Monitoring Functions on Global States of Distributed Programs *

Alexander I. Tomlinson Vijay K. Garg
alext@pine.ece.utexas.edu garg@Qece.utexas.edu

Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas 78712

June 10, 1994

Abstract

The domain of a global function is the set of all global states of an execution of a
distributed program. We show how to monitor a program in order to determine if there
exists a global state in which the sum 21 4+ 254 ...4 2y exceeds some constant K, where
x; is defined in process i. We examine the cases where z; is an integer variable and where
x; is a boolean variable. For both cases we provide algorithms, prove their correctness
and analyze their complexity.

1 Introduction

As a distributed program executes, each process proceeds through a sequence of local states. The
set 5 of all local states is partially ordered by Lamport’s happens before relation[Lam78], denoted by
—. A global state is a subset of S in which no two elements are ordered by —. Given a global state
¢ of some execution, it is impossible to determine if ¢ actually occurred in an execution. However, it
is known that ¢ is consistent with some global state that did occur in the execution [CL85, Mat89].
In other words, it is possible that ¢ occurred but there is no way to determine if it actually did.

A global function is a function whose domain is the set of all global states of a given execution.
In this paper we present algorithms for monitoring the value of a global function in a distributed
program while the program is executing. In particular, we show how to monitor a global function
f in order to detect, if for any global state ¢ in the underlying program execution, f(c) exceeds
some constant K. Without making restrictions on f, this problem is intractable. Therefore we
will consider the case where f is a sum of local variables distributed among the processes in the
computation.

Let z; denote a variable at process P;, 1 < i < N, whose value is in domain . We assume that
x; has a defined value in every state at P;. The problem we consider in this paper is to determine
if there exists a global state such that the sum zy + 29 4+ ...+ 2 is greater than or equal to some
constant K € D. We consider two cases of this problem. The first case is for two integer variables
and N processes; we refer to this case as “T'wo integer variables”. The second case is for N boolean
variables and IV processes, which we refer to as “/N Boolean variables”.

*Research supported in part by NSF Grant CCR 9110605, TRW faculty assistantship award, a grant from IBM,
and an MCD University Fellowship.

An example of the first case is 1 + x5 > K, where each variable z; is an integer. For this case
we present a decentralized and centralized algorithm which determines if there exists a global state
(in a given execution) such that z; + 23 > K. Following this, we generalize D, +, and > so that
we may use the same results for detecting any of the following for a given execution:

e z1 + 22 > K is true in some global state (z; € Reals).

e 1 % xp > K is true in some global state (z; € Reals, z; > 1).
e z1 A x3is true in all global states (z; boolean).

e z1 V x3is true in all global states (z; boolean).

e z1 A x3is true in some global state (#; boolean).

In the second case, N Boolean variables, we determine if there exists a global state such that at
least K of these NV variables are true. This has many applications, such as the K-mutual exclusion
problem, which requires that no more than K processes ever have access to some resource. If
boolean variable z; is true when process P; has access to the resource, then the global function
21+ 22+ ...+ 2y > K can be used to monitor an executing program to detect if there is a global
state which violates K -mutual exclusion.

In section 2 we survey related work and describe how our research relates to other research in
the field. In section 3 we present our model of distributed computation which is based on Lamport’s
happens before relation and partially ordered sets. The next two sections describe our research on
each of the two cases of global functions that we consider in this paper: “Two Integer Variables”
and “N Boolean Variables”. For each case, we define the problem, give algorithms to solve the
problem, prove the correctness of the algorithms and analyze their complexity.

2 Related Work

The analysis of the executions of distributed programs has been an active area of research for
several years. A program can be observed during execution in order to detect a behavior which
has been previously specified. A behavior specification evaluates to either true or false for a given
program execution, hence they are often referred to as predicates, or breakpoints.

Before reviewing related research, we present a taxonomy of behavioral predicates. Behavior
specifications can be divided into two categories depending on whether or not they are based
on global states. This dichotomy of global-state based and non-global-state based specifications
corresponds roughly to safety and progress properties. Those which are based on global states can
be further divided into stable and unstable predicates. The work presented in this paper falls into
the unstable global-state based category.

A global-state based behavioral predicate is one which is evaluated on the set of all global
states in the execution. A good example is mutual exclusion, which can be stated as follows: there
does not exist a global state such that two processes have access to the same resource (i.e., critical
section). In fact, invariants are usually interpreted as global-state based. For example, a property
P is invariant in an execution if it is true in all global states of the execution.

Non-global-state based behavioral predicates cannot be evaluated on global states. An example
of this type is the linked predicate, which can be stated as follows: the property “P then ()7 is true

in an execution if there exists two local states ordered by Lamport’s happens before relation such
that P is true in the first state and) is true in the second. This cannot be evaluated on a global
state because the two states are not concurrent.

Global-state based approaches can be divided further into stable and unstable predicates. A
stable predicate stays true once it becomes true while an unstable predicate may oscillate between
true and false. An example of a stable predicate is: “each process has received the token at least
once”. Clearly, in any execution, once this predicate becomes true, it stays true. An example of an
unstable predicate which would be useful in analyzing an implementation of the two phase commit
protocol is: “all processes are in the ready state”.

2.1 Global-state based approaches
2.1.1 Stable predicates

Chandy and Lamport [CL85] invented the global snapshot, which is the basis for almost all sub-
sequent research on detecting stable predicates. A global snapshot is a freeze-frame picture of
a distributed computation. The picture corresponds to a global state of the computation with
one caveat: the global state is not guaranteed to have occurred. However, it is guaranteed to be
consistent with at least one global state that did occur.

Their approach to detecting stable predicates is conceptually simple: take repeated snapshots.
Since the predicate is stable, eventually a snapshot will detect the predicate if it ever becomes true.
Bouge [Bou87], and Spezialetti and Kearns [SK86] improved the efficiency of the global snapshot
algorithm when used for repeated snapshots.

These approaches do not work for unstable predicates because the predicate may become true
and then false again between two snapshots. An entirely different approach is required for unstable
predicates.

2.1.2 Unstable predicates

The work presented in this paper falls into the category of unstable predicates, which is perhaps
the least explored of the categories reviewed here.

Garg and Waldecker [GW94] define a class of unstable predicates called weak conjunctive
predicates. A weak conjunctive predicate consists of a conjunction of local predicates such as
(pr A p2 A ... A pn), where p; is evaluated in process ¢. It is defined to be true in an execution
if there exists a global state in that execution such that the expression evaluates to true. Optimal
algorithms for detecting weak conjunctive predicates appear in [GW94]. In [GCKM94], Garg and
Chase extend weak conjunctive predicates to include predicates on the state of message channels.

Garg and Waldecker [GW92] also define strong conjunctive predicates which, like their weak
counterparts, consist of a conjunction of local predicates, (p1 A p2 A ... A p,). The predicate
evaluates to true (for a particular execution) when every sequence of global states consistent with
the execution contains a global state which satisfies the conjunctive boolean expression. Because
strong conjunctive predicates depend on the relationship between global states in the computation,
one can make an argument that they are not global-state based. However, we classify them as
global state based because of their close relationship with weak conjunctive predicates. Optimal
algorithms for detecting strong conjunctive predicates appear in [GW92].

2.2 Non-global-state based approaches

A general method for detecting non-global-state based predicates is to construct the lattice as-
sociated with a distributed execution [CM91, DJR93] and then analyze it to detect the behav-
ior [BM93, BR94, JJJR94]. A node of this lattice represents a possible global state! of the dis-
tributed computation and an edge represents an event that changes the global state of the com-
putation. This approach can detect a very broad class of behaviors, including global-state based
predicates. The drawback is that the cost is high since it requires building a lattice, which has
exponential time complexity in the number of local states in the computation.

To avoid the cost of using a lattice, many researchers have defined classes of behavioral predicates
whose detection do not require building a lattice. One of the first of these was linked predicates,
introduced by Miller and Choi [MC88]. Linked predicates describe a causal sequence of local states
where each state in the sequence satisfies a specific local predicate. The behavior “an occurrence
of local predicate p is causally followed by an occurrence of local predicate ¢” is an example of a
linked predicate. Algorithms for linked predicates appear in [HPR93, MCS88].

Hurfin et al. [HPR93] generalized linked predicates to a broader class called atomic sequences
of predicates. In this class, occurrences of local predicates can be forbidden between adjacent
predicates in a linked predicate. The example given above for linked predicates could be expanded
to include: “q follows p and r never occurs in between” (note that p,q, and r could be evaluated in
different processes).

In [FRGT94] we introduced regular patterns which are based upon regular expressions. A
behavior is specified by a regular expression of local predicates. For example pg*r is true in a
computation if there exists a sequence of consecutive local states (s1, s2,...,s,) such that p is true
in sy, ¢ is true in $o,...,8,_1, and r is true in s,. Note that the states in the sequence need not
belong to the same process — two states are consecutive if they are adjacent in the same process or
one sends a message and the other receives it.

