
Exploiting Predicate Structure For Efficient Reachability
Detection

Sujatha Kashyap
ECE Department

University of Texas at Austin
Austin, TX 78712, USA

kashyap@ece.utexas.edu

Vijay K. Garg
ECE Department

University of Texas at Austin
Austin, TX 78712, USA

garg@ece.utexas.edu

ABSTRACT
Partial order (p.o.) reduction techniques are a popular and
effective approach for tackling state space explosion in the
verification of concurrent systems. These techniques gen-
erate a reduced search space that could be exponentially
smaller than the complete state space. Their major draw-
back is that the amount of reduction achieved is highly sensi-
tive to the properties being verified. For the same program,
different properties could result in very different amounts of
reduction achieved.

We present a new approach which combines the benefits
of p.o. reduction with the added advantage that the size
of the constructed state space is completely independent of
the properties being verified. As in p.o. reduction, we use
the notion of persistent sets to construct a representative
interleaving for each maximal trace of the program. How-
ever, we retain concurrency information by assigning vector
timestamps to the events in each interleaving. Our approach
hinges upon the use of efficient algorithms that parse the
encoded concurrency information in the representative in-
terleaving to determine whether a safety violation exists in
any interleaving of the corresponding trace. We show that,
for some types of predicates, reachability detection can be
performed in time that is polynomial in the length of the in-
terleaving. Typically, these predicates exhibit certain char-
acteristics that can be exploited by the detection algorithm.

We implemented our algorithms in the popular model
checker SPIN, and present experimental results that demon-
strate the effectiveness of our techniques. For example, we
verified a distributed dining philosophers protocol in 0.03
seconds, using 1.253 MB of memory. SPIN, using tradi-
tional p.o. reduction techniques, took 759.71 seconds and
439.116 MB of memory.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

General Terms
Verification

Keywords
model checking, reachability, Mazurkiewicz traces

1. INTRODUCTION
State space enumeration using interleaving semantics is

a highly successful strategy used in the verification of soft-
ware systems. In this approach, the software system is rep-
resented by a labeled transition graph in which every reach-
able state of the system is enumerated. However, the size
of the constructed graph, also known as the state space,
quickly becomes exponential in the size of the program de-
scription. This is known as state space explosion, and is the
fundamental obstacle in the verification of large software
systems. Concurrent systems are particularly vulnerable to
state space explosion because of the combinatorial number
of possible interleavings of a set of concurrent events. For
instance, a set of n concurrent events can be interleaved in
n! ways, and an exhaustive state space search would explore
each of these interleavings.

Partial order (p.o.) reduction strategies [24, 18, 19, 11]
have emerged as a highly successful, and widely deployed,
technique to reduce state space explosion. The widely-used
model checker, SPIN, employs p.o. reduction.

Partial order reduction is based on the observation that it
is not always necessary to explore all possible interleavings
of a set of concurrent events. Sometimes, a given property is
satisfied in one interleaving if and only if it is satisfied in all
interleavings. Such properties are called equivalence-robust
[19]. For the verification of equivalence-robust properties,
it is sufficient to explore a single representative interleaving
of a set of concurrent events. However, safety properties
are rarely equivalence-robust. For example, in a mutual ex-
clusion algorithm, a safety property of interest is that no
two processes should be in the critical section simultane-
ously, that is, ¬EF (incsi ∧ incsj). Consider the (improb-
ably) naive implementation of mutual exclusion in Figure
1, where each process blindly enters and exits the critical
section. The interleaving in Figure 1(b) satisfies the safety
property, whereas a safety violation occurs in Figure 1(c).

To deal with more general properties, p.o. reduction tech-
niques exploit the notion of invisibility of events. An event
is said to be invisible with respect to a predicate only if ex-
ecution of the event has no effect on the value of the pred-

1

incsi := true;
[critical sectioni];
 incsi := false;

incsj := true;
[critical sectionj];
 incsj := false;

Pi Pj

(a)

Pi: incsi := true;
Pi: [critical sectioni];
Pi: incsi := false;
Pj: incsj := true;
Pj: [critical sectionj];
Pj: incsj := false;

(b)

Pi: incsi := true;
Pi: [critical sectioni];
Pj: incsj := true;
Pj: [critical sectionj];
Pi: incsi := false;
Pj: incsj := false;

(c)

Figure 1: A naive distributed mutual exclusion im-
plementation. (a) Concurrent processes Pi and Pj,
(b) a safe interleaving of events, and (c) an unsafe
interleaving.

icate. Let each state in an interleaving sequence be labeled
by the value of the predicate to be checked. A sequence
of adjacent states with the same label is called a stutter.
A labeled interleaving sequence can be collapsed by replac-
ing each stutter by a single state with the same label as
the states in the stutter. For example, the labeled sequence
abbcccd can be collapsed into the sequence abcd. Two in-
terleaving sequences are said to be stuttering-equivalent iff
they can be collapsed into the same labeled sequence. It has
been shown [20] that properties expressible in temporal log-
ics without the next-time operator (LTL−X , CTL−X) can-
not distinguish between stuttering-equivalent paths. The
reduced state space graph generated by p.o. reduction in-
cludes at least one stuttering-equivalent sequence for each
interleaving sequence in the full state space graph.

Two distinct sequences can be stuttering-equivalent only
if they contain invisible events. So, the effectiveness of p.o.
reduction is highly dependent on the number of invisible
events in the program. This makes p.o. reduction very
sensitive to the predicates being checked [10]. If a large
proportion of events change the value of the predicate, then
little to no reduction may be achieved in the size of the
constructed state space. Experimental results [10] show that
the effectiveness of p.o. techniques diminishes rapidly with
an increase in the number of visible events.

In this paper, we propose a new approach for detecting
safety properties in a concurrent software system. Our ap-
proach achieves at least as much state space reduction as p.o.
techniques. In addition, the amount of reduction achieved
is independent of the properties being checked. Essentially,
our approach eliminates the need to consider the visibility
of events while constructing the reduced state space.

With p.o. reduction techniques, once a representative in-
terleaving is chosen for inclusion in the reduced graph, we
lose all information about the concurrency between events
in the interleaving. In our proposed approach, we use p.o.
techniques to generate a single representative interleaving
for a set of concurrent events, while retaining concurrency
information by assigning vector timestamps to the events in
an interleaving. The vector timestamps allow us to treat
the representative interleaving as a partially ordered set
(poset) of events, in which concurrent events are incompa-

rable. Thus, vector timestamps provide a “bridge” between
interleaving semantics and a partial order trace semantics as
described by Mazurkiewicz[16].

