
Monitoring Functions on Global States of Distributed Programs �Alexander I. Tomlinson Vijay K. Gargalext@pine.ece.utexas.edu garg@ece.utexas.eduDepartment of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, Texas 78712June 10, 1994AbstractThe domain of a global function is the set of all global states of an execution of adistributed program. We show how to monitor a program in order to determine if thereexists a global state in which the sum x1+x2+ : : :+xN exceeds some constant K, wherexi is de�ned in process i. We examine the cases where xi is an integer variable and wherexi is a boolean variable. For both cases we provide algorithms, prove their correctnessand analyze their complexity.1 IntroductionAs a distributed program executes, each process proceeds through a sequence of local states. Theset S of all local states is partially ordered by Lamport's happens before relation[Lam78], denoted by!. A global state is a subset of S in which no two elements are ordered by!. Given a global statec of some execution, it is impossible to determine if c actually occurred in an execution. However, itis known that c is consistent with some global state that did occur in the execution [CL85, Mat89].In other words, it is possible that c occurred but there is no way to determine if it actually did.A global function is a function whose domain is the set of all global states of a given execution.In this paper we present algorithms for monitoring the value of a global function in a distributedprogram while the program is executing. In particular, we show how to monitor a global functionf in order to detect, if for any global state c in the underlying program execution, f(c) exceedssome constant K. Without making restrictions on f , this problem is intractable. Therefore wewill consider the case where f is a sum of local variables distributed among the processes in thecomputation.Let xi denote a variable at process Pi, 1 � i � N , whose value is in domain D. We assume thatxi has a de�ned value in every state at Pi. The problem we consider in this paper is to determineif there exists a global state such that the sum x1 + x2+ : : :+ xN is greater than or equal to someconstant K 2 D. We consider two cases of this problem. The �rst case is for two integer variablesand N processes; we refer to this case as \Two integer variables". The second case is for N booleanvariables and N processes, which we refer to as \N Boolean variables".�Research supported in part by NSF Grant CCR 9110605, TRW faculty assistantship award, a grant from IBM,and an MCD University Fellowship.

An example of the �rst case is x1 + x2 > K, where each variable xi is an integer. For this casewe present a decentralized and centralized algorithm which determines if there exists a global state(in a given execution) such that x1 + x2 > K. Following this, we generalize D, +, and > so thatwe may use the same results for detecting any of the following for a given execution:� x1 + x2 > K is true in some global state (xi 2 Reals).� x1 � x2 > K is true in some global state (xi 2 Reals, xi � 1).� x1 ^ x2 is true in all global states (xi boolean).� x1 _ x2 is true in all global states (xi boolean).� x1 ^ x2 is true in some global state (xi boolean).In the second case, N Boolean variables, we determine if there exists a global state such that atleast K of these N variables are true. This has many applications, such as the K-mutual exclusionproblem, which requires that no more than K processes ever have access to some resource. Ifboolean variable xi is true when process Pi has access to the resource, then the global functionx1 + x2 + : : :+ xN > K can be used to monitor an executing program to detect if there is a globalstate which violates K-mutual exclusion.In section 2 we survey related work and describe how our research relates to other research inthe �eld. In section 3 we present our model of distributed computation which is based on Lamport'shappens before relation and partially ordered sets. The next two sections describe our research oneach of the two cases of global functions that we consider in this paper: \Two Integer Variables"and \N Boolean Variables". For each case, we de�ne the problem, give algorithms to solve theproblem, prove the correctness of the algorithms and analyze their complexity.2 Related WorkThe analysis of the executions of distributed programs has been an active area of research forseveral years. A program can be observed during execution in order to detect a behavior whichhas been previously speci�ed. A behavior speci�cation evaluates to either true or false for a givenprogram execution, hence they are often referred to as predicates, or breakpoints.Before reviewing related research, we present a taxonomy of behavioral predicates. Behaviorspeci�cations can be divided into two categories depending on whether or not they are basedon global states. This dichotomy of global-state based and non-global-state based speci�cationscorresponds roughly to safety and progress properties. Those which are based on global states canbe further divided into stable and unstable predicates. The work presented in this paper falls intothe unstable global-state based category.A global-state based behavioral predicate is one which is evaluated on the set of all globalstates in the execution. A good example is mutual exclusion, which can be stated as follows: theredoes not exist a global state such that two processes have access to the same resource (i.e., criticalsection). In fact, invariants are usually interpreted as global-state based. For example, a propertyP is invariant in an execution if it is true in all global states of the execution.Non-global-state based behavioral predicates cannot be evaluated on global states. An exampleof this type is the linked predicate, which can be stated as follows: the property \P then Q" is true2

