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Abstract. We show that for any boolean expression, B, there exists a 2SAT ex-
pression, cover(B), such that (1) all satisfying assignments of B are included in
cover(B), and (2) of all 2SAT expressions that satisfy (1), cover(B) is the small-
est. Intuitively, cover(B) is a succinct representation of the set of all satisfying as-
signments of B extended with a minimum number of assignments to allow 2SAT
representation. We give an efficient algorithm to compute cover(B) for B in any
class of boolean expressions that can be checked for satisfiability in polynomial
time such as Horn SAT. For general boolean expressions, computing cover(B) is
NP-hard, but we show that an approximate cover can be computed efficiently. Us-
ing the concept of 2SAT-cover we give a sufficient condition for unsatisfiability
of a boolean expression. We also consider Horn SAT-cover (consisting of Horn
SAT clauses) of any boolean expression and give an efficient algorithm to com-
pute approximate Horn SAT-cover. This algorithm enables us to derive another
sufficient condition for unsatisfiability of a general CNF boolean expression.

1 Introduction

Satisfiability is a fundamental problem in computing with applications in bounded
model checking, artificial intelligence, and many other disciplines. SAT solvers
such as zChaff [1], and miniSAT [2] have already been used in these applica-
tions. The problem of checking satisfiability of a general boolean expression is
a well-known NP-complete problem; however, when the expression belongs to
specialized classes such as 2SAT or Renamable Horn SAT, it can be checked for
satisfiability efficiently [3–6].

In this paper, we investigate the problem of “approximating” a general boolean
expression B by a boolean expression C that belongs to a tractable class such
as 2SAT or Horn SAT. The approximation provides two guarantees. First, any
satisfying assignment of B is also a satisfying assignment of C. Since this con-
straint is easily satisfied by approximating all boolean expressions by the predi-
cate ”true,” the second constraint restricts the set of satisfying assignments of C.
The second constraint guarantees that if there exists any other approximation,
D, which also includes all satisfying assignments of B, then C is smaller than or
equal to D. We say a predicate P is smaller than or equal to predicate Q if the



set of satisfying assignments of P is contained in the set of satisfying assign-
ments of Q. Intuitively, C is the ”least” 2SAT approximation of B. We call C,
2SAT-cover, or simply cover of B, and denote it by cover(B).

For example, consider the boolean expression B = (x1∨ x2∨ x3)∧ (x2∨ x3∨
x̄4)∧ (x1 ∨ x̄4)∧ (x̄1 ∨ x4). This expression is not in 2SAT form, but it does have
a 2SAT representation. In this case, cover(B) = (x2 ∨ x3)∧ (x1 ∨ x̄4)∧ (x̄1 ∨ x4).
Now consider B′ = B ∧ (x̄2 ∨ x3 ∨ x̄4). It is clear that B′ is smaller than B (has
fewer satisfying assignments), because (x1, x2, x3, x4 := 0, 1, 0, 1) satisfies B but
does not satisfy B′. However, cover(B′) = cover(B) = B.

Intuitively, cover(B) is a succinct representation of the set of all satisfying
assignments of B extended with the minimum number of assignments to allow
2SAT representation. We give an efficient algorithm to compute cover(B) for
B in any class of boolean expressions that can be checked for satisfiability in
polynomial time such as Renamable Horn SAT. Using this algorithm, we also
give an efficient one-way test for unsatisfiability of a boolean expression that is
a conjunction of binary clauses and Horn clauses.

For a general boolean expression, computing cover(B) is NP-hard, but we
show that an approximate cover can be computed efficiently. Using the concept
of 2SAT-cover we give a sufficient condition for unsatisfiability of a boolean
expression.

Summarizing, this paper makes the following contributions:

– We introduce the idea and theory of 2SAT-cover of any boolean expression.
– We show that the problem of computing 2SAT-cover is NP-hard.
– We present an algorithm to find the 2SAT-cover for any boolean expression

that is in a tractable class. This algorithm can be used to find 2SAT-covers
for predicates such as Renamable Horn SAT, or generalizations such as [7–
9].

– We present an algorithm that generates an approximate 2SAT-cover for any
SAT expression. This algorithm is based on converting any SAT formula
into a conjunction of a 2SAT and a Horn SAT formula. This conversion may
be of independent interest.