We also present algorithms that can use the concurrency
information carried by the representative interleaving to de-
termine whether any possible interleaving of the correspond-
ing trace could result in a safety violation. We focus on de-
tecting temporal properties of the form EF (ψ). In general,
the problem of detecting EF (ψ) on a trace is NP-complete
in the number of events in the trace (i.e., in the length of
the representative interleaving) [2]. However, for predicate
classes that exhibit certain structure (characteristics), we
can detect safety violations in time that is polynomial in
the number of events in the trace. We introduce some of
these predicate classes, together with polynomial-time de-
tection algorithms for them.

Model-checking is rife with intractable problems. It well-
known that model-checking is PSPACE complete [3]. This
complexity arises from a combination of factors, including
concurrency between processes, local non-deterministic choice
within a process, and the range of the variables used in the
program. Different approaches attempt to minimize the im-
pact of different factors. Our approach minimizes the impact
of concurrency on the size of the constructed state space,
and usually results in an exponentially smaller state space
representation. In this regard, we are more effective than
p.o. reduction techniques.

The most significant contribution of this paper is the no-
tion of performing model checking by exploiting the struc-
ture (characteristics) of the properties to be checked. For
predicates exhibiting certain characteristics, we can perform
reachability checking in time and space that is polynomial
in the size of the constructed state space representation. In
reality, many properties of interest do exhibit characteristics
that make them amenable to polynomial time detection.

To demonstrate the effectiveness of our techniques, we im-
plemented our algorithms in the SPIN model checker [12].
We chose SPIN for our implementation because it is cur-
rently the most widely-used software verification tool, and is
especially popular for the verification of concurrent software
systems. We present experimental results from the verifi-
cation of three well-known distributed algorithms: a dining
philosophers algorithm, a mutual exclusion algorithm, and
a leader election algorithm. In experiments, an implementa-
tion of our algorithms detected safety violations in a leader
election protocol in 53.53 seconds, whereas SPIN with p.o.
reduction took 547.41 seconds to detect the same violations.

The rest of this paper is organized as follows. In Section
2, we present necessary background information and defini-
tions. Section 3 formalizes the definition of a trace cover,
which is a (possibly infinite) set of traces that contain all the
reachable system states. Section 4 presents an algorithm for
constructing a (possibly infinite) representative interleaving
for each trace in a trace cover. Section 5 describes the mech-
anism for assigning vector timestamps to the events in an
interleaving, in order to obtain the partial order representa-
tion of the corresponding trace. In Section 6, we present an
algorithm that generates a finite trace cover for finite-state
systems. We introduce some tractable classes of predicates
in Section 7, and present polynomial-time algorithms to de-
tect such predicates. Experimental results are provided in
Section 8. We discuss related work in Section 9, and finish
with some concluding remarks in Section 10.

2

2. PRELIMINARIES
A program P is a triple (S, T, s0) where S is a finite set of

states, T is a finite set of operations, and s0 ∈ S is the initial
state. Each state s ∈ S is associated with a set of operations,
called enabled(s), which contains all the operations that can
be executed from s. An operation t ∈ enabled(s) transforms
the state s into a unique state s′ ∈ S.

Each occurrence (execution) of an operation is called an
event. In this paper, we sometimes use the term “event” to
mean “the operation of which this event is an occurrence”.
The context will make clear which interpretation is the rel-
evant one. We denote the unique state s′ reached upon
executing the event α from the state s by s′ := α(s).

Definition 1. An interleaving sequence of a program
P is a (finite or infinite) sequence of events w = α1α2....,
such that:

1. α1 ∈ enabled(s0), and

2. ∀i ≥ 1 : αi+1 ∈ enabled(si), where si := αi(si−1).

The set of states {s0, s1, s2....} generated by the interleaving
sequence w is denoted by states(w). For a finite interleav-
ing sequence w, the final state reached by the sequence is
denoted by fin(s0, w).

Definition 2. [16, 19] An independence relation I ⊆
T×T is an irreflexive, symmetric relation such that (α, β) ∈
I iff ∀s ∈ S:

• Enabledness: α ∈ enabled(s) ⇒
(β ∈ enabled(s) ⇔ β ∈ enabled(α(s)),
and

• Commutativity: (α, β ∈ enabled(s)) ⇒
(α(β(s)) = β(α(s))).

The enabledness condition states that execution of α does
not affect the enabledness of β, and the commutativity con-
dition states that executing α and β in either order results
in the same state.

The dependency relation D is the reflexive, symmetric
relation given by D = (T × T) \ I. Two events are indepen-
dent if their corresponding operations are independent.

Mazurkiewicz [16] defined an equivalence relation ≡D be-
tween finite sequences of operations, where ≡D is the small-
est transitive relation that satisfies the following conditions,
for all u, v, w ∈ T ∗:

1. v ≡D v.

2. If v = u1αβu2 and w = u1βαu2 for some u1, u2 ∈ T ∗

and α, β ∈ T , such that (α, β) ∈ I, then v ≡D w.

Informally, v ≡D w iff v can be transformed into w by re-
peatedly commuting adjacent independent operations.

This definition was extended to infinite sequences in [14].
Let Pref(v) denote the set of all finite prefixes of a (finite
or infinite) sequence v ∈ T ∗ ∪ Tω. We say that v �D w for
some w ∈ T ∗ ∪ Tω iff ∀u1 ∈ Pref(v) : ∃u2 ∈ Pref(w) ::
u1 ≡D u2. Now, for infinite sequences v, w ∈ Tω, v ≡D w
iff (v �D w) ∧ (w �D v).

Definition 3. A trace is an equivalence class of the re-
lation ≡D over the interleaving sequences of a program P.

For the rest of this paper, we fix the dependency rela-
tion D, and refer to it implicitly. A trace σ is also denoted
by [s0, v], where s0 is the (common) initial state of each
interleaving sequence in the trace, and v is any member se-
quence of σ. It is easily shown [11] that if v ≡D w, then
fin(s0, v) = fin(s0, w). We denote the unique final state of

a trace σ by finσ. For a trace σ, Pref(σ)
def
≡
S

v∈σ Pref(v)
denotes the set of all prefixes of the trace.

The concatenation of two traces σ = [ζ, u] and σ′ = [θ, v]

is defined when θ = finσ, as σ.σ′
def
≡ [ζ, uv]. We say a finite

trace σ is subsumed by a finite or infinite trace ρ, denoted
by σ v ρ iff there exists a trace σ′ such that ρ = σ.σ′. If σ′

is not empty, then we say σ < ρ. Traces σ and σ′ are said
to be consistent iff ∃σ̈ : (σ v σ̈) ∧ (σ′ v σ̈).

Note that any interleaving sequence of a trace contains the
same set of events. We will use the notation σE to denote a
trace σ with E as its set of events.