in an execution if there exists two local states ordered by Lamport's happens before relation suchthat P is true in the �rst state and Q is true in the second. This cannot be evaluated on a globalstate because the two states are not concurrent.Global-state based approaches can be divided further into stable and unstable predicates. Astable predicate stays true once it becomes true while an unstable predicate may oscillate betweentrue and false. An example of a stable predicate is: \each process has received the token at leastonce". Clearly, in any execution, once this predicate becomes true, it stays true. An example of anunstable predicate which would be useful in analyzing an implementation of the two phase commitprotocol is: \all processes are in the ready state".2.1 Global-state based approaches2.1.1 Stable predicatesChandy and Lamport [CL85] invented the global snapshot, which is the basis for almost all sub-sequent research on detecting stable predicates. A global snapshot is a freeze-frame picture ofa distributed computation. The picture corresponds to a global state of the computation withone caveat: the global state is not guaranteed to have occurred. However, it is guaranteed to beconsistent with at least one global state that did occur.Their approach to detecting stable predicates is conceptually simple: take repeated snapshots.Since the predicate is stable, eventually a snapshot will detect the predicate if it ever becomes true.Bouge [Bou87], and Spezialetti and Kearns [SK86] improved the e�ciency of the global snapshotalgorithm when used for repeated snapshots.These approaches do not work for unstable predicates because the predicate may become trueand then false again between two snapshots. An entirely di�erent approach is required for unstablepredicates.2.1.2 Unstable predicatesThe work presented in this paper falls into the category of unstable predicates, which is perhapsthe least explored of the categories reviewed here.Garg and Waldecker [GW94] de�ne a class of unstable predicates called weak conjunctivepredicates. A weak conjunctive predicate consists of a conjunction of local predicates such as(p1 ^ p2 ^ : : : ^ pn), where pi is evaluated in process i. It is de�ned to be true in an executionif there exists a global state in that execution such that the expression evaluates to true. Optimalalgorithms for detecting weak conjunctive predicates appear in [GW94]. In [GCKM94], Garg andChase extend weak conjunctive predicates to include predicates on the state of message channels.Garg and Waldecker [GW92] also de�ne strong conjunctive predicates which, like their weakcounterparts, consist of a conjunction of local predicates, (p1 ^ p2 ^ : : : ^ pn). The predicateevaluates to true (for a particular execution) when every sequence of global states consistent withthe execution contains a global state which satis�es the conjunctive boolean expression. Becausestrong conjunctive predicates depend on the relationship between global states in the computation,one can make an argument that they are not global-state based. However, we classify them asglobal state based because of their close relationship with weak conjunctive predicates. Optimalalgorithms for detecting strong conjunctive predicates appear in [GW92].3