In [GTFR94] we extended the results of [FRGT94] to introduce a class of behaviors which
include regular patterns as a special case. We designed a logic for expressing these properties
and presented an efficient decentralized algorithm for detecting formulas in the logic. We also
defined a class of algorithms called efficient passive detection algorithms (EPDA) and showed that
other algorithms in this class cannot detect more than our algorithm. Briefly, an EPDA detects
a property of some underlying computation. We use the term passive because the algorithms can
only observe the computation (they cannot initiate or inhibit the sending or receiving of messages;
and they cannot alter the control flow of the observed computation).

3 Model and Notation

We use the following notation for quantified expressions: (Op FreeVars : Range of FreeVars : Expr).
Op can be any commutative associative operator (e.g., min, U, +). For example (mini: ¢ € R : f(7))
is the minimum value of f(7) for all ¢ such that ¢ € R.

Any distributed computation can be modeled as a decomposed partially ordered set (deposet)
of process states [F'id89]. A deposet is a partially ordered set (.9,~+) such that:

1. S is partitioned into N sets 5;, 1 < < N.

In contrast with the poset representation, where a node represents a local state.

2. Each set 5; is a total order under some relation >, and » does not relate two elements which
are in different partitions.

3. Let — be the transitive closure of > U ~~+. Then (5, —) is an irreflexive partial order.

An execution that consists of processes Py, P5... Py can be modeled by a deposet where 5; is
the set of local states at P; which are sequenced by ; the ~+ relation represents the ordering induced
by messages; and — is Lamport’s happens before relation[Lam78]. The concurrency relation on $
is defined as ul|v = (u 4 v) A (v 4 w).

Given a local state o € 5, we denote the value of a variable, say z, in state & by g.z. A global
state is a subset ¢ C 5 such that no two elements of ¢ are ordered by —. We define C to be the set
of all global states in (5, —). We also use the terms “cut” and “antichain” to refer to an element
of C. For the remainder of this paper, the term “state” refers to a local state. A “chain” is a set
of states which are totally ordered by —. For example, each set 5; is a chain.

If (u — v) then max(u,v) = v and min(u,v) = u. Since maz and min are commutative and
associative, the maximum and minimum element of any chain in (5, —) are well-defined. The unit
elements of the maz and men operators are L and T respectively. Thus max applied to a zero
length chain returns L. We require that (Vu:u €5 : 1L —u A uw— T), and also that L — 1 and
T—=T.

The predecessor and successor functions are defined as follows for u € S and 1 <17 < N:

predud = (maxv:v € 5; AN v —u:v)

succu.t = (minv:v € 9; N u—v:v)

Thus if (pred.u.i = v) then v is the maximum element in (5;, —) which happens before u, or L if
no element in 5; happens before .

An external event is the sending or receiving of a message. The n'* interval in P; (denoted
by (i,m)) is the subchain of (5;, —) between the (n — 1) and n'" external events. For a given
interval (i,n), if n is out of range then (i,n) refers to L or T. The notion of intervals is useful
because the relation of two states belonging to the same interval is a congruence with respect to —.
Thus, for any two states s and s’ in the same interval and any state u which is not in that interval:
(s —u <= s’ —u)and (u — s <= u — s'). We take advantage of this in our algorithms by
assigning a single timestamp to all states belonging to the same interval. Due to this congruence,
the pred and succ functions and the || relation are well-defined on intervals.

3.1 Vector clocks

In a system with N processes, a vector clock [Mat89, Fid89, Ray92] is a function which associates
a vector of N non-negative integers with each state of the poset. Vector clocks are useful because
they implement the pred function, and they encode Lamport’s happens before relation. Given a
state o, we denote its vector clock value by o.v. The important property of vector clocks is

c—0 <= ocwv<dw
where the < relation on vectors v and v is defined as:

w<v <= (Vizuld] <o[i]) A (Fiuli] < ofi])

The algorithm for implementing vector clocks is quite simple. We describe it here for process
P;; the algorithm is the same for each process. Initially v[¢] equals 1 and all other components
equal zero. Upon sending a message, the message is tagged with the current value of v and then
v[¢] is incremented by one. Upon receiving a message tagged with u (all received messages will have
a message tag) execute v[j] := max(v[j],u[j]) for all j and then increment »[¢]. This is the entire
algorithm. In order to compare two states, we need the value of v in that state.

The solution to “Two Integer variables” uses a 2 X 2 matrix clock which is built upon the ideas
of vector clocks. The solution to “N Boolean variables” uses traditional vector clocks to compare
individual elements of the poset, or equivalently, to determine if one state happens before another
state.

4 Two Integer Variables

The case where each x; is an integer variable is useful for detecting potential violations of a limited
resource. For example, consider a server which can handle at most 5 connections at a time. Client
processes P; and P, each have a variable z; and x5 which indicates the number of connections it
has with the server. The predicate (23 + 23 > 5) indicates a potential error.

A formal problem statement for this case is shown below. It says that there exists states oq, o3
(in processes Py and P respectively) which are concurrent, and the sum of the values of 2 in oy
and zy in o, is greater than K. (Note that 1.z refers to the value of #1 in state o7.)

(Jo1,02:01 €51 N 02 €52 AN oy ||og o1+ 0.2 > K) (PS1)

In this section we present two algorithms for detecting PS1. The decentralized algorithm runs
concurrently with the underlying program and can be used for online detection of the predicate.
The centralized version is decoupled from the underlying program and can run concurrently with
the underlying program or post-mortem (i.e., after the underlying program terminates). We for-
mally prove that both algorithms are sound (if the predicate is detected, then it has occurred)
and complete (if the predicate occurs, then it is detected). Before describing the centralized and
decentralized algorithms, we describe the ideas behind them, describe and prove mechanisms used
by the algorithms (i.e., 2 x 2 matrix clock), and present some results which are necessary for proving
the algorithms. The work presented in this section is based on [TG93].

4.1 The main idea behind the algorithms

To detect PS1 we need to determine if there exists a global state in which 1 + x5 > K. First
consider a situation in which P; and P, do not send or receive any messages. Then every state in 51
is concurrent with every state in S3. In this case we could evaluate mazz1(51) + mazza(S2) > K,
where maxza;(.5;) is the maximum value of z; in the set of states ;. This expression would be true
if and only if PS1 were true.

We use this basic idea in our algorithm, but there are complications resulting from message
communication. Care must be take to ensure that zy + x5 is evaluated in a global state if and
only if the global state is valid. FEach time a message m is received at P; or P,, we compute
ST C 57 and 537 C S5 such that every state in ST" is concurrent with every state in S3*. Thus

P e @ ® o o o -

Figure 1: Demonstration of the pred function: pred.c}.2 = 02, pred.c$.2 = 03, pred.c}.2 = L.

if mazaz1(ST") + mazzy(Sy) > K, then we know that PS1 holds and our algorithm is sound. To
demonstrate that this algorithm is complete we need to prove that oq||oy if and only if there exists
a message m received at Py or P, such that o7 € S7* and o3 € S5*. We must also show how to
determine 57" and S7" when m is received, and how to evaluate mazz4(5%") and mazzo(S5").

ST is a sequence of states at Py, (Uiol"'l, .. .,U{”l), and 53" is a sequence at Py, (UéOQ'H, .. .,O';”é).
Given a message m which has been received at P, or P, we need to be able to determine values
for loy, hiy,log, hiz. This is accomplished by keeping track of predecessors of states in P, and Ps.
Consider a state o; € 5;. The predecessor of o; in P;, denoted pred.o;.j, is the latest state in P;
which happens before ;. Figure 1 shows an example. Notice that the predecessor or ¢ on P; is
just the previous state Uf_l

Suppose a message m is received in some state o € 51 U S3. Then we define loy, hiq,log, hig as
follows:

O'{M'l = pred.o.l ol = pred.a{”}.?
05”2 = pred.c.2 O'iol = pred.ag”z).l

Applying these definitions to figure 1, we see that ST = (03,0, 07), and ST* = (03, 03,05, 05, 07),

Thus, if we can evaluate the above pred functions, then we can determine S7* and S%*. We use a
2 x 2 matrix clock to enable us to evaluate these expressions.

4.2 Finding loy, hiy, log, hiy with a 2 x 2 matrix clock

Instead of associating values for loy, hiy,log, his with each state, we associate these values with
intervals. Thus 57" and S%* now represent sequences of intervals, which themselves are sequences
of states.

To evaluate the pred functions, we use a 2 x 2 matrix clock as described by Raynal [Ray92].
In this section we present an algorithm for maintaining the matrix clock and prove that from it
we can determine oy, hiy,log, hiz. Once we have these values, we can find 57" and 5%*, and then
determine if PS1 is satisfied.

