
U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Parallel Algorithms for Equilevel Predicates
Anonymous

ABSTRACT
We define a new class of predicates called equilevel predicates on a

distributive lattice which eases the analysis of parallel algorithms.

Many combinatorial problems such as the vertex cover problem,

the bipartite matching problem, and the minimum spanning tree

problem can be modeled as detecting an equilevel predicate. The

problem of detecting an equilevel problem is NP-complete, but

equilevel predicates with the helpful property can be detected in

polynomial time. Furthermore, the refined independently helpful
property allows online parallel detection of such predicates in NC.

We also define a special class of equilevel predicates called soli-
tary predicates. Unless NP= RP, this class of predicate also does

not admit efficient algorithms. Earlier work has shown that solitary

predicates with the efficient advancement can be detected in poly-

nomial time. We introduce two properties called the antimonotone
advancement and the efficient rejection which yield the detection

of solitary predicates in NC. Finally, we identify the minimum

spanning tree, the shortest path, and the conjunctive predicate de-

tection as problems satisfying such properties, giving alternative

certifications of their NC memberships as a result.

CCS CONCEPTS
• Theory of computation→ Parallel algorithms.

KEYWORDS
Detecting Predicates, Distributive Lattices, Equilevel Predicates

ACM Reference Format:
Anonymous . 2023. Parallel Algorithms for Equilevel Predicates. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
We introduce a new class of predicates called equilevel predicates to
model and solve many problems in parallel and distributed comput-

ing. These predicates are defined on the elements of a distributive

lattice [1]. The distributive lattice is such that the height is small,

but its size is large. More concretely, this lattice can be viewed as

generated from a poset with at most 𝑛 chains and𝑚 elements per

chain. In this case, the height of the lattice is bounded by𝑂 (𝑛𝑚) but
the cardinality can be as many as 𝑛𝑚 elements. In order to gain effi-

ciency, our methods operate on the underlying poset even though

we are interested in finding an element in the lattice satisfying the

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

given predicate. This approach allows us to obtain algorithms with

complexities efficient in 𝑛 and𝑚.

A predicate defined on a lattice is equilevel if all the elements

of the lattice that satisfy the predicate are on the same level of the

lattice. It can be shown that detecting an equilevel predicate is, in

general, a hard problem. For example, the minimum vertex cover

problem for a graph can be modeled as detecting an equilevel pred-

icate. Even so, we will see that there are many equilevel predicates

which can be detected efficiently in parallel, and that this efficiency

can be implied by a few simple properties.

As a special case, we also consider the class of equilevel predi-

cates which hold on a single element in the underlying lattice. We

call this class solitary. This class of predicates is related to the previ-
ously studied class of lattice-linear predicates [2], which are those

predicates closed under meet operations on the underlying lattice.

Such predicates have special properties that aid in the design of

efficient detection algorithms. Observe that for any lattice-linear

predicate 𝐵 we can define a stronger predicate 𝐵′ that is satisfied
only on the least element in the lattice satisfying 𝐵. Then 𝐵′ is a
solitary predicate. For example, consider the distributive lattice of

assignments for the stable marriage problem [3, 4]. There may be

multiple stable marriages; however, there is a unique man-optimal

stable marriage. The predicate that an assignment corresponds to

the man-optimal stable marriage is a solitary predicate.

In this paper, we investigate equilevel and solitary predicates, as

well as the conditions giving efficient parallel algorithms for their

detection. We first show that the problem of equilevel predicate is

NP-complete in general. Moreover, the implications of this result

are far-reaching in the landscape of lattice-linear predicate detec-

tion. For example, we show that slight generalizations of lattice-

linear predicate-based problems with efficient solutions, such as the

conjunctive predicate detection, are NP-complete. We then define

a property on equilevel predicates called the helpful property. If
any equilevel predicate has the helpful property, then it can be

detected efficiently in an online manner. We apply the helpful prop-

erty to modeling and efficient detection of various problems such

as bipartite matching and computing bases which span sets of vec-

tors as equilevel predicates. Furthermore, when this is refined to

the stronger independently helpful property, there exists a simple

NC algorithm for problems modeled as equilevel predicates.

Next, a special class of equilevel predicates, called solitary pred-

icates, is identified. These are those predicates that can only be

true on a single element in the lattice, and we show that even with

this substantial restriction, detecting these predicates is still hard

unless NP=RP. However, prior work implies that solitary predi-

cates can be detected efficiently in sequential contexts when they

satisfy efficient advancement[2]. We refine the efficient advance-

ment property in a few ways to obtain NC algorithms. In particular,

we show that whenever a problem satisfies the antimonotone ad-
vancement property, it can be solved in NC time when the poset

generating the lattice has a small height. For example, it can be

shown that the problem of the minimum spanning tree satisfies

2023-08-10 16:46. Page 1 of 1–9.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anonymous

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Class of Predicates Examples Detection Algorithm
General Equilevel Vertex Cover, 𝑘-conjunctive no efficient algorithm unless P= NP

With Helpful Property bipartite matching P
With Independently Helpful Property minimum spanning tree NC

General Solitary USAT No efficient algorithm unless NP= RP
With Efficient Advancement man-optimal stable marriage P
With Antimonotone Advancement minimum spanning tree with unique weights NC if the poset has 𝑂 (log𝑛) height
With Efficient Rejection Graph Reachability, Conjunctive Predicates NC

Figure 1: Various Classes of Predicates. Equilevel predicates are the ones that are true on elements of a lattice at a single level.
Solitary predicates are the ones that are true on a single element in the lattice.

antimonotone advancement property, which gives an alternative

certification of its membership in NC. Another special class of effi-

cient advancement property giving NC algorithms is the efficient
rejection property. We show that the shortest path problem [5], and

the conjunctive predicate detection in distributed computations [6]

satisfy this property.

In summary, this paper makes the following contributions:

• The paper introduces the class of equilevel predicates. Detect-

ing a general equilevel predicate is NP-complete. We show

that a slight generalization of the conjunctive predicate de-

tectionwhere one asks for a global state with exactly𝑘 events

satisfying the conjunctive predicate is also NP-complete.

• We show that any equilevel predicate with a helpful property

(defined in this paper) can be detected in polynomial time.

The problem of finding the size of a maximum matching in

a bipartite graph falls in this class.

• We show that any equilevel predicate with the independently

helpful property can be detected in NC. The problem of com-

puting a minimum spanning tree in a weighted undirected

graph is shown to be in this class.

• The paper introduces a subclass of equilevel predicates called

solitary predicates. It is shown that there is no randomized

polynomial time detection algorithm for a solitary predicate

unless NP=RP. However, any solitary predicate with the ef-

ficient advancement property can be detected in polynomial

time.

• The paper introduces two subclasses of solitary predicates:

with the antimonotone advancement property and with the

efficient rejection property. Solitary predicate with these prop-
erties can be detected in NC.

2 RELATEDWORK
Predicates on a distributive lattice whose detection models vari-

ous combinatorial algorithms have been introduced in [2], [7], [8].

These papers study the class of predicates called lattice-linear pred-

icates which is equivalent to being closed under the meet operation

of the lattice. It has been shown that the lattice-linear predicate

(LLP) algorithm solves many combinatorial optimization problems

such as the shortest path problem, the stable marriage problem,

and the market clearing price problem [2]. This method has been

applied to other problems such as dynamic programming problems

[9], the housing allocation problem [7], the minimum spanning tree

problem [10], and generalizations of the stable matching problem

[11]. In [8], Gupta and Kulkarni extend LLP algorithms for deriving

self-stabilizing algorithms. In [12], Gupta and Kulkarni show that

multiplication and modulo operations on natural numbers can also

be modeled as LLP algorithms, and in [13] they use lattice-linearity

to simplify the analysis of a robot coordination algorithm in an asyn-

chronous deployment setting and improve upon the algorithm’s

complexity guarantees.

