3] for predicate detection. Because the be-
havior is periodic it is natural that a finite prefix of the infinite poset may be sufficient
to analyze. The crucial problem is to determine the number of times the recurrent part
of the d-diagram must be unrolled so that we can guarantee that B is true in the finite
prefix iff it is true in the infinite computation. We show in this paper that it is sufficient
to unroll the d-diagram N times where N is the number of processes in the system.

We note here that there has been earlier work in detection of temporal logic formulas
on distributed computation, such as [7–10]. However, the earlier work was restricted to
verifying the temporal logic formula on the finite computation with the interpretation
of liveness predicates modified to work for finite posets. For example, the interpretation
of “a hungry philosopher never gets to eat” was modified to “a hungry philosopher does
not eat by the end of the computation.” This interpretation, although useful in some
cases, is not accurate and may give false positives when employed by the programmer
to detect bugs. This paper is the first one to explicitly analyze the periodic behavior to
ensure that the interpretation of formulas is on the infinite computation.

In summary, this paper makes the following contributions:

– We introduce the notion of recurrent global states in a distributed computation and
propose a method to detect them.



– We introduce and study a finite representation of infinite directed computations
called d-diagrams.

– We provide a method of timestamping nodes of a d-diagram so that the happened-
before relation can be efficiently determined between any two events in the given
infinite computation.

– We define the notion of core of a d-diagram that allows us to use any predicate
detection algorithm for finite computations on infinite computations as well.

2 Model of Distributed Computation

We first describe our model of a distributed computation. We assume a message pass-
ing asynchronous system without any shared memory or a global clock. A distributed
program consists of N sequential processes denoted by P = {P1, P2, . . . , PN} com-
municating via asynchronous messages. A local computation of a process is a sequence
of events. An event is either an internal event, a send event or a receive event. The pre-
decessor and successor events of e on the process on which e occurs are denoted by
pred(e) and succ(e).

Generally a distributed computation is modeled as a partial order of a set of events,
called the happened-before relation [11]. In this paper, we instead use directed graphs to
model distributed computations as done in [9]. When the graph is acyclic, it represents
a distributed computation. When the distributed computation is infinite, the directed
graph that models the computation is also infinite. An infinite distributed computation
is periodic if it consists of a subcomputation that is repeated forever.

Given a directed graph G = 〈E,→〉, we define a consistent cut as a set of vertices
such that if the subset contains a vertex then it contains all its incoming neighbors. For
example, the set C = {a1, b1, c1, d1, e1, f1, g1} is a consistent cut for the graph shown
in figure 3(b). The set {a1, b1, c1, d1, e1, g1} is not consistent because it includes g1, but
does not include its incoming neighbor f1. The set of finite consistent cuts for graph G
is denoted by C(G).

In this work we focus only on finite consistent cuts (or finite order ideals [12]) as
they are the ones of interest for distributed computing.

A frontier of a consistent cut is the set of those events of the cut whose successors,
if they exist, are not contained in the cut. Formally,

frontier(C) = {x ∈ C|succ(x) exists ⇒ succ(x) 6∈ C}

For the cut C in figure 3(b), frontier(C) = {e1, f1, g1}. A consistent cut is uniquely
characterized by its frontier and in this paper we always identify a consistent cut by its
frontier.

Two events are said to be consistent iff they are contained in the frontier of some
consistent cut, otherwise they are inconsistent. It can be verified that events e and f are
consistent iff there is no path in the computation from succ(e) to f and from succ(f)
to e.



3 Infinite Directed Graphs

From distributed computing perspective, our intention is to provide a model for an in-
finite computation of a distributed system which eventually becomes periodic. To this
end, we introduce the notion of d-diagram (directed graph diagram).

Definition 1 (d-diagram). A d-diagram Q is a tuple (V, F,R,B) where V is a set of
vertices or nodes, F (forward edges) is a subset of V × V , R (recurrent vertices) is
a subset of V , and B (shift edges) is a subset of R × R. A d-diagram must satisfy the
following constraint: If u is a recurrent vertex and (u, v) ∈ F or (u, v) ∈ B, then v is
also recurrent.

Figure 2(a) is an example of a d-diagram. The recurrent vertices and non-recurrent
vertices in the d-diagram are represented by hollow circles and filled circles respec-
tively. The forward edges are represented by solid arrows and the shift-edges by dashed
arrows. The recurrent vertices model the computation that is periodic.