The matrix clock algorithm is presented in figure 3. The algorithm is easier to understand by

o (W (A (a0 AN
) o e/

py (0 (00 (o) 21

o
—_

A A
\28/) \2) \23/

[N}
o

Figure 2: Matrix clock example.

noticing the vector clock algorithm embedded within it. If the row index is held constant, then it
reduces to the vector clock algorithm. Figure 2 shows values of the matrix clock and message tags
on an example run. Note that row 1 of P;’s matrix is a traditional vector clock restricted to indices
1 and 2, and row 2 equals the value of P,’s vector clock at a state in the “past” of P;. Similar
properties hold for P,’s matrix clock.

Let M} denote the value of the matrix clock in interval (k, n). The following description applies
toan N X N matrix clock in a system with N processes. The 2 x 2 matrix is the upper left submatrix
of the N x N matrix. We describe the information contained in a matrix clock M at interval (k,n)
in three steps. First we explain the meaning of the k*" diagonal element. Then we explain the
meaning of the k¥ row, followed by the entire matrix.

The k" diagonal element, M} [k, k], is an interval counter at Pr. Thus for any interval (k,n),
the following is true: MJ'[k,k] = n. Row k of M is equivalent to a traditional vector clock.
In fact, when we say “Pp’s vector clock” we are referring to row k£ of Py’s matrix clock. Since
the vector clock implements the pred function, row k& of M}’ can be used to find predecessors
of (k,n) = (k, M['[k,k]) as follows: the predecessor of (k, M]'[k,k]) on process j is the interval
(j, MJ'Tk, 7]). In fact, this applies to all rows: the predecessor of (i, M['[i,4]) on process j is the
interval (7, MJ'[7,j]). Furthermore, row k of M]' equals the diagonal of M;'. Thus we can use row
k to find the pred.(k,n).j for j # k, and then use row j to find pred.(pred.(k,n).j).i for i # j.

The matrix clock can be summarized in three simple rules. First, the k%" diagonal element
corresponds to some interval on Py. Second, row ¢ is the value of P;’s vector clock in interval
(i, Mg[i,?]) and third, row k of M} equals the diagonal. The meaning of a matrix clock is formally
stated and proven in lemma 1.

To initialize:
My[-,] := 0
if (k=1 V k=2)then
Mylk, k] := Mylk, k] + 1;
end_if

To send a message:
Tag message with Mg[-, -];
if (k=1 V k=2)then
Mylk, k] := Mylk, k] + 1;
end_if

Upon receipt of a message tagged with W[-, -]:
for i :=1to 2 do
if (Myg[i,i] < W[i,1]) then
Mk[iv] = W[iv ']?
end_if
end_for
if (k=1 V k=2)then
[k, k] := My[k, k] + 1;
[k,] := diagonal(My);

My,
My,

Figure 3: Algorithm for maintaining matrix clock M[1

increment local clock

copy vector clock for (i, W[i,1])

increment local clock

2,1.2]at P, 1<k<N

Lemma 1 (M1) Mk, k]=n
(M2) i # 5 = (G, M[i,j]) = pred.(i, M{[i, 1]).j
(M3) MJ[e,] = Mk,]

Proof: Each part is proven by induction. In the base case, n = 1 and (k,n) is an initial interval.
Induction applies to n > 1.

(M1) Base (n = 1): Initial value of M]'[k, k] = 1.
Induction (n > 1): We assume M['[k, k] = n and show that M"'[k,k] = n + 1. Py enters
interval (k,n+ 1) only after sending or receiving a message. From the program text it is clear
the k' diagonal element is incremented by one. Thus M} [k, k] = M}k, k] +1=n+ 1.

(M2) Base (n = 1): Since n = 1, M[is the initial value of the matrix clock in P;. Thus,

¢ # j implies that M}'[i,j] = 0, and hence (j, M[i,j]) = (j,0) = L. Thus we need to
show pred.(¢, M]'[t,1]).j = L also. Suppose ¢ # k, then by initial value of M}, we know
(7, M]'[i,1]) = (¢,0), thus pred.(¢, M]'[i,4]).j = pred.(i,0).5 = L. Now suppose 7 = k, then by
initial value of M}'[¢,¢] we know that (¢, M}'[7,7]) = (4,1). Since no interval precedes (z,1), we
know pred.(i,1).j = L
Induction (n > 1): Assume true for (k,n) and every interval in the past of (k,n). Suppose
the event initiating (k,n 4+ 1) is a message send, then M;j"'l = M} except for M;j"’l[k,k] =
M7k, k]+1. Since the event is a message send, (k,n) and (k, n+1) have the exact same prede-
cessors. Thus pred.(i,Mﬁ"’Wi,i]).j equals pred.(i, M]'[¢,]).7, which by induction hypothesis,
equals (7, M['[¢,7]), which is equal to (j, M,?"'l[i,j]) since ¢ # j and only element M]'[k, k]
changes.
Suppose the event initiating (k,n + 1) is a message receive tagged with matrix clock W. By
the induction hypothesis, W satisfies M2. Note also that M2 relates elements in a single row
of M, thus by copying rows from W to M, M2 is not violated. Since all rows i # k are
either copied from W or not changed, then M2 holds for rows ¢ # k in M;j"'l. It remains
to show that M2 holds for row k& of M/t'. The predecessor of (k,m + 1) on P; is the
greater of M['[k,j] and W['[j,7]. This is exactly the value assigned to M;j"'l[k,j]. Thus
(k,Mg"'l[k,j]) = pred.(k,M?"’l[k,k]).j and M2 holds for row k.

(M3) Base (n = 1): True by initial assignment to matrix.
Induction (n > 1): Assume diag(M}') = M}'[k,], show diag(M[t) = M [k,]. Py enters
interval (k,n+ 1) only after sending or receiving a message. In the case of a send, Mk, k] is
incremented by one. Thus the diagonal will still be equal to row k. In the case of a message
receive, the last statement sets row k£ to the diagonal.

[
Lemma 2 shows how to use the matrix clock M{* to determine loy, hiy, loz, and hiy for any
interval (1,n). The procedure for any interval on P, is similar.

Lemma 2 The following expressions hold for any interval (1,n) with matriz clock M7 :

(1,hty) = pred(l,n).l = MP[1,1]-1
(2,hiz) = pred(l,n).2 = M{[1,2]
(1,lo1) = pred.(2,hiz).l = MJ][2,1]
(2,l00) = pred.(1,hi1).2 = M'1,2]

10

Proof: The equivalences on the left are the previously stated definitions for hz; and lo;.
hiy: The predecessor for (1,n) on Py is (1,n — 1). Thus, by M1, hiy = M[1,1] - 1.

hiy: Also by M1, we know pred.(1,n).2 = pred.(1, M{[1,1]).2, which by M2, equals (2, M{[1,2]).
Thus hiz = M1, 2].

lo;: We need to evaluate pred.(2, M{[1,2]).1. Since the diagonal equals row 1, this is equal to
pred.(2, M{'[2,2]).1. And by M2, this equals (1, M{'[2,1]). Thus loy = M{'[2,1].

log: We need to evaluate pred.(1, M{[1,1] —1).2, which equals pred.(1,n —1).2. Using the matrix
clock M;j_l in the preceding interval, this equals pred.(1, M{""'[1,1]).2, which by M2, equals
(2, M '[1,2]). Thus log = M1, 2].

[

We have shown how to determine the values of loy, hiq, log, and hig in any interval at Py or Ps.

Thus in the remainder of the paper we refer directly to loy, hiy, log, and hiy instead of referring to
the matrix clock or the pred function.

4.3 Preliminary Results

The following lemma is important in developing efficient algorithms. It indicates that we need not
maintain the value of z; in every state at process P;, but instead we can maintain the maximum
value of z; in each interval. As before, we use the notation maxzx;.(¢,n;) to represent the maximum
value of z; in interval (¢,n;). Formally, maza;.(i,n;) = (maxo : 0 € (i,n;) : 0.2).

Lemma 3 (Joy,02:01 € 51 A 02 €S2 A 01|02 :01.24 03.2 > K)
< (Ing,nz: (1,n1) || (2,n2) : maza.(1,n1) + mazz.(2,n2) > K)

Proof: The proof is straightforward. It uses the following properties: 1) congruence between
intervals and states, 2) addition distributes over max, and 3) max is commutative and associative.
L]
The next lemma justifies our use of 57" and 53" in detecting if PS1 is satisfied. It states that if
two intervals (1,¢) and (2, j) are concurrent then there exists a message m which defines sequences
ST and S5 and that (1,¢) € ST and (2,7) € S3". It also states that from each message m we can
find ST* and 53" and that every interval in 57" is concurrent with every interval in 53*. This lemma
proves that our approach is sound and complete. See figure 4 for a graphical representation of the
case (in the proof) where K'EY is in Py.