At its core, both the above-mentioned work and our work are

based on obtaining solutions to combinatorial optimization and

constraint satisfaction problems through predicate detection al-

gorithms. In the context of distributed monitoring, the technique

of predicate detection was introduced by Cooper and Marzullo

[14] and Garg and Waldecker [15]. Regarding existing classes of

predicates introduced for this setting, the detection of conjunctive

predicates was examined in [6], lattice-linear predicates were in-

troduced in [16], and regular predicates were introduced in [17].

Moreover, other classes specific to distributed computing settings,

such as observer-independent predicates [18], have been investi-

gated as well.

Note that equilevel predicates which hold for multiple elements

on the same level cannot be closed under meet. Thus, the LLP

algorithm is inapplicable for these predicates. In contrast, when

restricted to solitary predicates LLP algorithms can be applied. To

advance along this line of work, we identify additional properties

that allow parallel NC algorithms to detect solitary predicates.

3 EQUILEVEL PREDICATES
Throughout, we consider problems defined on a distributive lattice

representing the domain. To ease the presentation of our definitions,

we consider a specific representation. By Birkhoff’s theorem [19],

any finite distributive lattice L can be generated by a finite poset

𝑃 . Let that poset 𝑃 consist of 𝑛 chains, i.e., 𝑃 can be decomposed

into the direct product of 𝑛 chains 𝑃1, 𝑃2, . . . 𝑃𝑛 of distinct elements.

Such a poset is called a realizer and always exists [20]. Thus, we

can assume L is represented this way without loss of generality,

and every element 𝐺 ∈ L can be viewed as an ideal of 𝑃 . We let

𝐺 [𝑖] denote the number of elements in𝐺 from 𝑃𝑖 , while |𝐺 | denotes
the cardinality counting all elements in the ideal representing 𝐺 .

Finally, ⊥ and ⊤ correspond to the bottom and top elements of the

lattice respectively. A predicate on L is an equilevel predicate if all

the satisfying elements are on the same level of the lattice.

Definition 3.1 (Equilevel Predicate). A boolean predicate 𝐵 is equi-
level with respect to a lattice L iff

∀𝐺,𝐻 ∈ L : 𝐵(𝐺) ∧ 𝐵(𝐻) ⇒ |𝐺 | = |𝐻 |.
2023-08-10 16:46. Page 2 of 1–9.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Parallel Algorithms for Equilevel Predicates Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Search space with elements that satisfy the given
predicate 𝐵. The satisfying solutions are shown in red. They
are all at the same level.

Fig. 2 shows a search space (modeled using a distributive lattice)

and a predicate and its set of satisfying solutions which are all on

the same level of the lattice. We now define the notion of “detecting”

a predicate.

Definition 3.2 (Predicate Detection). Given a poset 𝑃 generating a

lattice L, and a Boolean predicate 𝐵, if 𝐵 is true on some element

𝐺 of lattice L, then decide “yes.” Otherwise, decide “no.”

For example, consider the minimum vertex cover problem in an

undirected graph (𝑉 , 𝐸). A subset of vertices 𝑉 ′
satisfies 𝐵 if 𝑉 ′

is

the vertex cover of minimum size. Here, the lattice we consider is

the boolean lattice of the vertex set. It is clear that 𝐵 is an equilevel

predicate since there may be multiple minima vertex covers and

they must all be of the same size. Then, we observe that detecting

an equilevel predicate is NP-complete in general as the minimum

vertex-cover decision problem is well known to be NP-complete.

As another example of an equilevel predicate, suppose that we

have a bipartite graph (𝐿, 𝑅, 𝐸) and we are interested in maximum-

sized subsets of 𝐿 that can be matched. The size of maximum-

sized subsets of 𝐿 that can be matched to elements in 𝑅 is con-

stant, even though there may be multiple matched sets in 𝐿. For

example, consider 𝐿 = {𝑚1,𝑚2,𝑚3}, 𝑅 = {𝑤1,𝑤2,𝑤3} and 𝐸 =

{(𝑚1,𝑤1), (𝑚2,𝑤1), (𝑚3,𝑤3)}. Then, we can match {𝑚1,𝑚3} or

{𝑚2,𝑚3}. Both sets are of size 2.

Equilevel predicates occur in numerous other contexts. Consider

the problem of finding a minimum weight spanning tree of a con-

nected undirected graph (𝑉 , 𝐸) with 𝑛 vertices. If the edge weights

are not unique, then there may be multiple minimum-spanning

trees with equal weight. Let the predicate 𝐵 be “the set of edges

form a spanning tree with minimum weight.” It is clear that all sets

that satisfy the predicate have 𝑛 − 1 edges. Thus, in the inclusion

lattice over the graph’s edges, the sets satisfying the predicate are

all at the same level.

As a benefit, equilevel predicates are closed under conjunction.

If predicates 𝐵1 and 𝐵2 are true for different levels, then the con-

junction is false for all elements of the distributive lattice and the

predicate 𝐵1 ∧ 𝐵2 is trivially equilevel. Otherwise, if they are true

for the same level, then 𝐵1 ∧ 𝐵2 is also true only at that level (or

possibly, always false). However, equilevel predicates are not closed

under disjunction or complement because these operations may

introduce elements satisfying the new predicate at many different

levels of the lattice.

As we have observed, since NP-complete problems such as ver-

tex cover can be modeled as detecting an equilevel predicate, the

problem of detecting an arbitrary equilevel predicate is NP-hard.

We now show that some problems in distributed computation with

efficient algorithms are equilevel predicates when slightly general-

ized. For example, consider conjunctive predicates which are given

by a conjunctive 𝑙1 ∧ 𝑙2 ∧ . . . 𝑙𝑛 where each 𝑙𝑖 is a function only

of state local to the 𝑖th process. For this class, there is an efficient

algorithm for detecting this predicate in a distributed computa-

tion [6]. However, if we generalize the problem by asking for the

conjunctive predicate on a particular level of the lattice, then the

problem can be modeled as an equilevel predicate. We now show

that, in general, asking for a conjunctive predicate on a particular

level is NP-complete.

Theorem 3.3. Given a distributed computation, deciding whether
there exists a global state with 𝑘 events satisfying a given conjunctive
predicate is NP-complete.

Proof. We first show that the problem is in NP. The global state
itself provides a succinct certificate. We can check that all local

predicates are true in that global state and that the global state is at

level 𝑘 .

For hardness, we use the subset sum problem. Given a subset

problem on 𝑛 positive integers, 𝑥1, 𝑥2, . . . , 𝑥𝑛 with the requirement

to choose a subset that adds up to 𝑘 , we create a computation on

𝑛 processes as follows. Each process 𝑃𝑖 has 𝑥𝑖 events. The local

predicate on 𝑃𝑖 is true initially and also after it has executed 𝑥𝑖
events. Thus, the local predicate is true at each process exactly

twice. The problem asks us if there is a global state with 𝑘 events

in which all local predicates are true. Such a global state, if it exists,

would choose for every process either the initial local state or the

final local state. All the final states that are chosen correspond to

the numbers that have been chosen.

To avoid the expansion of the numbers in binary to unary con-

struction, we encode the representation of events on a process as

follows: Since the conjunctive predicates can only be true when the

local predicates are true, we keep only local states which satisfy

their corresponding local predicate and store the number of local

events executed so far with them. This leaves two local states at each

process: The initial state with zero events executed until that point,

and the final state of the process with a number of events equal to

𝑥𝑖 for the 𝑖
th

process. Now, the construction of the computation

from the subset sum problem is polynomial in size. □

We now restrict the class of equilevel predicate to a class that

can be efficiently detected.

