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Abstract. An instance of the super-stable matching problem with
incomplete lists and ties is an undirected bipartite graph G = (A∪B,E),
with an adjacency list being a linearly ordered list of ties. Ties are sub-
sets of vertices equally good for a given vertex. An edge (x, y) ∈ E\M
is a blocking edge for a matching M if by getting matched to each other
neither of the vertices x and y would become worse off. Thus, there is no
disadvantage if the two vertices would like to match up. A matching M is
super-stable if there is no blocking edge with respect to M . It has previ-
ously been shown that super-stable matchings form a distributive lattice
[14,23] and the number of super-stable matchings can be exponential
in the number of vertices. We give two compact representations of size
O(m) that can be used to construct all super-stable matchings, where
m denotes the number of edges in the graph. The construction of the
second representation takes O(mn) time, where n denotes the number of
vertices in the graph, and gives an explicit rotation poset similar to the
rotation poset in the classical stable marriage problem. We also give a
polyhedral characterization of the set of all super-stable matchings and
prove that the super-stable matching polytope is integral, thus solving
an open problem stated in the book by Gusfield and Irving [4].

Keywords: Super-stable matching · Distributive lattice · Matching
polytope

1 Introduction

An instance of the super-stable matching problem with incomplete lists and ties
is an undirected bipartite graph G = (A ∪ B,E), with an adjacency list being
a linearly ordered list of ties. Ties are disjoint and may contain just one vertex.
If vertices b1 and b2 are neighbors of vertex a in the graph G, then either (1)
a strictly prefers b1 to b2, which we denote as b1 �a b2; or (2) a is indifferent
between b1 and b2, which means b1 and b2 are in a tie in a’s adjacency list, and
denote as b1 =a b2; or (3) a strictly prefers b2 to b1. We say a weakly prefers
b1 to b2 if either a strictly prefers b1 to b2 or a is indifferent between b1 and b2,
which we denote as b1 �a b2. A matching M is a set of disjoint edges in the
graph G. Let e = (u, v) be an edge contained in the matching M . Then, we say
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that vertices u and v are matched in M and write u = M(v) to denote that u
is matched to v in M . An edge (x, y) ∈ E\M is a blocking edge for a matching
M if by getting matched to each other neither of the vertices x and y would
become worse off, i.e. x is either unmatched or x weakly prefers y to M(x), and
y is either unmatched or y weakly prefers x to M(y). We abuse the notation
y �x M(x) for the case that x is unmatched in M . A matching is super-stable if
there is no blocking edge with respect to it.

Super-stable matchings were first investigated by Irving [6], who gave three
classes of stable matchings in the case of preference lists with ties, depending
on the way of defining a blocking edge for a matching M . In the weakly stable
matching problem an edge e = (x, y) is blocking if by getting matched to each
other, both x and y would become better off. In the strongly stable matching
problem, an edge e = (x, y) is blocking if one of x and y becomes better off and
the other would not be worse off.

In this paper we study the problem of characterizing the set of all super-
stable matchings. The problem was stated in the book by Gusfield and Irving [4]
as one of the 12 open problems. The structure of the set of all stable matchings
in the stable marriage problem without ties is well understood in Gusfield and
Irving’s book [4]. Recently, Kunysz et al. [11] gave compact representations for
the set of all strongly stable matchings and showed that the construction can be
done in O(mn) time, where n and m denote the number of vertices and edges
in the graph. Scott [22] investigated the structure of all super-stable matchings
by defining an object that he called meta-rotation, which corresponds to one
collection of rotations in some arbitrary tie-breaking instance of the original
instance and the time complexity of the construction is O(m2).

We give two compact representations of the set of all super-stable matchings
that can be constructed in, respectively, O(nm2) and O(mn) time.

The first representation of the set of all super-stable matchings consists of
O(m) matchings, each of which is a man-optimal stable matching among all
super-stable matchings that contains a given edge. We show that computing
such matching for each edge can be reduced to computing a man-optimal super-
stable matching in a reduced graph by deleting an appropriate subset of edges
in graph G. The algorithm is described in Sect. 3.