Lemma 4 Given that every state in process Py happens before some state in process Py, or vice
versa: two intervals (1,i) and (2, j) are concurrent if and only if there exist a message received just
before some interval, say KEY, at Py or Py such that (1,i) € 57" and (2,j) € ST where:
STo= ((Llor+1),...(1,hiy))
Sy = ((2,log+1),...(2,hiz))
1,hiy) = pred KEY.1
) = pred KEY.2
1,lo1) = pred.(2,his).1
) = pred.(1,hiy).2

11

Figure 4: Relationship among intervals when K FY is in P;. Dashed arrows
represent the pred function, and the solid arrow represents some message being
received at Pj.

Proof:

Proof of = : Assume (1,2)]/(2,7).

Assume without loss of generality that every state in .53 happens before some state in .57. Then we
know suce.(2,7).1 exists. If succ.(1,7).2 exists and suce.(1,7).2 — suce.(2,j).1, then let KLY =
succe.(1,7).2 (case 1), otherwise let K EY = suce.(2,7).1 (case 2). We prove case 2 (the proof for
case 1 is nearly identical). Thus, at this point we know that: K FY is the first interval on P, such
that (2,j) — KLY, and suce.(1,¢).2 (which may not even exist) doesn’t precede K EY'.

Proof of ¢ < hiy: We know (1,7) must occur before KLY (otherwise (1,¢) — (2,7)). This is
equivalent to saying 7 < hiy where (1, hi1) = pred. K EY.1.

Proof of log < j: Since KFEY is the first interval on Py such that (2,j) — KFEY, and since
(1, hi1) precedes KEY, we know (2,7) 4 (1,hi1). This is equivalent to saying log < j where
(2,lo2) = pred.(1, hiy).2.

Proof of 7 < hiy: By definition of predecessors, any interval on P, which occurs after K EY’s
predecessor on Py, say (2, hiz), does not happen before K Y. Then since (2,j) — K EY we know
that (2,) does not happen after (2, hiz). This is equivalent to saying j < hiy where (2, hiz) =
pred. K EY.2.

Proof of loy < i Since suce.(1,4).2 does not precede KLY (as a result of assuming case 2; also
note: it may be the case that succ.(1,7).2 doesn’t exist) and since (2,hiy) — KFEY, we know
that (1,¢) cannot precede any interval which precedes (2, hiy). Therefore lo; < i where (1,l01) =
pred.(2, hig).1. (If we assumed case 1, this same argument would apply).

Proof of < : Assume loy < 7 < hiy and log < j < his.

Since (1,l01) = pred.(2.hiz).1 we know that any interval on P; which follows lo; cannot happen
before (2, hiz). Therefore since (1,lo1) — (1,7) (by lo; < @) we know (1,¢) 4 (2, hiz). And since

12

J < hiy we know that (1,7) 4 (2,7).
Similarly, (2,7) £ (1,%). [

4.4 Overview of Algorithms

The centralized and the decentralized algorithms each gather the same information from the un-
derlying program as it executes. They differ in what they do with the information. This section
explains what the information is, and how it is gathered. Everything in this section applies to both
algorithms.

Fach process P;, for i € {1,2}, must be able to evaluate maxzz.(i,n) for each interval (i,n).
Implementation of the mazz function is straight forward. Additionally, for the algorithms to be
complete, it is required that every state in Py occur before at least one state in P;. This can be
accomplished in one of two ways: by the use of a <FINAL> message, or by using periodic update
messages. In the first approach P sends a <FINAL> message to P; immediately before P, terminates
and delivery of this message is delayed until immediately before P, terminates. The second approach
can be used if P; and P, do not normally terminate. To use this approach, P, must periodically
send a message to P;.

The algorithms are based on lemma 4. Each message received at P; or P, defines sequences
of intervals S7* and 57" such that every interval in 57" is concurrent with every interval in S3".
Since lemma 4 uses an if and only if relation, every pair of concurrent intervals at P, and P, will
appear in the sequences that result from receiving some message. Thus if both P; and P, check
the predicate for all pairs of states in these sequences each time a message is received, then the
predicate will be detected.

4.5 Decentralized Algorithm

We describe the algorithm from P;’s point of view. The algorithm at P, is similar. Each time a
message is received we evaluate loy, log, hi1, and hig. These values define a sequence of intervals at
Py and at P5. The sequence at P; starts at (¢,lo;+1) and ends at (4, hi;). By lemma 4, every interval
in the sequence at Py is concurrent with every interval at P,. Thus we can find the maximum value
of mazx.(1,7) over all intervals (1,¢) in the sequence at P;. We call this value temp_z; and define
temp_x4 similarly. If the sum of these two values is greater than K, then the predicate has occurred.
Furthermore, since lemma 4 is stated with the if and only if relation, if the predicate occurs then
this method will detect it.

S1: temp_xy = (maxi : log <1< hiy @ mazz.(l,1))
S2: temp_xy = (maxj : log < j < hiy : mazz.(2,j))
S3: if (temp_zxy + temp_zy > K) then PREDICATE_DETECTED

To implement this, temp_x; can be computed locally. Then P; can send a message to P,
containing (temp_x1,log, hiz), and P, can finish the calculation. This message is a debug message
and is not considered an external event (i.e., does not initiate a new interval). Messages that are
not debug messages are application messages. Theorem 1 states the correctness of this algorithm.

Theorem 1 The condition in statement S3, (temp_x1 + temp_xy > K), is true if and only if PS1
holds.

13

Proof: Statements S1, 52, and S3 are executed when ever a message m is received at either Py
or P,. Let i range over {1,2}. Then temp_z; equals mazz(i,S). Thus by direct application of
lemma 4, the theorem holds. [

4.5.1 Overhead and Complexity

Let A; be the number of application messages sent and received by FP;, and let R; be the number
of application messages received by P;. The message overhead consists of the number and size of
the debug messages, and the size of message tags on application messages. P; sends one debug
message to Py in each of the Ry receive intervals at Py. Similarly, P, generates Ry debug messages.
Thus the total number of debug messages generated by the decentralized algorithm is Ry + Rs.
The size of each debug message is 3 integers. Ilach application message carries a tag of 4 integers.
The debug messages can be combined to reduce message overhead, however this will increase the
delay between the occurrence of the predicate and its detection.

The memory overhead in P; arises from the need to maintain maxza.(1, -) for each of Ay intervals.
This can be reduced (for the average case) by a clever implementation since the elements of the
array are accessed in order (i.e., the lower elements can be discarded as the computation proceeds).
Likewise, the memory overhead for P, is A;. Other processes incur only the overhead needed to
maintain the matrix clock (i.e., 4 integers).

The computation overhead at P; consists of monitoring the local variable which appears in the
predicate, and evaluation of the expression (maxi : loy < @ < hiy : mazz.(1,¢)) for each debug
message sent (Rq) and received (R3). The aggregate complexity of this is at most A;(Ry 4+ Rs)
since there are Ay elements in maxz.(1,-). P, has similar overhead. Other processes have neither
the overhead of monitoring local variables nor of computing the expression.

4.6 Centralized Algorithm

This version of the algorithm can be used as a checker process which runs concurrently with the
underlying program, or which runs post-mortem. We describe the post-mortem version which reads
data from trace files generated by P; and P,. Since the trace files are accessed sequentially, the
algorithm can be easily adapted to run concurrently with the underlying program by replacing file
I/O with message I/0O. First we explain what data is stored in the trace files, then we show how
the predicate can be detected by one process which has access to both trace files.

Let Ry be the number of receive intervals in Py and let Q1[k], 1 < k < Ry, be arecord containing
the values of loy,hiy1,loy, and hiy in the k¥ receive interval. Define Ry and Q2[1...Ry] similarly.
The elements of both ¢)1 and @2 must be checked to determine if one of the elements represents a
key interval (i.e., satisfies the requirements of K’ EY in lemma 4.

By virtue of their construction, both (1 and @2 are already sorted in terms of all their fields.
That is, for @ = Q1 or Q@ = @2, and for every component = € {loy,loy, hiy, his}, Q[-].2 is a sorted
array. This results from the fact that the elements are generated in order on a single process; thus
the receive interval represented by Q[k] happens before Q[k + 1].

Py’s trace file contains two arrays of data: mazz.(1,¢) for each interval (1,¢), and Q1[1..Rq].
Likewise P,’s trace file contains mazz.(2,j)and Q2[1..Rz]. We have already demonstrated how to
determine loq,hi1,log and hig for any interval in Py or P;, and generating the values for the mazaz
function is straight forward.

14

The trace files are analyzed in two independent passes. We describe a function check(Q[1...R])
such that the predicate has occurred if and only if check(Q1[1...R1]) or check(Q2[1 ... R3]) returns
true. C'heck uses two heaps: heapy and heap,. Heap, contains tuples of the form (n, mazz.(p,n))
where (p,n) is an interval in P,. The first element of a tuple & is accessed via h.interval; the second
element is accessed via h.value. The heap is sorted with the value field.