2.2 Non-global-state based approachesA general method for detecting non-global-state based predicates is to construct the lattice as-sociated with a distributed execution [CM91, DJR93] and then analyze it to detect the behav-ior [BM93, BR94, JJJR94]. A node of this lattice represents a possible global state1 of the dis-tributed computation and an edge represents an event that changes the global state of the com-putation. This approach can detect a very broad class of behaviors, including global-state basedpredicates. The drawback is that the cost is high since it requires building a lattice, which hasexponential time complexity in the number of local states in the computation.To avoid the cost of using a lattice, many researchers have de�ned classes of behavioral predicateswhose detection do not require building a lattice. One of the �rst of these was linked predicates,introduced by Miller and Choi [MC88]. Linked predicates describe a causal sequence of local stateswhere each state in the sequence satis�es a speci�c local predicate. The behavior \an occurrenceof local predicate p is causally followed by an occurrence of local predicate q" is an example of alinked predicate. Algorithms for linked predicates appear in [HPR93, MC88].Hur�n et al. [HPR93] generalized linked predicates to a broader class called atomic sequencesof predicates. In this class, occurrences of local predicates can be forbidden between adjacentpredicates in a linked predicate. The example given above for linked predicates could be expandedto include: \q follows p and r never occurs in between" (note that p,q, and r could be evaluated indi�erent processes).In [FRGT94] we introduced regular patterns which are based upon regular expressions. Abehavior is speci�ed by a regular expression of local predicates. For example pq�r is true in acomputation if there exists a sequence of consecutive local states (s1; s2; : : : ; sn) such that p is truein s1, q is true in s2; : : : ; sn�1, and r is true in sn. Note that the states in the sequence need notbelong to the same process { two states are consecutive if they are adjacent in the same process orone sends a message and the other receives it.In [GTFR94] we extended the results of [FRGT94] to introduce a class of behaviors whichinclude regular patterns as a special case. We designed a logic for expressing these propertiesand presented an e�cient decentralized algorithm for detecting formulas in the logic. We alsode�ned a class of algorithms called e�cient passive detection algorithms (EPDA) and showed thatother algorithms in this class cannot detect more than our algorithm. Briey, an EPDA detectsa property of some underlying computation. We use the term passive because the algorithms canonly observe the computation (they cannot initiate or inhibit the sending or receiving of messages;and they cannot alter the control ow of the observed computation).3 Model and NotationWe use the following notation for quanti�ed expressions: (Op FreeVars : Range of FreeVars : Expr).Op can be any commutative associative operator (e.g.,min;[;+). For example (min i : i 2 R : f(i))is the minimum value of f(i) for all i such that i 2 R.Any distributed computation can be modeled as a decomposed partially ordered set (deposet)of process states [Fid89]. A deposet is a partially ordered set (S;;) such that:1. S is partitioned into N sets Si, 1 � i � N .1In contrast with the poset representation, where a node represents a local state.4

2. Each set Si is a total order under some relation ., and . does not relate two elements whichare in di�erent partitions.3. Let ! be the transitive closure of . [;. Then (S;!) is an irreexive partial order.An execution that consists of processes P1; P2 : : :PN can be modeled by a deposet where Si isthe set of local states at Pi which are sequenced by .; the; relation represents the ordering inducedby messages; and ! is Lamport's happens before relation[Lam78]. The concurrency relation on Sis de�ned as ukv = (u 6! v) ^ (v 6! u).Given a local state � 2 S, we denote the value of a variable, say x, in state � by �:x. A globalstate is a subset c � S such that no two elements of c are ordered by !. We de�ne C to be the setof all global states in (S;!). We also use the terms \cut" and \antichain" to refer to an elementof C. For the remainder of this paper, the term \state" refers to a local state. A \chain" is a setof states which are totally ordered by !. For example, each set Si is a chain.If (u ! v) then max(u; v) = v and min(u; v) = u. Since max and min are commutative andassociative, the maximum and minimum element of any chain in (S;!) are well-de�ned. The unitelements of the max and min operators are ? and > respectively. Thus max applied to a zerolength chain returns ?. We require that (8u : u 2 S : ? ! u ^ u! >), and also that ? ! ? and> ! >.The predecessor and successor functions are de�ned as follows for u 2 S and 1 � i � N :pred:u:i = (max v : v 2 Si ^ v ! u : v)succ:u:i = (min v : v 2 Si ^ u! v : v)Thus if (pred:u:i = v) then v is the maximum element in (Si;!) which happens before u, or ? ifno element in Si happens before u.An external event is the sending or receiving of a message. The nth interval in Pi (denotedby (i; n)) is the subchain of (Si;!) between the (n � 1)th and nth external events. For a giveninterval (i; n), if n is out of range then (i; n) refers to ? or >. The notion of intervals is usefulbecause the relation of two states belonging to the same interval is a congruence with respect to!.Thus, for any two states s and s0 in the same interval and any state u which is not in that interval:(s ! u () s0 ! u) and (u ! s () u ! s0). We take advantage of this in our algorithms byassigning a single timestamp to all states belonging to the same interval. Due to this congruence,the pred and succ functions and the k relation are well-de�ned on intervals.3.1 Vector clocksIn a system with N processes, a vector clock [Mat89, Fid89, Ray92] is a function which associatesa vector of N non-negative integers with each state of the poset. Vector clocks are useful becausethey implement the pred function, and they encode Lamport's happens before relation. Given astate �, we denote its vector clock value by �:v. The important property of vector clocks is� ! �0 () �:v < �0:vwhere the < relation on vectors u and v is de�ned as:u < v () (8i :: u[i] � v[i]) ^ (9i :: u[i] < v[i])5