Our second representation explicitly constructs rotations, which are differ-
ences between consecutive super-stable matchings in a maximal sequence of
super-stable matchings starting with a man-optimal super-stable matching and
ending with a woman-optimal super-stable matching. Unlike Scott’s [22] meta-
rotation, our rotation is the symmetric difference of two super-stable matchings,
which could be a cycle or multiple cycles.

Our construction takes O(mn) time, while Scott’s [22] algorithm takes O(m2)
time. We also show how to efficiently construct a partial order among rotations.
This poset can be used to solve other problems connected to super-stable match-
ings such as the enumeration of all super-stable matchings and the maximum
weight super-stable matching problem. Fleiner et al. [3] solve the weight super-
stable matching by reducing it to the 2-SAT problem and the time complexity
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is O(mn log(W )), where W is the maximum weight among all edges in G. By
using the rotation poset constructed in this paper, the weighted problem can
also be solved in O(mn log(W )) time.

In this paper we also give a polyhedral characterization for the set of all
super-stable matchings and prove that the super-stable matching polytope is
integral. This result implies that the maximum weight super-stable matching
problem can be solved in polynomial time. Though the complexity of solving LP
is usually higher than combinatorial methods, like in [3], this gives an alternative
direction to solve the weighted super-stable matching problem. Previously, it has
been shown that the stable matching polytope and the strongly stable matching
polytope are integral [11,21,25], we complete all three cases by proving that the
super-stable matching polytope is integral as well.

We also proved a property called self-duality for the super-stable matching
polytope, which also holds for the classical stable matching polytope [24] and
the strongly stable matching polytope [11]. See details in our full version.

1.1 Related Works

Irving [6] gave an O(m) algorithm to find a super-stable matching if it exists.
Spieker [23] showed that super-stable matchings form a distributive lattice. Fur-
ther properties of super-stable matchings were proved by Manlove in [14]. Scott
[22] introduced the concept called meta-rotation poset for super-stable matchings
and showed the one-to-one correspondence between super-stable matchings and
closed subsets of the poset.

Irving [6] and Manlove [14] gave an O(m2) algorithm to find a strongly sta-
ble matching if it exists. Kavitha et al. [9] gave an O(nm) algorithm for the
strongly stable matching problem. Manlove [14] showed that strongly stable
matchings form a distributive lattice. Kunysz et al. [12] gave a characterization
of all strongly stable matchings and later Kunysz [11] gave a polyhedral descrip-
tion for the set of all strongly stable matchings and proved that the strongly
stable matching polytope is integral.

For weakly stable matchings, it is not true that all weakly stable matchings
of a given instance always have the same size. Weakly stable matching can be
easily found by running the deferred-acceptance algorithm while breaking ties in
an arbitrary manner. The problem of computing a maximum-size weakly stable
matching is NP-hard, which has been proved by Iwama et al. [7]. Thus finding
good approximations of the problem becomes very interesting. For the version
when ties are allowed on both sides, the currently best approximation factor
is 3/2 [10,16,17]. For the case when ties only occur on one side, there are a
sequence of works pushing the approximation factor lower. Iwama et al. [8] gave
an 25/17 approximation algorithm. Huang and Kavitha [5] improved it to 22/15.
Later Radnai [20] improved the approximation factor to 41/28, then Dean et al.
[2] pushed the approximation factor to 19/13. Most recent result by Lam and
Plaxton [13] gave the currently best approximation factor of 1 + 1/e.
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2 Preliminaries

In this section we give some definitions and theorems that are useful in the
following sections.

Theorem 1. [6,14] There is an O(m) algorithm to determine a man-optimal
super-stable matching of the given instance or report that no such matching
exists.

Theorem 2. [14] In a given instance of the super-stable matching problem, the
same set of vertices are matched in all super-stable matchings.

Lemma 1. [14] Let M,N be two super-stable matchings in a given super-stable
matching instance. Suppose that, for any agent p, (p, q) ∈ M and (p, q′) ∈ N ,
where p is indifferent between q and q′, then q = q′.

We recall some standard notations and definitions from the theory of match-
ings under preferences. For a given edge (m,w), any matching containing (m,w)
is called an (m,w)-matching. Let us denote the set of all super-stable matchings
of G by MG. Let MG(m,w) be the set of all super-stable (m,w)-matchings in
G.