3. TRACE COVERS
Let v be an interleaving sequence. Every state s ∈ states(v)

is the final state of some finite prefix of v, that is, ∀s ∈
states(v) : (∃u ∈ Pref(v) :: fin(s0, u) = s). Let States(σ)
be the set of all states generated by any interleaving se-
quence of the trace σ. We have:

States(σ) =
[

v∈σ

states(v) =
[

u∈Pref(σ)

fin(s0, u) (1)

Lemma 1. Given traces σ, σ′: σ v σ′ ⇒ States(σ) ⊆
States(σ′).

Proof. From the definition of v, v ∈ Pref(σ) ⇒ v ∈
Pref(σ′). From (1), this implies that s ∈ States(σ) ⇒ s ∈
States(σ′).

Definition 4. A set of traces ∆ of a program P = (S, T, s0)
is called a trace cover iff for every reachable state s ∈ S,
there exists a trace σ ∈ ∆ such that s ∈ States(σ).

Lemma 1 implies that it is sufficient to consider only traces
that are maximal under the v relation when constructing a
trace cover.

Mazurkiewicz [16] showed a correspondence between a
trace and a partial order on the events in the trace, such
that every linearization of the partial order is an interleaving
sequence of the trace and vice-versa. Denote the partially-
ordered set (poset) corresponding to a trace σE by (E,→).
The relation → corresponds to Lamport’s happened-before
(causality) relation [15], and is given by:

Definition 5. The happened-before relation → on a trace
σE = [s0, w] is the smallest transitive relation that satisfies:

(α, β) ∈ D ∧ (w = uαvβw′) ⇒ α→ β

where α, β ∈ E, and u, v ∈ T ∗, w′ ∈ T ∗ ∪ Tω.

Thus, given a dependency relation and a representative
sequence of a trace, we can construct the poset correspond-
ing to that trace.

Given a poset (E,→), events α, β ∈ E are said to be
incomparable (denoted α ‖ β) iff α 6→ β and β 6→ α. An
(order) ideal of a poset (E,→) is a subset G ⊆ E such that
for any e, f ∈ E, (f ∈ G) ∧ (e→ f) ⇒ (e ∈ G). We will use

3

the term “ideal of a trace σE” to mean “ideal of the poset
(E,→)”.

Let G ⊆ E be an ideal of the trace σE . G can be viewed
as a trace σG = (G,→). If G is finite, then σG v σE . It has
been shown (e.g., see [22, 8]) that every state in States(σE)
corresponds to the final state of some ideal G ⊆ E, and
vice-versa.

4. REPRESENTATIVE INTERLEAVINGS
In the previous section, we noted that given a representa-

tive interleaving sequence of a trace σE and the dependency
relation D, we can obtain the poset (E,→). Also, we are
only interested in traces that are maximal under v, because
these contain all the states of the program. Thus, in order
to construct a trace cover, we simply need the dependency
relation D, and a representative interleaving sequence from
each maximal trace of the program. It was shown in [14] that
the set of sequences that satisfy the following constraint is
exactly the set of interleaving sequences of traces that are
maximal under the relation v.

Constraint 1. [19, 14] If an operation α is enabled at
some state of an interleaving sequence π, then an operation
that is dependent on α (possibly α itself) must occur later
(or immediately) in π.

If two traces are inconsistent, then they are subsumed by
distinct maximal traces, that is, they cannot be represented
by the same interleaving sequence. The following lemma
helps us determine, in an online fashion, when two traces
are inconsistent.

Lemma 2. Given a trace σ = [s0, v] and events α1 and
α2 such that (α1, α2) ∈ D. If α1, α2 ∈ enabled(finσ), then
σ.[finσ, α1] is not consistent with σ.[finσ, α2].

Proof. Assume, for contradiction, that σ.[finσ, α1] is
consistent with σ.[finσ, α2]. By the definition of trace con-
catention, σ.[finσ, α1] = [s0, vα1] and σ.[finσ, α2] = [s0, vα2].
By the definition of consistent traces, there must exist a
trace ρ such that [s0, vα1] v ρ and [s0, vα2] v ρ. By the
definition of the relation v, there exists an interleaving se-
quence w1 ∈ ρ such that vα1 is a prefix of w1. Similarly,
there exists an interleaving sequence w2 ∈ ρ such that vα2 is
a prefix of w2. Since [s0, w1] ≡ [s0, w2], each sequence must
contain the same events. Thus, α1 also occurs in w2 and α2

also occurs in w1. More precisely, α1 occurs after α2 in w2,
and α2 occurs after α1 in w1. Now, w1 ≡D w2 iff w2 can be
obtained from w1 by repeatedly commuting adjacent inde-
pendent operations. Clearly, in order to transform w1 into
w2, α1 and α2 must be commuted at some iteration, which
implies that α1 and α2 are independent. This contradicts
the assumption that (α1, α2) ∈ D.

Definition 6. [11, 18] A set T of transitions enabled in
a state s is persistent in s iff, for any non-empty path
starting from s in the full state space graph:

s = s1
t1→ s2

t2→ s3...
tn−1→ sn

tn→ sn+1

such that ∀i ∈ {1...n} : ti 6∈ T , ti is independent of all
transitions in T .

It was shown [11, 18] that in order to construct at least
one interleaving sequence per maximal trace, it is sufficient

to explore only a persistent set of transitions from a given
state. To create the fewest number of representative inter-
leavings, we aim to use the smallest persistent set possible.
The following lemma helps to reduce the size of the persis-
tent sets chosen.

Lemma 3. If T is persistent in s and ∃α ∈ T such that
∀β ∈ T \ {α}: (α, β) ∈ I, then T \ {α} is also persistent in
s.

Proof. Immediate from the definition of persistent sets.

As we are interested in using the smallest persistent sets,
we only choose persistent sets that satisfy the following con-
straint.

Constraint 2. If T is persistent in s, then ∀α ∈ T,∃β ∈
T \ {α} : (α, β) ∈ D.

By Lemma 3, any persistent set that does not satisfy the
above constraint can be transformed into one that does, sim-
ply by removing the transitions that are independent of all
other transitions in the set. By Constraint 2, if the persis-
tent set contains more than one event, then the events are
interdependent. Thus, each event in a persistent set must
belong to a distinct maximal trace.

Algorithm 1 constructs a representative interleaving se-
quence for each maximal trace. The algorithm performs a
breadth-first state space traversal, in which only a persistent
subset of the set of enabled events is explored at each state.
In steps 10-13, the first event from the persistent set is added
to the current trace. By Constraint 2 and Lemma 2, the re-
maining events in the persistent set necessarily belong to
inconsistent traces, so in steps 14-20, new traces are created
for these events. Note that every sequence that is dequeued
in line 25 represents some maximal trace of the program.
Clearly, Algorithm 1 terminates iff the input program P
has no infinite execution. The algorithm is presented here
merely for clarity of presentation, and as a first step towards
the construction of a finite trace cover.