4 EQUILEVEL PREDICATES WITH HELPFUL
PROPERTY

One class of equilevel predicates that we can efficiently detect is

the set of predicates that satisfy the helpful property. An equilevel

predicate satisfies the helpful property if, whenever it is false on a

global state 𝐺 , we are guaranteed to be able to compute in polyno-

mial time the indices of the local states which are helpful. Unless
2023-08-10 16:46. Page 3 of 1–9.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anonymous

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the global state 𝐺 is advanced on at least one helpful local state the
predicate can never become true.

Formally,

Definition 4.1 (Helpful Property). A Boolean predicate 𝐵 has the

helpful property with a polynomial time algorithm A on a finite

distributive lattice L if, for all 𝐺 ∈ L,

¬𝐵(𝐺) ⇒ A(𝐺) ≠ ∅ ∧ ∀𝑖 ∈ A(𝐺) : ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵).
where ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵) is defined as

∃𝑊 ∈ 𝐿 : 𝐵(𝑊) ⇒ ∃𝐻 > 𝐺 : (𝐻 [𝑖] > 𝐺 [𝑖]) ∧ 𝐵(𝐻).

The definition states that whenever the predicate is not true in

a global state 𝐺 , the polynomial time algorithm A can return a

nonempty set of indices A(𝐺) such that advancing on any of the

corresponding local states can be used to detect the predicate. The

𝑖th local state is helpful in the global state 𝐺 if we can advance the

global state 𝐺 on the index 𝑖 whenever ¬𝐵(𝐺) holds without the
risk of missing a satisfying global state 𝐻 . If there is no global state

𝑊 that satisfies 𝐵, then ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵) holds vacuously.
The helpful property allows us to efficiently detect an equilevel

predicate satisfying the property. In all our examples, we also re-

quire the algorithm A to be online in the sense that the algorithm

A has access to the poset only on states up to 𝐺 . Therefore, the

computation of helpful indices is based only on the poset of states

less than or equal to𝐺 . This allows us to use a sequential procedure,

given in Algorithm Equilevel, to advance on helpful indices towards

a satisfying global state if one exists.

ALGORITHM Equilevel: A Sequential Algorithm to find a state satis-

fying 𝐵

function GetSatisfying(𝐵: predicate, L: Lattice)

var𝐺 : vector of int initially ∀𝑖 : 𝐺 [𝑖] = 0;

while ¬𝐵 (𝐺)do
if (𝐺 is the top element of L)

then return null;

else
𝐺 [𝑖] := 𝐺 [𝑖] + 1 where ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵) ;

endwhile;
return𝐺 ; // an optimal solution

Theorem 4.2 gives the correctness of Algorithm Equilevel.

Theorem 4.2. Let 𝐵 be any equilevel predicate that satisfies a
helpful property with a polynomial time algorithm A. Then, 𝐵 can
be detected in polynomial time.

Proof. Algorithm Equilevel starts with the least element in the

lattice L. The while loop can execute at most𝑚𝑛 times where 𝑛 is

the number of chains and𝑚 is the maximum height of any chain.

The algorithm A to compute ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 has polynomial complexity.

Hence, Algorithm Equilevel also has polynomial complexity. □

We show detection of equilevel predicates through the following

examples:

Example 1: Maximum Cardinality Bipartite Matching. Consider
the problem of bipartite matching in a graph (𝐿, 𝑅, 𝐸). We are in-

terested in finding a subset 𝑉 ⊆ 𝐿 of maximum size such that 𝑉

can be matched with vertices in 𝑅. We use the Boolean lattice on

the vertices 𝐿. A vertex set 𝑉 ⊆ 𝐿 satisfies 𝐵 if |𝑉 | is the maximum

number of vertices that can be matched. It is clear that 𝐵 is an

equilevel predicate. Suppose that we have a set of vertices 𝑉 ⊆ 𝐿

which is not of the maximum size. Then, we can find a set of helpful

set of vertices𝑊 such that any element of𝑊 can be added to 𝑉 . It

can be checked efficiently that 𝑉 does not satisfy 𝐵 (for example,

by checking if there exists an alternating path from a vertex in

𝐿 −𝑉 to an unmatched vertex in 𝑅). The algorithm to find helpful

vertices is simple: any vertex in 𝐿 −𝑉 that has an alternating path

to an uncovered vertex in 𝑅 is a helpful vertex. For efficiency, the

algorithm may maintain the set of matched vertices in 𝑅. One can

use Algorithm Equilevel to find the largest set in 𝐿 with matching.

The predicate ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵) holds whenever the vertex 𝑖 can be

added to the current set of matched vertices 𝐺 . We note here that

[21] discusses parallel algorithms for perfect matching in a bipar-

tite graph. Our goal is to view the problem from the perspective of

detecting a global condition.

Example 2: Minimum Spanning Tree in an Undirected Graph. Let
𝐵 be true on a set of edges of an undirected graph if the edge set

forms a spanning tree of the graph. Given a connected undirected

graph with 𝑛 vertices, it is well-known that any edge set that is

acyclic and has 𝑛 − 1 edges satisfies 𝐵. This predicate is equilevel

because all the elements that satisfy the predicate 𝐵 are at the level

𝑛 − 1 in the boolean lattice of all edges. Given a set of edges, one

can efficiently compute whether the set is acyclic. Hence, one can

use Algorithm Equilevel to find a spanning tree as follows: The

predicateℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵) holds whenever the edge 𝑒𝑖 does not form
a cycle with edges in 𝐺 , so at each step Algorithm Equilevel adds

any edge which does not make a cycle in the current solution.

Example 3: Basis Set of Vectors. Suppose that we are given a set

of vectors 𝑆 of the same dimension. Our goal is to compute a basis,

i.e. find a subset of the biggest size containing linearly independent

vectors. The predicate 𝐵 is true on a set𝐺 if all the vectors in𝐺 are

linearly independent, and there does not exist any vector in 𝑆 −𝐺

that is linearly independent with vectors in𝐺 . Hereℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵)
holds if the vector 𝑣𝑖 is independent of all the vectors in 𝐺 .

Lattice-linear predicates [2] are associated with the concept of

forbidden local states. In particular, for any𝐺 which does not satisfy

a lattice-linear predicate 𝐵, there exists at least one local state 𝑠 such

that no global state that satisfies 𝐵 can have the same local state 𝑠 .

This means that one can advance on all forbidden local states of a

lattice-linear predicate unconditionally. In particular, if there are

multiple local states that are forbidden then the global state can be

advanced on all of them in parallel as forbidden local states remain

forbidden until they are advanced. In contrast, when it comes to

equilevel predicates, advancing on one helpful local state may make

the local state on some other process “unhelpful.” For example, in

computing a spanning tree we may be able to add one of edge 𝑎

or edge 𝑏 to our current solution, but adding both of them could

create a cycle.

An example of an equilevel predicate without the helpful prop-

erty is the vertex cover of the least size in a general graph. It is

clear, that unless P = NP, this equilevel predicate cannot have the
helpful property.

2023-08-10 16:46. Page 4 of 1–9.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Parallel Algorithms for Equilevel Predicates Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

5 EQUILEVEL PREDICATES WITH
INDEPENDENTLY HELPFUL PROPERTY

We now define a stronger version of equilevel predicates in which at

every step, one evaluates which indices are independently helpful.