For two super-stable matchings M and N , we say that M dominates N and
write M � N if each man m weakly prefers M(m) to N(m). If M dominates N
and there exists a man m who prefers M(m) to N(m), then we say M strictly
dominates N , write M � N and we call N a successor of M . Note that by
Lemma 1, M � N implies M � N , assuming M is not equal to N .

3 Irreducible Super-Stable Matchings

In this section, we give our first representation via irreducible matchings.
Birkhoff’s representation theorem [1] for distributive lattices states that the ele-
ments of any finite distributive lattice can be represented as finite sets in such
a way that the lattice operations correspond to unions and intersections of sets.
The theorem gives a one-to-one correspondence between distributive lattices and
partial orders. Our goal is to find the partial order that represents the set of all
super-stable matchings.

Distributive lattice is closely related to rings of sets, which is a family of sets
that is closed under set unions and set intersections. If the sets in a ring of sets
are ordered by set inclusion, they form a distributive lattice. Theory regarding
rings of sets and its application to representations of the set of stable matchings
in the classical stable marriage problem is well studied by Irving and Gusfield
[4]. Below we give a brief summary of this theory that serves as a preliminary
for our algorithm.

Given a finite set B, the base set, a family F = {F0, F1, · · · , Fk} of subsets of
B is called a ring of sets over B if F is closed under set union and intersection. A
ring of sets contains a unique minimal element and a unique maximal element.
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For any element a ∈ B, we denote F(a) the set of all elements of F that
contains a. It is obvious that F(a) is also a ring of sets over B. We define F (a)
to be the unique minimal element of F(a). An element F ∈ F that is F (a)
for some a ∈ B is called irreducible. We denote I(F) the set of all irreducible
elements of F . We view (I(F),≤) as a partial order under the relation ≤ of set
containment. We give the Birkhoff’s representation theorem in the language of
rings of sets below.

Theorem 3. [4] i) There is a one-to-one correspondence between the closed sub-
sets of I(F) and the elements of F .
ii) If S and S′ are closed subsets of I(F) that generate F =

⋃
S and F ′ =

⋃
S′

respectively, then F ⊆ F ′ if and only if S ⊆ S′.

In the context of super-stable matchings, the base set B corresponds to the
set of all acceptable pairs (m,w) ∈ E. We define the P -set of a super-stable
matching M to be the set of all pairs (m,w), where w is either M(m) or a
woman whom m weakly prefers to M(m), which corresponds to an element in
F . It is obvious that the unique minimal (man-optimal) super-stable matching
in MG(m,w), if nonempty, is irreducible.

Here we describe an O(|E|) algorithm for computing a man-optimal super-
stable (m,w)-matching in G. Algorithm 1 essentially constructs a reduced graph
G′ ⊆ G by removing some edges from G (line 3 to line 13 in Algorithm1). After
that, the algorithm computes a man-optimal super-stable matching M ′ in the
reduced graph G′. By adding back the edge (m,w), the new matching M∪(m,w)
is super-stable in G.

Lemma 2. Let M be a super-stable (m,w)-matching. Then M ′ = M\{(m,w)}
is a super-stable matching in the reduced graph G′.

Proof. We need to prove M ′ ⊆ G′ or equivalently none of edges removed from
G is matched in M ′. Suppose not, an edge (m′, w′) was removed from G and
is matched in M ′. Note that m′ �= m and w′ �= w. Hence, it follows that there
is an edge (m,w′) or (m′, w) which caused the removal of (m′, w′). W.l.o.g,
let’s assume it is (m,w′) which caused the removal of (m′, w′). Then we have
w 	m w′ and m �w′ m′. Obviously, (m,w′) is a blocking pair, which leads to a
contradiction of M being super-stable.

To prove super-stability of M ′ is easy. If there were an edge e blocking M ′,
it would also block M .

Lemma 3. Let M ′ be some super-stable matching in the reduced graph G′ if
exists. If M ′ ∪ (m,w) is a super-stable matching in G, then for each super-stable
matching N ′ in G′, N ′ ∪ (m,w) is a super-stable matching in G. If G′ does not
have any super-stable matching, then there is no super-stable (m,w)-matching.