The algorithm for implementing vector clocks is quite simple. We describe it here for processPi; the algorithm is the same for each process. Initially v[i] equals 1 and all other componentsequal zero. Upon sending a message, the message is tagged with the current value of v and thenv[i] is incremented by one. Upon receiving a message tagged with u (all received messages will havea message tag) execute v[j] := max(v[j]; u[j]) for all j and then increment v[i]. This is the entirealgorithm. In order to compare two states, we need the value of v in that state.The solution to \Two Integer variables" uses a 2� 2 matrix clock which is built upon the ideasof vector clocks. The solution to \N Boolean variables" uses traditional vector clocks to compareindividual elements of the poset, or equivalently, to determine if one state happens before anotherstate.4 Two Integer VariablesThe case where each xi is an integer variable is useful for detecting potential violations of a limitedresource. For example, consider a server which can handle at most 5 connections at a time. Clientprocesses P1 and P2 each have a variable x1 and x2 which indicates the number of connections ithas with the server. The predicate (x1 + x2 > 5) indicates a potential error.A formal problem statement for this case is shown below. It says that there exists states �1; �2(in processes P1 and P2 respectively) which are concurrent, and the sum of the values of x1 in �1and x2 in �2 is greater than K. (Note that �1:x refers to the value of x1 in state �1.)(9�1; �2 : �1 2 S1 ^ �2 2 S2 ^ �1 k �2 : �1:x+ �2:x > K) (PS1)In this section we present two algorithms for detecting PS1. The decentralized algorithm runsconcurrently with the underlying program and can be used for online detection of the predicate.The centralized version is decoupled from the underlying program and can run concurrently withthe underlying program or post-mortem (i.e., after the underlying program terminates). We for-mally prove that both algorithms are sound (if the predicate is detected, then it has occurred)and complete (if the predicate occurs, then it is detected). Before describing the centralized anddecentralized algorithms, we describe the ideas behind them, describe and prove mechanisms usedby the algorithms (i.e., 2�2 matrix clock), and present some results which are necessary for provingthe algorithms. The work presented in this section is based on [TG93].4.1 The main idea behind the algorithmsTo detect PS1 we need to determine if there exists a global state in which x1 + x2 > K. Firstconsider a situation in which P1 and P2 do not send or receive any messages. Then every state in S1is concurrent with every state in S2. In this case we could evaluate maxx1(S1) +maxx2(S2) > K,where maxxi(Si) is the maximum value of xi in the set of states Si. This expression would be trueif and only if PS1 were true.We use this basic idea in our algorithm, but there are complications resulting from messagecommunication. Care must be take to ensure that x1 + x2 is evaluated in a global state if andonly if the global state is valid. Each time a message m is received at P1 or P2, we computeSm1 � S1 and Sm2 � S2 such that every state in Sm1 is concurrent with every state in Sm2 . Thus6

mP1P2P3 �21 �51�41�31�12 �22 �52 �82�72 �63Figure 1: Demonstration of the pred function: pred:�51:2 = �22, pred:�63:2 = �22 , pred:�41:2 = ?.if maxx1(Sm1) +maxx2(Sm2) > K, then we know that PS1 holds and our algorithm is sound. Todemonstrate that this algorithm is complete we need to prove that �1k�2 if and only if there existsa message m received at P1 or P2 such that �1 2 Sm1 and �2 2 Sm2 . We must also show how todetermine Sm1 and Sm2 when m is received, and how to evaluate maxx1(Sm2) and maxx2(Sm2).Sm1 is a sequence of states at P1, (�lo1+11 ; : : : ; �hi11), and Sm2 is a sequence at P2, (�lo2+12 ; : : : ; �hi22).Given a message m which has been received at P1 or P2 we need to be able to determine valuesfor lo1; hi1; lo2; hi2. This is accomplished by keeping track of predecessors of states in P1 and P2.Consider a state �i 2 Si. The predecessor of �i in Pj , denoted pred:�i:j, is the latest state in Pjwhich happens before �i. Figure 1 shows an example. Notice that the predecessor or �ni on Pi isjust the previous state �n�1i .Suppose a message m is received in some state � 2 S1 [S2. Then we de�ne lo1; hi1; lo2; hi2 asfollows: �hi11 = pred:�:1 �lo22 = pred:�hi11 :2�hi22 = pred:�:2 �lo11 = pred:�hi22 :1Applying these de�nitions to �gure 1, we see that Sm1 = (�31; �41; �51), and Sm2 = (�32; �42; �52; �62; �72),Thus, if we can evaluate the above pred functions, then we can determine Sm1 and Sm2 . We use a2� 2 matrix clock to enable us to evaluate these expressions.4.2 Finding lo1; hi1; lo2; hi2 with a 2 � 2 matrix clockInstead of associating values for lo1; hi1; lo2; hi2 with each state, we associate these values withintervals. Thus Sm1 and Sm2 now represent sequences of intervals, which themselves are sequencesof states.To evaluate the pred functions, we use a 2 � 2 matrix clock as described by Raynal [Ray92].In this section we present an algorithm for maintaining the matrix clock and prove that from itwe can determine lo1; hi1; lo2; hi2. Once we have these values, we can �nd Sm1 and Sm2 , and thendetermine if PS1 is satis�ed.The matrix clock algorithm is presented in �gure 3. The algorithm is easier to understand by7