Two helpful indices are independently helpful if it is okay to advance
on both of them in parallel. This definition allows us to design

parallel algorithms for equilevel predicates. Formally,

Definition 5.1 (Independently Helpful Property). A Boolean predi-

cate𝐵 has an independently helpful property with theNC algorithm

A if whenever ¬𝐵(𝐺) and 𝐵(𝐻) for some 𝐻 > 𝐺 , the algorithm

A returns a nonempty index set 𝐽 satisfying ∀𝑖 ∈ 𝐽 : 𝐻 [𝑖] > 𝐺 [𝑖]
such that with a polylogarithmic number of parallel advancements,

the predicate is detected.

Take special note of the requirements on the algorithm A: We

require it to be of polylogarithmic depth complexity so that we

can detect the predicate in NC. Any equilevel predicate with in-

dependently helpful property can be detected in NC by using the

Algorithm Equilevel-Independence.

Theorem 5.2. Let 𝐵 be any equilevel predicate that satisfies an
independently helpful property with an NC algorithm A. Then, 𝐵
can be detected in NC.

Proof. Algorithm Equilevel-Independence starts with the least

element in the lattice L. In each step of the while loop, it makes one

call of helpful and advances on all indices 𝑖 with ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵).
If there can be at most polylogarithmic number of advancements,

then the algorithm will detect 𝐵 in NC. □

Example 1: For the problem of minimum-spanning tree, any set

of edges that do not form a cycle with the currently chosen edges

is independently helpful. Observe that there may be multiple sets

of independently helpful states. We only require the algorithm to

return any such set. How do we find an independently helpful set in

parallel? At every stage in the algorithm, there is a set of connected

components. Each connected component chooses a single outgoing

edge such that the edges chosen do not form any cycle. This set

of edges can be added in parallel to reach the next stage of the

algorithm. The number of connected components decreases by at

least a factor of two after every such step. Hence, we would need

to make at most polylogarithmic advancements. This leads us to

Borůvka’s parallel algorithm for the minimum spanning tree [22].

ALGORITHM Equilevel-Independence: A Parallel NC Algorithm

to find a state satisfying 𝐵

vector function GetSatisfying(𝐵: predicate, L: Lattice)

var𝐺 : vector of int initially ∀𝑖 : 𝐺 [𝑖] = 0;

while ¬𝐵 (𝐺)do
if (𝐺 is the top element of L)

then return null;

else
forall 𝑖 ∈ 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (𝐺) in parallel do

𝐺 [𝑖] := 𝐺 [𝑖] + 1 where ℎ𝑒𝑙𝑝 𝑓 𝑢𝑙 (𝑖,𝐺, 𝐵) ;
endwhile;
return𝐺 ; // an optimal solution

6 SOLITARY PREDICATES
A solitary predicate is one which is either false on all the elements

of the lattice, or is true on a single element in the lattice.

Definition 6.1 (Solitary Predicate). A boolean predicate 𝐵 is soli-
tary with respect to a lattice L iff

∀𝐺,𝐻 ∈ L : 𝐵(𝐺) ∧ 𝐵(𝐻) ⇒ (𝐺 = 𝐻) .
The above definition states that if the predicate is true for two

elements 𝐺 and 𝐻 in the lattice, then 𝐺 must be equal to 𝐻 . This

definition also includes the empty predicate that is not true in any

element of the lattice.

Solitary predicates are closely related to the problem of Unique

SAT. Unique SAT (USAT) [23] asks for the satisfiability of a boolean

expression given the promise that it has either a single satisfying

assignment or none. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 be 𝑛 boolean variables. Let

𝐵 be a boolean expression on these variables. The USAT problem

requires the algorithm to return 1, if the boolean expression has a

unique satisfying assignment, 0, if the boolean expression is not

satisfiable and either 0 or 1, if it has multiple satisfying assignments.

Valiant and Vazirani [23] have shown the following result.

Theorem 6.2. (Valiant-Vazirani[23]) If there exists a random-
ized polynomial-time algorithm for solving instances of SAT with at
most one satisfying assignment, then NP=RP.

As a direct application, we get the following result by using the

construction in [24] as shown below.

Theorem 6.3. Given any finite distributive lattice L generated
from a poset 𝑃 , and a solitary predicate 𝐵, there does not exist a
randomized polynomial time algorithm to detect 𝐵 unless NP=RP.

Proof. Suppose, if possible, there exists a randomized polyno-

mial time algorithm A to detect a solitary predicate. Given any

instance of USAT on 𝑛 variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 , we construct a poset

with 𝑛 events on 𝑛 processes, 𝑃1, 𝑃2, . . . , 𝑃𝑛 with one event per pro-

cess. Process 𝑃𝑖 hosts the variable 𝑥𝑖 which is initially set to false.

When the event is executed, the variable is set to true. The dis-

tributive lattice generated from this poset has 2
𝑛
elements — one

for every truth assignment. If the given instance of USAT has zero

satisfying assignments, then A is guaranteed to return 𝑓 𝑎𝑙𝑠𝑒 . If

the given instance of USAT has exactly one satisfying assignment,

then A is guaranteed to return 𝑡𝑟𝑢𝑒 with a satisfying assignment.

Otherwise, we do not care whatA returns. Therefore, any random-

ized polynomial time algorithm to detect a solitary predicate can

be used to solve USAT in polynomial time. □

7 SOLITARY PREDICATES WITH EFFICIENT
ADVANCEMENT PROPERTY

Although detecting a general solitary predicate is hard, we can

detect the predicate 𝐵, whenever it satisfies the efficient advance-

ment property [2]. The efficient advancement property requires an

efficient algorithm 𝐴 such that whenever the predicate is false on

an element 𝐺 ∈ 𝐿, the algorithm returns an index 𝑖 such that the

predicate is false for all 𝐻 ≥ 𝐺 such that 𝐻 [𝑖] equals 𝐺 [𝑖].
Definition 7.1 (Efficient Advancement Property [2]). A boolean

predicate 𝐵 has the efficient advancement property with the poly-

time algorithm A with respect to a finite distributive lattice L
2023-08-10 16:46. Page 5 of 1–9.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anonymous

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

generated from a poset 𝑃 if

∀𝐺 ∈ L : ¬𝐵(𝐺) ⇒ ∀𝐻 ≥ 𝐺 : 𝐻 [A(𝐺)] ≠ 𝐺 [A(𝐺)] ∨ ¬𝐵(𝐻) .

The above definition states that whenever 𝐵 is false in 𝐺 , the

algorithm A(𝐺) returns an index such that any global state 𝐻

greater than 𝐺 that matches 𝐺 on that index also has 𝐵 false. We

will restrict ourselves to online algorithms, i.e., the algorithm A
will only have access to those global states preceding 𝐺 .

Any problem that can be modeled using a solitary predicate with

the efficient advancement property can be solved in polynomial

time. We restate the result from [2] in terms of solitary predicates.

Theorem 7.2. [2] Let 𝐵 be a solitary predicate with the efficient
advancement property on a distributive lattice L. Then 𝐵 can be
detected in polynomial time.

Observe that the method outlined in Theorem 7.2 is sequential
and online. However, it is easy to develop a parallel algorithm to

detect a solitary predicate with the efficient advancement property.

Following [16], we call an index 𝑖 forbidden in 𝐺 if the efficient

advancement property returns 𝑖 . Observe that multiple indices may

be forbidden in 𝐺 .

ALGORITHM Solitary: An Online Parallel Algorithm for detecting

Solitary predicates with the efficient advancement property.

var𝐺 : element of L initially ⊥;
while ¬𝐵 (𝐺) do

forall 𝑖: forbidden(𝐺 , 𝑖) do in parallel
if𝐺 cannot be advanced on 𝑖 then return false;

else advance𝐺 on 𝑖;

Now consider lattice-linear predicates that are true on multiple

elements in the lattice. Let 𝐵 be any lattice-linear predicate. We

know that 𝐵 is closed under the meet operation of the lattice. Sup-

pose that 𝐵 becomes true in the lattice and the least element that

satisfies 𝐵 is𝐺𝑚𝑖𝑛 . We derive another predicate 𝐵′ from 𝐵 that holds

only for the element 𝐺𝑚𝑖𝑛 whenever it exists. Thus, 𝐵′ holds for
𝐺 iff 𝐵(𝐺) and for all elements 𝐻 , if 𝐵(𝐻), then 𝐺 ≤ 𝐻 . Therefore,

𝐵′ (𝐺) is false for all other elements besides 𝐺𝑚𝑖𝑛 .