Proof. Let M = M ′ ∪ (m,w). Since M ′ is super-stable in G′. It follows that only
the removed edges in E\E′ can potentially block M . We have two cases. (i):
any edge that is incident to m or w cannot block M . W.l.o.g, Suppose that for
some w′ that is incident to m, and (m,w′) blocks M . Then we have w′ �m w.
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Algorithm 1: Computing man-optimal super-stable (m,w)-matching
1 Input: the graph G = (A ∪ B,E) and preference lists of G and an edge

(m,w) ∈ E.
2 Output: man-optimal super-stable (m,w)-matching or deciding that no such

matching exists.
3 G′ ← G\{m,w} // remove m and w and all edges that are incident to them
4 for m′ s.t. (m′, w) ∈ E and m �w m′ do
5 for w′ s.t. (m′, w′) ∈ E and w �m′ w′ do
6 G′ ← G′\(m′, w′)
7 end for
8 end for
9 for w′ s.t. (m,w′) ∈ E and w �m w′ do

10 for m′ s.t. (m′, w′) ∈ E and m �w′ m′ do
11 G′ ← G′\(m′, w′)
12 end for
13 end for
14 compute man-optimal super-stable matching in G′.
15 if exists man-optimal super-stable matching M in G′ and M ∪ (m,w) is

super-stable in G
16 return M ∪ (m,w)
17 else
18 return no super-stable (m,w)-matching exists.
19 end if

By the construction of G′, any edge (m′, w′) such that m �w′ m′ was removed.
Hence w′ must be unmatched in M . From Theorem 2, w′ is unmatched in any
super-stable matching of G. Let us assume there exists some super-stable (m,w)-
matching N . Then N ′ = N\(m,w) is super-stable in G′. Since w′ is unmatched
in N , (m,w′) blocks N , contradiction. (ii): any edge (m′, w′) such that m′ �= m
and w′ �= w cannot block M . By the construction of the reduced graph G′, the
removal of (m′, w′) was caused by some edge (m,w′) or (m′, w). W.l.o.g, some
edge (m,w′) caused the removal of (m′, w′). Hence, if w′ is matched in M , then
M(w′) �w′ m′. (m′, w′) does not block M . In the case that w′ is unmatched
in M , w′ is unmatched in any super-stable matching in G. Similar to Case 1,
if there exists some super-stable (m,w)-matching N , then (m,w′) blocks N,
contradiction. By the same argument, if M is super-stable in G, for any other
super-stable matching N ′ in G′, M ′ and N ′ match the same set of vertices. No
edges in E\E′ can block N ′ ∪ (m,w).

Theorem 4. Let (m,w) be an edge in G. There is an O(m) algorithm for com-
puting a man-optimal super-stable (m,w)-matching or deciding that no super-
stable (m,w)-matching exists.

Proof. Lemma 3 makes sure if Algorithm 1 outputs a matching M , then M is
super-stable in G. Lemma 2 guarantees that if there exists any super-stable
matching in G, then Algorithm 1 would never miss it.
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Theorem 5. (I(MG),≤) can be constructed in O(nm2) time.

Proof. I(MG) can be computed in O(m2) time by running Algorithm1 for each
edge (m,w) ∈ E. The set I(MG) has at most m elements. By checking each
pair of I(MG), we can construct the partial order. Each check takes O(n) time.
Thus, the total time is O(nm2).

4 A Maximal Sequence of Super-Stable Matchings

Representation via irreducible matchings is intuitive, but the time complexity is
high. In this section, we give another representation via rotation poset and the
time complexity to construct this rotation poset is only O(mn).

Rotation poset derives from the concept of minimal differences of a ring of
sets. A chain C = {C1, · · · , Cq} in F is an ordered set of elements of F such
that Ci is an immediate predecessor of Ci+1 for each i ∈ [q]. The maximal
chain is a chain that begins at the minimal element of F , F0 and ends at the
maximal element of F , Fz. Let Fi and Fi+1 be two elements of F such that
Fi is an immediate predecessor of Fi+1. The difference D = Fi+1\Fi is called a
minimal difference of F . Note that for each two consecutive elements of a chain
C, there is a minimal difference D, we say that C contains D. The following
two theorems give another version of Birkhoff’s representation theorem in the
language of minimal differences. The reader can find more details in Irving and
Gusfield’s book [4].