Each d-diagram generates an infinite directed graph defined as follows:

Definition 2 (directed graph for a d-diagram). The directed graph G = 〈E,→〉 for
a d-diagram Q is defined as follows:

– E = {u1|u ∈ V } ∪ {ui|i ≥ 2 ∧ u ∈ R}
– The relation→ is the set of edges in E given by:

(1) if (u, v) ∈ F and u ∈ R, then ∀i : ui → vi, and (2) if (u, v) ∈ F and u 6∈ R,
then u1 → v1, and (3) if (v, u) ∈ B, then ∀i : vi → ui+1.

The set E contains infinite instances of all recurrent vertices and single instances of
non-recurrent vertices. For a vertex ui, we define its index as i.

It can be easily shown that if the relation F is acyclic, then the resulting directed
graph for the d-diagram is a poset. Figure 2 shows a d-diagram along with a part of the
infinite directed graph generated by it. Two vertices in a directed graph are said to be
concurrent if there is no path from one to other.

Although acyclic d-diagrams cannot represent all infinite posets, they are sufficient
for the purpose of modeling distributed computations. Let the width of a directed graph
be defined as the maximum size of a set of pairwise concurrent vertices. A distributed
computation generated by a finite number of processes has finite width and hence we
are interested in only those d-diagrams which generate finite width directed graphs. The
following property of the posets generated by acyclic d-diagrams is easy to show.

Lemma 1. A poset P defined by an acyclic d-diagram has finite width iff for every
recurrent vertex there exists a cycle in the graph (R,F ∪ B) which includes a shift-
edge.

Proof. Let k be the number of shift-edges in the shortest cycle involving u ∈ R. By
transitivity we know that there is a path from vertex ui to ui+k in R. Therefore, at most
k − 1 instances of a vertex u ∈ R are concurrent. Since R is finite, so the largest set of
concurrent vertices is also finite.
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Conversely, if there exists any recurrent vertex v that is not in a cycle involving a
shift-edge, then vi is concurrent with vj for all i, j. Then, the set

{vi|i ≥ 1}

contains an infinite number of concurrent vertices. Thus, G has infinite width.

Figure 2 shows a d-diagram and the corresponding computation. Note that for any
two events x, y on a process, either there is a path from x to y or from y to x, i.e., two
events on the same process are always ordered.

The notion of shift of a cut is useful for analysis of periodic infinite computations.
Intuitively, the shift of a frontier C produces a new cut by moving the cut C forward
or backward by a certain number of iterations along a set X of recurrent events in C.
Formally,

Definition 3 (d-shift of a cut). Given a frontier C, a set of recurrent events X ⊆ R
and an integer d, a d-shift cut of C with respect to X , is represented by the frontier
Sd(C,X)

{ei|ei ∈ C ∧ e 6∈ X} ∪ {em|ei ∈ C ∧ e ∈ X ∧m = max(1, i+ d)}

We denote Sd(C,R) simply by Sd(C).

Hence Sd(C,X) contains all events ei that are not in X , and the shifted events
for all elements of X . Note that in the above definition d can be negative. Also, for a
consistent cut C, Sd(C,X) is not guaranteed to be consistent for every X .

As an example, consider the infinite directed graph for the d-diagram in figure 3.
Let C be a cut given by the frontier {e1, f1, g1} and X = {f, g}. Then S1(C,X) is
the cut given by {e1, f2, g2}. Figure 3 shows the cut C and S1(C,X). Similarly for C
given by {a1, f1, g1}, S1(C) = {a1, f2, g2}. Note that in this case, a1 remains in the
frontier of S1(C) and the cut S1(C) is not consistent.

4 Vector Clock Timestamps

In this section, we present algorithms to assign vector timestamps to nodes in the infinite
computation given as a d-diagram. The objective is to determine dependency between
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any two events, say ei and f j , based on the vector clocks assigned to these events rather
than exploring the d-diagram. Since there are infinite instances of recurrent events, it is
clear that we can only provide an implicit vector timestamp for the events. The explicit
vector clock can be computed for any specific instance of i and j.

Timestamping events of the computation has many applications in debugging dis-
tributed programs [5]. Given the timestamps of recurrent events e and f , our algorithm
enables answering queries of the form:

1. Are there any instances of e and f which are concurrent, i.e., are there indices i
and j such that ei is concurrent with f j? For example, when e and f correspond to
entering in the critical section, this query represents violation of the critical section.