Theorem 7.3. Let 𝐵 be any lattice-linear predicate. Let 𝐵′ (𝐺) be
defined as follows:

𝐵′ (𝐺) ≡ 𝐵(𝐺) ∧ (∀𝐻 : 𝐵(𝐻) ⇒ 𝐺 ≤ 𝐻) .
Then, 𝐵′ is a solitary predicate.

Proof. First, consider the case when 𝐵 does not hold for any

element in the lattice. This implies that 𝐵′ also does not hold for

any element in the lattice and is, therefore, solitary. Now, suppose

that 𝐵 is true in the lattice. Since 𝐵 is an LLP predicate, it is closed

under meets. Therefore, there is the smallest element,𝐺𝑚𝑖𝑛 , in the

lattice such that 𝐵(𝐺𝑚𝑖𝑛) holds. It is readily verified that 𝐵′ (𝐺)
holds iff 𝐺 = 𝐺𝑚𝑖𝑛 . □

Thus, all the instances of lattice-linear predicates provide us

examples of solitary predicates when we focus on the least element.

Example 1: Man-Optimal Stable Marriage. In this problem, we

are given as input 𝑛 men and 𝑛 women. We are also given a list

of men preferences as𝑚𝑝𝑟𝑒 𝑓 where𝑚𝑝𝑟𝑒 𝑓 [𝑖] [𝑘] denotes 𝑘𝑡ℎ top

choice of man 𝑖 . The women preferences are more convenient to

express as a 𝑟𝑎𝑛𝑘 array where 𝑟𝑎𝑛𝑘 [𝑖] [𝑗] is the rank of man 𝑗 by

woman 𝑖 . A matching between man and woman is stable if there is

no blocking pair, i.e., a pair of woman and man such that they are

not matched and prefer each other to their spouses. The underlying

lattice for this example is the set of all 𝑛 dimensional vectors of

1..𝑛. We let 𝐺 [𝑖] be the choice number that man 𝑖 has proposed to.

Initially, 𝐺 [𝑖] is 1 for all men.

If we now focus on the man-optimal stable marriage, then the

predicate “the assignment is a man-optimal stable marriage” is

a solitary predicate. The predicate 𝐵𝑠𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒 for the stable

marriage is given by,

𝐵𝑠𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒 ≡ ∀𝑗 : ¬𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛(𝐺, 𝑗)

where 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛(𝐺, 𝑗) is defined as

(∃𝑖 : ∃𝑘 ≤ 𝐺 [𝑖] : (𝑧 =𝑚𝑝𝑟𝑒 𝑓 [𝑖] [𝑘])∧(𝑟𝑎𝑛𝑘 [𝑧] [𝑖] < 𝑟𝑎𝑛𝑘 [𝑧] [𝑗])),

with 𝑧 =𝑚𝑝𝑟𝑒 𝑓 [𝑗] [𝐺 [𝑗]].
The predicate says that a marriage given by the vector𝐺 is stable

if none of its index 𝑗 is forbidden. The index 𝑗 is forbidden if the

woman 𝑧 corresponding to man 𝑗 ’s preference in𝐺 [𝑗] is also equal
to the preference of man 𝑖 in 𝐺 , or a global state before𝐺 , and the

woman 𝑧 prefers 𝑖 to 𝑗 .

We now define the predicate for the man-optimal stable marriage,

𝐵𝑚𝑜𝑠𝑚 (𝐺) as

𝐵𝑠𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒 (𝐺) ∧ (∀𝐻 : 𝐵𝑠𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒 (𝐻) ⇒ 𝐺 ≤ 𝐻) .

By definition, it is clear that 𝐵𝑚𝑜𝑠𝑚 is a solitary predicate. Given

a lattice L, we can search for the element satisfying 𝐵𝑚𝑜𝑠𝑚 by

searching for 𝐵𝑠𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒 . We can use Algorithm Solitary for

this purpose.

Example 2: Housing Allocation Problem. As another example of

a solitary predicate, consider the housing allocation problem with

𝑛 agents and 𝑛 houses proposed by Shapley and Scarf [25]. The

housing market is a matching problem with one-sided preferences.

Each agent 𝑎𝑖 initially owns a house ℎ𝑖 for 𝑖 ∈ {1, 𝑛} and has a

completely ranked list of houses. The list of preferences of the

agents is given by 𝑝𝑟𝑒 𝑓 [𝑖] [𝑘] which specifies the 𝑘𝑡ℎ preference of

the agent 𝑖 . The goal is to come up with an optimal house allocation

such that each agent has a house and no subset of agents can

improve the satisfaction of agents in this subset by exchanging

houses within the subset.

It is well-known that the housing market has a unique solu-

tion, called the core of the game. We model the housing market

problem as that of predicate detection in a computation [7]. Each

agent proposes to houses in the decreasing order of preferences.

These proposals are considered as events executed by 𝑛 processes

representing the agents. Thus, we have 𝑛 events per process. The

global state corresponds to the number of proposals made by each

of the agents. Let 𝐺 [𝑖] be the number of proposals made by the

agent 𝑖 . We assume that in the initial state, every agent has made

his first proposal. Thus, the initial global state 𝐺 = [1, 1, .., 1]. We

extend the notation of indexing to subsets 𝐽 ⊆ [𝑛] such that 𝐺 [𝐽]
corresponds to the subvector given by indices in 𝐽 . A global state

𝐺 satisfies𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 if every agent proposes a different house. We

generalize𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 to refer to a subset of agents rather than the

2023-08-10 16:46. Page 6 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t f
or
dis
tri
bu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Parallel Algorithms for Equilevel Predicates Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

entire set. Let 𝐽 ⊆ [𝑛]. Then, 𝑠𝑢𝑏𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝐺, 𝐽) iff the houses pro-

posed by agents in 𝐽 is a permutation of indices in 𝐽 . Intuitively, if

𝑠𝑢𝑏𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝐺, 𝐽) holds, then all agents in 𝐽 can exchange houses

within the subset 𝐽 . For all 𝐺 , there always exists a nonempty 𝐽

such that 𝑠𝑢𝑏𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝐺, 𝐽). Let 𝐵ℎ𝑜𝑢𝑠𝑖𝑛𝑔 (𝐺) be defined as 𝐺 is a

matching and

(∀𝐹 < 𝐺 : ∀𝐽 ⊆ [𝑛] : 𝑠𝑢𝑏𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝐹, 𝐽) ⇒ 𝐹 [𝐽] = 𝐺 [𝐽]).
It is easy to show that 𝐵ℎ𝑜𝑢𝑠𝑖𝑛𝑔 (𝐺) is a solitary predicate with an

efficient advancement property. Hence, the housing allocation prob-

lem also can be modeled and solved using the solitary predicates

with the efficient advancement property. An agent 𝑖 is forbidden

in the global state 𝐺 if the agent wishes a house that is part of the

submatching in 𝐺 .

We briefly discuss detection of predicates when the search starts

from the top of the lattice in addition to the bottom of the lattice.