Theorem 6. [4] If F and F ′ are two elements in F such that F ⊂ F ′, then every
chain from F to F ′ in F contains exactly the same set of minimal differences
(in a different order).

Theorem 7. [4] Let D(F) denote the set of all minimal differences in F . For
two minimal differences D and D′, D ≺ D′ if and only if D appears before D′

on every maximal chain in F . There is a one-to-one correspondence between the
elements of F and the closed subsets of D(F).

In the context of super-stable matchings, we want to compute a maximal
sequence of super-stable matchings in M(G), i.e. a sequence M0 � M1 � · · · �
Mz where M0 is the man-optimal super-stable matching and Mz is the woman-
optimal super-stable matching and for each 1 ≤ i ≤ z, there is no super-stable
matching M ′ such that Mi−1 � M ′ � Mi. We call a matching M ′ a strict
successor of a matching M if M ′ is a successor of M , i.e. M � M ′ and there
exists no super-stable matching M ′′ such that M � M ′′ � M ′. We can solve
this problem by computing a strict successor of any super-stable matching M .

Let M be a super-stable matching in G and m a vertex in A. Suppose that
there exists a super-stable matching M ′ such that m gets a worse partner in M ′

than in M , i.e. M(m) �m M ′(m). Let w = M ′(m), by Lemma 1, w must be
matched in M and m �w M(w). Hence we are essentially searching for some
vertex w such that M(m) �m w and m �w M(w). In Algorithm 2, the set Ec
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contains for each man m highest ranked edges incident to him that satisfies the
condition above. For each man m, the candidate edge (m,w) is not unique, there
might be other edge (m,w′) that forms a tie with (m,w). While in the case of
strict preference list, the candidate edge is unique.

A strongly connected component S of a directed graph G is a subgraph S
that is strongly connected, i.e. there is a path in S in each direction between each
pair of vertices of S, and is maximal with this property: no additional edges or
vertices from G can be included in the subgraph without breaking its property
of being strongly connected. We say that e = (m,w) is an outgoing edge of S
if m ∈ S and w /∈ S. Let S(m) denote the strongly connected component that
contains m.

In Algorithm 2 given below we maintain a directed graph Gd = (V,Ed),
whose every edge (m,w) ∈ Ed ∩M is directed from w to m and every other edge
(m,w) is directed from m to w. Gd is a subgraph of G that contains the edges the
algorithm traverses so far. The basic idea of this algorithm is that for each man
m such that M(m) �= Mz(m), we traverse the preference list of m until we find
some candidate edges defined above. We add the edges traversed into Gd and
the candidate edges into Gc. For each strongly connected component S of Gd

without outgoing edges, we try to find a perfect matching on S in Gc = (V,Ec).
If we are successful, we find a strict successor of M . Otherwise, we modify Gc

and Gd by allowing edges of lower ranks.

4.1 Correctness of Algorithm2

Due to the space limit, we defer the proof of Lemma4, Lemma 5 and Lemma 6
in our full version. Lemma4 proves that any edge removed from Gd (line 9 and
line 30) never block any super-stable matching that the algorithm will output.

Lemma 4. Let M be a super-stable matching in G. For any successor N of M
such that N is also a super-stable matching in G and each (m,w) ∈ M , any edge
(m,w′) such that w′ �m w or (m′, w) such that m �w m′ cannot block N .

Lemma 5. No edge deleted in line 17 can belong to any super-stable matching
N dominated by M .

Lemma 6. No edge deleted in line 23 can belong to any super-stable matching
N dominated by M .

Lemma 7. The output matching Mi is super-stable and a strict successor of
Mi−1.