Theorem 1. 1. Every sequence generated by Algorithm
1 is an interleaving sequence of the input program P .

2. Assuming that every queued sequence is eventually ex-
plored, Algorithm 1 produces a trace-equivalent sequence
for every interleaving sequence of the program P that
satisfies Constraint 1.

Proof. 1. Obvious from the BFS construction.

2. The proof is by construction [19]. Let w = α0, α1... be
an arbitrary interleaving sequence of P starting from
some state s in the full state graph, such that w satis-
fies Constraint 1.

(a) If α0 ∈ persistent(s), then the algorithm con-
structs the prefix α0 of w, and the construction
proceeds inductively from the state α0(s).

(b) If α0 6∈ persistent(s), let w′ be the maximal pre-
fix of w such that w′ contains no operations from
persistent(s). From the definition of persistent
sets (Definition 6), all the events of w′ are inde-
pendent of all the events in persistent(s). Since w
satisfies Constraint 1, it must contain some event
that is dependent on an event in persistent(s).

4

Algorithm 1: trace cover

input : A program P , with initial state s0.
output: A set of interleaving sequences {τ0, τ1....}.
begin1

τ0 := ε /* the empty string */2

enqueue(τ0)3

while queue is not empty do4

τ := head of queue()5

s := fin(s0, τ)6

while enabled(s) 6= ∅ do7

work set := persistent(s)8

τold := τ9

if work set 6= ∅ then10

let α ∈ work set11

τ := τold.α /* add one transition to12

the current sequence */

s := α(s)13

work set := work set \ {α}14

while work set 6= ∅ do15

/* create new sequences for the16

remaining transitions */

let β ∈ work set17

τnew := τold.β18

work set := work set \ {β}19

enqueue(τnew)20

endw21

endif22

endw23

/* Sequence completed, remove from the24

queue */

dequeue()25

endw26

end27

So, w′ is a proper prefix of w. Let w = w′βv
(where v could be the empty string). Thus, β is
in persistent(s). Since β is independent of all the
events in w′, w′βv can be transformed into βw′v
by commuting adjacent independent operations
|w′| times. That is, βw′v is trace-equivalent to
w and the algorithm constructs the prefix β of a
path that is trace-equivalent to w. The construc-
tion proceeds inductively from the state β(s).

Algorithm 1 constructs a representative sequence for each
maximal trace σE of the program. The following section
presents a method to convert this representative sequence
into the poset (E,→).

5. POSET REPRESENTATION OF A TRACE
Let w be an interleaving sequence created by Algorithm 1.

In this section, we present a mechanism that assigns a times-
tamp to each event in w. This timestamping mechanism is a
generalization of Fidge [7] and Mattern’s [8] “vector clocks”.
A timestamp is an integer vector of dimension n, where n
is the number of processes in the program1. We denote the

1If the program can dynamically create and destroy pro-
cesses, then we can take n to be the maximum number of

timestamp of an event α by α.ν. The ith component of the
vector α.ν is denoted by α.ν[i].

Given two n-dimensional vector timestamps, α.ν and β.ν,
we compare them as follows.

α.ν < β.ν
def
≡ (∀i : α.ν[i] ≤ β.ν[i]) ∧ (∃j : α.ν[j] < β.ν[j])

Our timestamping algorithm imposes the following con-
straint on the program P . Let P consist of n processes,
P1...Pn.

Constraint 3. Each event in the program P “belongs
to” exactly one process. Let Pi be the process to which α
belongs. We denote this by α ∈ Pi. Furthermore, α, β ∈
Pi ⇒ (α, β) ∈ D.

Constraint 3 is quite a natural assumption for distributed
and parallel programs. We now describe an online mecha-
nism for assigning timestamps to the events in a sequence.
We assume that the empty sequence ε contains the empty
event ε, and ε.ν = [0, 0, 0...., 0]. We assume that every event
is dependent on ε. When an event α is concatenated to the
sequence τ , it is assigned a timestamp as follows.

1. Let α ∈ Pi, where 1 ≤ i ≤ n.

2. Calculate the set dep(α), where:

dep(α) = {β|(β ∈ τ) ∧ (α, β) ∈ D}

3. For all j ∈ {1...n}, set:

α.ν[j] := max{β.ν[j]|β ∈ dep(α)}

4. Set α.ν[i] := α.ν[i] + 1.

Let τ be a representative sequence of the trace σE . The
following theorem shows how our timestamping mechanism
captures the poset (E,→).

Theorem 2. Given a trace σE, and α, β ∈ E:

α→ β ⇔ α.ν < β.ν

Proof. Straightforward from the definition of → and the
timestamping procedure.

6. FINITE TRACE COVERS
As noted earlier, Algorithm 1 can produce an infinite num-

ber of traces, each of infinite length. For finite-state pro-
grams, it is possible to obtain a finite number of traces, each
of finite length, which encode all the reachable states of the
program. In this section, we present a modified version of
Algorithm 1 which produces such a finite trace cover.

Let (E,→) be the poset corresponding to the trace σE .
The principal ideal of an event e ∈ E is denoted by ↓ e,
and is given by:

↓ e
def
≡ {f ∈ E|(f → e) ∨ (f = e)}

Intuitively, ↓ e is the minimal set of events that must occur
in any ideal that includes e.

Lemma 4. Let G ⊆ E be any ideal of (E,→) such that
e ∈ G. Then, finσG is reachable from finσ↓e .

processes created.

5

Proof. It is clear that σ↓e v σG. From the definition
of v, we have σ↓e.σG\↓e = σG. That is, finσG is reachable
from finσ↓e via an (actually, every) interleaving sequence of
σG\↓e.

Lemma 4 was used by McMillan to construct a finite com-
plete prefix for Petri Net unfoldings [17]. We use the same
approach here to obtain a finite trace cover.

Let e and f be two events such that their principal ide-
als have the same final state, that is, finσ↓e = finσ↓f . By

Lemma 4, any ideal containing an event e′ such that e→ e′

corresponds to a state which is reachable from σ↓e, hence
is also reachable from σ↓f . So, we need not add events e′,
such that e→ e′, to σ↓e, as long as we add the corresponding
events to σ↓f . That is, e can be marked as a “cutoff event”
[17]. McMillan showed that a sufficient condition for mark-
ing an event e as a cutoff event is the existence of an event
f in any trace of the program, such that finσ↓f = finσ↓e ,
and | ↓ f | < | ↓ e|.