2. What is the maximum value of i such that ei happened before a given event such
as f256?

3. Is it true that for all i, ei happened before f i?

We show in this section, that there exists an efficient algorithm to timestamp events
in the d-diagram. As expected, the vectors corresponding to any recurrent event ei even-
tally become periodic. The difficult part is to determine the threshold after which the
vector clock becomes periodic and to determine the period.

We first introduce the concept of shift-diameter of a d-diagram. The shift-diameter
provides us with the threshold after which the dependency of any event becomes peri-
odic.

Definition 4 (shift-diameter of d-diagram). For a d-diagram Q, the shift-diameter
η(Q) is the maximum of the number of shift-edges in the shortest path between any two
vertices in the d-diagram. By the shortest path we mean the path with minimum number
of shift-edges.

When Q is clear from the context, we simply use η to denote η(Q). For the d-
diagram in Figure 3, η = 1. In figure 4, we can see that η = 2. We first give a bound on
η.

Lemma 2. For a d-diagram Q corresponding to a computation with N processes,
η(Q) ≤ 2N .



Proof. Consider the shortest path between two vertices e, f ∈ V . Clearly this path does
not have a cycle; otherwise, a shorter path which excludes the cycle exists. Moreover,
all the elements from a process occur consecutively in this path. As a result, the shift-
edges that are between events on the same process are traversed at most once in the
path. Moving from one process to another can have at most one shift-edge. Hence,
η(Q) ≤ 2N .

For an event x ∈ E, we denote by J(x), the least consistent cut which includes
x. The least consistent cut for J(ei) will give us the vector clock for event ei. We first
show that the cuts J(ei) stabilize after some iterations i.e. the cut J(ej) can be obtained
from J(ei) by a simple shift for j > i. This allows us to predict the structure of J(ei)
after certain iterations.

The next lemma shows that the cut J(f j) does not contain recurrent events with
iterations very far from j.

Lemma 3. If ei ∈ frontier(J(f j)), e ∈ R, then 0 ≤ j − i ≤ η.

Proof. If ei ∈ frontier(J(f j)), then there exists a path from ei to f j and ∀k > i there
is no path from ek to f j . Therefore the path from ei to f j corresponds to the shortest
path between e and f in the d-diagram. Therefore, by the definition of η, j − i ≤ η.

The following theorem proves the result regarding the stabilization of the cut J(ei).
Intuitively, after a first few iterations the relationship between elements of the compu-
tation depends only on the difference between their iterations.

Theorem 1. For a recurrent vertex e ∈ R, J(eβ+1) = S1(J(eβ)) for all β ≥ η + 1.

Proof. We first show that S1(J(eβ)) ⊆ J(eβ+1). Consider f j ∈ S1(J(eβ)). If f ∈
V \ R (i.e., f is not a recurrent vertex), then f j ∈ J(eβ), because the shift operator
affects only the recurrent vertices. This impies that there is a path from f j to eβ , which
in turn implies the path from f j to eβ+1. Hence, f j ∈ J(eβ+1). If f is recurrent, then
f j ∈ S1(J(eβ)) implies f j−1 ∈ J(eβ). This impies that there is a path from f j−1 to
eβ , which in turn implies the path from f j to eβ+1, from the property of d-diagrams.
Therefore, S1(J(eβ)) ⊆ J(eβ+1).

Now we show that J(eβ+1) ⊆ S1(J(eβ)). Consider f j ∈ J(eβ+1). If j > 1, then
given a path from f j to eβ+1, there is a path from f j−1 to eβ . Hence f j ∈ S1(J(eβ)).
Now, consider the case when j equals 1. f1 ∈ J(eβ+1) implies that there is a path from
f1 to eβ+1. We claim that for β > η, there is also a path from f1 to eβ . Otherwise, the
shortest path from f to e has more than η shift-edges, a contradiction.

When d-diagram generates a poset, Theorem 1 can be used to assign timestamps to
vertices in the d-diagram in a way similar to vector clocks. The difference here is that
a timestamp for a recurrent vertex is a concise way of representing the timestamps of
infinite instances of that vertex.

Each recurrent event, e, has a special p-timestamp (PV (e)) associated with it, which
lets us compute the time stamp for any arbitrary iteration of that event. Therefore, this



result gives us an algorithm for assigning p-timestamp to a recurrent event. The p-
timestamp for a recurrent event e, PV (e) would be a list of the form

(V (e1), . . . , V (eβ); I(e))

where I(e) = V (eβ+1) − V (eβ) and V (ej) is the timestamp assigned by the normal
vector clock algorithm to event ej . Now for any event ej , j > β, V (ej) = V (eβ) +
(j − β) ∗ I(e).