Proof. Note that the algorithm outputs Mi when the edge set Ec is a perfect
matching in a strongly connected component S with no outgoing edges and
Mi = (Mi−1\S) ∪ (Ec ∩ S). Suppose, for a contradiction, that Mi is blocked by
some edge (m,w) ∈ Ed. There are four cases. (i): m /∈ S and w /∈ S, it is obvious
that (m,w) cannot block Mi, since it would block Mi−1 as well. (ii): m ∈ S
and w /∈ S, this is not possible, because this will imply S has an outgoing edge
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Algorithm 2: Computing a maximal sequence of super-stable matchings
1 let M0 be the (unique) man-optimal super-stable matching of G.
2 let Mz be the (unique) woman-optimal super-stable matching of G.
3 M ← M0

4 let M ′ contain edge (m,M(m)) for each man m such that M(m) =m Mz(m)
5 let Ed contain all edges of M
6 let Gd be the directed graph (V,Ed) such that each edge (m,w) ∈ Ed ∩ M is

directed from w to m and every other edge (m,w) is directed from m to w
7 E′ ← E\Ed

8 let Ec = M ′ and Gc = (V,Ec)
9 for each (m,w) ∈ M remove from E′ each edge (m′, w) such that m′ ≺w m and

each edge (m,w′) such that w′ �m w
10 repeat
11 while (∃m ∈ A) degGc(m) = 0 do
12 add the set Em of top choices of m from E′ to Ed

13 if outdeg(S(m)) = 0 then
14 add every edge (m,w) ∈ Em such that m 
w M(w) and
15 M(m) 
m w to Ec

16 for each edge (m,w) of Ec that becomes strictly dominated by
17 some added edge (m′, w) remove it from Gc

18 remove Em from E′

19 end if
20 end while
21 for each m ∈ A such that outdeg(S(m)) = 0 do
22 delete all lowest ranked edge in Ec ∪ E′ incident to any w ∈ S such
23 that w is multiple engaged
24 end for
25 while (∃S) outdeg(S) = 0 and Ec is a perfect matching on S do
26 M ← (Ec ∩ S) ∪ (M\S)
27 Mi ← M
28 output Mi

29 i ← i + 1
30 update Gc and Gd: Ec ∩ S contains only edges (m,M(m)) such that
31 M(m) =m Mz(m); an edge (m,w) ∈ S stays in Gd only if w = M(m)
32 and rankw(m) ≤ rankM (w)
33 end while
34 until (∀m ∈ A) rankM (m) = rankMz (m)

in Ed. (iii): m /∈ S and w ∈ S, then Mi(m)(= Mi−1(m)) �m w, hence (m,w)
would not block Mi. (iv): m ∈ S and w ∈ S, if (m,w) never belong to Ec, then
Mi(w) �w Mi−1(w) =w m, (m,w) can not block Mi; if (m,w) once belongs
to Ec and got deleted later, then w always get a strictly better partner than
m. We prove that no edge from Ed can block Mi. There might be some other
edges e �∈ Ed that can potentially block Mi. These edges are deleted during the
updating of Ed. Lemma 4 gives a proof that these set of edges cannot block any
matching N that is dominated by Mi−1. Hence Mi is super-stable.
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Next we prove that Mi is a strict successor of Mi−1. Suppose not and let m be
any man in S and N a successor of Mi−1 such that Mi−1(m) � N(m) � Mi(m).
If (m,N(m)) ∈ Ec and is not deleted during the algorithm, then (m,Mi(m))
would not be in Ec, which is not true. Since N is a successor of M and is super-
stable, by Lemma 5 and Lemma 6, the edge (m,N(m)) can never once belong to
Ec. Let w = N(m), by our updating rule of Ed, we have N(w) �w M(w). While
if N(w) �w M(w), then the edge (m,w) must once belong to Ec. Thus we have
N(w) =w M(w), which violates Lemma 1.

Lemma 8. If Mi �= Mz, the algorithm always outputs a matching.

Proof. The algorithm will end without outputting any matching if and only if in
line 25 the while loop, it cannot find any strongly connected component with no
outgoing edges. Note that every directed graph can be expressed as a directed
acyclic graph of its strongly connected components. Hence, we can always find
a strongly connected component without outgoing edges.

Theorem 8. Algorithm2 computes a maximal sequence of super-stable match-
ings.

Proof. By Lemma 7 and Lemma 8, it is obvious that Algorithm2 outputs a max-
imal sequence of super-stable matchings.

4.2 Running Time of Algorithm2

Theorem 9. The running time of Algorithm2 is O(mn).