00 000200 31
P1P2 2123 312123P3 23 242123

2300 01 5341001001 01312101
Figure 2: Matrix clock example.noticing the vector clock algorithm embedded within it. If the row index is held constant, then itreduces to the vector clock algorithm. Figure 2 shows values of the matrix clock and message tagson an example run. Note that row 1 of P1's matrix is a traditional vector clock restricted to indices1 and 2, and row 2 equals the value of P2's vector clock at a state in the \past" of P1. Similarproperties hold for P2's matrix clock.LetMnk denote the value of the matrix clock in interval (k; n). The following description appliesto anN�N matrix clock in a system with N processes. The 2�2 matrix is the upper left submatrixof the N�N matrix. We describe the information contained in a matrix clockMnk at interval (k; n)in three steps. First we explain the meaning of the kth diagonal element. Then we explain themeaning of the kth row, followed by the entire matrix.The kth diagonal element, Mnk [k; k], is an interval counter at Pk. Thus for any interval (k; n),the following is true: Mnk [k; k] = n. Row k of Mnk is equivalent to a traditional vector clock.In fact, when we say \Pk's vector clock" we are referring to row k of Pk 's matrix clock. Sincethe vector clock implements the pred function, row k of Mnk can be used to �nd predecessorsof (k; n) = (k;Mnk [k; k]) as follows: the predecessor of (k;Mnk [k; k]) on process j is the interval(j;Mnk [k; j]). In fact, this applies to all rows: the predecessor of (i;Mnk [i; i]) on process j is theinterval (j;Mnk [i; j]). Furthermore, row k of Mnk equals the diagonal of Mnk . Thus we can use rowk to �nd the pred:(k; n):j for j 6= k, and then use row j to �nd pred:(pred:(k; n):j):i for i 6= j.The matrix clock can be summarized in three simple rules. First, the kth diagonal elementcorresponds to some interval on Pk . Second, row i is the value of Pi's vector clock in interval(i;Mk[i; i]) and third, row k of Mk equals the diagonal. The meaning of a matrix clock is formallystated and proven in lemma 1. 8

To initialize:Mk [�; �] := 0;if (k = 1 _ k = 2) thenMk [k; k] :=Mk[k; k] + 1;end ifTo send a message:Tag message with Mk[�; �];if (k = 1 _ k = 2) thenMk [k; k] :=Mk[k; k] + 1; increment local clockend ifUpon receipt of a message tagged with W [�; �]:for i := 1 to 2 doif (Mk[i; i] < W [i; i]) thenMk[i; �] :=W [i; �]; copy vector clock for (i;W [i; i])end ifend forif (k = 1 _ k = 2) thenMk [k; k] :=Mk[k; k] + 1; increment local clockMk [k; �] := diagonal(Mk);end ifFigure 3: Algorithm for maintaining matrix clock Mk [1::2; 1::2] at Pk , 1 � k � N
9