In figure 4, η = 2, β = 3. V (a3) = [5, 2] and V (a4) = [7, 4]. I(a) = [2, 2].
Hence PV (a) = ([1, 0], [3, 0], [5, 2]; [2, 2]). Now, calculating V (aj) for an arbitrary j
is trivial. For example, if j = 6, then V (a6) = [5, 2] + (6− 3) ∗ [2, 2] = [11, 8].

This algorithm requires O(ηn) space for every recurrent vertex. Once the times-
tamps have been assigned to the vertices, any two instances of recurrent vertices can be
compared in O(n) time.

The notion of vector clock also allows us to keep only the relevant events[13] of the
d-diagram. Any dependency related question on the relevant events can be answered by
simply examining the vector timestamps instead of the entire d-diagram.

5 Detecting Global Predicates

We now consider the problem of detecting predicates in d-diagrams. A predicate is a
property defined on the states of the processes and possibly channels. An example of a
predicate is “more than one philosopher is waiting.”

Given a consistent cut, a predicate is evaluated with respect to the values of the
variables resulting after executing all the events in the cut. If a predicate p evaluates
to true for a consistent cut C, we say that C satisfies p. We further assume that the
truthness of a predicate on a consistent cut is governed only by the labels of the events
in the frontier of the cut. This assumption implies that the predicates do not involve
shared state such as the channel state. We define L : G → L to be an onto mapping
from the set of vertices in d-diagram to a set of labelsLwith the constraint that ∀e ∈ V :
L(ei) = L(ej). This is in agreement with modeling the recurrent events as repetition
of the same event.

It is easy to see that it does not suffice to detect the predicate on the d-diagram
without unrolling it. As a simple example, consider figure 4, where though {a1, d1} is
not a consistent cut, but {a2, d1} is consistent.

In this section, we define a finite extension of our d-diagram which enables us to de-
tect any property that could be true in the infinite poset corresponding to the d-diagram.
We show that it is sufficient to perform predicate detection on that finite part.

We mainly focus on the recurrent part of the d-diagram as that is the piece which
distinguishes this problem from the case of finite directed graph. We identify certain
properties of the recurrent part which allows us to apply the techniques developed for
finite directed graphs to d-diagrams.

Predicate detection algorithms explore the lattice of global states in BFS order as
in Cooper-Marzullo [2] algorithm, or a particular order of events as in Garg-Waldecker
[14] algorithm. For finite directed graphs, once the exploration reaches the final global
state it signals that the predicate could never become true. In the case of infinite directed



graphs, there is no final global state. So, the key problem is to determine the stopping
rule that guarantees that if the predicate ever becomes true then it would be discovered
before the stopping point. For this purpose, we show that for every cut in the computa-
tion, a subgraph of the computation called the core contains a cut with the same label.
The main result of this section is that the core of the periodic infinite computation is
simply the set of events in the computation with iteration less than or equal to N , the
number of processes.

Definition 5 (core of a computation). For a d-diagram Q corresponding to a compu-
tation with N processes, we define U(Q), the core of Q, as the directed graph given by
the set of events E′ = {ej |e ∈ R ∧ 2 ≤ j ≤ N} ∪ {e1|e ∈ V } and the edges are the
restriction of→ to set E′.

The rest of the section is devoted to proving the completeness of the core of a
computation. The intuition behind the completeness of the core is as follows: For any
frontier C, we can perform a series of shift operations such that the resulting frontier
is consistent and lies in the core. We refer to this operation as a compression operation
and the resulting cut is denoted by by the frontier C (C). Figure 5 shows the cut C =
{e5, f3, g1} and the compressed cut C (C) = {e3, f2, g1}.
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Fig. 5. Compression operation being applied on a cut

For proving the completeness of the core, we define the notion of a compression
operation. Intuitively, compressing a consistent cut applies the shift operation multiple
times such that the final cut obtained lies in the core of the computation and has the
same labeling.

Definition 6 (Compression). Given a frontierC and index i , define C (C, i) as shifting
of all events with index greater than i by sufficient iterations such that in the shifted
frontier the event with next higher index than i is i + 1. The cut obtained after all
possible compressions is denoted as C (C).