– We give an algorithm that allows one-way tests for unsatisfiability of any
boolean expression in CNF form.

– We extend the theory to Horn SAT-covers. In contrast to 2SAT-covers, we
show that the Horn SAT-cover for an arbitrary boolean expression may con-
sist of an exponential number of clauses (exponential in the number of vari-
ables). This also rules out an efficient algorithm for computing Horn SAT
covers. However, we show that the Horn SAT-cover for a 2SAT expression
can be determined efficiently. This leads to an algorithm to generate an ap-



proximate Horn SAT-cover for any SAT expression and another algorithm
for one-way unsatisfiability test of any boolean expression in CNF form.

2 Model and Notation

Let x1, .., xn be a fixed set of n boolean variables. An assignment to the variables
is a bit vector of size n where ith bit denotes whether xi is assigned 0 or 1. A
boolean predicate is a mapping from any assignment of the variables to the set
{0, 1}. The set of assignments that map to 1 are called satisfying assignments.
Two extremal predicates are f alse and true. The predicate f alse always eval-
uates to 0 and the predicate true always evaluates to 1. We denote the set of
satisfying assignments of a boolean predicate B by S (B). The set S (B) is empty
for the boolean predicate f alse and contains all 2n assignments for the predicate
true.

Let B be the set of all boolean predicates. This set has 22n
elements. We

define a natural order ≤ on B as follows:

B1 ≤ B2 iff S (B1) ⊆ S (B2)

For example, the boolean expression (x1 ∧ x2) ≤ (x1 ∨ x2) because S (x1 ∧
x2) = {11}, whereas S (x1 ∨ x2) = {01, 10, 11}. It is well-known that the set B
forms a boolean lattice with meet corresponding to conjunction and join corre-
sponding to disjunction of boolean predicates.

Note that, we have used semantic equivalence of boolean predicates. Two
boolean predicates B1 and B2 are considered equal iff S (B1) = S (B2).

In this paper, we restrict ourselves to boolean expressions that are presented
in conjunctive normal form (CNF). A boolean expression in CNF is simply a
set of clauses, where each clause is a set of literals, and each literal is either a
variable or its complement. A clause is true if at least one of its literals is true,
and the boolean expression is true if all clauses are true.

The SAT problem corresponds to checking if the given boolean expression
in CNF form is satisfiable. The class 2SAT consists of all SAT expressions in
which each clause has at most two literals. This class of expressions can be
checked (for satisfiability) in linear time (linear in the number of clauses and
variables) [3]. The class Horn SAT consists of SAT expressions in which a
clause has at most one positive literal and this class of expressions can also
be checked in linear time. The class Renamable Horn SAT consists of SAT ex-
pressions that can be converted into Horn SAT by uniform renaming of a subset
of variables [5, 4]. Generalization of these tractable classes exist such as the one
defined in [8].



3 2SAT-Cover of a Boolean Function

In this section, we introduce the notion of 2SAT-cover of any general boolean
expression. Note that given a fixed set of n boolean variables, there are O(n2)
distinct binary clauses, and therefore at most 2O(n2) boolean predicates that can
be expressed in 2SAT form. Since the total number of boolean predicates is
O(22n

), it is clear that not all booean predicates are expressible in 2SAT form.
Since 2SAT is a tractable class, it is natural to ask if there exists a notion of
approximating a boolean predicate by 2SAT expression. This motivates the fol-
lowing definition.

Definition 1 (2SAT-cover). Given any boolean expression B, 2SAT-cover(B) is
a boolean expression C that is in 2SAT form and

1. B ≤ C
2. For any 2SAT boolean expression D that satisfies B ≤ D, we have C ≤ D.

We now have the following result.

Theorem 1. Every boolean predicate, B, has a unique 2SAT-cover.

Proof. Let D be the set of boolean predicates that can be expressed in 2SAT
form and are greater than or equal to B. The set D is nonempty because it in-
cludes the predicate true. The predicate true is trivially in 2SAT form and is
also greater than or equal to B. Consider the conjunction C of all boolean pred-
icates in D. Since each element in D is in 2SAT form, C is also in 2SAT form.
Furthermore, C ≥ B because each predicate in D is greater than or equal to B.
Moreover, if D ∈ D, then C ≤ D. Therefore, C is the 2SAT-cover of B.