The algorithm maintains the following properties (HEAP holds at all times; I1 and 12 hold after
S4 and before S5; k is a program variable):

HEAP = (Yh,p:h € heap, : heap,.top().value > h.value)
I1 = (Vi,p:Qlkl.lo, < i < Q[k].hi, : (i, mazx.(p,i)) € heap,)
12 = (Yp::Q[kl.lo, < heapy.top().interval < Q[k].hi,)

HEAP is an inherent property of heaps: the top element, heap.top(), is the maximum element
in the heap. Heaps are designed to efficiently maintain the maximum element of an ordered set.
Statements S1 and S2 ensure 11, which states that in the k** iteration of the for loop, all intervals in
the sequences defined by ()[k] are represented in the heaps. Statements S3 and S4 ensure 12, which
states that the top of heap, is in the sequence defined by @Q[k]. The text of the check function is
shown in figure 5 and theorem 2 proves its correctness.

Theorem 2 There exists a value for program variable k such that at statement S5 (heaps.top().value+
heaps.top().value > K) if and only if (Jo1,02:01 € 51 A 02 €S2 A 01| 02 :01.2 4+ 03.2 > K)

Proof:

Proof of = : Let (i, mazz.(1,7)) = heapy.top() and (j, mazz.(2,j)) = heaps.top().

By lemma 3, it suffices to show that (1,7)[|(2,). By 12 we know that Q[k].loy < i < Q[k].hiy and
Q[k].loy <t < Q[k].ht1. Then by lemma 4 we know that (1,7)[|(2, 7).

Proof of < : Assume (Jo1,02:01 € 51 A 02 € 52 A 01| 02:01.2 4+ 03.2 > K).
By lemma 3 we know (3¢, : (1,2)]| (2,7) : mazz.(1,7) + mazz.(2,j) > K). Referring to lemma 4,
if the K FY interval is in P; then let @ = ()1 and let k£ equal the number of messages received at
Py before KEY. Likewise for K'EY in P,. Then Q[k] corresponds to K EFY. Then by lemma 4
Qlk]loy < @ < Q[k].hiy and Q[k].loz < j < Q[k].hiz. By invariant I1, (i, mazz.(1,)) is in heapy,
and (j,mazx.(2,7)) is in heapy. And by invariant HEAP, heap;.top().value > mazz.(1,7), and
heaps.top().value > maxz.(2,7). Thus in iteration k, heapy.top().value + heaps.top().value > K.
]

4.6.1 Overhead and Complexity

If we consider each record written to a trace file to be a debug message then the message complexity
analysis is identical to the decentralized algorithm (except that the debug messages have a different
destination).

Py and P; do not need to maintain mazz.(-,-), thus the only memory overhead for each appli-
cation processes is the 4 integers needed for the matrix clock.

The computation overhead consists of monitoring the local variables. The rest of the compu-
tation is offloaded to the checker process which uses the following data: Q1[1...R4], Q2[1...Rs],
mazz.(1,7) for 1 < i < Ay, and mazz.(2,7) for 1 < j < Az. Recall from section 4.5.1 that R; is
the number of messages received by P; and A; equals R; plus the number of messages sent by F; .

15

Figure 5: Check function used in centralized algorithm for two integer variables.

function check(Q[1...R))
ny = 1; ng :=1;
for £ :=1to R do
S1: while (n; < Q[k].hi1) do
heapy.insert((ny, mazz.(1,n1)));
ny :=nq + 1;
end_while
S2: while (ny < Q[k].hiz) do
heaps.insert((ng, mazz.(2,n3)));
ng 1= ng + 1;
end_while
S3: while (heap;.top().interval < Q[k].loy) do
heapy.removetop();
end_while
S4: while (heaps.top().interval < Q[k].log) do
heaps.removetop();
end_while
S5: if (heapy.top().value + heaps.top().value > K) then
return TRU F;
end _if
end _for
return FALSF;
end_function

16

Consider the call check(Q1[1...R4]). On a heap of N elements, insert() and removetop()
each cost ©(lg N) and top() costs O(1). Each element of mazz.(1,-) is inserted at most once
and removed at most once from heap; for a total cost of ©(A;lg Ay). Similarly, the total cost of
operations on heaps is ©(Azlg Az). The outer loop executes Ry times but is added to the cost
of the heap operations since the heap operations are spread out through all Rq iterations. Thus
the total cost of check(Q1[1...R1])is O(Ry + A1 lg A1 + Az lg A3). Since Ry < Ay, this simplifies
to O(Alg A) where A = max(Ay, Az). Since check is only called twice, the total complexity is
O(Alg A).

4.7 Generalization

In this section, let o; represent a state in 5;. The algorithm given in this section for two integer
variables detects the predicate (Joq,03 : 01 || 02 : 01.2 + 02.2 > K). Our approach was to compute
the maximum values of o1.z and 05.2 and compare their sum to K. Since + distributes over max
(i.e., a + max(b,c) = max(a + b,a + ¢)), this is equivalent to computing

(maxoy,03: 01 || 03 : 01.2 + 02.2)

and comparing it to K. The algorithm presented in this paper repeatedly calculates the above
expression for different segments of a run; due to the idempotency of max it could be easily
modified to determine the value of the expression for the entire run. The above expression uses
max and + over integers. This can be generalized to two operators, T and &, over a domain D
which meet the following requirements:

Domain D

Addition 1:DxDw—D

Multiplication ©:DXxDw—D

Commutativity e« Tb=5b7a

Associativity alble)y=(alb)]c
Idempotency ala=a

Distributivity a@® (bl¢)=(a®b) T (a®c)
Unit Element (Ja:a € D:beD =alb=ua)

Let 0;.x denote the value of a variable & with domain D in state o; € §5;. Then our algorithm
calculates

(1 01,0201 || 02 :01.2 B 02.2)
This generalization is very useful as shown by the following examples.
Example 1 (D,1,®):= (Integers, max, +).

The resulting calculation is (maxoy,02 : 01 || 03 : 01.¢ + 03.2). This is the construction used in
the presentation of the algorithm.

Example 2 (D,],$):= (Reals which are greater than or equal to 1.0, max, *).
The resulting calculation is (maxoy,02 @ 01 || 02 : 01.2 % 03.¢) which is the maximum value of
01.% * 09.¢ in any global state.

17

Example 3 (D,1,%):= ({1, F}, v, A).
The resulting calculation is (V 01,02 @ 01 || 02 : 61.2 A og.2). This is equivalent to weak
conjunction [GW94] and “possibly o1.2 A o9.2”7 [CMI1].

Example 4 (D,1,$):= ({1, F}, A, V).
The resulting calculation is (A 01,02 : 01 || 03 : 01.2¢ V 03.2). This is the dual of example 3 and
could be called strong disjunction: in every cut either oy.x or oq.x is true.

Example 5 (D,1,®):= ({1, F}, A, A).
The resulting calculation is (A 01,02 : 01 || 02 : 61.@¢ A 03.2) which states that both 0y.2 and oy.2
are invariant.

5 N Boolean Variables

In this section we consider the case when there are N Boolean variables at N processes and we
wish to determine if there exists a global state in which at least K of these N variables are true.
Let x; denote the boolean variable at process ¢. If we remove all states ¢ from 5; such that o.z; is
false, then we have the reduced set of states at process ¢:

R, ={oloc €x; N o.2;}

We define (R, —) to be the poset which results from taking the union of all R;.

The problem of finding a global state in 5 such that at least K of the variables z; are true is
equivalent to finding a cut, or antichain, in (R, —) of size at least K. Thus the (revised) problem
statement for this section is to determine if the following holds for a given execution:

(Je:ce Cle> K) (PS2)

where C refers to the set of all cuts in the reduced poset (R, —).

The techniques used to solve PS2 are based on Dilworth’s theorem [Dil50] which shows that the
maximum size antichain in a poset equals the minimum number of chains which cover the poset. It
is known that if the poset is given in the form of an acyclic graph, then max-flow techniques [Law76]
can be used to compute the width [Atk87]. However, to the best of our knowledge, the number of
comparisons required to compute the width is not known if the poset is given in a chain-decomposed
form. Two special cases of this problem (k=2 and k = n) are solved in [Gar92].

This is one of the fundamental problems in deposets. It has many applications in distributed
debugging. For example, we use the solution of the above problem to detect the unstable predicate
of the form

1+ 20+ ...ty > K

where x; € {0,1} is a variable in the process P; for all i. As an example, consider the K-mutual
exclusion problem. This problem requires a synchronization protocol such that no more than K
processes are ever in the critical section. This is useful if the number of resources (for example, the
number of copies for a copyrighted program) in a network is constrained to be at most K. If z;
represents the fact that process P; is in the critical section, then detection of the global predicate
1+ 29+ ...+ xny > K + 1is equivalent to detection of violation of K-mutual exclusion.

