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Abstract—The paper describes a technique to correct faults queues, replication requires three backup copies of eashequ
in large data structures hosted on distributed servers, baexi resumng in a total of fifteen backup queues. Though regover
on the concept of fused backups. The prevalent solution to is cheap and simple, for large valuesaf this is expensive

this problem is replication. Given n distinct data structures, . t f th d by the back
replication requires nf additional replicas to correct f crash In terms of the space consumed by the backups.

faults or | f/2| Byzantine faults among the data structures. If Coding theory([2], [14], [20] is used as a space-efficient
each of the primaries containsO(m) nodes of O(s) size each, alternative to replication, both in the fields of communicat

this translates to O(nmsf) total backup space. Our technique and data storage. Data that needs to be transmitted across a
uses a combination of error/erasure correcting codes and B=-  -hsnnel is encoded using redundancy bits that can correct

tive replication to correct f crash faults (or | f/2] Byzantine . . S
faults) using just f additional backups consumingO(msf) total errors introduced by a noisy channel [26]. Applications of

backup space, while incurring minimal overhead during normal  coding theory in the storage domain include RAID disks
operation. Since the data is maintained in the coded form, [17], [6] for persistent storage, network coding approadoe
recovery is costly as compared to replication. However, in a reducing losses in multi-cast [15], [4] or information dispal
system with infrequent faults, the savings in space OUWEIB 4 05rithms (IDA) for fault tolerance in a set of data blocks

the cost of recovery. We explore the theory and algorithms fo - .
these fused backups and provide a Java implementation of fesl [22], [5]. These solutions are oblivious to the structure of

backups for all the data structures in the Java 6 Collection the underlying data and are rarely applied to backup active
Framework. Our experimental evaluation confirms that fused sStructures in main memory. In the example of the lock servers

backups are space-efficient as compared to replication (alostn  in order to correct faults among the queues, a simple coding-
times), while they cause very little overhead for updates. Mny {hegretic solution will encode the memory block occupied by

real world distributed systems such as Google's map reduce the lock server. Since the lock server is never maintained
framework or Amazon’s distributed data store use replication to :

achieve reliability. An alternate, fusion-based design aa result ~COntiguously in main memory, a structure-oblivious salnti |
in significant savings in space as well as resources. will have to encode all memory blocks that are associateld wit

the implementation of this lock server in main memory. This
is not space efficient, since there could be a huge number of
Distributed systems are often modeled as a set of indaich blocks in the form of free lists, memory book keeping
pendent servers interacting with clients through the use ioformation etc. Also, every small change to the memory
messages. To efficiently store and manipulate data, thesap associated with this lock has to be communicated to the
servers typically maintain large instances of data stmestu backup, rendering it expensive in terms of communicatiah an
such as linked lists, queues and hash tables. Faults tbamputation.
occur in these servers are classified into two categoriashcr
faults [24] and Byzantine faults [13]. In the case of crash
faults, the servers crash, leading to a loss in state of the tos by tos[2]
data structures. In the case of Byzantine faults, the server s — | bs :

I. INTRODUCTION

. . by | -
can reflect any arbitrary state of the data structufegive a2 by ae tos|1]
replication[11], [19], [25], [27] is the prevalent solution to this a by a1 +b
proplem- To correctf c.rash faglts among data _structures, Primary Stack X, Primary Stack X, Fused Stack F}
replication-based solutions maintajnbackup copies of each
primary, resulting in a total of.f backups. These copies can Fig. 1. Fault Tolerant Stacks

correct| f/2] Byzantine faults, since greater thafi/2| data In this paper, we present a technique referred tduamn
structures are truthful. A common example is a set of loakhich combines the best of both these worlds to achieve the
servers that maintain and coordinate the use of locks. Swepace efficiency of coding and the minimal update overhead of
a server maintains a list of pending requests in the form wdplication. Given a set of primary data structures, we tadin
a queue. To correct three crash faults among, say five sucket offusedbackup data structures that can corréarash



faults (or| f/2] Byzantine faults) among the primaries. These
fused backups maintain the primary elements in the coded
form to save space, while they replicate the index structure2)
of each primary to enable efficient updates. Unlike coding-
theoretic solutions, since the backups are designed at the
abstraction of the data structure rather than the raw data
behind them, we need not track the way data is maintained in
memory. In figure 1, we show the fused backup corresponding

to two primary array-based stacks, and X,. The backup is

implemented as a stack whose nodes contain the sum of the
values of the nodes in the primaries. We replicate the index
structure of the primaries (just the top of stack pointets) a

the fused stack. When an element is added toX;, this

element is sent to the fused stack and the value of the third

node is updated tas + bs. In case of a delete, say;, the

third node is updated te;. These set of data structures can
correct one crash fault. For example Xf, crashes, the values 3)
of its nodes can be computed by subtracting the values of the

nodes inX, from the appropriate nodes @f;. We make the
observation that in large practical systems, the size af tat

exceeds the size of the index structure. Hence replicaltiag t
index structure at the fused backups is of insignificant size
overhead. The real savings in space is achieved by fusing the
values in the data nodes. Henceforth, for convenience, ste ju
focus on crash faults. The extension to detection and ciorec

of Byzantine faults is presented in section IlI-C.