The above proof only uses the fact that true is in 2SAT form and that the
class of 2SAT expressions is closed under conjunction. Therefore, the above
result can be generalized to any set of expressions that is closed under conjunc-
tion and includes true. Thus, the concept of cover is well-defined for k-SAT and
Horn SAT. The proof does not hold for Renamable Horn SAT because the class
of Renamable Horn SAT is not closed under conjunction.

Further, note that the proof does not give any efficient method to generate
the cover. Later, we give an efficient algorithm for 2SAT-cover for any class of
boolean predicates that can be checked in polynomial time.

We can view 2SAT-cover, or simply cover, as a function on the boolean
lattice of all boolean predicate. It takes a boolean predicate f and returns the
least boolean predicate expressible in 2SAT that is greater than f . The following
lemma shows that the function cover() is a closure operator on the lattice.



Lemma 1. Let B, B1 and B2 be any boolean predicates. The mapping cover()
satisfies the following properties.

1. It is increasing, i.e., ∀B : B ≤ cover(B)
2. It is monotone, i.e., ∀B1, B2 : B1 ≤ B2 ⇒ cover(B1) ≤ cover(B2)
3. It is idempotent, i.e., ∀B : cover(B) = cover(cover(B))

Proof. These properties follow easily from the standard lattice theory [10] be-
cause the set of all 2SAT expressions are closed under meet and include the top
element of the boolean lattice B.

It is easy to see that cover(B) = B iff B is equivalent to a 2SAT expression.
The next result follows from Lemma 1 and standard lattice theory [10].

Theorem 2. The set of all boolean predicates that are equivalent to 2SAT ex-
pressions forms a lattice.

Proof. Given any two 2SAT predicates B1 and B2, their meet is given by their
simple conjunction. Their join is given by meet of all 2SAT expressions that are
greater than or equal to both B1 and B2.

4 Algorithms for 2SAT-cover

We have earlier seen that the 2SAT-cover exists for any boolean expression B.
How easy is it to compute the 2SAT-cover? Not surprisingly, the problem of
computing 2SAT-cover is NP-hard as shown below.

Theorem 3. A boolean expression B is unsatisfiable iff cover(B) = f alse.

Proof. If B is unsatisfiable, its set of satisfying assignments is empty. The pred-
icate f alse is the smallest boolean predicate that contains empty set and is ex-
pressible in 2SAT form.

Conversely, if cover(B) is false, B cannot have any satisfying assignment by
the definition of cover(B).

Note that given any 2SAT expression it is easy to determine whether it is
satisfiable. Since cover(B) is a 2SAT expression, it is easy to determine if it
is unsatisfiable. Hence, it follows that computing cover(B) is NP-hard because
checking for satisfiability for a general boolean expression is NP-hard.

Although, computing the 2SAT-cover for general boolean expressions is
hard, we show that it is efficient to compute a 2SAT-cover for any expression
that belongs to a class of boolean expressions whose satisfiability can be deter-
mined in polynomial time.



The algorithm for computing 2SAT-cover is shown in Figure 1. The algo-
rithm takes a boolean expression B as input and outputs a 2SAT expression C
that is the cover of B.

The program maintains the invariant that all satisfying assignments of B are
included in C. The invariant initially holds because C is initialized to true and
therefore includes all satisfying assignments. We add a clause to C only if the
complement of that clause does not include any satisfying assignment of B.

input: Boolean expression B
output: 2SAT-cover(B)
boolExpr function generate-cover(B:boolExpr)

C := true;
for all literals x,y do

B′ := B with x set as true and y as true;
if B′ unsatisfiable then C := C ∧ (x̄ ∨ ȳ)

Output C;

Fig. 1. Algorithm to generate 2SAT-cover for boolean expression B

We now show the correctness of the algorithm.

Theorem 4. The algorithm in Figure 1 outputs the 2SAT-cover of B.