18

5.1 Algorithm

We are given R already partitioned into N chains, R;, and we need to determine if there exists
an antichain of size at least K. It follows from Dilworth’s theorem that R can be partitioned into
K — 1 chains if and only if there does not exist an antichain of size at least K. Therefore, we can
solve PS2 by trying to partition R into K — 1 chains. If we succeed then PS2 is false. If we fail
then PS2 is true.

So our problem is now reduced to taking the N chains R;, 1 < ¢ < N, and trying to merge
them into K — 1 chains. The approach we take is to choose K chains and try to merge them into
K —1 chains. After this step we have N — 1 chains left. We do this step (“choose K chains, merge
into K — 1 chains”) N — K + 1 times. If we fail on any iteration, then R could not be partitioned
into K — 1 chains. Thus there exists an antichain ¢ such that |¢[> K. If we succeed then we have
reduced R to K — 1 chains and there does not exist an antichain ¢ such that |¢|> K.

The algorithm uses queues to represent chains. Fach queue is stored in increasing order so the
head of a queue is the smallest element in the queue. An element represents a state, and a smaller
state “happens before” a larger state (this can be determined by comparing the vector clocks of
the states). The algorithm uses the following operations on queues (¢ represents a queue):

insert(q,e) insert element e in ¢

deletehead(q) remove the head of ¢

empty(q) true if ¢ is empty

head(q) return the first item in ¢, or a maximal value if ¢ is empty

The algorithm FindAntiChain (figure 6) calls the Merge function N — K + 1 times. The
Merge function takes K queues as input and returns K queues: Q1,...,Qx. If Q) is returned
empty, then the merge was successful (the result is in Q1,...,Qx_1) and Merge continues to the
next iteration. If ¢k is not empty then an antichain has been found and is given by the heads of
the returned queues.

There are two important decisions in this algorithm. The first is how to choose the K chains
for the merge operation. The answer follows from classical merge techniques used for sorting. We
choose the chains which have been merged the fewest number of times. This is why the algorithm
rotates lust after each merge operation. This reduces the number of comparisons required by the
algorithm.

The second and more important decision is how to implement Merge. The merge is performed
by repeatedly removing an element from one of the K input chains and inserting it in one of the
K —1 output chains. Output chain () is only used if Merge fails, thus when we say “output chain”
we are only referring the the chains which contain successfully merged output: ¢4,...,Qx_1. We
move the smallest elements first (that is, the ones which represent states that occurred earlier in
the computation). An element will be moved from the input to the output if it is smaller than an
element on the head of some other chain. The problem is deciding on which output chain to place
the element.

Note that this is trivial for K = 2, when two input queues are merged into a single output
queue as is done in the merge sort. For K > 2, the number of output queues is greater than one,
and the algorithm needs to decide which output queue the element needs to be inserted in. The
simple strategy of inserting the element in any output queue does not work as shown in figure 8
where there are three input queues (P, P, P3) which need to be merged into two output queues

19

function FindAntiChain (K:integer, Qlist : list of queues of vector clocks) : antichain; begin
assume: 1 < K <|Qlist]
assume: ¢ € Qlist = —empty(q)
for (n :=|Qlist|;n > K;n:=n—1) do
(p1,.,PN) 1= Qlist;
(q1,- -, qx) := Merge(py, ..., pr);

if (empty(qr))
then Qlist := (DK 41y Prs @1y oy Qk—1); rotate list
else return ({head(q;) |1 <i< K});
end_if
end_for
return(();

end_function

Figure 6: Function that determines if an antichain of size K exists in the poset encoded by the
queues of vectors listed in Qlist

(Q1,Q2). Suppose we use a simple strategy which results in the operations listed below. Initially
()1 and) are empty. Each operation moves an element from the head of Py, P, or P53 to one of
the two output queues. Note that we can only move the head of P; if it is smaller than the the
head of some other queue P;. The operations we perform are:

1. (1,0,0)< (2,0,0). So move (1,0,0) to some output queue, say Q.

2. (0,1,0) < (1,1,0). So move (0,1,0) to some output queue, say ()s.
3. (1,1,0) < (2,2,0). So move (1,1,0) to some output queue, say (1.
4. (1,2,0)< (2,2,0). So move (1,2,0) to some output queue, say (1.
5.(2,0,0) < (2,2,0). So move (1,2,0) to some output queue, but which one?

Notice that we have worked ourselves into a corner because when we decide to move (2,0,0) there is
no output queue in which we can insert it. The output queues must be sorted since they represent
chains. This is done by inserting the elements in increasing order, but (2,0,0) is not larger than
the tails of any of the output queues. Thus we have nowhere to insert it.

This situation does not imply that the input queues cannot be merged. In fact in this case they
can be merged into two queues as shown on the right side of figure 8. It merely implies that we did
not intelligently insert the elements in the output queues. The function Find@ chooses the output
queue without running into this problem. Discussion of Find@ is deferred until after we describe
the details of the Merge function.

The Merge function compares the heads of each input queue with the heads of all other queues.
Whenever it finds a queue whose head is less than the head of another queue, it marks the smaller
of the two to be deleted from its input queue and inserted in one of the output queues. It repeats
this process until no elements can be deleted from an input queue. This occurs when the heads of

20

all the queues are incomparable, that is, they form an antichain. Note that it may be the case that
some input queues are empty. If none are empty, then we have found an antichain of size K. The
heads of the input queues form the antichain. If one or more are empty, the merge operation (which
is not complete yet) will be successful. All that is left to do is to take the non-empty input queues
and append them to the appropriate output queues. This is done by the FinishMerge function
whose implementation is not described because it is straight forward.

The Merge algorithm is shown in figure 7. Note that it only compares the heads of queues
which have not been compared earlier. It keeps track of this in the variable ac, which is a set of
indices indicating those input queues whose heads are known to form an antichain. Initially ac is
empty. The Merge algorithm terminates when either ac has K elements or one of the input queues
is empty.

The first for loop in Merge compares the heads of all queues which are not already known to
form an antichain. That is, we compare each queue not in ac to every other queue. This avoids
comparing two queues which are already in ac. Suppose e¢; = head(F;) and e; = head(P;) and
inside the first for loop it is determined that e; < e;. This implies that e; is less than all elements
in P;. Thus, e; cannot be in an antichain with any element in P; and therefore cannot be in any
antichain of size K which is a subset of the union of the input queues. Thus, we can safely move ¢;
to an output queue, which eliminates it from further consideration. The set moved records which
elements will be moved from an input queue to an output queue. The array bigger records the
larger of the two elements which were compared. In this example, bigger[i] equals j, implying that
that the head of P; is bigger than the head of P;. This information is used by Find@) to choose the
output queue where the head of P; will be inserted.

The second for loop just moves all elements in move to an output queue. Consider the state of
the program just before the second for loop begins. If the head, e, of an input queue is not marked
to be moved, then e is not less than the head of any other input queue or else it would have been
marked to be moved. This implies that any two elements which are not moved are concurrent,
which in turn implies that set of heads which are are not moved form an antichain. This antichain
is recorded in ac for the next iteration of the while loop.

We now return to describing how Find() works. The formal description of Find(@) is shown in
figure 10. Given the queue which contains the element to be moved, and the queue with which
this element was compared (it must be smaller than the head of another queue in order to move
it), the procedure Find@ determines which output queue to use. The Find@Q function takes three

parameters:
G : an undirected graph called queue insert graph
¢ : theinput queue from which the element z is to be deleted
j : the queue in which all elements are bigger than x

A “queue insert graph” is used to deduce the queue in which the next element is inserted. It
has K vertices and exactly K — 1 edges. An edge corresponds to an output queue and a vertex
corresponds to an input queue. Therefore, each edge (7, j) has a label, label(¢,7) € {1,..., K — 1},
which identifies the output queue it corresponds with. No labels are duplicated in the graph, thus
each output queue is represented exactly once. Similarly, each input queue is represented exactly
once.