Fusion is extremely space efficient while recovery is very
cheap in replication. In figure 1, to correct one crash fault 4
amongX; and X5, replication requires a backup copy for both
X, and X», resulting in two backups containing five nodes in

total as compared to the fusion-based solution that reg)juss

one back containing three nodes. However, in case of a crash

fault, recovery in replication just involves obtaining thalue

from the corresponding replica. Fusion needs a centralised

recovery algorithm that obtains all available data strregu

and decodes the data nodes of the backups. In general, this is
the key trade-off between replication and fusion. In system
with infrequent faults, the cost of recovery is an accepmabl S
compromise for the savings in space achieved by fusion.
Previous work on this topic [10] provides the algorithms
to generate a single fused backup for array or list-based
primaries, that can correct one crash fault. In Table I, we
present the main differences among three backup solutions:

replication, the older version of fusion, and the newer iegrs

of fusion presented in this paper. The following are the main

contributions of this paper:

1) Generic Design We extend the array and list-based

fused backups of [10] to present a generic design for
most commonly used data structures such as stacks,
vectors, binary search trees, hash maps, hash tables eté)
While [10] supports only add and remove operations
on the primaries, we support both these operations and
all other operations whose updates at the backups does
not require decoding the values. For example, when a
primary binary search tree is balanced, the update can be

performed at the fused backups without any information
from the primary.

f-Fault Tolerance Using error/erasure correcting codes,
we extend the xor/addition based 1-fault tolerant design
of [10] to presentf-fault tolerant data structures. In
example 1, we can maintain another fused stBgkhat

has identical structure t8;, but with nodes that contain
the difference in values of the primary elements rather
than the sum. The algorithms for updates are identical at
the backups and each primary update is applied on both
of them. These set of data structures can correct two
crash faults. We extend this using Reed Solomon (RS)
erasure codes [23], which are widely used to generate the
optimal number of parity blocks in RAID-like systems.
Using RS codes, we correg¢t crash faults among the
primaries using jusyf additional fused backups.

Space Optimality Given n. primaries, each containing
O(m) nodes of sizeO(s) each, the space complexity
of a single backup for list-based primaries in [10]
is O(nms). This is as bad as the space required to
maintainn replicas to correct one crash fault. For the
design in this paper, the space occupied by a fused
backup isO(ms). To correctf faults, we require just
O(msf) backup space, achieving(n) times savings

as compared to replication. We show that this is the
minimum amount of space required to corrgctrash
faults.

) Update EfficiencyIn [10], the time taken to update

the fused backup for linked lists is proportional to the
number of nodes in the fused backup i&nm). We
show that the time complexity to update our fused
backups is identical to that at the corresponding primary.
In the case of linked lists, this i©(m). Further, we
show that by locking just a constant number of nodes,
multiple primary threads can update the fused backups
concurrently. Since the primaries are independent of
each other, this could achieve significant speed-up.

) Order IndependenceThe state of the fused backup

in [10] is dependent on the order in which updates
are received from the primaries. Hence, if we simply
extend their algorithms forf-fault tolerance, then we
need to ensure that all the backups receive updates from
the primary in the same order. This implies the need
for synchrony, which will cause considerable overhead
during normal operation. In this paper, we show that as
long as the updates from a single primary are received in
FIFO order, the state of the fused backup is independent
of the order of updates. FIFO order among primary
updates is a strict requirement even for replication and
can be easily implemented using TCP channels.
Extension to Limited Backup Serveta practical sys-
tems, sufficient servers may not be available to host all
the backup structures and hence, some of the backups
have to be distributed among the servers hosting the
primaries. These servers can crash, resulting in the
loss of all data structures residing on them. Given a



TABLE |

set of n data structures, each residing on a distinCysion vs. REPLICATION (1 PRIMARIES CONTAININGO(m) NODES OF
SIZEO(s), f FAULTS)

server, we prove thatn/(n+a — f)] - f backups are
necessary and sufficient to corrgctrash faults among

the host servers, when there are omlgdditional servers _____| Replication | Old Fusion | New Fusion
. Types of Primaries All Arrays, Lists All
available to host the backup structures. Faults Correcied ST F=1 ST
7) Real World Example, Amazon’s Dynanwile apply the Number of Backups nf 7 7
design of fused backups to a real world system and__ Backup Space | O(nmsf) O(nmsf) O(msf)
illustrate its practical usefulness. We consider Amazon’s (;Jrzg?tﬁ“%:;é”;gle'g’ce xz mg xz
highly available key-value storédynamo(7], which is Concurrent Updates Yes No Yes
the data-store underlying many of the services exposed Recovery Time O(msf) O(msf?n?) | O(msf?n)
by Amazon to the end-user. Examples include the ser-
vice that maintains shopping cart information or ther, are the primariesF; is the fused backup and the fusion
one that maintains user state. Dynamo achieves its Wierator is addition. We assume that the size of data far
goals of fault tolerance (durability) and fast responsgceeds the overhead of maintaining the index structure at
time for writes (availability) using a simple replication-ihe packup. This is a reasonable assumption to make, since in
based approach. We propose an alternate design using gy real world systems, the data is in the order of megabytes
combination of both fused backups and replicas, whiGhpile the auxiliary structure is in the order of bytes (likext
consumes far less space, while providing almost ”b%inters in linked lists).
same levels of durability, and availability for writes. We 1pq updates to the servers in our system originate from
show that for a typical host cluster, where there are 100 get of clients. When an update is sent to a primary, the
dynamo hosts, the original approach requitesbackup  y4t4 structure hosted on it is modified and the primary sends
hosts, while our approach requires onl0 backup g icient information to update the backups. We assume FIFO
hosts. This translates to significant savings in both theannels with reliable message delivery between the pigsar
space occupied by the hosts as well as the infrastructyjigy the hackups. The updates to the backups are asynchronous
costs such as power and resources consumed by thefg can e received in any order. The only requirement is that
8) Implementation and Resultg/e provide a Java imple-

when there are faults, all the data structures in the systam h

mentation of fused backups [1] using RS codes for all.yeq on all the updates before the failed data structuees ar
the data structures in the Java 6 Collection Frameworr]é'covered.

