380 CHAPTER 30. MESSAGE LOGGING FOR RECOVERY

Py

P,

Figure 30.2: A distributed computation

382 CHAPTER 30. MESSAGE LOGGING FOR RECOVERY

P;::
type entry = (integer ver, integer ts); // version, timestamp
var clock : array [1..N] of entry initially

Vj : clock[j].ver =0 ;

Vj:j #1:clocklj).ts = 0; clockli].ts = 1;

To send message :
send (data, clock) ;
clock[i].ts := clock[i].ts + 1;

Upon receive of a message (data, mclock) :
// P receives vector clock ‘mclock’ in incoming message
Vj : clock[j] = maz(clock[j], mclock[j));
clock[i].ts := clock[i].ts + 1;

Upon Restart (state s restored) :
clock = s.clock;
clock[i].ver := clockl[i].ver + 1;
clock[i].ts = 0;

Upon Rollback(state s restored) :
clock = s.clock;

Figure 30.3: Formal description of the fault-tolerant vector clock

386 CHAPTER 30. MESSAGE LOGGING FOR RECOVERY

Receive_message (data, mclock) :

// Check whether message is obsolete

Vj:if ((mclock[j].ver,t) € vtable[j]) and (¢ < mclock[j].ts) then
discard message ;

if 37,1 s.t. | < mclock[j].ver A P; has no token about P;; then
postpone the delivery of the message until that token arrives;

Restart (after failure) :
restore last checkpoint;
replay all the logged messages that follow the restored state;
insert(vtable[i], (v, clock[i].ts));
broadcast_token(clock[i]);

Receive_token (v,t) from P; :
synchronously log the token to the stable storage;
if ((mes,v,t') € vtable[j]) then
if (¢t < t') then Rollback;
// Regardless of rollback, following actions are taken
update vtable;
deliver messages that were held for this token;

Rollback (due to token (v,t) from P;) :
log all the unlogged messages to the stable storage;
restore the maximum checkpoint such that
either no record (v,t') € vtable[j] or (t' < t) ..(I)
discard the checkpoints that follow;
replay the messages logged after this checkpoint
until condition (1) holds;
discard the logged messages that follow;

Figure 30.5: An optimistic protocol for asynchronous recovery

388 CHAPTER 30. MESSAGE LOGGING FOR RECOVERY

Figure 30.6: An example of recovery

1. On a failure, a process loses information about the messages
that it received but did not log before the failure. These messages
are lost forever, unless P; also broadcasts its clock with the token and
other processes resend all the messages that they sent to P; (only those
messages need to be retransmitted whose send states were concurrent
with the token’s state). This means that processes have to keep a
send version end table. Observe that no retransmission of messages is
required during rollback of a process that has not failed but has become
orphan because of a failure of some other process. Before rolling back,
it can log all the messages, and so no message is lost.

2. Some form of garbage collection is also required for reclaiming
space. Before committing an output to the environment, a process
must make sure that it will never roll back the current state or lose it
in a failure.

30.5.1 An Example

In Figure 30.6, ¢; is the checkpoint of process P;. The value of the
FTVC and the version end table is also shown for some of the states.
The FTVC is shown in a box. The row i of the FTVC and the version
end table corresponds to P;. Some of the state transitions are not shown
to avoid cluttering of the figure. The process P, fails in state fig. It