Many predicates, such as 𝐵𝑠𝑡𝑎𝑏𝑙𝑒𝑀𝑎𝑟𝑟𝑖𝑎𝑔𝑒 and conjunctive predi-

cates, satisfy not only the efficient advancement property but also

its dual. Equivalently, the set of elements satisfying these predicates

are closed not only for the meet operation but also for the join op-

eration. If we are okay with returning either of the elements as our

final answer, then searching for any of the element in parallel can

speed up the algorithm by a factor of the height of the lattice. The

dual of the efficient advancement property can formally be defined

as [17] follows.

Definition 7.4 (dual of Efficient Advancement Property). A boolean

predicate 𝐵 has the dual of efficient advancement property with the

polytime algorithm A with respect to a finite distributive lattice L
generated from a poset 𝑃 if

∀𝐺 ∈ L : ¬𝐵(𝐺) ⇒ ∀𝐻 ≤ 𝐺 : 𝐻 [A(𝐺)] ≠ 𝐺 [A(𝐺)] ∨ ¬𝐵(𝐻) .

The above definition states that whenever 𝐵 is false in 𝐺 , the

algorithm A(𝐺) returns an index such that any global state 𝐻 less

than 𝐺 that matches 𝐺 on that index also has 𝐵 false. When the

efficient advancement as well as its dual are true, one can search

for the satisfying element starting from both the bottom and the

top of the lattice as shown in Algorithm Solitary2.

ALGORITHMSolitary2:AParallel Algorithm for detecting Predicates

with efficient advancement property and its dual.

var𝐺 : element of L initially ⊥ (the bottom element of L);

𝑍 : element of L initially ⊤ (the top element of L);

while ¬𝐵 (𝐺) and ¬𝐵 (𝑍) do
forall 𝑖: forbidden(𝐺 , 𝑖) do in parallel

if𝐺 cannot be advanced on 𝑖 then return false;

else advance𝐺 on 𝑖;

forall 𝑗 : dual-forbidden(𝑍 , 𝑗) do in parallel
if 𝑍 cannot be retreated on 𝑗 then return false;

else retreat 𝑍 on 𝑗 ;

endwhile;
if 𝐵 (𝐺) then return𝐺 else return 𝑍 ; // an optimal solution

Applying the idea to the stable marriage problem, one can search

for the stable marriage starting from the top choices for all men

(the ⊥ element) of the lattice in parallel with the bottom choices for

all men (the ⊤) element of the lattice. This algorithm will traverse

the distance in a lattice given by the minimum of the distance of a

stable marriage from the top or the bottom. Hence, depending upon

the distance of man-optimal and man-pessimal stable marriage, it

will return the stable marriage that is closer to the bottom or the

top of the lattice.

Similarly, consider the problem of detecting conjunctive predi-

cates which are also closed under the join operation of the lattice.

By using the Algorithm Solitary2, we again get an algorithm to

detect a conjunctive predicate that will traverse the lattice given

by the minimum of the distance of a satisfying global state from

the top or the bottom of the lattice. In the above analysis, we are

ignoring the factor of 2 penalty that we incur because we run the

algorithm both from the bottom and the top of the lattice.

8 SOLITARY PREDICATES WITH NC
ADVANCEMENT PROPERTIES

We now define a special case of the efficient advancement property.

A predicate 𝐵 has the NC advancement property, if (1) there exists
an NC algorithm to detect whether an index is forbidden and (2)

starting from the initial state and always advancing all the forbidden

indices the algorithm either reaches a satisfying state or the top

element of the lattice in the polylogarithmic number of steps in

the size of the input. Clearly, any predicate that has the efficient

NC advancement property can be detected in parallel in NC time

with the Algorithm Solitary.

We now give several examples guaranteeing the NC advance-

ment property. We say that a predicate 𝐵 has an antimonotone
advancement property if once an index 𝑖 is not forbidden in 𝐺 ,

it stays not forbidden for all 𝐻 ≥ 𝐺 such that 𝐻 [𝑖] equals 𝐺 [𝑖].
Formally,

Definition 8.1 (Antimonotone Advancement Property). A boolean

predicate 𝐵 with the advancement property (w.r.t. a poset 𝑃) is

antimonotone if

∀𝐺 ∈ L :¬𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛(𝐺, 𝐵, 𝑖) ⇒
∀𝐻 ≥ 𝐺 ∧ (𝐻 [𝑖] = 𝐺 [𝑖]) : ¬𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛(𝐻, 𝐵, 𝑖) .

Consider the problem of the minimum spanning tree in an undi-

rected graph when all edges have unique weights. If the graph is

connected, then there is a unique minimum spanning tree. To find

this spanning tree, we consider the boolean lattice formed from all

edges. We assume that edges are given to us in the increasing order.

We define the predicate 𝐵 on a subset of edges 𝐺 as true whenever

𝐺 forms the minimum spanning tree. We use the binary represen-

tation of𝐺 : The variable𝐺 [𝑖] equals 1 iff the 𝑖𝑡ℎ edge is part of the

unique minimum spanning tree. The predicate 𝐵 is solitary because

either there is a unique minimum spanning tree or no spanning

tree in such a weighted undirected graph.

The advancement algorithmA can be defined as follows:We first

define a sequence of subsets 𝐸𝑖 = {𝑒1, 𝑒2, . . . 𝑒𝑖−1}, where 𝑒1, 𝑒2, 𝑒𝑖−1
are the edges in the graph in the sorted order. Now, let 𝐺 be any

subset of edges and suppose that the predicate 𝐵 is false on 𝐺 .

Let 𝐺 [𝑖] correspond to the edge (𝑣 𝑗 , 𝑣𝑘). If 𝐺 [𝑖] equals 0 and the

vertices 𝑣 𝑗 and 𝑣𝑘 are not connected with the edges in 𝐸𝑖 , then

we set 𝐺 [𝑖] to 1. The algorithm 𝐴 is in NC since it only checks

for connectivity based on a subset of edges which can be done in

polylogarithmic depth via computing the transitive closure.

2023-08-10 16:46. Page 7 of 1–9.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anonymous

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

We now show that any solitary predicate with Antimonotone

advancement property on a poset with height polylogarithmic in 𝑛

can be detected in NC.

Theorem 8.2. Let 𝑃 be any poset and 𝐵 be an antimonotone ad-
vancement predicate that can be checked in NC. If the height of the
poset is 𝑂 (log(𝑛𝑘)), for any constant 𝑘 , then the Algorithm Solitary
is in NC.

Proof. The forall statement in the algorithm Solitary can run

at most 𝑂 (1) time because if a process is forbidden then it must

advance. A process can advance at most 𝑂 (log(𝑛𝑘)) times because

the height of the poset is 𝑂 (log(𝑛𝑘)). If a process is not forbidden,
then it stays not forbidden due to the antimonotonicity property.

Since checking for the property is in NC, the entire algorithm is in

NC. □

When we apply this algorithm to the minimum spanning tree

problem, we get the NC algorithm Parallel-MST. The algorithm

assumes that edges of the graph are presented in the sorted order

similar to Kruskal’s algorithm [26] In this example, the predicate

ALGORITHM Parallel-MST: Finding the minimum spanning tree in

a graph in NC .

var𝐺 : array[1..𝑚] of {0, 1} initially ∀ 𝑗 : 𝐺 [𝑗] := 0;

// Edges𝐺 are assumed to be in increasing order of weights

forall edges 𝑒𝑖 = (𝑣𝑗 , 𝑣𝑘) : do in parallel
if there is no path from 𝑣𝑗 to 𝑣𝑘 with edges 1.. 𝑗 − 1 then

𝐺 [𝑗] := 1;

𝐵 on a set of edges 𝐺 is defined to be “𝐺 forms the minimum

spanning tree in the graph.” Since all edge weights are unique, 𝐵

is a solitary predicate. In the boolean lattice of all edges, an edge

from 𝑣 𝑗 to 𝑣𝑘 is forbidden if there is no path from 𝑣 𝑗 to 𝑣𝑘 using

edges with weight lower than the weight of the edge (𝑣 𝑗 , 𝑣𝑘). Such
an edge is always included as part of the minimum spanning tree.