In Figure 5, consider the cut C = {e5, f3, g1}. When we apply C (C, 1), we shift
events e5 and f3 back by 1. This results in the cut {e4, f2, g1}. The next higher index
in the cut now is 2 in f2. We now apply another compression at index 2, by shifting
event e4, and the compressed cut C (C) = {e3, f2, g1}. As another example, consider
a cut C = {e7, f4, g4}. We first apply C (C, 0) to get the cut {e4, f1, g1}. Applying the
compression at index 1, we finally get {e2, f1, g1}.



Note that the cut resulting from the compression of a cut C has the same labeling as
the cut C. The following lemma shows that it is safe to apply compression operation on
a consistent cut i.e. compressing the gaps in a consistent cut results in another consistent
cut. This is the crucial argument in proving completeness of the core.

Lemma 4. If C is the frontier of a consistent cut, then C (C, l) corresponds to a con-
sistent cut for any index l.

Proof. Let C ′ = C (C, l) for convenience. Consider any two events ei, f j ∈ C. If
i ≤ l, j ≤ l or i > l, j > l, then the events corresponding to ei and f j in C ′ are also
consistent. When i > l and j > l, events corresponding to ei and f j in C ′ get shifted
by the same number of iterations.

Now assume i ≤ l and j > l. Then ei remains unchanged in C ′ and f j is mapped
to fa such that a ≤ j. Since i < a, there is no path from succ(fa) to ei. If there is a
path from succ(ei) to fa, then there is also a path from succ(ei) to f j as there is a path
from fa to f j . This contradicts the fact that ei and f j are consistent. Hence, every pair
of vertices in the cut C ′ is consistent.

Now we can use the compression operation to compress any consistent cut to a con-
sistent cut in the core. Since the resulting cut has the same labeling as the original cut,
it must satisfy any non-temporal predicate that the original cut satisfies. The following
theorem establishes this result.

Theorem 2. If there is a cut C ∈ C(〈E,→〉), then there exists a cut C ′ ∈ C(U(Q))
such that L(C) = L(C ′).

Proof. Let C ′ = C (C). By repeated application of the lemma 4, we get that C ′ is a
consistent cut and L(C) = L(C ′). Moreover, by repeated compression, no event in C ′

has index greater than N . Therefore, C ′ ∈ U(Q).

The completeness of the core implies that the algorithms for predicate detection on
finite directed graphs can be used for d-diagrams as well after unrolling the recurrent
events N times. This result holds for any global predicate that is non-temporal (i.e., de-
fined on a single global state). Suppose that the global prediacte B never becomes true
in the core of the computation, then we can assert that there exists an infinite computa-
tion in whichB never becomes true (i.e., the program does not satisfy that eventuallyB
becomes true). Similarly, if a global predicate B is true in the recurrent part of the com-
putation, it verifies truthness of the temporal predicate that B becomes true infinitely
often.

6 Recurrent Global State Detection Algorithm

We now briefly discuss a method to obtain a d-diagram from a finite distributed com-
putation. The local state of a process is the value of all the variables of the process in-
cluding the program counter. The channel state between two processes is the sequence
of messages that have been sent on the channel but not received. A global state of a
computation is defined to be the cross product of local states of all processes and all the



channel states at any cut. Any consistent cut of the computation determines a unique
consistent global state. A global state is recurrent in a computation, if there exist con-
sistent cuts Y and Z such that the global states for Y and Z are identical and Y is a
proper subset of Z. Informally, a global state is recurrent if there are at least two distinct
instances of that global state in the computation.

We now give an algorithm to detect recurrent global states of a computation. We
assume that the system logs the message order and nondeterministic events so that the
distributed computation can be exactly replayed. We also assume that the system sup-
ports a vector clock mechanism.

The first step of our recurrent global state detection (RGSD) algorithm consists of
computing the global state of a distributed system. Assuming FIFO, we could use the
classical Chandy and Lamport’s algorithm[1] for this purpose. Otherwise, we can use
any of the algorithms, such as [15–17]. Let the computed global snapshot be G. Let Z
be the vector clock for the global state G.

The second step consists of replaying the distributed computation while monitoring
the computation to determine the least consistent cut that matchesG. We are guaranteed
to hit such a global state because there exists at least one such global state (at vector
time Z) in the computation. Suppose that the vector clock of the detected global state is
Y . We now have two vector clocks Y and Z corresponding to the global state G. If Y
equals Z, we continue with our computation. Otherwise, we have succeeded in finding
a recurrent global state G.

Note that replaying a distributed computation requires that all nondeterministic
events (including the message order) be recorded during the initial execution [18]. Mon-
itoring the computation to determine the least consistent cut that matchesG can be done
using algorithms for conjunctive predicate detection [3, 19].