space, update t|me at the .bacl.<ups and recovery _tm%%sume that the system in consideration can detect sudh.faul
The current version of fusion is very space efficient, yhe case of Byzantine faults, the data structures can be in
as compared to both replication (almosttimes) and p, aritrary state. We provide algorithms for the detectio

the older version (almost/2 times). The time taken ,q correction of such faults. For recovery, we assume the

to update the _backups IS almo_st as much as repl'c"}‘t'ﬁﬂesence of a trusted, recovery agent that can obtain all the
(around 1.25 tllmes sloyver) while it is much bet_ter thaElvailable data structures, detect and correct faults.
the older version (3 times faster). Recovery is much

cheaper in replication (order of hundred times) but tha|. Fusion-BASED FAULT TOLERANT DATA STRUCTURES
current version of fusion performs almosy/2 times )
better than the older version. These results confirm!M [10], the authors present fusible data structures for

the fact that the fused backups presented in this pap?él:ay .and I|_st—based primaries. In this section, we present
are space efficient while incurring very little overhea§€Neric design of fused backups for most commonly used data
during normal operation structures such as lists, stacks, vectors, trees, hagstabaps

etc.
II. MODEL AND NOTATION

Our system consists of independent distributed serveits hos b ?3‘%1""
ing data structures. We denote theprimary data structures, \
each residing on a distinct hosY;; ... X,,. The backup data f‘? i’f’?
structures that are generated based on the idea of combining
primary data are referred to dgsed backup®r fused data . ilﬁ’bll

structures The ¢ fused backups, each residing on a distinct
host are denoted ... F;. The operator used to combine
primary data is called théusion operator In figure 1, X1,

(i) Primary X,

(i) Primary X,

Fig. 2.

(iii) Fused Backup F

Old Fusion [10]



Design Motivation In [10], the authors present a desigrcan grow very large. In our solution, we shift the top-most
to fuse primary linked lists to correct one crash fault. Thelement of X; in the backup stack, to plug this hole. This
fused structure is a linked list whose nodes containxireof ensures that the stack never contains more nodes than the
the primary values. Each node contains a bit array of gsizelargest primary. Since the final element is present in thedus
with each bit indicating the presence of a primary elemefdarm, the primary has to send this value with every delete to
in that node. A primary is element inserted in the correenable this shift. To know which element to send with every
position at the backup by iterating through the fused noddslete, the primary has to track the order of its elements at
using the bit array and a similar operation is performed fdhe backup stack. We achieve this by maintaining an auyiliar
deletes. An example is shown in figure 2 with two primaridsst at the primary, which mimics the operations of the bazku
and one backup. After the delete of primary elementand stack. When an element is inserted into the primary, we inser
bs (shown in dotted lines), the first and third nodes of tha pointer to this element at the end of its auxiliary list. \Whe
fused backup are updated b and a3 respectively (deleted an element is deleted from the primary, we delete the element
elements in grey scale). After the deletes, while the priesar in the auxiliary list that contains a pointer to this element
each contain only two nodes, the fused backup contains thes® shift the final auxiliary element to this position. Hence
nodes. If there are a series of inserts to the headf;oénd to the primary knows exactly which element to send with every
the tail of X following this, the number of nodes in the fusedlelete. Figure 3 illustrates these operations with an el@amp
backup will be very high. This brings us to the main desigie explain them in greater detail in the following paragmaph
motivation of this section: Can we come up with a generic Inserts Figure 4 shows the algorithms for the insert of
design for fused backups, for all types of data structured sua key-value pair at the primaries and the backups. At each
that the fused backup contains only as many nodes as flranary X;, along with the primary data structure we maintain
largest primary (in this e.g. two nodes), while guarantgeiran auxiliary list that mimics the operation of the backupkta
that updates are efficient? We present a solution for link&dhen the client sends an insert, if the key is not already
lists and then generalize it for complex data structures.  present, the primary creates a new node containing this key-

_ i value, inserts it into the primary linked list and insertsognper
A. Fused Backups for Linked Lists to this node at the end of the aux list. The primary sends the

We use a combination of replication and erasure codksy, the new value to be added and the old value associated
to implement fused backups each of which are identical with the key to all the fused backups. Each fused backup
structure and differ only in the values of the data nodes. maintains a stack that contains the primary elements in the
our design of the fused backup, we maintain a stack of nodesded form. On receiving the insert update frof, if the
referred to afused nodeshat contains the data elements okey is not already present, the backup updates the code value
the primaries in the coded form. The fused nodes at the saofethe fused node following the one that contains the top-
position across the backups contain the same primary elsmenost element ofX; Further to maintain order information,
and correspond to the code words of those elements. Figthe backup inserts a pointer to the newly updated fused node,
3 shows two primary linked lists{; and X and two fused into the aux structure foX; with the key received.
backupsF; and F; that can correct two faults among the Figure 3(ii) shows the state of; and F; after the insert of
primaries. The fused node in t¢" position at the backups (3,a}). We assume that the keys are sorted in this linked list
contain the elements; and b; with F; holding their sum and hence the key-value pd#, a}) is inserted at index 1 of
and F; their difference. Along with the stack, at each fusethe primary linked list and a pointer tg is inserted at the end
backup, we also maintain auxiliary structures that repdicaof the aux list. At the backup, the value of the second node
the index information of the primaries. The auxiliary sttwe is updated ta:; + bs and a pointer to this node is inserted at
corresponding to primar¥; at the fused backup is identical inindex 1 of the aux linked list fofX';. The identical operation
structure taX;, but while X; consists data nodes, the auxiliarys performed atF», with the only difference being that the
structure only contains pointers to the fused nodes. In tBecond fused node is updatedifo— b;. Observe that the aux
case of linked list based primaries, the auxiliary struesurlist at the primaryX; in figure 3(ii) specifies the exact order
are simply linked lists. The savings in space are achieveflelements maintained at the backup staek¢ as — af).
because primary nodes are being fused, while updates Armalogously, the aux list forX; at the fused backup points
efficient since we maintain the “structure” of each primario the fused nodes that contain elementsXafin the correct
at the backup. order @1 — aj — az).