Lemma 1 (M1) Mnk [k; k] = n(M2) i 6= j) (j;Mnk [i; j]) = pred:(i;Mnk [i; i]):j(M3) Mnk [i; i] =Mnk [k; i]Proof: Each part is proven by induction. In the base case, n = 1 and (k; n) is an initial interval.Induction applies to n > 1.(M1) Base (n = 1): Initial value of Mnk [k; k] = 1.Induction (n > 1): We assume Mnk [k; k] = n and show that Mn+1k [k; k] = n + 1. Pk entersinterval (k; n+1) only after sending or receiving a message. From the program text it is clearthe kth diagonal element is incremented by one. Thus Mn+1k [k; k] =Mnk [k; k] + 1 = n+ 1.(M2) Base (n = 1): Since n = 1, Mnk is the initial value of the matrix clock in Pk. Thus,i 6= j implies that Mnk [i; j] = 0, and hence (j;Mnk [i; j]) = (j; 0) = ?. Thus we need toshow pred:(i;Mnk [i; i]):j = ? also. Suppose i 6= k, then by initial value of Mnk , we know(i;Mnk [i; i]) = (i; 0), thus pred:(i;Mnk [i; i]):j = pred:(i; 0):j = ?. Now suppose i = k, then byinitial value of Mnk [i; i] we know that (i;Mnk [i; i]) = (i; 1). Since no interval precedes (i; 1), weknow pred:(i; 1):j = ?.Induction (n > 1): Assume true for (k; n) and every interval in the past of (k; n). Supposethe event initiating (k; n + 1) is a message send, then Mn+1k = Mnk except for Mn+1k [k; k] =Mnk [k; k]+1. Since the event is a message send, (k; n) and (k; n+1) have the exact same prede-cessors. Thus pred:(i;Mn+1k [i; i]):j equals pred:(i;Mnk [i; i]):j, which by induction hypothesis,equals (j;Mnk [i; j]), which is equal to (j;Mn+1k [i; j]) since i 6= j and only element Mnk [k; k]changes.Suppose the event initiating (k; n+ 1) is a message receive tagged with matrix clock W . Bythe induction hypothesis, W satis�es M2. Note also that M2 relates elements in a single rowof M , thus by copying rows from W to M , M2 is not violated. Since all rows i 6= k areeither copied from W or not changed, then M2 holds for rows i 6= k in Mn+1k . It remainsto show that M2 holds for row k of Mn+1k . The predecessor of (k; n + 1) on Pj is thegreater of Mnk [k; j] and Wnk [j; j]. This is exactly the value assigned to Mn+1k [k; j]. Thus(k;Mn+1k [k; j]) = pred:(k;Mn+1k [k; k]):j and M2 holds for row k.(M3) Base (n = 1): True by initial assignment to matrix.Induction (n > 1): Assume diag(Mnk) =Mnk [k; �], show diag(Mn+1k) =Mn+1k [k; �]. Pk entersinterval (k; n+ 1) only after sending or receiving a message. In the case of a send, Mnk [k; k] isincremented by one. Thus the diagonal will still be equal to row k. In the case of a messagereceive, the last statement sets row k to the diagonal.Lemma 2 shows how to use the matrix clock Mn1 to determine lo1, hi1, lo2, and hi2 for anyinterval (1; n). The procedure for any interval on P2 is similar.Lemma 2 The following expressions hold for any interval (1; n) with matrix clock Mn1 :(1; hi1) = pred:(1; n):1 = Mn1 [1; 1]� 1(2; hi2) = pred:(1; n):2 = Mn1 [1; 2](1; lo1) = pred:(2; hi2):1 = Mn1 [2; 1](2; lo2) = pred:(1; hi1):2 = Mn�11 [1; 2]10