An edge (1, 7) between vertex 7 and vertex j means that the heads of P; and P; are both bigger
than the tail of Qjapei(i ;). The goal is to ensure that for any input queue (i.e. any vertex) there

21

function Merge(Py, ..., Px:queues) : Qq,...,Qk: queues;
const all = {1,...K};
var ac,move: subsets of all;
bigger: array[l..k] of 1..k;
G: initially any acyclic graph on k-1 vertices;
begin
ac := ()
while (lac|# K Vv —(3i:1 < i< K :empty(F;))) do
move := {};
fori € all - ac and j € all do
if head(P;) < head(P;) then
move := move U {i};
bigger[i] := j;
end_if;
if head(P;) < head(P;) then
move := move U {j};
bigger(j] := i;
end_if;
end _for
for i in move do
dest := FindQ(G,i,bigger]i]);
x := deletehead(F;)
insert(Q) dest, X);
end _for
ac := all - move;
end_while
if (3¢ :: empty(F;)) then
FinishMerge(G, P1, ... Pr,Q1,...QKx-1);

R1: return (Q1,...,Qx-1,0);
else

R2: return (Py,..., Pg);
end _if

end_function

Figure 7: Generalized Merge Procedure for deposets

22

P1 P2 P3 P1 P2 P3

a:(1,0,0) d:(0,1,0) £:(2,0,0) £:(2,0,0)
b:(1,1,0) e:(2,2,0) g:(2,3,0) e:(2,2,0) g:(2,3,0)
c:(1,2,0) Q1 Q2
Q1 Q2 Q1 Q2 a:(1,0,0) «¢:(1,2,0)
a:(1,0,0) d:(0,1,0) £:(2,0,0) b:(1,1,0)
b:(1,1,0) e:(2,2,0) d:(0,1,0)
c:(1,2,0) g:(2,3,0)

(A) (B) (€)

Figure 8: An example of a failed naive strategy. Diagram A shows the initial configuration. Diagram
B shows the point at which the strategy fails: there is no where to insert (2,0,0). Diagram C shows
that this example can be merged into two chains.

exists an output queue (i.e. an edge) in which the head of input queue can be inserted. This
constraint is equivalent to the requirement that every vertex has at least one edge adjacent to it. It
is also equivalent to the requirement that the graph is a tree (i.e., acyclic) since there are K nodes
and K — 1 edges.

FindQ uses the queue insert graph as follows. Consider the function call FindQ(G,14,7). The
element to be deleted is e; = head(F;), and it is smaller than e; = head(F;) (i.e., bigger[i] = 7).
Find@ adds the edge (7,j) to . Since G was a tree before adding edge (4, j), it now contains
exactly one cycle which includes (i,7). Let (¢, k) be the other edge incident on vertex ¢ which is
part of this cycle (it is possible that k = j). FindQ deletes (¢,k) and adds (7, 7), and then sets the
label of (i,7) equal to the label of (¢,k). Find@Q then returns the label associated with the new
edge. This label indicates which queue e; will be inserted in.

Q1 Q2
a:(1,0,0) d:(0,1,0)

Q2

Figure 9: Using a queue insert graph to find the output queue

Ql

23

function FindQ(G: graph; i,j:1..K) : label;
add edge (7,j) to G
(i, k) := the edge such that (7,7) and (¢, k) are part of the same cycle in G
remove edge (7, k) from G
label(¢, 7) := label(, k);
return label(7, j);
end_function

Figure 10: Function that finds which output queue to insert an element which is being deleted from
the head of input queue P;. The chosen output queue is Qapei(;,j)-

Consider our previous example with the naive algorithm. It made a bad decision when it placed
element (1,1,0) on 1. Figure 9 shows the state of the queues and of the graph before and after
the correct decision made by Find@). Element (1,1,0)is in P; and is less than the head of Ps.
Thus the edge (1,2) is added to the graph (dashed line in figure 9). It forms a cycle with the other
edge (1,2) which is labeled with (2. We copy this label to the new edge, delete the old edge and
return ()2, indicating that (1,1,0) should be inserted in Q5.

An important invariant of the queue insert graph is that given any edge (7, k) and the output
queue associated with it, the queue is empty or the tail of the queue is less than all elements in
input queues P; and Py. This is stated and proven in lemma 5 and is used later to show that the
output queues are always sorted.

Lemma 5 (i,k) € G = (empty(Qiapeiiry) V (Ve:e € PiU Py tail(Qaperiny) <€))

Proof: Initially, the lemma holds since all output queues are empty. Now assume that the lemma
holds and we need to insert e; = head(F;) into output queue @; where | = FindQ(G,1,j) and
J = bigger[i]. Since j = bigger[i], we know e; < head(P;). Since P; and P; are sorted, we know
e; < e for any element e € P; U P,. After moving e; to ¢y, the tail of ¢J; will be e; and the lemma
will still hold. [

The merge operation must produce sorted output queues. Lemma 6 proves that our algorithm
meets this requirement.

Lemma 6 If the elements are inserted in the output queues using FindQ, then all output queues
are always sorted.

Proof: Initially all output queues are empty. Now assume each output queue is sorted and we
need to move e¢; = head(P;) to an output queue. The Find@) procedure will return Qlabel(i,j)» Where
(i,7) is some edge in . By lemma 5, the tail of this queue is less than or equal to e;. Thus after
inserting e; in ¢, ¢; is still sorted. No other output queues are modified, thus the lemma still

holds. n

Lemma 7 Suppose (Q1,...Qk) = Merge(Py,..., Px) and each queue P; is sorted. Then
(A) empty(Qr) = P1,...Px have been merged into K — 1 sorted queues Q1,...Qx_1.
(B) —empty(Qk) = {head(P;) |1 <t < K} is an antichain of size K.
(C) —empty(Qr) <= there exists an antichain of size K.

24

Proof: We use the following invariant of the while loop:
it €ac N jEac N —empty(F;) N —empty(P;) = head(FP;)||head(F;).

(A): Suppose empty(Qr). Then Merge returned via statement R1 and just before returning
there existed ¢ such that empty(P;). Let Px be the empty one. Then all elements reside in one
of P,...Pg_1 orQq,...Q0k_1. Thus after FinishMerge all elements are in ¢)1,...Q x_1 which by
lemma 6 are sorted. Thus the original input queues have been merged into K — 1 output queues.

(B): Suppose —empty(Qx). Then Merge returned via R2 and just before returning there was
no ¢ such that empty(P;). Then by the invariant and since ac = all we know head(F;) is concurrent
with the head of every other P;. Thus {head(F;)| 1 < ¢ < K} is an antichain of size K.

(C): Follows from (A), (B), and Dilworth’s theorem. L]

Theorem 3 There exists an antichain of size K in Uy <;< P; if and only if FindAntiChain((P, ... Px))
returns an antichain of size K.

Proof: Assume there exists an antichain which satisfies the left hand side. Then by Dilworth’s
result, Uj<;<x P cannot be merged into K" — 1 chains. Thus by lemma 7, Merge will return an
antichain of size K.

Now assume there does not exist such an antichain. Then Uj<;<x FP; can be merged in K — 1
chains and Merge will return with Pg empty on iteration N — K + 1 of the while loop, which will
cause FindAntiChain to return the empty set. [

5.2 Complexity

In this section, we analyze the complexity based on the number of comparisons required by the
algorithm (i.e., the number of times the heads of two queues are compared in the Merge function. We
prove an upper bound and a lower bound. The lower bound is proven by defining an adversary which
produces a set of input queues that forces the merge algorithm to use at least K M N comparisons,
where M is the number of elements in the largest input queue.

5.2.1 An Upper Bound

Theorem 4 The mazimum number of comparisons required by the above algorithm is K M N(K +

log, N).

Proof: We first calculate the complexity of merging K queues into K — 1 queues. From the
Merge algorithm it is clear that each element must be in ac before it passes to an output queue
and it requires K comparisons to be admitted to ac. Thus, if the total number of elements to be
merged is [, then [elements must pass through ac on their way to the output queue for a total of
K comparisons.

Initially { < KM but the queues grow for each successive call to Merge. At this point, our
technique of rotating the list of queues to be merged is useful. Let [evel.t denote the maximum
number of merge operations that any element in P; has participated in. The algorithm rotates
Qlist to ensure that in each iteration the K queues with the smallest level numbers will be merged.
Initially, there are N queues at level 0. Each of the first N/ K merge operations reduces K queues
with level 0 to K — 1 queues with level 1. This pattern continues until there are 2K queues left, at

25

which time the maximum level will be log, N where p is the reducing factor and equals K /(K —1).
Merging the remaining 2K queues into K — 1 adds K more levels. Thus the maximum level of any
final output queue is K +/log,N. Thus, there are at most M N elements, each of which participates
in at most K'+log, N merge operations at a cost of ' comparisons per element per merge. Therefore
the maximum number of comparisons required by the above algorithm is K M N (K + log,N). =

Note that for the special case when K = 2, the complexity is O(mnlog N). This is shown
to be optimal in [Gar92]. Further, if M = 1 and K = 2, this reduces to the well-known merge
sort algorithm with the complexity of O(N log N) comparisons. Another noteworthy special case
is when K = N. In this case, the complexity becomes O(M N?) which is also known to be optimal
[Gar92].

5.2.2 A Lower Bound

In this section, we provide a lower bound on the number of comparisons required by any algorithm
to solve the above problem.

Proposition 1 Let (P, <) be any partially ordered finite set of size MN. We are given a decompo-
sition of P into N sets Py, ...Py such that P; is a chain of size M. Any algorithm which determines
if there exists an anti-chain of size K must make at least Q(K M N') comparisons.