Proof. Each time we add new edges into Ed, we need to compute strongly con-
nected components of Gd. Computing strongly connected component of any
directed graph G′ = (V ′, E′) can be done in O(E) time. Each edge e of G is
added to Gd at most once, and Gd is always a subgraph of G. Hence, a naive
implementation takes O(m2) on computing strongly connected components of
Gd. As mentioned in [12], Pearce [19] and Pearce and Kelly [18] sketch how to
extend their algorithm and that of Marchetti-Spaccamela et al. [15] to compute
strongly connected component dynamically. Their algorithm runs in O(mn) if
edges can only be added to the graph and not deleted. The edges in Gd can
be deleted during the algorithm, but they are deleted only when Ec is per-
fect on a strongly connected component without outgoing edges. Thus, other
strongly connected components are unchanged. Also as mentioned in [12], the
edges remaining in the selected strongly connected component can be treated
as they were added anew to the graph. Since the ranks of men increase as we
output subsequent super-stable matchings, each edge can be added anew to Gd

constant number of times. Thus, the amortized cost of edge insertion remains
unchanged. The reader can easily check the other part of the algorithm takes at
most O(m) time. Hence, the total time is O(mn).
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4.3 Rotation Poset

We have shown all rotations D(MG) can be found in time O(mn) by Algo-
rithm2. It remains to show how to efficiently construct the precedence ration ≺
on D(MG). Our construction is essentially the same as the construction given
in [4] for the classical stable marriage problem. The only difference here is that
one rotation for super-stable matchings can be one or multiple cycles, while one
rotation for stable matchings in the classical stable marriage problem is always
a cycle. The reader can find more details in [4]. Due to the space limit, we defer
this section in our full version.

We summarize Sect. 4 with the following theorem.

Theorem 10. The partial order (D(MG),≺) can be constructed in O(mn).

Proof. The construction of D(MG) takes O(mn) time by running Algorithm2.
The precedence relation can be constructed in O(m) time. Hence, the time com-
plexity is O(mn).

5 The Super-Stable Matching Polytope

In this section, we give a polyhedral characterization of the set of all super-stable
matchings and prove that the super-stable matching polytope is integral. The
main result is the following theorem.

Theorem 11. Let G = (V,E) be a stable matching problem with ties where
the graph G is bipartite, then the super-stable matching polytope SUSM(G) is
described by the following linear system:

∑

u∈N(v)

xu,v ≤ 1, ∀v ∈ V, (1a)

∑

i>uv

xu,i +
∑

j>vu

xj,v + xu,v ≥ 1, ∀(u, v) ∈ E, (1b)

xu,v ≥ 0, ∀(u, v) ∈ E (1c)

where N(v) denotes the set of neighbors of v in G, and w >u v means u prefers
w to v.

Proof. Let x be a feasible solution. Define E+ to be the set of edges (u, v) with
xu,v > 0, and V + the set of vertices covered by E+. For each u ∈ V +, let N∗(u)
be the maximal elements in {i : xu,i > 0}. Note that there might be multiple
maximal elements that form a tie.

We first show the following lemma.

Lemma 9. For each vertex u and each vertex v ∈ N∗(u), then u is the unique
minimal element in {j : xj,v > 0} and that

∑
j∈N(v) xj,v = 1.
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Proof. Indeed, (1b) implies

1 ≤
∑

j>vu

xj,v +xu,v =
∑

j∈N(v)

xj,v −
∑

j<vu

xj,v −
∑

j=vu;
j �=u

xj,v ≤ 1−
∑

j<vu

xj,v −
∑

j=vu;
j �=u

xj,v ≤ 1

(2)
Hence we have equality throughout in (2). This implies that xj,v = 0 for each
{j : j <v u} and each {j : j =v u; j �= u} and that

∑
j∈N(v) xj,v = 1. Since

xj,v = 0 for each {j : j =v u; j �= u}, v strictly prefers any other vertices in
{j : xj,v > 0} over u, making u the unique minimal element in {j : xj,v > 0}.

We then prove that for any v such that v ∈ N∗(u) for some u, then u is
unique. Suppose not, there is a vertex u′ �= u and v ∈ N∗(u′). By Lemma 9, u
is the unique minimal element in {j : xj,v > 0}, and u′ is the unique minimal
element in {j : xj,v > 0}, contradiction.