Proof. C is clearly a 2SAT formula. We only need to show that it includes all
the satisfying assignments and there is no smaller 2SAT formula. Due to the
invariant of the program, C includes all satisfying assignments of B. To show
that C is the smallest 2SAT formula, let D be another 2SAT formula that is
smaller than C. Assume that D includes a binary clause (w ∨ z) that is not in C.
From program, the literals w̄ and z̄ must have been tried in one of the iterations
of the for loop. It was not added to C because w̄ ∧ z̄ ∧ B is satisfiable. However,
this implies that D cannot have the clause (w∨z) without eliminating a satisfying
assignment. Thus, every clause that is in D is also in C. Hence, C ≤ D.

The algorithm for 2SAT-cover of a class D has time complexity O(n2T )
where n is the number of variables and T is the time complexity of checking
satisfiability of boolean expressions in class D. Thus, for a Horn SAT with m
clauses and n variables, the complexity is O(n3 + n2m).

Note that the algorithm in Figure 1 generates a canonical representation
of all boolean expressions on a fixed set of variables that are representable in
2SAT form. Therefore, it also allows us to compare any two 2SAT-expressions.
Given two 2SAT-equivalent expressions B1 and B2, B1 ≤ B2 iff all conjuncts in
cover(B2) are included in cover(B1).



5 Horn SAT Covers

In this section, we extend the theory to Horn SAT-covers. Note that Lemma 1
and Theorems 1-3 are applicable for Horn-SAT covers as well. NP-hardness of
Horn SAT-covers follows similar to 2SAT-covers. In contrast to 2SAT-covers,
we show that the Horn SAT-cover for an arbitrary boolean expression may con-
sist of number of clauses exponential in the number of variables.

Theorem 5. There exists a Horn SAT predicate B that has exponential number
of Horn SAT clauses and cannot be equivalently represented by a Horn SAT
predicate having fewer number of clauses.

Proof. Let V = {x1, · · · , x2m} be the set of variables. Further, let L be the set of
literals corresponding to the variables being assigned true, i.e., L = {x|x ∈ V}
and L̄ be the set of literals corresponding to the variables being assigned false,
i.e., L̄ = {x̄|x ∈ V}.

Consider the predicate B over V such that an assignment A ∈ S (B) iff fewer
than m of the variables are assigned true in A.

This predicate is represented by the conjunction of (2m!)/(m!m!) Horn SAT
clauses where each clause is obtained by uniquely selecting m distinct literals
from the 2m literals in L̄, i.e., each clause has the form x̄i1 ∨ x̄i2 ∨ · · · ∨ x̄im ,
where all literals in the clause are distinct and belong to V . Each clause bars a
paritcular selection of m variables from assuming the value true simultaneously.
Clearly, these are exponential number of clauses. We prove that this predicate
cannot be represented by fewer number of Horn SAT clauses. Suppose that B′

is an equivalent Horn SAT predicate with fewer clauses. Then, we claim the
following three properties. The detailed proof is deferred to the Appendix.

1. Any clause C′ in B′ containing at least m literals from L̄ can be reduced to
a clause in B.
We consider any clause, C, in B that contains m of these literals; we add this
clause to B′ (we can do this since the two predicates are equivalent); finally
we show that C′ is now redundant and can therefore be removed.

2. Any clause C′ in B′ containing fewer than m literals from L̄ violates some
predicate in B and therefore cannot exist.
Consider the assignment obtained by assigning all literals in C′ to false and
the remaining unassigned variables false. It can be verified that this assign-
ment evaluated to true in B and false in B′ – contradiction.

3. No clause in B is redundant.
Consider any clause, C, in B. Then it can be verified that the assignment
obtained by setting the variables appearing in C to false is only implied
false by C and is satisfied by every other clause of B.



These three conditions together imply that there cannot exist an equivalent Horn
SAT predicate containing fewer clauses.

However, we show that the Horn SAT-cover for a 2SAT expression can be
determined efficiently.

Theorem 6. The Horn SAT-cover for a 2SAT expression only contains clauses
with at most two literals.

Before we prove this, we give some definitions and an auxiliary lemma that
will be used in the proof.

Definition 2. Impl(): Consider a boolean 2SAT expression. For a literal y, let
Impl(y) denote the set of literals that are implied true when only y is assigned
true. These are obtained by unit propagation in the 2SAT expression.

As an example, Impl(y) = {x̄,w} for the 2SAT expression (x̄ ∨ ȳ)∧ (y∨ z̄)∧
(x ∨ w).