Proof: We use an adversary argument. Let P;[s] denote the s element in the queue P;. The
adversary will give the algorithm P;’s with the following characteristic:

(Vi, 7,5 Pi[s] < P[s +1])
Formally, on being asked to compare P;[s] and P;[t], (s # t) the adversary uses:

if (s < t) then return P;[s] < P;[t]
if (¢ < s) then return P;[t] < P;[s]

Thus, the above problem reduces to M independent instances of the problem which checks if a poset
of N elements has a subset of size K containing pairwise incomparable elements. If the algorithm
does not completely solve one instance then the adversary chooses that instance to show a poset
consistent with all its answers but different in the final outcome.

We now show that the number of comparisons to determine whether any poset of size N has an
anti-chain of size K is at least N(K —1)/2. The adversary will give that poset to the algorithm which
has either K — 1 or K chains such that any pair of elements in different chains are incomparable.
In other words, the poset is a simple union of either K — 1 or K chains. The adversary keeps a
table numg such that numg[z] denotes the number of questions asked about the element 2. The
algorithm for the adversary is shown in Fig. 11.

If the algorithm does not ask K — 1 questions about any element z, the adversary can produce
a poset inconsistent with the answer of the algorithm. If the algorithm answered that no anti-chain
of size K exists then the adversary can produce an anti-chain which includes one element from
each of the K — 1 chains and the element z. On the other hand, if the algorithm answered that an
anti-chain exists, then the adversary could put z and all other elements for which K — 1 questions
have not been asked in K — 1 chains.

26

var numq[N |:integer initially 0; number of questions asked about element x
function compare (x,y:elements)

numq[x]++; numq[y]++;

if (numglz] = K — 1) then

chain[z] := chain in which no element has been compared with z so far;
end_if
if (numgqly] = K — 1) then

chain[y] := chain in which no element has been compared with y so far;
end_if

if (numglz] < K — 1) or (numg[y] < K — 1) then
return z||y;

end_if

if (chain[z] # chain[y]) then
return z||y;

else
if « inserted earlier than y then return (2 < y);
else return (y < z);
end_if

end_if

end_function

Figure 11: Algorithm for the Adversary

27

Since each comparison involves two elements, we get that the algorithm must ask at least
N(K —1)/2 questions for each level. Thus, overall any algorithm must make at least M N(K —1)/2
comparisons. [

It is easy to see that the lower bound is not tight. If we choose M = 1 and K = 2, we get the
lower bound of N/2. However, the lower bound of N log N is well known for this case.

6 Conclusion

In this paper we developed algorithms for monitoring the value of a global function of the form
T1+ a9+ ...2xN Where z; is a variable local to process 7. We monitor an execution of a distributed
program to determine if the value of the function exceeds some constant K. More precisely, we
determine if there exists a global state (i.e., a set of local states which are mutually concurrent)
such that >~ ., 2; > K. The ability to monitor functions like this is useful for debugging, testing
and analyzing distributed programs.

We consider two special cases of this problem. The first case imposes the following restrictions:
each x; is an integer variable, and N = 2. Notice that there can be more than two processes, but
only two can contribute local variables to the global function. The second case restricts z; to take
on values from the set {0,1}, and does not restrict N.

For the case of two integer variables, we presented a centralized and a decentralized algorithm,
proved its correctness and analyzed its complexity. The algorithm requires four integers to be
piggybacked onto messages generated by the underlying program (i.e., application messages). In
addition, the monitoring algorithm generates one debug message per application message received
at one of the two processes contributing variables to the global function. The computational
complexity for the centralized algorithm is ©(A Ig A) where A is the number of messages sent plus
the number received at the two contributing processes.

For the case of N Boolean variables, we present and prove an algorithm which has an upper
bound complexity of KM N [log((N — K)/(K —1))] where M is the number of times z; changed
value in the computation. We also presented a lower bound of Q(KMN).

There are several open problems relating to this research. A general problem is: “What classes of
global functions can be efficiently monitored on distributed programs?” In this paper we addressed
special cases of one class of global functions. Another more specific problem is: “Can we efficiently
detect more general cases than those considered in this paper?” For example, can these results
be extended to consider N integer variables at N processes. Another area of future research is
determining how the properties of global functions affect the ability to monitor it. For example,
for in this paper we identified the property “addition distributes over max” as being important to
enable efficient monitoring of the global function. In this paper we have only touched on this line
of reasoning, but we believe it merits further study.

7 Acknowledgments

We are grateful to J. Roger Mitchell, Ken Marzullo, Michel Raynal and Jong-Deok Choi for helpful
comments on earlier versions of this paper.

28

References

[AtkS7]

[BMO3]

[Bou87]

[BRO4]

[CL85]

[CM91]

[Dil50]

[DJR93]

[Fid89]

[FRGT94]

[Gar92]

[GCKM94]

M. D. Atkinson. The complexity of orders. In I. Rival, editor, Algorithms and Orders,
volume 255 of NATO ASI Series, Mathematical and Physical Sciences, pages 195-230.
1987.

0. Babaoglu and K. Marzullo. Consistent global states of distributed systems: fun-
damental concepts and mechanisms, in Distributed Systems, chapter 4. ACM Press,
Frontier Series. (S.J. Mullender Ed.), 1993.

L. Bouge. Repeated snapshots in distributed systems with synchronous communication
and their implementation in CSP. Theoretical Computer Science, 49:145-169, 1987.

0. Babaoglu and M. Raynal. Specification and detection of behavioral patterns in
distributed computations. In Proc. of jth IFIP WG 10.4 Int. Conference on Dependable
Computing for Critical Applications, San Diego, CA, January 1994. Springer Verlag
Series in Dependable Computing.

K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February
1985.

R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of the
Workshop on Parallel and Distributed Debugging, pages 163-173, Santa Cruz, CA, May
1991. ACM/ONR.

R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. Math. 51,
pages 161-166, 1950.

C. Diehl, C. Jard, and J. X. Rampon. Reachability analysis on distributed executions.
In Theory and Practice of Software Development, pages 629-643. TAPSOFT, Springer
Verlag, LNCS 668 (Gaudel and Jouannaud editors), April 1993.

C. J. Fidge. Partial orders for parallel debugging. Proceedings of the ACM SIG-
PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published in ACM
SIGPLAN Notices, 24(1):183-194, January 1989.

E. Fromentin, M. Raynal, V.K. Garg, and A.l. Tomlinson. On the fly testing of regular
patterns in distributed computations. In Proc of the 23"® International Conference on
Parallel Processing, St. Charles, 1L, August 1994.

V.K. Garg. Some optimal algorithms for decomposed partially ordered sets. Informa-
tion Processing Letters, 44:39-43, November 1992.

V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Detecting conjunctive channel
predicates in a distribute programming environment. Technical Report TR-PDS-94-02,
Parallel and Distributed Systems Laboratory, The University of Texas at Austin, 1994.

29

[GTFR94] V.K. Garg, A.l. Tomlinson, E. Fromentin, and M. Raynal. An efficient decentralized

[GW92]

[GW94]

[HPRO3]

[JJIR94]

[Lam78]

[Law76]

[Mat89]

[MCS8S]

[Ray92]

[SKS6]

[TG93]

algorithm for detecting properties of distributed computations. Technical Report TR-
PDS-94-04, Parallel and Distributed Systems Laboratory, The University of Texas at
Austin, 1994.

V.K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs.
In Proc. of 12th Conference on the Foundations of Software Technology & Theoretical
Computer Science, pages 253-264. Springer Verlag, December 1992. Lecture Notes in
Computer Science 652.

V.K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed pro-
grams. [EFFE Transactions on Parallel and Distributed Systems, 5(3):299-307, March
1994.

M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic sequences of predicates in
distributed computations. In Proc. of the Workshop on Parallel and Distributed De-
bugging, pages 32-42, San Diego, CA, May 1993. ACM/ONR. (Reprinted in SIGPLAN
Notices, Dec. 1993).

C. Jard, T. Jeron, G.V. Jourdan, and J.X. Rampon. A general approach to trace-
checking in distributed computing systems. In Proc. of the International Conference
on Distributed Computing Systems, Poznan, Poland, June 1994.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558-565, July 1978.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

F. Mattern. Virtual time and global states of distributed systems. In Parallel and Dis-
tributed Algorithms: Proc. of the International Workshop on Parallel and Distributed
Algorithms, pages 215-226. Elsevier Science Publishers B.V. (North-Holland), 1989.

B.P. Miller and J. Choi. Breakpoints and halting in distributed programs. In Proc.
of the 8" International Conference on Distributed Computing Systems, pages 316-323,
San Jose, CA, July 1988. IEEE.

M. Raynal. About logical clocks for distributed systems. ACM Operating Systems
Review, 26(1):41-48, 1992.

M. Spezialetti and P. Kearns. Efficient distributed snapshots. In Proc. of the 6"
International Conference on Distributed Computing Systems, pages 382-388, 1986.

Al Tomlinson and V.K. Garg. Detecting relational global predicates in distributed
systems. In Proc. of the Workshop on Parallel and Distributed Debugging, San Diego,
CA, May 1993. ACM/ONR.

30