Now let U and W be the color classes of G. For any u ∈ U ∩ V +, there is
at least one unique vertex w ∈ N∗(u), such that

∑
j∈N(w) xj,w = 1. Let FW (x)

be the set of these vertices. Formally, FW (x) = {w : w ∈ N∗(u), u ∈ U ∩ V +}.
Then we have |FW (x)| ≥ |U ∩ V +|. We also have that

|FW (x)| =
∑

w∈FW (x)

∑

j∈N(w)

xj,w =
∑

j∈U∩V +

∑

w∈FW (x)

xj,w ≤
∑

j∈U∩V +

1 = |U ∩ V +|

(3)
implying that |FW (x)| = |U ∩V +|. Hence, we conclude that for each u ∈ U ∩V +,
|N∗(u)| = 1, which implies that u has an unique maximal element in {i : xu,i >
0}. Since |N∗(u)| = 1, we denote this unique vertex as x∗(u). We then have the
following corollary.

Corollary 1. There is a bijection between U ∩ V + and FW (x), and for each
u ∈ U ∩ V +,

∑
i∈N(u) xu,i = 1.

Similarly, we may define FU (x) = {u : u ∈ N∗(w), w ∈ W ∩ V +} and we
have

Corollary 2. There is a bijection between W ∩ V + and FU (x), and for each
w ∈ W ∩ V +,

∑
j∈N(w) xj,w = 1.

Then we have |U ∩ V +| = |FW (x)| ≤ |W ∩ V +| and |W ∩ V +| = |FU (x)| ≤
|U ∩ V +|, implying |U ∩ V +| = |W ∩ V +| = |FW (x)| = |FU (x)|. Then any
u ∈ U ∩ V + is also in FU (x), hence, u has an unique minimal element, denoted
by x∗(u).

The bijection between U ∩ V + and FW (x) forms a perfect matching M in
(V +, E+), i.e. the set of edges {(u, x∗(u)) : u ∈ U ∩V +}. Similarly, the bijection
between W ∩ V + and FU (x) forms another perfect matching N , i.e. the set of
edges {(x∗(w), w) : w ∈ W ∩ V +}.

Consider the vector x′ = x + εχM − εχN , with ε close enough to 0 (positive
or negative). we will show that x′ is also feasible solution of (1a)–(1c). It is
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easy to see that x′ satisfies (1a) and (1c). For each vertex u ∈ U ∩ V +, there is
an unique maximal element x∗(u) and (u, x∗(u)) ∈ M and an unique minimal
element x∗(u) and (u, x∗(u)) ∈ N , implying

∑
i∈N(u) x′

u,i =
∑

i∈N(u) xu,i ≤ 1.
To see that x′ satisfies (1b), let (u, v) be an edge in E+ attaining equality in (1b).
The case that (u, v) ∈ M or (u, v) ∈ N is trivial. So assume that (u, v) /∈ M
and (u, v) /∈ N . The edge (u, x∗(u)) ∈ M and x∗(u) >u v. There is no other
edge in {(u, i) : i ∈ N(u)} belongs to M . We prove that there is no edge (j, v)
in M and j >v u since if (j, v) ∈ M , j is the minimal element of v. Similarly,
we can prove that there is exact one edge (j, v) ∈ N and j >v u. Concluding,∑

i>uv
x′
u,i +

∑
j>vu

x′
j,v + x′

u,v =
∑

i>uv
xu,i +

∑
j>vu

xj,v + xu,v = 1. Let x be
an extreme point. The feasibility of x′ implies that χM = χN , that is, M = N .
So E+ = M since the maximal element is the same as the minimal element for
each vertex, hence, x = χM .

5.1 Partial Order Preference Lists

Partial order preference lists are generalisation of preference lists with ties in
such a way that the preference list of each man or woman is an arbitrary partial
order. It turns out that the linear system (1a)–(1c) can also describe the set of
all super-stable matchings with partial order preference list. See more details in
our full version.

5.2 The Strongly Stable Matching Polytope

Kunysz [11] gives a linear system that characterizes the set of all strongly stable
matchings and proves this linear system is integral using the duality theory of
linear programming. Here, we give an alternate and simpler proof that does not
rely on the duality theory and uses only Hall’s theorem. See the proof in our full
version.
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