Overview We begin with a high-level description on how Delete Figure 5 shows the algorithms for the delete of a
we restrict the number of nodes in the backup stack. Elemek&y at the primaries and the backups; deletes the node
belonging to primaryX; are simply inserted one following associated with the key from the primary data structure and
the other in the backup stack with a corresponding updatedbtains its value which needs to be sent to the backups. Along
the index structure oX; at the backup to preserve the actualith this value and the ke, the primary also sends the value
ordering information. The case of deletes is more complext the element pointed to by the tail node of the aux list.
If we just delete the element at the backup, then like in thehis corresponds to the top-most elementXgfat the backup
case of figure 2, a hole will be created and the fused backwgtack and is hence required for the shift operation that will
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Fused Backups for Linked Lists

INSERT at PrimariesX; ::¢=1..n
Input: key k, data valued;
if (primLinkedList - contains(k))
/* key present, just update its value*/
old = primLinkedList - get(k) - value

INSERT at Fused Backuph; :: j = 1..t
Input: key k, new valued;, old valueold;;
if (auxLinkedList[i]- contains(k))
fusedNodef = auxLinkedList[i] - get(k);
f - updateCode(old;, d;);

primLinkedList - update(k, p); else
send(k,d, old) to all fused backups; fusedNodep = tosli] + +;
else if (p == null)

/* key not present, create new node*/
primNodep = new primNode;

p - value = d;

auxNodea = new auxNode;

a - primNode = p;,

p - auxNode = a;

/* mimic backup stack */
auxList.insert AtEnd(a);
primLinkedList - insert(k,p);
send(k,d,null) to all fused backups;

p = new fusedNode;
dataStack - insert(p);
dataStackTos + +;
p - updateCode(0, d;);
p-refCount + +;
[* mimic primary linked list */
auxNodea = new auxNode;
a - fusedNode = p;
p - auxNodeli] = a;
auxLinkedList[i] - insert(k, a);

Fig. 4. Fused Backups for Linked Lists: Inserts

be performed at the backup. After sending these values, thfeb,. The key things to note are the fact thatft, bs has

primary shifts the final node of the aux list to the position dfeen shifted from the end to tl#&" node, the aux list a5

the aux node pointing to the deleted element, to mimic thieflects the correct order of its elements at the backup stack

shift of the final element at the backup. (bs — b2) and the aux structure dt, also reflects the correct
order of elements ak; (b, — b3). Note that, the space and

On receiving these values from the primary, the backup fifghe overhead of maintaining the auxiliary list at the prigna
obtains the fused nogepointed to by the aux node associateg; negligible.

with & in the auxiliary structure ofX; at the backup. As the

aux structure ofX; at the backup preserves the exact positidd- Fused Backups for Complex Data Structures

information of the elements ok, p contains the element of The design of fused backup for linked lists can easily be
X, associated witlk. The backup updates the valuepofvith  generalized for all types of data structures. At each pymar
the top-most element (sent by the primarytas) to simulate along with the primary data structure, we maintain an aamjli
the shift. The aux node pointers are updated to reflect tlifis shlist that tracks the order of elements at the backup stack.
Figure Jiii) shows the state ok; and F after the delete At each backup, we maintain auxiliary structures for each



DELETE at PrimariesX; ::¢=1..n

Input: key k;
p = primLinkedList - delete(k);
old = p - value;

/* tail node of aux list points to top-most
element ofX; at backup stack */
auxNodeauzTail = auxList - getTail();

tos = auxT ail - primN ode - value;
send(k, old, tos) to all fused backups;
auxNodea = p - auzNode;

/* shift tail of aux list to replacez */
(a - prev) - next = auzxTail;

auzrTail - next = a - next;

delete a;

DELETE at Fused Backups; :: j = 1..t

Input: key k, old valueold;, end valuetos;;
[* update fused node containingd;

with primary element ofX; at tos[i]*/
auxNodea = aux LinkedList[i] - delete(k);
fusedNodep = a - fusedN ode;
p - updateCode(old;, tos;);
tos[i] - updateCode(tos;, 0);
tos[i] - refCount — —;
[* update aux node pointing ttws[i] */
tos[i] - auxNodeli] - fusedNode = p;
if (tos[i].refCount == 0)

dataStackTos — —;
tosli] — —;

Fig. 5. Fused Backups for Linked Lists: Deletes

primary, which is identical to the corresponding primarjdentical to that at the primary. In conclusion, our design f
except for the fact that it has pointers to the fused nodé®ratfused backups can support all types of data structures with
than primary elements. We explain this using the example wfany complex operations. Based on this we have implemented
balanced binary search trees (BBST). Figure 6(i) shows tfiesible data structures and primaries for linked lists,toes;
primary BBSTs and a fused backup. For simplicity, we explaiueues, hash tables, tree maps etc. In the following section
the design using just one backup. The auxiliary structui€ at we describe the algorithms for the detection and correction
for X, is a BBST containing a root and two children, identicabf crash/Byzantine faults that are common to all types of
in structure toX;. The algorithms for inserts and deletes gbrimaries.

both primaries and backups remains identical to linked list

except for the fact that at the primary, we are inserting int8 Fault Detecti dc .

a primary BBST and similarly at the backup we are inserting’ auft betection and torrection