Algorithm 2 uses this notion of cut-off events to prune
the sequences constructed by Algorithm 1. When an event
α ∈ Pi is identified as a cut-off event in the sequence τ ,
further events from Pi are ignored when constructing larger
sequences that contain τ as a prefix. The key difference be-
tween Algorithms 2 and 1 is that Algorithm 2 chooses its
persistent sets from the set of eligible events at each state,
whereas Algorithm 1 considers the set of enabled events. If
an event α is identified as a cutoff event, then the corre-
sponding process, denoted by proc(α), is marked as a cutoff
process. This is done in lines 21-23 and 26-28. In line 7,
only events belonging to non-cutoff processes are marked as
eligible events. In line 9, the routine persistent′(s) returns
a persistent subset of the eligible events at state s. This
persistent set is then explored further in lines 9-29.

Two sets of traces are said to be state-equivalent iff they
have the same set of reachable states. For a given program,
let ∆ be the set of traces produced by Algorithm 1, and Υ
be the set of traces produced by Algorithm 2.

Theorem 3. [17] ∆ is state-equivalent to Υ.

Proof. It is evident that every state in Υ is a state in
∆. The proof of the converse is as follows. Let G be an
ideal of some trace in ∆, but not an ideal of any trace in Υ.
Then, G contains a cutoff event, e. Thus, there is another
event f in some trace of ∆ such that | ↓ f | < | ↓ e|, and
finσ↓e = finσ↓f . Thus, ∆ has an ideal G′ =↓ f ∪ (G\ ↓ e)
such that finσG′ = finσG . Note that |G′| < |G| because
| ↓ f | < | ↓ e|. If G′ is also not an ideal of Υ then, by
similar reasoning, there is another ideal G′′ in ∆ such that
finσG′′ = finσG′ = finσG , such that |G′′| < |G′| < |G|.
If G′′ is also not in Υ, we iterate this procedure again. We
cannot iterate infinitely because the order < on the size
of ideals is well-founded. Therefore, there must exist some
ideal H in Υ that produces the same state as G.

Thus, Algorithm 2 also produces a trace cover for the
program P . It now remains to be shown that Υ is finite.

Theorem 4. (a) Every trace in Υ is of finite length.
(b) There are a finite number of traces in Υ.

Proof. (a) Algorithm 2 produces interleaving sequences,
from which we extract the corresponding poset. Let N be
the total number of distinct states in the given finite state

Algorithm 2: finite trace cover

input : A program P , with initial state s0.
output: A finite set of finite interleaving sequences

{τ0, τ1....}.
begin1

τ0 := ε /* the empty string */2

enqueue(τ0, ∅) /* no cutoff processes */3

while queue is not empty do4

(τ, cutoff procs) := head of queue()5

s := fin(s0, τ)6

eligible(s) := {γ|(γ ∈ enabled(s)) ∧ (proc(γ) 6∈7

cutoff procs)}
while eligible(s) 6= ∅ do8

work set := persistent′(s)9

τold := τ10

if work set 6= ∅ then11

let α ∈ work set12

τ := τold.α /* add one transition to13

the current sequence */

s := α(s)14

work set := work set \ {α}15

while work set 6= ∅ do16

/* create new sequences for the17

remaining transitions */

let β ∈ work set18

τnew := τold.β19

work set := work set \ {β}20

if β is a cutoff event then21

cutoff procsnew :=22

cutoff procs ∪ {proc(β)}
endif23

enqueue(τnew, cutoff procsnew)24

endw25

if α is a cutoff event then26

cutoff procs :=27

cutoff procs ∪ {proc(α)}
endif28

endif29

endw30

dequeue()31

endw32

end33

program. Let w = α1α2.... be an interleaving sequence,
starting from the initial state s0, produced by Algorithm
2. Consider the first N + 1 events in this sequence. Since
there are only N states, there exist events αi and αj in w,
where 1 ≤ i < j ≤ N + 1, such that the state corresponding
to the ideal ↓ αi is the same as the state corresponding to
↓ αj . Also, since w is a linearization of the partial order on
α1, α2..., and i < j, we have | ↓ αi| < | ↓ αj |. Thus, αi

would be recognized as a cutoff event. Thus, the length of
any interleaving sequence cannot be more than N + 1.

(b) Follows from (a) and the fact that |enabled(s)| is finite
for each state s.

7. EXPLOITING PREDICATE STRUCTURE
Recall that every ideal of (E,→) corresponds to a state

of States(σE). Thus, there can be as many as |2E | states in

6

States(σ). In general, detecting temporal properties of the
form EF (ψ) on a trace σE is NP-complete in |E|. In this
section, we present some special classes of predicates such
that for a predicate ψ belonging to any of these classes, the
temporal property EF (ψ) can be detected on a trace σE

in time that is polynomial in |E|. The notation s |= ψ
denotes that the state s satisfies the predicate ψ.

These predicate classes and their detection algorithms were
first introduced by one of the authors in [9, 2], in the context
of detecting predicates within a single poset. A novel contri-
bution of our paper is to apply these detection algorithms,
for the first time, to model-checking.

7.1 Linear predicates
It is well-known [4] that the set of all ideals of a poset

forms a lattice under the subset relation ⊆. In particular,
if G and H are ideals of the poset (E,→), then G ∩H and
G ∪H are also ideals of (E,→).

Definition 7. A predicate ψ is said to be meet-closed
in a trace σE iff for every pair of ideals G and H of (E,→):

(finσG |= ψ ∧ finσH |= ψ) ⇒ (finσG∩H |= ψ)

Many useful predicates are meet-closed:

• A local variable is one whose scope is limited to exactly
one process. A local predicate is a predicate that is de-
fined using only local variables from a single process. It
is easily verified that local predicates are meet-closed.

• If ψ1 and ψ2 are meet-closed, then so is ψ1 ∧ ψ2.

We define the restriction of an ideal G to a process Pi as:

G |Pi

def
≡ {e|e ∈ G ∧ e ∈ Pi}

Definition 8. Let G be an ideal of (E,→) such that finσG 6|=
ψ. We say that process Pi is crucial at G if and only if, for
all ideals H of (E,→):

(G ⊆ H) ∧ (finσH |= ψ) ⇒ (G |Pi 6= H |Pi)

Note that since G ⊆ H, G |Pi 6= H |Pi is equivalent to saying
that G |Pi is a strict subset of H |Pi . Put simply, if the state
finσG is reached during an execution of the program, the
predicate ψ will not be satisfied in any state reached from
G unless the crucial process executes at least one event.

Meet-closed predicates exhibit the following interesting
property, which makes them particularly amenable to ef-
ficient detection algorithms.