Definition 3. Partial Assignment: For a boolean expression, B, a set of literals,
A, is said to be a partial assignment of B if there exists a satisfying assignment
of B such that for every literal y ∈ A, y is true in the satisfying assignment.
Intuitively, a partial assignment is an assignment on a subset of the variables
that can always be extended to form a satisfying assignment by some assignment
of the remaining variables.

As an example, A = {x̄} is a partial assignment of the 2SAT expression
containing the (single) clause (x∨y) since it can be extended to form a satisfying
assignment {x̄, y}.

Definition 4. Simplification: Consider a Horn SAT expression B. We say that a
clause C appearing in B can be simplified, if we can remove some literals from
this clause to obtain a smaller clause.

As an example, consider the Horn SAT expression formed by the conjunc-
tion of the two clauses (x̄∨y) and (x̄∨ ȳ∨ z̄∨w). Then, the second clause can be
simplified to (x̄∨ z̄∨w). The equivalence of the two expressions can be verified
by performing a case analysis on the value of the variable x.

Lemma 2. Let B be a 2SAT predicate over the variables x1, x2, .., xn. Then

1. The predicate B is unsatisfiable iff there exists a variable xi such that xi ∈
Impl(x̄i) and x̄i ∈ Impl(xi).



2. If B is satisfiable and there exists a literal y such that y ∈ Impl(ȳ), then y
must be assigned true in any satisfying assignment of B.

3. Let A be a partial assignment of B. If there exists a literal y such that
ȳ < Impl(y) and ȳ < Impl(z) for all z ∈ A, then A ∪ {y} is also a partial
assignment of B.

Proof. The proof follows from [3].

We now give the proof of Theorem 6.

Proof. Consider a 2SAT boolean predicate B. Let C be a Horn SAT-cover for
B. If the 2SAT boolean expression is unsatisfiable, then the Horn SAT-cover is
simply false and we are done. Suppose otherwise.

We assume that the clauses in C are neither redundant nor can they be sim-
plified – this can be achieved by preprocessing. Now, assume that C contains
a clause containing more than 2 literals. We show that this clause is either re-
dundant or it can be simplified leading to a contradiction. Let clause C be of the
form x̄1∨ x̄2∨· · ·∨ x̄k∨y for variables x1, x2, · · · , xk, y in the boolean expression.
We will show how to remove some negated literal from the clause. We start with
a partial assignment A = φ.

The following observation relates the variables appearing in this clause. The
proof of the Claim is deferred to the Appendix.
Claim 1. For any variables xi appearing in this clause as a negated literal,

– {x j, x̄ j} ∩ Impl(xi) = φ for all variables x j(, xi) also appearing as negated
literals.

– {y, ȳ} ∩ Impl(xi) = φ.

Now we can use this claim to obtain a satisfying assignment to the 2SAT
expression that violates this clause implying that such a clause cannot exist re-
sulting in a contradiction. We update the partial assignment A by adding xi to
A (i.e., setting xi to true) for all the variables appearing as negated literals. This
is made possible by the claim above combined with result 3 of Lemma 2. Now,
applying result 3 of Lemma 2 again, we can update the partial assignment by
adding ȳ to A, i.e., assigning y to false. This is the required partial assignment
from which we can derive a satisfying assignment.

We can now use Theorem 6 to develop an efficient algorithm that determines
the Horn SAT-cover of a 2SAT expression. The algorithm is similar to the algo-
rithm for 2SAT cover given in Figure 1. It tries out assignments for all pairs of
literals and checks if the 2SAT expression is satisfiable under the assignment. If
so, it adds the complement binary clause (same as in the case of 2SAT-cover) to
the cover, provided it is a Horn SAT-clause.



6 Algorithms for Approximate Cover

The algorithm in Figure 1 is useful for any class of predicates for which satisfi-
ability can be determined efficiently. What if we wanted to compute the 2SAT-
cover for predicates that are not known to be checkable efficiently? In this case,
although computing cover is intractable, we show methods to compute approx-
imate covers. An approximate cover of B is a boolean expression in 2SAT form
that is greater than or equal to B, i.e., we drop the condition that it be the smallest
of all such expressions.