into an auxiliary BBST rather than an auxiliary linked list. To correct crash faults, we need to obtain all the available
Figure 6(ii) shows the state of; and F; after the delete of gata structures, both primaries and backups. As seen iiosect
as followed by the insert ofi,. The aux list atX; specifies || the fused node at the same position at all the fused hasku
the order(a; — a» — a4), which is the order in which the are the codewords for the primary elements belonging teethes
elements ofX; are maintained at} in figure 6(ii). Similarly, nodes. To obtain the missing primary elements belonging to
the auxiliary BBST forX; at Fy maintains the ordering of this node, we decode the code words of these nodes along with
the elements atX;. Since the root atX; is the element the data values of the available primary elements belonging
containinga,, the root of the aux BBST ak; points to the this node. We apply the standard erasure decoding algorithm
fused node containing;. As we maintain auxiliary structuresfor decoding each set of values. In figure 3(i), to recover the
at the backup that are identical to the primary data stresturstate of the failed primaries, we obtalfy and F, and iterate
it is is not necessary that each container provide the sémanfhrough their nodes. Thet" fused node off; contains the
of insert(key,value) and delete(key). For example, we yalue a; + by, while the 0** node of F;, contains the value
can also support the semantiossert(position,value) and 4, — p;. Using these, we can obtain the valueszpfandb; .
delete(position, value) since the primary data structures andrhe value of all the primary nodes can be obtained this way
the auxiliary data structure being identical, support them and their order can be obtained using the index structure at
So far we have focused only on the insert and dele@&ch backup.
operations to the data structure, since those are the apeat To correct Byzantine faults, the only difference is that we
that are adding and deleting data nodes. However, simbecode the codes for errors rather than erasures. To detect
we maintain the entire index structure at the backups, vByzantine faults, we need to periodically encode the values
support any operation to the primary data structure, as loofjthe primaries and compare it to the fused values at the
as the corresponding operation to the backup does not imvobackup. If these values do not match, this indicates a Byzant
decoding the values of the primary elements at the backup. @feor. In general, a code that can corréarasures can detect
illustrate this with the example of the balance operatiothin f errors and correctf /2] errors [2], [14], [20]. Hence, the
BBST shown in figure 6(iii)). The balance at the primary jusused backups that can corregtcrash faults can also detect
involves a change in the relative ordering of the elemertte. T/ Byzantine faults and corredtf /2| Byzantine faults. In the
update corresponding to this at the fused backup will chanfpdlowing section, we describe Reed Solomon codes as the
the relative ordering of the elements in the auxiliary BBSTusion operator forf fault tolerance.
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D. Reed Solomon Codes as Fusion Operator the information dispersal matriB. Data word erasures are

In this section, we present the Reed Solomon (RS) erastfgdected by deleting the corresponding columns fidrand 2
H !/ / 1 ! /

codes that can be used as a fusion operator to cofrétlts [0 ObtainB’ and P” that adhere to t/h? equatio, x B’ = P
among the primaries using backups. Readers are referred t§/hen exactlyf data words fail, 5" is an x n matrix. As
standard texts on coding theory [2], [14], [20] for a thorbugMentioned above, any sub-matrix generated by delefing
treatment. Givenn data words{d,ds, ...d,}, RS erasure columns fromB is an invertible matrix. Hence, matri®’ is
coding generateg checksum wordgcy, ca, ...cs} that can guaranteed to be invertible. The data words can be generated
correct f erasures among the data and the checksum wor@$. follows: P’ x (B')~% = D.
All operations are performed over a finite field with more than e consider the cost of crash fault recovery for fused
n+ f elements [20]. Hence, we can use RS codes to fuse packups based on section IlI-C with RS codes as the fusion
primary elements of the data structures and the backupsstaRerator. We show in the technical report [3] that the time
maintain thesef codewords. complexity of crash fault correction 8(msf?n) where each

Fusion (Encoding)The algorithm comprises of generating®fimary hasO(m) nodes each of)(s) size. Recovery is much
ann x (n + f) information dispersal matri3, that satisfies Cheaper in replication and has time complexityms f).

the following properties:
e Then x n matrix in the firstn columns is an identity

IV. THEORY OFFUSED DATA STRUCTURES

matrix. In this section we prove theoretical properties on the fused
« Any sub-matrix formed by the deletion gf columns of backups such as size optimality, update optimality, update
the matrix, is invertible. order independence and so on, all of which are important con-

erations when implementing a system using these backups
ese properties ensure that the overhead in space and time
g(aused due to these backups is minimal. The results in this
section apply for all types of primaries and are independent
of the fusion operator used. The only assumption we make is
that the codes can be updated locally in constant time (like
RS codes). The proofs for the theorems not provided in this
paper can be found in the technical report [3].

Hence,B can be represented as the combination of an identﬁj&j
matrix / and another matrixS, i.e., B = [I S]|. B is
derived from a Vandermonde matrix with elementary matri
operations. LeD be the data vector antl the encoded vector
obtained after multiplyingD with B, i.e., [D] x [B] =
[D] x [I S] = [P] = [D C], whereC is the set of
check sums (the fused data) computed for the datdset
Update Whenever a data word; is updated tal}, all the
code words can be updated just using the differeffce d; 5 Space Optimality

ande;: ] e .
& = ¢ +byi(d; — dy) Considern primaries, each containin@(m) nodes, each

of size O(s). In [10], to correct one crash fault, the backup
where b, ; is (j,4)!" element of the information dispersalfor linked lists and list-based queues consui@ésms) space,
matrix B. Since the new code word is computed without thehich is as bad as replication. We show that the fused backups
value of the other code words, updates are very efficient in REesented in this paper require orfl{ms) space. Further, to
erasure coding. This update corresponds towhéateCode correct f faults, we show that the fused backups need only
routine used in figures 4 and 5. O(msf) space, which we prove is optimal. Replication, on

Recovery (Decoding)In the case of erasures, we carhe other hand requirg8(mnsf) space, which i$)(n) times

recover the data words using the encoded vedtorand more than fusion. In figure 3, the number of fused nodes in