Furthermore, the predicate satisfies antimonotone advancement

property. If an edge (𝑣 𝑗 , 𝑣𝑘) is not forbidden, then it continues to

stay not forbidden. Finally, the poset corresponding to a Boolean

lattice is always 𝑂 (1) height, and therefore by Theorem 8.2, we

have an NC algorithm. Many NC algorithms are already known for

the minimum spanning tree problem. Our goal was to show how

the notion of solitary predicates in a lattice with 𝑂 (1) height and
antimonotone advancement leads to an NC algorithm.

We now discuss another property of predicate that allows us to

detect it in NC: efficient rejection. A solitary predicate that has the

efficient rejection property can be detected in NC even when the

height of the poset is not 𝑂 (log(𝑛)). We show that the problem of

finding the least global state that satisfies the conjunctive predicate

and the problem of reachability in a directed graph satisfy the

efficient rejection property.

As a concrete example, consider conjunctive predicates. We are

searching for the least global state that satisfies

𝐵𝑐𝑜𝑛𝑗 = 𝑙1 ∧ 𝑙2 ∧ . . . 𝑙𝑛 .

Since we are only interested in the least global state, we can view

it as a solitary predicate with 𝐵𝑐𝑜𝑛𝑗 appropriately refined as

𝐵𝑓 𝑐𝑜𝑛𝑗 (𝐺) = 𝐵𝑐𝑜𝑛𝑗 (𝐺) ∧ ∀𝐻 : 𝐵𝑐𝑜𝑛𝑗 (𝐻) ⇒ (𝐺 ≤ 𝐻) .

We start with the notion of a rejection relation. A state 𝑠 rejects

a state 𝑡 if whenever all local states less than or equal to 𝑠 are

forbidden, then all states less than or equal to 𝑡 are also forbidden.

If we know the initial forbidden states and the rejection relation,

we can compute the states on each process that are forbidden in the

initial state or become forbidden when the processes are advanced

on the forbidden states. This is done by computing the reflexive

transitive closure of the rejection relation. Then, the first local state

that is not rejected on every process gives us the least global state

that satisfies the predicate. Formally,

Definition 8.3 (Rejection Relation). Given any distributive lattice

L with realizer 𝑃1, . . . , 𝑃𝑛 and a predicate 𝐵, for 𝑠 ∈ 𝑃𝑖 and 𝑡 ∈ 𝑃 𝑗
we define,

𝑟𝑒 𝑗𝑒𝑐𝑡𝑠 (𝑠, 𝑡) ≡ ∀𝑠′ ⪯𝑖𝑠 : ∀𝐺 ∈ L : 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛(𝐺, 𝑠′, 𝐵) ⇒
∀𝑡 ′ ⪯𝑗 𝑡 : ∀𝐻 ∈ L : 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛(𝐻, 𝑡 ′, 𝐵),

where ⪯𝑖 is the reflexive order associated with the chain 𝑃𝑖 .

We say that a lattice-linear predicate satisfies efficient rejection if

Definition 8.4 (Lattice-linear Predicate with Efficient Rejection). A
lattice linear boolean predicate 𝐵 satisfies efficient rejection with

respect to a lattice L if there exists a rejection relation such that

𝑟𝑒 𝑗𝑒𝑐𝑡𝑠 (𝑠, 𝑡) can be computed in NC.

Algorithm LLPwithRejection detects a lattice-linear predicate

with efficient rejection in NC. This algorithm is similar to the one

proposed in [27] where the algorithm is proposed for conjunctive

predicates and we refer the reader to [27] for details. We show

that the algorithm is applicable to any lattice-linear predicate with

efficient rejection. Thus, it is also applicable to finding the shortest

path in a directed graph.

ALGORITHM LLPwithRejection: An NC algorithm to find the first

consistent cut that satisfies an lattice-linear predicate with the rejection

relation.

Output: Consistent Global State as array𝐺 [1 . . . 𝑛]
var

𝐺 : 𝑎𝑟𝑟𝑎𝑦 [1 . . . 𝑛] of 1 . . .𝑚 init 1;
𝑅 : [(1 . . . 𝑛, 1 . . .𝑚), (1 . . . 𝑛, 1 . . .𝑚)] of 0 . . . 1

init 𝑅 [(𝑖, 𝑗), (𝑖′, 𝑗 ′)] = 1 iff (𝑖, 𝑗) rejects (𝑖′, 𝑗 ′) ;
𝑣𝑎𝑙𝑖𝑑 : 𝑎𝑟𝑟𝑎𝑦 [[1 . . . 𝑛] [1 . . .𝑚] of 0 . . . 1 init

∀𝑖, 𝑗 : 𝑣𝑎𝑙𝑖𝑑 [𝑖] [𝑗] := 1;

𝑅𝑇 : 𝑎𝑟𝑟𝑎𝑦 [(1 . . . 𝑛, 1 . . .𝑚), (1 . . . 𝑛, 1 . . .𝑚)] of 0 . . . 1;
𝑅𝑇 := 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝐶𝑙𝑜𝑠𝑢𝑟𝑒 (𝑅) ;
for all (𝑖 ∈ 1 . . . 𝑛, 𝑖′ ∈ 1 . . . 𝑛, 𝑗 ′ ∈ 1 . . .𝑚) in parallel do

if 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 (𝑖, 1) ∧ (𝑅𝑇 [(𝑖, 1), (𝑖′, 𝑗 ′)] = 1) then
𝑣𝑎𝑙𝑖𝑑 [𝑖′] [𝑗 ′] := 0;

for all (𝑖 ∈ 1 . . . 𝑛) in parallel do

if ∀ 𝑗 ∈ 1 . . .𝑚 : (𝑣𝑎𝑙𝑖𝑑 [𝑖] [𝑗] = 0) then return false;

else𝐺 [𝑖] := min { 𝑗 | 𝑣𝑎𝑙𝑖𝑑 [𝑖] [𝑗] = 1};

We now show how lattice-linear predicates with efficient rejec-

tion can be applied to graph reachability. Suppose that we are given

a fixed vertex 𝑣0 in a directed graph (𝑉 , 𝐸). Our goal is to find all

the vertices that are reachable from 𝑣0. We can use simple BFS to

find all reachable vertices.

𝐵𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 ≡ 𝐺 [0] ∧ (∀(𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 : 𝐺 [𝑗] ≥ 𝐺 [𝑖])
2023-08-10 16:46. Page 8 of 1–9.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Parallel Algorithms for Equilevel Predicates Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

However, this procedure takes time proportional to the diameter

of the graph. By computing the reflexive transitive closure of the

binary graph, we can find all reachable vertices in polylogarithmic

time. Let 𝐴 be the graph in the matrix form. We compute 𝐺 , the

reflexive transitive closure of the matrix𝐴, such that𝐺 [𝑖, 𝑗] equals 1
iff the vertex 𝑣 𝑗 is reachable from the vertex 𝑣𝑖 . We define 𝐵𝑐𝑙𝑜𝑠𝑢𝑟𝑒 as

∀𝑖, 𝑗 : 𝐺 [𝑖, 𝑗] ≥ max(𝐴[𝑖, 𝑗],max{𝐺 [𝑖, 𝑘]∧𝐺 [𝑘, 𝑗] | 𝑘 ∈ [0..𝑛−1]}) .
For this problem, our poset has 𝑛2 processes and each process has

just one event. The process 𝑃 (𝑖, 𝑗) is forbidden if 𝐺 [𝑖, 𝑗] equals 0
and 𝐴[𝑖, 𝑗] equals 1 or for some 𝑘 , 𝐺 [𝑖, 𝑘] and 𝐺 [𝑘, 𝑗] are both 1.