We first consider the class of CNF expressions in which each clause is either
a binary clause or a Horn clause. This class clearly contains the class of 2SAT
expressions as well as Horn SAT. It is natural to study this class because both
2SAT and Horn SAT are tractable. We first show that this class is NP-complete.

Theorem 7. Let F be the class of CNF expressions in which each clause is
either a binary clause or a Horn clause. Checking satisfiability of expressions
in F is NP-complete.

Proof. The problem is trivially in NP. We use reduction from 3SAT to show NP-
hardness. Let B be any boolean expression in 3SAT form. We will transform it
into a boolean expression D such that D has only Horn and binary clauses, and
B is satisfiable iff D is.

If each clause in B is a Horn clause, we are done. Otherwise, consider any
clause which has more than one positive literal. Let x be one of the positive
literals. We define a new variable y such that x is equivalent to ȳ. We replace that
instance of x by ȳ. We also add the following binary clauses (x ∨ y) and (x̄ ∨ ȳ).
By repeating this procedure we can transform B into a boolean expression D
such that all clauses are either Horn or binary. It can be easily verified that B is
satisfiable iff D is satisfiable.

We now study the problem of computing the cover (or an approximate
cover) for expressions in class F . This problem motivates computing cover of
boolean expressions B1 ∧ B2 where both B1 and B2 belong to tractable classes.
For example, B1 and B2 could both be Renamable Horn Clauses, or B1 could be
2SAT and B2 could be Renamable Horn SAT. We have the following result.

Theorem 8. For any boolean expressions B1 and B2,

B1 ∧ B2 ≤ cover(B1 ∧ B2) ≤ cover(B1) ∧ cover(B2)

Proof. The first inequality holds because cover is an increasing predicate. The
second inequality holds because cover(B1) ∧ cover(B2) is a 2SAT expression
that includes all satisfying assignments of B1 ∧ B2 and cover(B1 ∧ B2) is the
smallest such predicate.



The above Theorem allows us to compute an upper bound on cover(B1 ∧
B2). Note that whenever B1 and B2 are in tractable classes, we can compute
cover(B1) and cover(B2) efficiently.

Combining ideas from Theorems 7 and 8, we get an algorithm for generat-
ing approximate cover for any SAT expression B. If the approximate cover is
unsatisfiable, we know that B is also unsatisfiable. The algorithm is shown in
Figure 2. In the first step, we convert the boolean expression into a conjunction
of 2SAT and Horn SAT by introducing additional variables if necessary (one
such method is illustrated in the proof of Theorem 7). In step 2, it computes the
exact 2SAT-cover of the Horn SAT. By composing it with the 2SAT expression,
we get an approximate cover of the original boolean expression B from Theorem
8.

We implemented a tool that computes approximate 2SAT-cover and approxi-
mate Horn SAT-cover for any SAT expression in CNF form. The covers obtained
using the tool on some examples are shown below.
Example 1: Let B = (x1∨ x2∨ x3)∧ (x̄1∨ x̄2∨ x3)∧ (x1∨ x̄2∨ x̄3)∧ (x̄1∨ x̄2∨ x̄3).
B is not in Horn SAT form because the first clause is not a Horn clause. Two
additional variables y1 and y2 are introduced such that y1 ≡ x̄1 and y2 ≡ x̄2.
On substitution, we get B = B1 ∧ B2 where B1 = (y1 ∨ x1) ∧ (y2 ∨ x2) and
B2 = (ȳ1∨ x̄1)∧(ȳ2∨ x̄2)∧(ȳ1∨ȳ2∨x3)∧(x̄1∨ x̄2∨x3)∧(x1∨ x̄2∨ x̄3)∧(x̄1∨ x̄2∨ x̄3).
B1 is in 2SAT form and B2 is in Horn SAT form. The tool computes cover(B2)
using the algorithm in Figure 1, which gives cover(B2) = (ȳ1 ∨ x̄1) ∧ (ȳ2 ∨
x̄2)∧ (x̄1 ∨ x̄2)∧ (x̄2 ∨ x̄3). The tool determines an approximate cover of B to be
B1 ∧ cover(B2).
Example 2: Let B = (x1∨ x2)∧(x1∨ x̄2)∧(x̄1∨ x2)∧(x̄1∨ x̄2∨ x3)∧(x̄1∨ x̄2∨ x̄3).
Now B can be split into B1 and B2, B1 = (x1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x2) and
B2 = (x̄1 ∨ x̄2 ∨ x3)∧ (x̄1 ∨ x̄2 ∨ x̄3) such that B1 is in 2SAT form, B2 is in Horn
SAT form and B = B1 ∧ B2. Now cover(B2) = (x̄1 ∨ x̄2) and the approximate
cover of B obtained is B1∧cover(B2) = (x1∨ x2)∧(x1∨ x̄2)∧(x̄1∨ x2)∧(x̄1∨ x̄2)
which is unsatisfiable implying that B is also unsatisfiable.