Iy or Fy is always equal to the number of nodes in the largest Theorem 3 (Concurrent UpdatesTthere exists an algo-
primary. When we insert a node at the backup, we do so at ttithm for multiple threads belonging to different primazrito
end of the stack and when we create a hole due to a deletpdate a fused backup concurrently with oidly1) locking
we shift the final element of that primary in the stack to filbf nodes.
the hole. This ensures that the number of nodes in the stack
never exceeds the number of nodes in the largest primary.C: Order Independence
Lemma 1:The data stack of each fused backup contains The state of the fused backups in [10] are dependent on
only m fused nodes. the ordered in which the updates are received. If we simply
In section 1II-D, we saw that using Reed Solomon codegxtend these algorithms fof-fault tolerance using erasure
we can correclf crash faults among the primaries using jugtOdeS, then all the backups have to receive the updates in the
f fused backups. This is clearly an optimal number for thgame order failing which the fused nodes at the same position
number of backups required to correftcrash faults. From across the backups can contain different primary elements.
lemma 1 we know that the fused backups contains just thethis case, recovery is not possible. For example in figure
maximum number of nodes across all primaries. Since tRe if the first node ofFy containsa; + b1, while the first
size of each primary element i©(s), the backups spacenode of F, containsas — b1, then we cannot recover the
required by our fused backups with RS codes as the fusiBfimary elements wheX'; and X, fail. This implies the need
operator isO(msf). In the following theorem, we show thatfor synchrony, that will cause considerable overhead durin
this is optimal when the data across the primaries is eptirdlormal operation. We show that the fused backups in thisrpape
uncorrelated. are order independent. As a simple example consider the two
Theorem 1 (Space Op“ma“ty)rhe fused backups gener_updates ShOWn in f|gure$ The updateS to the auxi"ary I|St

ated by our design using RS codes as the fusion operator @&ymute since they are to different lists. As far as updates t
of optimal size. the stack are concerned, the update fr&independs only on

the last fused node containing an element fr&mand hence
is independent of the update froX, which does not change
the order of elements ok, at the fused backup. Similarly
We define update optimality as follows: the time complexitshe update from¥Xs is to the first and third nodes of the stack
of updates to the backup for all operations takes the saigématerial of whetheu} has been inserted or not. Hence, they
time as that of the corresponding update to the primary. #lso commute.
[10], in order to update the backup for linked lists, we need Theorem 4 (Order Independencélhe state of the fused
to iterate through all the fused nodes. Since the number [Qickups after a set of updates is independent of the order
fused nodes in the backup @(nm), the time complexity of in which the updates are received, as long as updates from the
updates isO(nm), while the time complexity for the updatesame primary are received in FIFO order.
at the primary is onlyO(m). Hence, it is not update optimal.
We show that the fused backups presented in this paper BreFault Tolerance with Limited Backup Servers
update optimal for all types of primaries, thereby causing So far we have assumed that the primary and backup
minimal overhead during normal operation. An update to thgructures reside on independent servers for the fusisaeba
backup consists of two operations: updating the data staghution (the same is true for [10]). In many practical sce-
and updating the auxiliary structure. The first takes caristaharios, the number of servers available maybe less than the
time while the second, which involves inserting or deletingumber of fused backups. In these cases, some of the backups
into the auxiliary structure, takes only as much time as #tathave to be distributed among the servers hosting the prmari
the primary since the auxiliary structure is constructed¢o Given a set ofn data structures, each residing on a distinct
identical in structure to the primary data structure. server, we prove that:/(n+a— f)]-f backups are necessary
Theorem 2 (Update Optimality)The time complexity of and sufficient to correct crash faults among the host servers,
the updates to a fused backup is of the same order as twaen there are only: additional servers available to host
at the primary. the backup structures. Further, we present an algorithm for
Since the primaries are independent of each other, in maggnerating the optimal number of backup structures. Based o
cases the updates to the backup can be to different fuskd design in section IlI-D, we assume that we can corfect
nodes. Hence, multiple concurrent threads updating eaddfucrash faults among the primaries using jyistused backups.
backup can achieve considerable speed-up as long as th& simplify our discussion, we start with the assumption
overhead of locking is minimal. As described in section llithat no additional servers are available for hosting the back-
the updates to the fused backup corresponding to a primaps. As some of the servers host more than one backup
are mostly independent of the elements belonging to the otlséructure,f faults among the servers, results in more thfan
primaries and they do not affect their order at the backups. faults among the data structures. Hence, a direct fusiseea
the following theorem we show that multiple threads belaggi solution cannot be applied to this problem. Given a set of
to different primaries can update the fused backup conaotlyre five primaries{X; ... X5}, each residing on a distinct server
with minimal locking of nodes. labelled, {H; ... Hs}, consider the problem of correcting

B. Efficient Updates



three crash faults among the servers£ 5, f = 3). Let Theorem 5:Given a set ofn data structures, each residing

us just generate three backups, F», F3, and distribute on a distinct server, to corregt faults among the servers, it

them among the hostd,, H, H; respectively. Crash faults is necessary and sufficient to a@d/(n +a — f)] - f backup

among these three servers will result in the crash of six daauctures.

structures, whereas these set of backups can only correet th

crash faults. We solve this problem by partitioning the det o V. PRACTICAL EXAMPLE: AMAZON’S DYNAMO

primaries and generating backups for each individual block . . . L

) o Lo In this section, we present a practical application of our

In this example, we can partition the primaries into three

blocks [ X1, X,], [Xs, X4] and [Xs] and generate three fusedtechnlque based on a real world implementation of a dis-

Sl ttributed system. Amazon’s Dynamo [7] is a distributed data
backups for each block of primaries. Henceforth, we denosf,[aOre that needs to provide both durabilitv and verv low
the backup obtained by fusing the primari&s , X,,, ..., by P Y y

Fy(ir, ia,...). For e.g., the backups fdiX., X,] are denoted response times (availability) for writes to the end usereyrh

asFi(1,2)...Fs(1,2). Consider the following distribution of achleye th|s using a rephcgnon-based solution whichrispbs
) to maintain but expensive in terms of space. We propose an al-
backups among hosts:

ternate design using a combination of both fused backups and
H, = [X1,F\(3,4), F1(5)], Hy = [X2, F5(3,4), F5(5)) replicas, which consumes far less space, while guaramteein
nearly the same levels of durability and availability.
Hs = [X3, Fi(1,2)], F5(5)], Hy = [ X4, F5(1, 2)]

Hs = [X5, F5(1,2), F5(3,4)] A. Existing Dynamo Design
Lo We present a simplified version of Dynamo with a focus on