We now claim that 𝐵𝑐𝑙𝑜𝑠𝑢𝑟𝑒 is an LLP with efficient rejection. If for

any (𝑖, 𝑗),𝐴[𝑖, 𝑗] is 1, then the state𝐺 [𝑘, 𝑖] rejects𝐺 [𝑘, 𝑗] (i.e., if 𝑖 is
reachable from 𝑘 , then 𝑗 is also reachable from 𝑘). Thus, whenever

all states equal to or prior to 𝐺 [𝑘, 𝑖] = 0 are forbidden, then so

are the states equal to or prior to (𝐺 [𝑘, 𝑗] = 0). The rejection

relation can be determined in 𝑂 (1) time since we can compute

𝐴[𝑖, 𝑗] in 𝑂 (1) time. Thus, we have that the predicate 𝐵𝑐𝑙𝑜𝑠𝑢𝑟𝑒 ≡
∀𝑖, 𝑗 : 𝐺 [𝑖, 𝑗] ≥ max(𝐴[𝑖, 𝑗],max{𝐺 [𝑖, 𝑘] ∧𝐺 [𝑘, 𝑗] | 𝑘 ∈ [0..𝑛−1]})
is a lattice-linear predicate with efficient rejection.

9 CONCLUSIONS AND OPEN PROBLEMS
We have defined a class of predicates called Equilevel predicates

on finite distributive lattices. We have also identified subclasses

of equilevel predicates that can be detected efficiently in parallel.

There are many problems that are open in this area. Are there

other subclasses of equilevel predicates or solitary predicates that

admit efficient detection? What other problems can be modeled

as equilevel predicate detection and do they introduce any spe-

cific algorithmic challenges? On the other end of the spectrum,

what properties preclude efficient parallel detection of equilevel

predicates? In this work, we made general statements about the

NP-hardness of detecting equilevel predicates. However, similar to

how we identified properties enabling parallel detection of these

predicates, it would be insightful to identify properties that certify

P-hardness (see [28] for an introduction) of the detection of corre-

sponding subclasses of equilevel predicates which in turn would

rule out the possibility of an efficient parallel solution unless NC=P.

REFERENCES
[1] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, Cambridge, UK, 1990.

[2] Vijay K. Garg. Predicate detection to solve combinatorial optimization problems.

In Christian Scheideler and Michael Spear, editors, SPAA ’20: 32nd ACM Sym-
posium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July
15-17, 2020, pages 235–245. ACM, 2020.

[3] David Gale and Lloyd S Shapley. College admissions and the stability of marriage.

The American Mathematical Monthly, 69(1):9–15, 1962.
[4] Dan Gusfield and Robert W Irving. The stable marriage problem: structure and

algorithms. MIT press, 1989.

[5] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, Dec 1959.

[6] V. K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed

programs. IEEE Trans. on Parallel and Distributed Systems, 5(3):299–307, March

1994.

[7] Vijay K. Garg. A lattice linear predicate parallel algorithm for the housing

market problem. In Colette Johnen, Elad Michael Schiller, and Stefan Schmid,

editors, Stabilization, Safety, and Security of Distributed Systems - 23rd International
Symposium, SSS 2021, Virtual Event, November 17-20, 2021, Proceedings, volume

13046 of Lecture Notes in Computer Science, pages 108–122. Springer, 2021.
[8] Arya T. Gupta and Sandeep S. Kulkarni. Extending lattice linearity for self-

stabilizing algorithms. In Colette Johnen, Elad Michael Schiller, and Stefan

Schmid, editors, Stabilization, Safety, and Security of Distributed Systems - 23rd

International Symposium, SSS 2021, Virtual Event, November 17-20, 2021, Proceed-
ings, volume 13046 of Lecture Notes in Computer Science, pages 365–379. Springer,
2021.

[9] Vijay K. Garg. A lattice linear predicate parallel algorithm for the dynamic

programming problems. In Proc. of the Int’l Conf. on Distributed Computing and
Networking (ICDCN), Delhi, India, 2022. Springer-Verlag.

[10] David R. Alves and Vijay K. Garg. Parallel minimum spanning tree algorithms via

lattice linear predicate detection. In Proc. Parallel and Distributed Combinatorics
and Optimization (PDCO), June 2022, Lyon, France, 2022.

[11] Vijay K. Garg. Keynote talk: Lattice linear predicate algorithms for the constrained

stable marriage problem with ties. In 24th International Conference on Distributed
Computing and Networking, ICDCN 2023, Kharagpur, India, January 4-7, 2023,
pages 2–11. ACM, 2023.

[12] Arya T. Gupta and Sandeep S. Kulkarni. Multiplication and modulo are lattice

linear. CoRR, abs/2302.07207, 2023.
[13] Arya Tanmay Gupta and Sandeep S. Kulkarni. Lattice linearity in assembling

myopic robots on an infinite triangular grid. CoRR, abs/2307.13080, 2023.
[14] Robert Cooper and Keith Marzullo. Consistent detection of global predicates.

ACM SIGPLAN Notices, 26(12):167–174, 1991.
[15] V. K. Garg and B. Waldecker. Detection of unstable predicates. In Proc. of the

Workshop on Parallel and Distributed Debugging, Santa Cruz, CA, May 1991.

[16] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques

and their limitations. Distributed Comput., 11(4):191–201, 1998.
[17] V. K. Garg and N. Mittal. On slicing a distributed computation. In 21st Intnatl.

Conf. on Distributed Computing Systems (ICDCS’ 01), pages 322–329, Washington

- Brussels - Tokyo, April 2001. IEEE.

[18] B. Charron-Bost, C. Delporte-Gallet, and H. Fauconnier. Local and temporal

predicates in distributed systems. ACM Trans. on Programming Languages and
Systems, 17(1):157–179, January 1995.

[19] G. Birkhoff. Lattice Theory. Providence, R.I., 1940. first edition.
[20] W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. The

Johns Hopkins University Press, 1992.

[21] Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. A deterministic parallel

algorithm for bipartite perfect matching. Communications of the ACM, 62(3):109–

115, 2019.

[22] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Borůvka on

minimum spanning tree problem Translation of both the 1926 papers, comments,

history. Discrete Mathematics, 233(1-3):3–36, 2001.
[23] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.

In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 458–463.
ACM, 1985.

[24] Sujatha Kashyap and Vijay K. Garg. Intractability results in predicate detection.

Inf. Process. Lett., 94(6):277–282, 2005.
[25] Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of mathe-

matical economics, 1(1):23–37, 1974.
[26] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7(1):48–50,
1956.

[27] Vijay K. Garg and Rohan Garg. Parallel algorithms for predicate detection. In

R. C. Hansdah, Dilip Krishnaswamy, and Nitin H. Vaidya, editors, Proceedings
of the 20th International Conference on Distributed Computing and Networking,
ICDCN 2019, Bangalore, India, January 04-07, 2019, pages 51–60. ACM, 2019.

[28] Raymond Greenlaw, H James Hoover, and Walter L Ruzzo. Limits to parallel
computation: P-completeness theory. Oxford University Press, USA, 1995.

2023-08-10 16:46. Page 9 of 1–9.

	Abstract
	1 Introduction
	2 Related Work
	3 Equilevel Predicates
	4 Equilevel Predicates with Helpful Property
	5 Equilevel Predicates with Independently Helpful Property
	6 Solitary Predicates
	7 Solitary Predicates with Efficient Advancement Property
	8 Solitary Predicates with NC Advancement Properties
	9 Conclusions and Open Problems
	References