Theorem 5. Let G be any ideal of the trace σE. Let ψ
be a predicate such that finσG 6|= ψ. If ψ is meet-closed in
σE, then there exists a crucial process at G.

Proof. We prove the contrapositive. Assume that there
is no crucial process at G. Then, for every process Pi, there
exists an ideal Hi such that G ⊆ Hi, and Hi |Pi= G |Pi , and
finσHi

|= ψ. By Constraint 3, each event e ∈ Hi belongs to

exactly one process. Therefore,
T

i Hi = G. Since, finσG 6|=
ψ, this means that ψ is not meet-closed.

We can now devise an algorithm to detect EF (ψ) within
a trace σ = [s0, w], for a meet-closed predicate ψ. For an
interleaving sequence w, let w |Pi be the sequence derived
by erasing from w all the events not belonging to process

Pi. For example, if w = α1β1α2β2, where α1, α2 ∈ P1 and
β1, β2 ∈ P2, then w |P1= α1α2.

Algorithm 3 shows the procedure for detecting EF (ψ) for
meet-closed predicates ψ. In the algorithm, next(w |Pi) re-
turns the next event from process Pi in the sequence w |Pi .
If no such event is found, it returns ∅. The algorithm exam-
ines the current state finσG , corresponding to the ideal G,
to see if the predicate is satisfied. If not, then it identifies the
crucial process Pi, and picks the next event, e, from w |Pi .
Recall that any state that satisfies ψ must correspond to an
ideal that includes e and is a strict superset of G. The small-
est such ideal is G∪ ↓ e. Therefore, the algorithm begins its
next iteration with G∪ ↓ e.

Algorithm 3: detect EF

input : A trace σ = [s0, w], a meet-closed predicate ψ.
output: true if EF (ψ) in σ, false otherwise.
begin1

G := ∅ /* Initially, finσG = s0 */2

while finσG 6|= ψ do3

Pi := crucial(G,ψ)4

e := next(w |Pi)5

if e = ∅ then6

/* no more events from Pi in w */7

return false /* ¬EF (ψ) */

else8

G = G∪ ↓ e /* The smallest ideal larger9

than G that contains e */
endif10

endw11

return true /* finσG |= ψ */12

end13

Assuming it takes O(C) time to find the crucial process
at each step, it is clear that Algorithm 3 detects EF (ψ) on
a trace σE in O(C.|E|) time.

Definition 9. A predicate ψ is linear in a trace σE iff:

• ψ is meet-closed in σE, and

• the crucial process can be identified in O(|E|k) time,
for some constant k ≥ 0.

For a linear predicate, the time complexity of Algorithm
3 is O(|E|k) for some constant k ≥ 1. As noted earlier, local
predicates are meet-closed. Clearly, for a local predicate
defined on local variables from process Pi, the crucial process
is Pi. Thus, EF (ψ) can be detected in O(|E|) time for a
local predicate ψ. Now, consider a predicate ψ′ = ψ1 ∧ψ2 ∧
... ∧ ψm, where each ψj is a local predicate. Clearly, this
predicate is meet-closed. Furthermore, if a state does not
satisfy this predicate, then there exists a ψj that evaluates
to false in that state. The failing conjunct can be identified
in O(m) time. Since each conjunct is a local predicate, this
means that the crucial process can be identified in O(m)
time. Thus, the predicate ψ′ is linear and EF (ψ′) can be
detected in O(m.|E|) time.

7.2 0-1 sum predicates
Another useful class of predicates are those of the form

x1 + x2 ++ xn > k, where the xi are local variables, and
k is a constant. A special case is where each of the xi can

7

αnl αl

(a)

α β

(b)

αnl αl

βnl βl

(c)

α

βnl βl

(d)

αnl αl

β

(e)

Figure 2: The relation ;. (a) α ∈ ENL. (b)α, β ∈ EL,
(c) α, β ∈ ENL, (d) α ∈ EL, β ∈ ENL, and (e) α ∈
ENL, β ∈ EL. Note that in (b) - (e), we also have
α→ β.

take only a value of either 0 or 1. We call such predicates
0-1 sum predicates. 0-1 sum predicates can be used to
detect mutual exclusion violation (EF (

P
i incsi > 1)). Or,

to detect if there are more than k copies of a k-licensed
software in use at once (EF (

P
i in usei > k)).

Let ϕ represent the 0-1 sum predicate (x1+x2+....+xn >
k). We reduce the problem of detecting EF (ϕ) in a trace
σE to the problem of computing the width of a poset2.

An event α ∈ Pi is called a local event iff it affects only
local variables at Pi (including the program counter at Pi).
All other events are called non-local events. That is, the set
of events E is partitioned into the set of local events, EL, and
the set of non-local events, ENL. We now split each event
β ∈ ENL into two sub-events, βnl and βl, where βnl affects
only non-local variables (including message channels), and βl

affects only local variables, including the program counter.
Note that βl is a local event, but is not a member of EL.
β can now be considered the sequential composition of βnl
and βl, i.e., β ≡ βnl.βl. The splitting process transforms
ENL into a set of sub-events, ÊNL.

Let Ê = EL ∪ ÊNL. We now transform the poset (E,→)

into another poset (Ê,;), where the relation ; is the small-
est transitive relation that satisfies each of the following (as
shown in Figure 2):
(a) α ∈ ENL ⇒ αnl ; αl

(b) (α, β ∈ EL) ∧ (α→ β) ⇒ α ; β
(c) (α, β ∈ ENL) ∧ (α→ β) ⇒ αnl ; βnl

(d) (α ∈ EL) ∧ (β ∈ ENL) ∧ (α→ β) ⇒ α ; βnl

(e) (α ∈ ENL) ∧ (β ∈ EL) ∧ (α→ β) ⇒ αnl ; β

For any H ⊆ E, let Ĥ denote the “expanded” set of events
obtained by splitting the non-local events of H. That is,

Ĥ
def
≡ {α|α ∈ (H ∩ EL)} ∪ {αnl, αl|α ∈ (H ∩ ENL)}

Let frontier(Ĥ) denote the set of maximal events, under

;, from each process Pi in Ĥ:

frontier(Ĥ)
def
≡ {α|α ∈ (Pi∩Ĥ)∧(6 ∃β ∈ (Pi∩Ĥ) :: α ; β)}

That is, frontier(Ĥ) contains the “latest” event in Ĥ from

each process Pi. From Figure 2, it is clear that frontier(Ĥ)
can contain only local events.

The proof for the following lemma is left to the reader (see
[8, 22]).

Lemma 5. G is an ideal of (E,→) iff ∀α, β ∈ frontier(Ĝ) :
(α 6; β) ∧ (β 6; α).