Proof: The equivalences on the left are the previously stated de�nitions for hii and loi.hi1: The predecessor for (1; n) on P1 is (1; n� 1). Thus, by M1, hi1 =Mn1 [1; 1]� 1.hi2: Also by M1, we know pred:(1; n):2 = pred:(1;Mn1 [1; 1]):2, which by M2, equals (2;Mn1 [1; 2]).Thus hi2 =Mn1 [1; 2].lo1: We need to evaluate pred:(2;Mn1 [1; 2]):1. Since the diagonal equals row 1, this is equal topred:(2;Mn1 [2; 2]):1. And by M2, this equals (1;Mn1 [2; 1]). Thus lo1 =Mn1 [2; 1].lo2: We need to evaluate pred:(1;Mn1 [1; 1]� 1):2, which equals pred:(1; n� 1):2. Using the matrixclock Mn�1k in the preceding interval, this equals pred:(1;Mn�11 [1; 1]):2, which by M2, equals(2;Mn�11 [1; 2]). Thus lo2 =Mn�11 [1; 2].We have shown how to determine the values of lo1, hi1, lo2, and hi2 in any interval at P1 or P2.Thus in the remainder of the paper we refer directly to lo1, hi1, lo2, and hi2 instead of referring tothe matrix clock or the pred function.4.3 Preliminary ResultsThe following lemma is important in developing e�cient algorithms. It indicates that we need notmaintain the value of xi in every state at process Pi, but instead we can maintain the maximumvalue of xi in each interval. As before, we use the notation maxxi:(i; ni) to represent the maximumvalue of xi in interval (i; ni). Formally, maxxi:(i; ni) = (max � : � 2 (i; ni) : �:x).Lemma 3 (9�1; �2 : �1 2 S1 ^ �2 2 S2 ^ �1 k �2 : �1:x+ �2:x > K)() (9n1; n2 : (1; n1) k (2; n2) : maxx:(1; n1) +maxx:(2; n2) > K)Proof: The proof is straightforward. It uses the following properties: 1) congruence betweenintervals and states, 2) addition distributes over max, and 3) max is commutative and associative.The next lemma justi�es our use of Sm1 and Sm2 in detecting if PS1 is satis�ed. It states that iftwo intervals (1; i) and (2; j) are concurrent then there exists a message m which de�nes sequencesSm1 and Sm2 and that (1; i) 2 Sm1 and (2; j) 2 Sm2 . It also states that from each message m we can�nd Sm1 and Sm2 and that every interval in Sm1 is concurrent with every interval in Sm2 . This lemmaproves that our approach is sound and complete. See �gure 4 for a graphical representation of thecase (in the proof) where KEY is in P1.Lemma 4 Given that every state in process P1 happens before some state in process P2, or viceversa: two intervals (1; i) and (2; j) are concurrent if and only if there exist a message received justbefore some interval, say KEY , at P1 or P2 such that (1; i) 2 Sm1 and (2; j) 2 Sm2 where:Sm1 = ((1; lo1+ 1); : : :(1; hi1))Sm2 = ((2; lo2+ 1); : : :(2; hi2))(1; hi1) = pred:KEY:1(2; hi2) = pred:KEY:2(1; lo1) = pred:(2; hi2):1(2; lo2) = pred:(1; hi1):211

KEY1,lo1 1,i

2,j2,lo2 2,hi2

1,hi1

m

2P

1P

1

2S
m

S

m

Figure 4: Relationship among intervals when KEY is in P1. Dashed arrowsrepresent the pred function, and the solid arrow represents some message beingreceived at P1.Proof:Proof of) : Assume (1; i)k(2; j).Assume without loss of generality that every state in S2 happens before some state in S1. Then weknow succ:(2; j):1 exists. If succ:(1; i):2 exists and succ:(1; i):2 ! succ:(2; j):1, then let KEY =succ:(1; i):2 (case 1), otherwise let KEY = succ:(2; j):1 (case 2). We prove case 2 (the proof forcase 1 is nearly identical). Thus, at this point we know that: KEY is the �rst interval on P1 suchthat (2; j)! KEY , and succ:(1; i):2 (which may not even exist) doesn't precede KEY .Proof of i � hi1: We know (1; i) must occur before KEY (otherwise (1; i) ! (2; j)). This isequivalent to saying i � hi1 where (1; hi1) = pred:KEY:1.Proof of lo2 < j: Since KEY is the �rst interval on P1 such that (2; j) ! KEY , and since(1; hi1) precedes KEY , we know (2; j) 6! (1; hi1). This is equivalent to saying lo2 < j where(2; lo2) = pred:(1; hi1):2.Proof of j � hi2: By de�nition of predecessors, any interval on P2 which occurs after KEY 'spredecessor on P2, say (2; hi2), does not happen before KEY . Then since (2; j)! KEY we knowthat (2; j) does not happen after (2; hi2). This is equivalent to saying j � hi2 where (2; hi2) =pred:KEY:2.Proof of lo1 < i: Since succ:(1; i):2 does not precede KEY (as a result of assuming case 2; alsonote: it may be the case that succ:(1; i):2 doesn't exist) and since (2; hi2) ! KEY , we knowthat (1; i) cannot precede any interval which precedes (2; hi2). Therefore lo1 < i where (1; lo1) =pred:(2; hi2):1. (If we assumed case 1, this same argument would apply).Proof of (: Assume lo1 < i � hi1 and lo2 < j � hi2.Since (1; lo1) = pred:(2:hi2):1 we know that any interval on P1 which follows lo1 cannot happenbefore (2; hi2). Therefore since (1; lo1) ! (1; i) (by lo1 < i) we know (1; i) 6! (2; hi2). And since12