Note that Theorem 8 holds for Horn SAT-covers as well. Therefore, com-
bining ideas from Theorems 6 and 8, we can alternatively compute the Horn
SAT-cover of the 2SAT expression B1 in step 2 of the algorithm presented in
Figure 2. This results in another approximate cover (Horn SAT expression) for
any SAT expression B and therefore another test for unsatisfiability.

Approximate 2SAT-cover also enables us to check satisfiability of a boolean
expression B in O(M ∗ s) time where s is the size of the boolean expression
and M is the number of satisfying assignments for any cover, B′, of B. In the
worst case, when M is large, this algorithm requires exponential time; however,



input: Boolean expression B
output: approx-2SAT-cover(B)
boolExpr function generate-approx-cover(B:boolExpr)

Step 1. Convert B into B1 ∧ B2 where B1 is in 2SAT form and B2 is in Horn SAT form
Step 2. C := 2SAT-cover(B2)
Output B1 ∧C;

Fig. 2. An efficient algorithm to generate approximate 2SAT-cover for boolean expression B

it is efficient when M is small. The algorithm uses the enumeration technique
proposed by Valiant [11]. Basically, Valiant’s technique substitutes true for any
variable X and checks if the resulting boolean expression is satisfiable. If it is,
the satisfying assignments of the resulting boolean expression are recursively
enumerated, otherwise we are done with the assignment of x as true and the
procedure is carried out with the assignment of x as false. By enumerating all
satisfying assignments of B′ and checking whether this assignment satisfies B,
we are guaranteed to find a satisfying assignment for B if there exists one.

7 Conclusions and Future Work

We have defined the notion of 2SAT-cover for any boolean expression. This no-
tion is useful in capturing the set of all satisfying assignments in a succinct man-
ner. We have shown that computing 2SAT-cover is NP-hard for general boolean
expression but an exact 2SAT-cover can be computed efficiently for any class of
expressions in P and approximate 2SAT-cover can be computed for any boolean
expression in CNF.

The notion of 2SAT-cover has many applications. We enumerate some be-
low.

1. Proving unsatisfiability of a boolean expression: Given any boolean expres-
sion B, if its 2SAT-cover (exact or approximate) is unsatisfiable, then B is
unsatisfiable.

2. Representation of Truth Tables: Suppose that we are required to store (or
communicate) a truth table on n variables. The size of the truth table is 2n

but the space available to store or communicate the table is much smaller.
By using 2SAT-cover (or more generally kSAT-cover), we can store an ap-
proximation of the boolean predicate that represents the truth table. Storing
(or sending) 2SAT-cover takes only O(n2) bits as opposed to 2n bits. It is in-
teresting to contrast 2SAT-covers with binary decision diagrams (BDD) and
their variants. BDD’s represent the exact truth table, but their size may be



exponential in n in the worst case. 2SAT-covers represent an approximation
of the truth table, but are guaranteed to be polynomial in size.

We have given an algorithm to compute an approximate cover for an ar-
bitrary SAT formula. An interesting open question is to determine if there are
algorithms that give better approximate covers?
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APPENDIX

Detailed Proof of Theorem 5

Theorem 5. There exists a Horn SAT predicate B that has exponential number
of Horn SAT clauses and cannot be equivalently represented by a Horn SAT
predicate having fewer number of clauses.

Proof. Let V = {x1, · · · , x2m} be the set of variables. Further, let L be the set of
literals corresponding to the variables being assigned true, i.e., L = {x|x ∈ V}
and L̄ be the set of literals corresponding to the variables being assigned false,
i.e., L̄ = {x̄|x ∈ V}.