2The width of a poset is equal to the maximum number of
mutually incomparable elements in the poset.

Let G be an ideal of (E,→) such that finσG |= ϕ. Let

αj be the (local) event from Pj in frontier(Ĝ). Let `(αj)
denote the local state (i.e., valuation of local variables) on
Pj reached upon execution of αj . Since finσG |= ϕ, there
must exist a set Π of (k + 1) processes such that ∀Pj ∈ Π,
(xj = 1) in the local state `(αj). By Lemma 5, ∀i, j ∈ Π :
(αi 6; αj) ∧ (αj 6; αi).

Let E =
S

i{αi ∈ Pi|(xi = 1) in `(αi)} That is, E is the
set of all events that lead to a local state in which any xi is
set to 1. Thus, in order to detect EF (ϕ), we simply need to
determine whether the poset (E ,;) has width greater than

k, where (E ,;) is the sub-poset of (Ê,;) induced by the
relation ; on the set E .

Tomlinson and Garg [23] presented an algorithm that solves
this problem in O(k.m.n(k+logn)) time, where m = |E| and
n is the number of processes in the program.

8. EXPERIMENTAL RESULTS
For our implementation, we modified the popular model-

checking tool, SPIN [12]. SPIN provides a choice of us-
ing either breadth-first search or depth-first search tech-
niques to explore the state space. It uses a static reduction
method [13] that is based on the partial order reduction
techniques described in [18, 19], to generate a reduced state
space graph. By static, we mean that the dependency rela-
tions are computed offline, during the parsing stage, before
the model checking run is initiated. The reduced transition
graph is constructed by picking a persistent set (based on
the computed dependency relation) to explore at each state.

We refer to our modified version of SPIN as TC-SPIN
(Trace Cover SPIN). We used SPIN’s existing static reduc-
tion mechanism for computing dependency relations and
choosing persistent sets. The algorithms we have described
in this paper use a breadth-first search strategy, so our
experimental comparisons were also done against SPIN’s
breadth-first search mechanism. Note that our algorithms
can easily be adapted to a depth-first search strategy. The
changes we made to SPIN are as follows:
• Each trace produced by Algorithm 2 is stored in an
auxiliary data structure, eponymously named trace, which
consists of an array of linked lists. Each element of the ar-
ray corresponds to a process, and each linked list stores the
sequence of local states corresponding to w |Pi , for each in-
terleaving sequence w created by Algorithm 2.
• We implemented the mechanism for assigning vector
timestamps to each event executed. These vector times-
tamps were stored alongs side the local process states in the
linked lists for each w |Pi .
• In a traditional breadth-first search, new states are stored
in a hashtable. When an executed transition leads to a state
that already exists in the hashtable, the current path is not
explored further. In TC-SPIN, our criteria for stopping the
exploration of a path is based on cut-off events. Accordingly,
we used SPIN’s hashtable implementation, but modified it
to store the state finσ↓e for each event e that was explored
by our algorithm. When a cut-off event is identified, we
prune our search space accordingly, as described in Algo-
rithm 2.
• We implemented the predicate detection algorithms pre-
sented in Section 7. The detection algorithms were invoked
on each individual trace as soon as the construction of that
trace was completed.

8

SPIN, no reduction SPIN, P.O. reduction TC-SPIN
Protocol Property Time

(sec)
Memory
(MB)

States Time
(sec)

Memory
(MB)

States Time
(sec)

Memory
(MB)

States

Dining
philosophers

EF (eating[i] ∧
eating[(i+1)modN])

*** *** *** 759.71 439.116 2116120 0.03 1.253 83

Leader elec-
tion

EF (nr leaders > 1) *** *** *** 777.24 64.741 238569 75.02 92.697 118971

Mutual exclu-
sion

EF (incs > 1) 25.31 349.823 652365 2.51 26.239 46880 0.05 2.653 187

Table 1: Experimental results in the absence of errors in the verified protocols.

*** denotes “ran out of memory”

SPIN, no reduction SPIN, P.O. reduction TC-SPIN
Protocol Property Time

(sec)
Memory
(MB)

States Time
(sec)

Memory
(MB)

States Time
(sec)

Memory
(MB)

States

Dining
philosophers

EF (eating[i] ∧
eating[(i+1)modN])

41.86 257.049 1141680 10.22s 43.340 170619 0.03 1.253 81

Leader elec-
tion

EF (nr leaders > 1) *** *** *** 547.41 44.773 159750 53.53 69.247 87435

Mutual exclu-
sion

EF (incs > 1) 19.61 276.607 510828 1.59 15.385 26126 0.01 2.653 181

Table 2: Experimental results in the presence of safety violations in the verified protocols.

Tables 1 and 2 present our experimental results from the
verification of the following three protocols:
1) Chandy and Misra’s distributed dining philosophers pro-
tocol [1], with six philosophers (N = 6). We checked for the
safety property that no pair of neighboring philosophers can
ever eat simultaneously.
2) Dolev, Klawe and Rodeh’s leader election protocol on a
unidirectional ring [5] of six processes. We used random ini-
tialization to assign id’s to the processes in the ring. The
safety property to be verified was that there was never more
than one leader in the ring.
3) Ricart and Agarwala’s distributed mutual exclusion pro-
tocol [21] on five processes. The safety property to be checked
was that there was at most one process in the critical section
at any time.

The results in Table 1 are from verification runs where
the protocols had no errors in them. For the second set of
results, reported in Table 2, we introduced errors (safety vi-
olations) in each of the protocols, and measured the time
and memory required to find these errors. In all our exper-
iments, we compiled the verifier with -DBFS (for breadth-
first search), and -DXUSAFE (to facilitate p.o. reduction).
For SPIN, the safety properties were specified with an assert
statement in a separate monitor process. For TC-SPIN runs,
we specified our predicates in a different file. Consequently,
for TC-SPIN runs only, we had to disable dataflow opti-
mizations (-o1) during verifier generation because variables
that were flagged as being “dead” were actually being read
in our predicates file.

As seen from the results, partial order reduction helps
tremendously in all three protocols. However, in SPIN, a
persistent set can only consist of transitions that are invisible
with respect to the property to be detected3. In TC-SPIN,

3This is not a limitation of SPIN itself, but rather of p.o.
reduction techniques in general.

a persistent set can consist of both visible and invisible tran-
sitions, that is, our reduction is insensitive to the visibility
of transitions. It has been observed [10] that the effective-
ness of partial order reduction deteriorates rapidly with an
increase in the number of visible transitions. Therefore, the
greater the percentage of visible transitions in a protocol, the
greater the advantage of using TC-SPIN when compared to
SPIN.