The backups for any block of primaries, do not reside dhe replication strategy. Dynamo consists of clusters iofi@ry
any of the servers hosting the primaries in that block. Thré@sts each containing a data store like a hash table thatsstor
server faults will result in at most three faults among thkey-value pairs. The key space is partitioned across thests h
primaries belonging to any single block and its backupsc&into ensure sufficient load-balancing. For both fault toleen
the fused backups of any block correct three faults among thed availability, f replicas of each primary are maintained in
data structures in a block, this partitioning scheme carecbr distinct backup hosts. Theget 1 identical copies can correct
three server faults. Here, each block of primaries requates f crash faults among the primaries. The system also defines
least three distinct servers (other than those hosting them two parameters andw which denote the minimum number
host their backups. Hence, far = 5, the size of any block of hosts that must participate in each read request and write
in this partition cannot exceed— f = 2. Based on this idea, request respectively. These values are each chosen tode les
we present the following algorithm, to correttfaults among than f. The authors in [7] mention that the most common
the host servers. values of(n,w,r) observed among their clients a®, 2, 2).

(Partitioning Algorithm): Partition the set of primarieX In figure 7, we illustrate a simple set up of dynamo fo& 4
as evenly possible intdn/(n — f)] blocks, generate th¢ primaries, with f = 3 replicas maintained for each one of
fused backups for each such block and place them on distitisem.
servers not hosting the primaries in that block. To read and write from the data store, the client can send its

The number of blocks generated by the partitioning afequest to any one of thé+ 1 replicas that cater to the key of
gorithm is [n/(n — f)] and hence, the number of backughe request, and designate it tb@ordinator The coordinator
structures required i$n/(n — f)] - f. Replication, on the reads/writes the value corresponding to the key locally and
other hand requires - f backup structures which is alwayssends the request to the remainifigcopies. On receiving
greater than or equal ton/(n — f)] - f. We show that r —1 orw — 1 responses from the replicas for read and write
[n/(n— f)] - f is a tight bound for the number of backuprequests respectively, the coordinator responds to themtcli
structures required to corre¢tfaults among the servers. Forwith the data value (for reads) or just an acknowledgment
the example where = 5, f = 3, the partitioning algorithm (for writes). Sincew < f, clearly some of the replicas
requires nine backups. Consider a solution with eight bpskumay not be up to date when the coordinator responds to the
In any distribution of the backups among the servers, theethrclient. This necessitates some form of data versioning, and
servers with the maximum number of data structures will hoste coordinator or the client has to reconcile the diffecata
nine data structures in total. For example, if the backups arersions on every read. This is considered an acceptabie cos
distributed as evenly as possible, the three servers lgoten since Dynamo is mainly concerned with optimizing writes to
maximum number of backups will each host two backups atlde store. In this setup, when one or more hosts crash, the
a primary. Failure of these servers will result in the falurremaining copies that cater to the same key space can take ove
of nine data structures. Using just eight backups, we canradtrequests addressed to the failed hosts. Once the crasked
correct nine faults among the data structures. In the fatlgw comes back, the replica that was acting as proxy just tresisfe
theorem, we prove this result for generabnd f along with back the keys that were meant for the node. Since there can
the assumption that there asie(rather than zero) additional be at most three crash faults in the system, there is at least
servers available to host the backup structures. one node replica for each primary remaining for recovery.



1 gad s Replces Fused Backups fo'\)jl'“x“ the values. Hence, even though transiently the fault totaa

@ @ of the system is reduced, there is not much reduction in

@ @ @ operational performance. Dynamo has been designed to scale
to 100 hosts. So in a typical cluster with = 100, f = 3

()
()
@ @ the original approach requires, « f = 300 backup hosts.
()

Consider a hybrid solution that maintains a replica for each
@ @ host and maintains two fused backups for every 10 hosts. This
(i) Existing Dynamo: 12 Backup Hosts | (ii) Hybrid Dynamo: 6 Backup Hosts approach requires On|§100 + 20 = 120 baCkup hosts. This
argument can be extended to all Dynamo clusters deployed
Fig. 7. Design Strategies for Dynamo around the world. The savings achieved in space, power and

resources can be crucial for such a real-world system.

B. Hybrid Dynamo Design VI. IMPLEMENTATION AND RESULTS

We propose a hybrid design for Dynamo that uses a combi-In this section, we describe our fusion-based data strectur
nation of fusion and replication. We focus on the typicalecadibrary [1] that includes all data structures provided by th
of (f,w,r) = (3,2,2). Instead of maintaining three replicaslava Collection Framework. Further we have evaluated our
for each primary f = 3), we maintain just a single replicaperformance against replication and the older version sibfu
for each primary and two fused backups for the entire set [df0]. The current version of fusion outperforms the older
primaries as shown in figure 7(ii). The fused backups, beingrsion on all three counts: Backups space, update timesat th
optimal in size, achieve savings in space while the replicaackups and time taken for recovery. In terms of comparison
allows the necessary availability for reads. The fused bpsk with replication, we save)(n) times space as confirmed by
along with the replica can correct three crash faults ambag the theoretical results while not causing too much update
primaries. The basic protocol for reads and writes remdias toverhead. Recovery is much cheaper in replication.
same except for the fact that the fused copies cannot directl Fault-Tolerant Data Structure Library We implemented
respond to the client requests. In the case of writes, thedfusused backups and primary wrappers for the data structures
copies require the old value associated with the key (sectim the Java 6 Collection framework that are broadly divided
[1). However, on receiving a write request, the coordimatan into list-based, map-based, set-based and queue-basad dat
send the request to these fused backups which can responstitactures. The fusion operator is RS codes based on the
the request after updating the table. For the typical case @f+ library provided by James S. Plank [21]. We evaluated
w = 2, as long as the coordinator, s&§ obtains a responsethe performance of a representative data structure in efich o
from one among the three backups (a replica and two fustse categories: linked lists for list-based, tree mapsnfap-
backups) the write can succeed. This is similar to the exgstibased, hash sets for set-based and queues for queue-btesed da
design and hence performance for writes is not affected biructures [3]. Due to space constraints, we discuss thghgra
much. On the other hand, performance for reads does dfop linked-lists and simply present those for tree maps.
since the fused copies that contain data in the coded formEvaluation To evaluate performance, we implemented a
cannot return the data value corresponding to a key in drstributed system of hosts, each running either a primary
efficient manner. Hence, the two replicas need to answer afl a backup data structure and compared the performance
requests to maintain availability. Since Dynamo is optexdiz of our solution ('New Fusion’) with the one presented in
mainly for writes, this may not be a cause for concern. Td0] ('Old Fusion’) and replication. The algorithms were
alleviate the load on the fused backups, we can partition teplemented in Java 6 with TCP sockets for communication
set of primaries into smaller blocks. For the set up shown and the experiments were executed on a single Intel quad-
figure 7, we can maintain four fused backups whéieF, core PC with 2.66 GHz clock frequency and 12 GB RAM.
are the fused copies foX; and X», while F; and F, are the The three parameters that were varied across the expeament
fused copies ofX; and X,4. This will reduce the load on the were the number of primaries, number of faultsf and the
backups while ensuring that the number of hosts as compatethl number of operations performed per primarys. The
to the solution in figure 7(ii) increases only by two. operations were biased towards inserts (80 %) and the tests