Consider the predicate B over V such that an assignment A ∈ S (B) iff fewer
than m of the variables are assigned true in A.

This predicate is represented by the conjunction of (2m!)/(m!m!) Horn SAT
clauses where each clause is obtained by uniquely selecting m distinct literals
from the 2m literals in L̄, i.e., each clause has the form x̄i1 ∨ x̄i2 ∨ · · · ∨ x̄im ,
where all literals in the clause are distinct and belong to V . Each clause bars a
particular selection of m variables from assuming the value true simultaneously.
Clearly, these are exponential number of clauses. We prove that this predicate
cannot be represented by fewer number of Horn SAT clauses. Suppose that B′

is an equivalent Horn SAT predicate with fewer clauses. Then, we claim the
following three properties.

1. Any clause in B′ containing at least m literals from L̄ can be reduced to a
clause in B.

2. Any clause in B′ containing fewer than m literals from L̄ violates some pred-
icate in B and therefore cannot exist.

3. No clause in B is redundant.

First, we show that any clause in B′ containing at least m literals from L̄ can
be reduced to a clause in B. Let C′ be such a clause. Let C be any clause from
B containing exactly m literals from L̄ that also appear in C′ (note that such a
clause always exists). Since the predicates B and B′ are equivalent, we can add
the clause C to B′. Now, since C′ contains all the literals in C, the clause C′ is
weaker than C (redundant) and hence can be removed.

Next, we show that any clause C′ in B′ containing fewer than m literals from
L̄ violates some predicate in B and therefore cannot exist. Consider the assign-
ment obtained by assigning each variable x to true if it appears in negated form
in C′, i.e., literal x̄ appears in C′ and false otherwise. In this assignment, fewer
than m variables are assigned true and therefore by construction this evaluates



to true in the predicate B. However, this assignment does not satisfy the clause
C′ in B′ and therefore evaluates to false in B′. This implies the two predicates
are not equivalent – contradiction.

Finally, we show that none of these clauses is redundant. Let C be any
clause. Then there is at least one assignment of the variables that is implied
false only by C. Consider the assignment where a variable xi is assigned true if
it appears in C and false otherwise. Clearly, this is implied false by C whereas
it is not implied false by any other clause in B. These three conditions together
imply that there cannot exist an equivalent Horn SAT predicate containing fewer
clauses.

Proof of Claim 1
Claim 1. For any variables xi appearing in this clause as a negated literal,

– {x j, x̄ j} ∩ Impl(xi) = φ for all variables x j(, xi) also appearing as negated
literals.

– {y, ȳ} ∩ Impl(xi) = φ.

Proof. Consider the following cases.

– First consider the case when x̄ j ∈ Impl(xi). Then performing case analysis
on the variable xi, we observe that if xi is assigned false, then the clause is
satisfied and if on the other hand it is assigned true, then x j is false so that
the clause us again satisfied. Hence the clause is redundant and therefore we
can remove it.
Now consider the case when x j ∈ Impl(xi), then we can simplify this clause
to x̄1 ∨ · · · ∨ ¯x j−1 ∨ ¯x j+1 ∨ · · · x̄k ∨ y (removing x j from this clause). We
need to prove that under the assumption x j ∈ Impl(xi), the second clause
(with x j removed) is equivalent to the original clause. This can be shown by
performing a case analysis on xi. If xi is assigned false, then both clauses
are satisfied. If on the other hand, xi is assigned true, then the assumption
implies that x j must also be true so that both the clauses reduce to the same
expression.

– If ȳ ∈ Impl(xi), then either the expression is unsatisfiable or this clause will
always be satisfied. Since we assume that the 2SAT expression is satisfiable
to begin with, it must be that this clause is always satisfied and therefore we
can eliminate this clause.
On the other hand, if y ∈ Impl(xi), then we can eliminate this clause as it
is always satisfied. This can be verified by performing case analysis on the
value of the variable xi. If xi is false, then this clause is trivially satisfied
and if xi is true, then the assumption y ∈ Impl(xi) implies that y is true so
that this clause is again satisfied. Hence this clause is redundant and can be
removed.