Another interesting observation is that TC-SPIN actu-
ally uses more memory than SPIN, for the same number of
states stored. This is because TC-SPIN stores additional
information for each event executed. In addition to storing
the global state finσ↓e corresponding to each event e, TC-
SPIN also stores the vector timestamp of e, and the local
state reached upon executing e. SPIN, on the other hand,
only stores the global state reached upon executing an event.
We are currently pursuing the implementation of some op-
timizations to reduce the memory consumed by TC-SPIN.

9. RELATED WORK
Our approach is a hybrid of an interleaving model such

as is used in labeled transition graphs, and a true con-
currency model, such as that used in Petri net unfoldings.
In our model, we explore all interleavings of events that
arise due to local non-deterministic choice within a process,
while using a partial order representation to avoid explor-
ing all interleavings of concurrent events. We differ from
interleaving-based approaches as we avoid explicit genera-
tion of global states by using a partial order representation.
Petri nets unfoldings also use a partial order representation
of the state space. Unfoldings were originally used for dead-
lock detection by McMillan in [17]. Esparza later presented
an algorithm for using unfoldings to verify safety properties
expressed in a limited logic [6]. However, these algorithms
were proposed for low-level Petri nets, which are inherently

9

unscalable. Low-level net representations tend to be quite
large even for very simple high level programs, making them
impractical for use in the verification of (large) real-world
programs.

10. CONCLUDING REMARKS
In this paper, we proposed a new approach for model

checking concurrent and distributed programs. Our ap-
proach exploits the compactness of a partial order repre-
sentation to avoid state space explosion during model gen-
eration. Further, we exploit the structure of the predicate
to verify safety properties in time that is polynomial in the
size of the generated model. We presented such polynomial-
time algorithms for two tractable classes of predicates - lin-
ear predicates, and 0-1 sum predicates. Our experimental
results confirm that our proposed approach results in signif-
icant savings in the time and memory required for verifica-
tion, compared to partial order reduction techniques. For
example, we verified a leader election protocol in 75.02 sec-
onds, whereas partial order reduction techniques verified the
same protocol in 777.24 seconds.

The algorithms we presented in this paper were limited
to the detection of safety properties of the form EF (ϕ). A
future direction of research is to develop efficient algorithms
for the detection of properties involving additional temporal
operators such as AF and EG. Another direction of research
is to discover other tractable classes of predicates that allow
for polynomial-time detection algorithms.

11. REFERENCES
[1] K. M. Chandy and J. Misra. The drinking

philosophers problem. ACM Trans. Program. Lang.
Syst., 6(4):632–646, 1984.

[2] C. M. Chase and V. K. Garg. Efficient detection of
restricted classes of global predicates. In WDAG ’95:
Proceedings of the 9th International Workshop on
Distributed Algorithms, pages 303–317, London, UK,
1995. Springer-Verlag.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite state concurrent
system using temporal logic specifications: a practical
approach. In POPL ’83: Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 117–126, New York,
NY, USA, 1983. ACM Press.

[4] B. Davey and H. Priestly. Introduction to Lattices and
Order. Cambridge University Press, Cambridge, 1990.

[5] D. Dolev, M. Klawe, and M. Rodeh. An O(n logn)
unidirectional distributed algorithm for extrema
finding in a circle. Journal of Algorithms, 3:245–260,
1982.

[6] J. Esparza. Model checking using net unfoldings. In
TAPSOFT ’93: Selected papers of the colloquium on
Formal approaches of software engineering, pages
151–195, Amsterdam, The Netherlands, The
Netherlands, 1994. Elsevier Science Publishers B. V.

[7] C. Fidge. Logical time in distributed computing
systems. Computer, 24(8):25–33, Aug. 1991.

[8] F.Mattern. Virtual time and global states of
distributed systems. In Proc. of the International
Workshop on Distributed Algorithms, pages 215–226,
1989.

[9] V. K. Garg and B. Waldecker. Detection of weak
unstable predicates in distributed programs. IEEE
Trans. Parallel Distrib. Syst., 5(3):299–307, 1994.

[10] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A
partial order approach to branching time logic model
checking. In Proceedings of the Third Israel
Symposium on the Theory of Computing and Systems
(ISTCS’95), Tel Aviv, Israel, January 4-6, 1995, 1995.

[11] P. Godefroid. Partial-order methods for the
verification of concurrent systems: an approach to the
state-explosion problem, volume 1032. Springer-Verlag
Inc., New York, NY, USA, 1996.

[12] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley, Sept. 2003.

[13] G. J. Holzmann and D. Peled. An improvement in
formal verification. In Proceedings of the 7th IFIP
WG6.1 International Conference on Formal
Description Techniques VII, pages 197–211. Chapman
& Hall, Ltd., 1995.

[14] M. Z. Kwiatkowska. Event fairness and
non-interleaving concurrency. Formal Aspects of
Computing, 1:213–228, 1989.

[15] L. Lamport. Time, clock and the ordering of events in
a distributed system. Communications of the ACM
(CACM), 21(7):558–565, July 1978.

[16] A. W. Mazurkiewicz. Basic notions of trace theory. In
Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, School/Workshop,
pages 285–363, London, UK, 1989. Springer-Verlag.

[17] K. L. McMillan. Using unfoldings to avoid the state
explosion problem in the verification of asynchronous
circuits. In CAV ’92: Proceedings of the Fourth
International Workshop on Computer Aided
Verification, pages 164–177, London, UK, 1993.
Springer-Verlag.

[18] D. Peled. All from One, One for All: on Model
Checking Using Representatives, volume 697 of Lecture
Notes in Computer Science. Springer-Verlag, 1993.

[19] D. Peled. Combining partial order reductions with
on-the-fly model-checking. In CAV ’94: Proceedings of
the 6th International Conference on Computer Aided
Verification, pages 377–390, London, UK, 1994.
Springer-Verlag.

[20] D. Peled and T. Wilke. Stutter-invariant temporal
properties are expressible without the next-time
operator. Inf. Process. Lett., 63(5):243–246, 1997.

[21] G. Ricart and A. K. Agrawala. An optimal algorithm
for mutual exclusion in computer networks. Commun.
ACM, 24(1):9–17, 1981.

[22] F. B. Schneider and L. Lamport. Paradigms for
distributed programs. In Distributed Systems: Methods
and Tools for Specification, An Advanced Course,
April 3-12, 1984 and April 16-25, 1985 Munich, pages
431–480, London, UK, 1985. Springer-Verlag.

[23] A. I. Tomlinson and V. K. Garg. Monitoring functions
on global states of distributed programs. J. Parallel
Distrib. Comput., 41(2):173–189, 1997.

[24] A. Valmari. Stubborn Sets for Reduced State Space
Generation, volume 483 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 1990.

10