When the second step fails to find a recurrent global state, the first step of the algo-
rithm is invoked again after certain time interval. We make the following observation
about the recurrent global state detection algorithm.
Theorem 3. If the distributed computation is periodic then the algorithm will detect a
recurrent global state. Conversely, if the algorithm returns a recurrent global state G,
then there exists an infinite computation in which G appears infinitely often.

Proof. The RGSD algorithm is invoked periodically and therefore it will be invoked at
least once in repetitive part of the computation. This invocation will compute a global
state G. Since the computation is now in repetitive mode, the global state G must have
occurred earlier and the RGSD algorithm with declare G as a recurrent global state.

We prove the converse by constructing the infinite computation explicitly. Let Y
and Z be the vector clocks corresponding to the global state recurrent global state G.
Our infinite computation will first execute all events till Y . After that it will execute
the computation that corresponds to events executed between Y and Z. Since Y and
Z have identical global state, the computation after Y is also a legal computation after
Z. By repeatedly executing this computation, we get an infinite legal computation in
which G appears infinitely often.

It is important to note that our algorithm does not guarantee that if there exists any
recurrent global state, it will be detected by the algorithm. It only guarantees that if the
computation is periodic, then it will be detected.
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Fig. 6. A poset which cannot be captured using MSC graphs or HMSC

We note here that RGSD algorithm is also useful in debugging applications in which
the distributed program is supposed to be terminating and presence of a recurrent global
state itself indicates a bug.

7 Related Work

A lot of work has been done in identifying the classes of predicates which can be ef-
ficiently detected [7, 9]. However, most of the previous work in this area is mainly
restricted to finite traces.

Some examples of the predicates for which the predicate detection can be solved
efficiently are: conjunctive [7, 20], disjunctive [7], observer-independent [21, 7], linear
[7], non-temporal regular [22, 9] predicates and temporal [8, 23, 24].

Some representations used in verification explicitly model concurrency in the sys-
tem using a partial order semantics. Two such prominent models are message sequence
charts (MSCs) [25] and petri nets [26]. MSCs and related formalisms such as time
sequence diagrams, message flow diagrams, and object interaction diagrams are of-
ten used to specify design requirements for concurrent systems. An MSC represents
one (finite) execution scenario of a protocol; multiple MSCs can be composed to de-
pict more complex scenarios in representations such as MSC graphs and high-level
MSCs (HMSC). These representations capture multiple posets but they cannot be used
to model all the posets (and directed graphs) that can be represented by d-diagrams. In
particular, a message sent in a MSC node must be received in the same node in MSC
graph or HMSC. Therefore, some infinite posets which can be represented through d-
diagrams cannot be represented through MSCs. Therefore, an infinite poset such as the
one shown in figure 6 is not possible to represent through MSCs.

Petri nets [26] are also used to model concurrent systems. Partial order semantics
in petri nets are captured through net unfoldings [27]. Unfortunately, unfoldings are
usually infinite sets and cannot be stored directly. Instead, a finite initial part of the
unfolding, called the finite complete prefix [28] is generally used to represent the un-
folding. McMillan showed that reachability can be checked using the finite prefix itself.
Later Esparza [29] extended this work to use unfoldings to efficiently detect predicates
from a logic involving the EF and AG operators. Petri nets are more suitable to model
the behavior of a complete system whereas d-diagrams are more suitable for modeling
distributing computations in which the set of events executed by a process forms a total
order. They are a simple extension of process-time diagrams[11] which have been used
extensively in distributed computing literature.



8 Conclusion

In this paper, we introduce a method for detecting violation of liveness properties in
spite of observing a finite behavior of the system. Our method is based on (1) determin-
ing recurrent global states, (2) representing the infinite computation by a d-diagram, (3)
computing vector timestamps for determining dependency and (4) computing the core
of the computation for predicate detection. We note here that intermediate steps are of
independent interest. Determining recurrent global states can be used to detect if a ter-
minating system has an infinite trace. Representing an infinite poset with d-diagram is
useful in storing and replaying an infinite computation.

Our method requires that the recurrent events be unrolledN times. For certain com-
putations, it may not be necessary to unroll recurrent event N times. It would be inter-
esting to develop a method which unrolls each recurrent event just the minimum number
of times required for that prefix of the computation to be core.

In this paper, we have restricted ourselves to very simple unnested temporal logic
formulas. Detecting a general temporal logic formula efficiently in the model of d-
diagram is a future work.
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