Similar to the existing design, when hosts crash, if themere averaged over four runs. We describe the results for the
are surviving replicas that cater to the same keys, then thibyee main tests that we performed: backup space, update tim
can take over operation. However, since we maintain ordy the backup and recovery time. The graphs for these tests
one host replica per primary, it is possible that none of the shown in figures 8 and 9.
replicas remain. In this case, the fused backuproatateinto To measure backup space, we assume that the size of data
one or more of the failed primaries. It can receive requedty exceeds the overhead of the index structure and hence, we
corresponding to the failed primaries, update its localhhagust plot the total number of backup nodes consumed by each
table and maintain data in its normal form (without fusingolution. We fix f = 3, ops = 500 and varyn from 1 to 10.
them). Concurrently, to recover the failed primaries, it caThe new version of fusion for linked lists performs much eett
obtain the data values from the remaining hosts and decdlan both replication (almost times) and the solution in [10]



(i) Size Test, Faults = 3, Updates/primary = 500 (ii) Update Test, Primaries = 1, Faults = 1 (iii) Recovery Test, Faults = 3, Updates/primary = 500
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(i) Size Test, Faults = 3, Updates/primary = 500 (i) Update Time Test, Primaries = 1, Faults = 1 (iii) Recovery Test, Faults = 3, Updates/primary = 500
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Fig. 9. Tree Map Tests

(almostn/2 times) because the number of nodes per backop consensus in distributed systems. The FLP result [ stat
never exceeds the maximum among the primaries. We use tihat it is impossible to achieve consensus among a given set
same experiment to calculate the recovery time taken by themachines in an asynchronous system with even one crash
three approaches measured as the time taken to dedtate fault among the machines. We assume the presence of a failure
obtaining the necessary data structures at a recovery.agent detector for crash faults in our system. Similarly, thers ha
new version of fusion performs much better than old fusidmeen a considerable body of research for solving consensus
(almostn/2 times) for a similar reason: recovery in fusioramong the servers in synchronous systems. Given a system of
involves iteration through all the nodes of each fused bpcku machines in which up t¢g machines may undergo Byzantine
The newer version contains considerably less number ofsiodiaults, consensus cannot be achieved untess 3f [18]. In
and hence performs better. The time taken for recovery Hye case of crash faults, at legst 1 synchronous rounds are
replication is negligible as compared to both other sohsgio required to achieve consensus [12]. These results do nbt app
This is to be expected since recovery in replication reguirtdo our model because we assume a trusted recovery agent.
just copying the failed data structures after obtainingrthe
Finally, to measure the update time at the backups, since we VIIl. CONCLUSION
were primarily concerned vyith the overhead of coding, we Gjyen n primary data structures, we present a fusion-
fixedn =1, f = 1 and variedops from 500 to 5000. The paseq technique that guarante®$én) savings in space as
new version of fusion has slightly more update overhead 8Smpared to replication and prove theoretically that theyi
compared to replication (around 1.25 times slower) while jhinimal overhead during normal operation. We provide a
performs much better than the older version (almost 3 timggneric design of fused backups and their implementation fo
faster) since the latter solution may have to iterate thhoal§ 5| the data structures in the Java 6 Collection framewoak th
the fused nodes at the backup for updates. The practicdlses|hc|udes vectors, stacks, maps, trees and most other colymon
hence confirm the theoretical bounds: the solution predénte \;seq data structures. Our evaluation confirms that fusier-is
this paper saves considerably on space, while causing r:ﬂinir]g}eme|y space efficient while recovery is cheaper in refibica
overhead during normal operation. In a system with infrequent faults fusion is a better chofwmnt
replication. We compare the main features of our work with
a previous work on this topic [10] and replication, in Table |

In our work in [16], we present a coding-theoretic solutioMany real world systems such Amazon’s Dynamo or Google’s
to fault tolerance in finite state machines. This approadhap-Reduce framework use replication extensively for tfaul
is extended for infinite state machines and optimized féolerance. Using concepts presented in this paper, we can
Byzantine fault tolerance in [9]. Extensive work has beenealo consider an alternate design using a combination of rejwita

VIl. RELATED WORK



and fusion-based techniques. We illustrate this in sectlon [16]
by presenting a simple design alternative for Amazon’s data
store, Dynamo. In a typical Dynamo cluster of 100 hosts

our combined approach requires only 120 backup hosts as
compared to the existing set up of 300 backup hosts withddf!
compromising on other important QoS parameters such as
response times. Thus fusion achieves significant savings in

space, power and resources. (18]
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