j � hi2 we know that (1; i) 6! (2; j).Similarly, (2; j) 6! (1; i).4.4 Overview of AlgorithmsThe centralized and the decentralized algorithms each gather the same information from the un-derlying program as it executes. They di�er in what they do with the information. This sectionexplains what the information is, and how it is gathered. Everything in this section applies to bothalgorithms.Each process Pi, for i 2 f1; 2g, must be able to evaluate maxx:(i; n) for each interval (i; n).Implementation of the maxx function is straight forward. Additionally, for the algorithms to becomplete, it is required that every state in P2 occur before at least one state in P1. This can beaccomplished in one of two ways: by the use of a <FINAL> message, or by using periodic updatemessages. In the �rst approach P2 sends a <FINAL>message to P1 immediately before P2 terminatesand delivery of this message is delayed until immediately before P1 terminates. The second approachcan be used if P1 and P2 do not normally terminate. To use this approach, P2 must periodicallysend a message to P1.The algorithms are based on lemma 4. Each message received at P1 or P2 de�nes sequencesof intervals Sm1 and Sm2 such that every interval in Sm1 is concurrent with every interval in Sm2 .Since lemma 4 uses an if and only if relation, every pair of concurrent intervals at P1 and P2 willappear in the sequences that result from receiving some message. Thus if both P1 and P2 checkthe predicate for all pairs of states in these sequences each time a message is received, then thepredicate will be detected.4.5 Decentralized AlgorithmWe describe the algorithm from P1's point of view. The algorithm at P2 is similar. Each time amessage is received we evaluate lo1; lo2; hi1, and hi2. These values de�ne a sequence of intervals atP1 and at P2. The sequence at Pi starts at (i; loi+1) and ends at (i; hii). By lemma 4, every intervalin the sequence at P1 is concurrent with every interval at P2. Thus we can �nd the maximum valueof maxx:(1; i) over all intervals (1; i) in the sequence at P1. We call this value temp x1 and de�netemp x2 similarly. If the sum of these two values is greater than K, then the predicate has occurred.Furthermore, since lemma 4 is stated with the if and only if relation, if the predicate occurs thenthis method will detect it.S1: temp x1 = (max i : lo1 < i � hi1 : maxx:(1; i))S2: temp x2 = (max j : lo2 < j � hi2 : maxx:(2; j))S3: if (temp x1 + temp x2 > K) then PREDICATE DETECTEDTo implement this, temp x1 can be computed locally. Then P1 can send a message to P2containing (temp x1; lo2; hi2), and P2 can �nish the calculation. This message is a debug messageand is not considered an external event (i.e., does not initiate a new interval). Messages that arenot debug messages are application messages. Theorem 1 states the correctness of this algorithm.Theorem 1 The condition in statement S3, (temp x1+ temp x2 > K), is true if and only if PS1holds. 13

Proof: Statements S1, S2, and S3 are executed when ever a message m is received at either P1or P2. Let i range over f1; 2g. Then temp xi equals maxx(i; Smi). Thus by direct application oflemma 4, the theorem holds.4.5.1 Overhead and ComplexityLet Ai be the number of application messages sent and received by Pi, and let Ri be the numberof application messages received by Pi. The message overhead consists of the number and size ofthe debug messages, and the size of message tags on application messages. P1 sends one debugmessage to P2 in each of the R1 receive intervals at P1. Similarly, P2 generates R2 debug messages.Thus the total number of debug messages generated by the decentralized algorithm is R1 + R2.The size of each debug message is 3 integers. Each application message carries a tag of 4 integers.The debug messages can be combined to reduce message overhead, however this will increase thedelay between the occurrence of the predicate and its detection.The memory overhead in P1 arises from the need to maintainmaxx:(1; �) for each of A1 intervals.This can be reduced (for the average case) by a clever implementation since the elements of thearray are accessed in order (i.e., the lower elements can be discarded as the computation proceeds).Likewise, the memory overhead for P2 is A2. Other processes incur only the overhead needed tomaintain the matrix clock (i.e., 4 integers).The computation overhead at P1 consists of monitoring the local variable which appears in thepredicate, and evaluation of the expression (max i : lo1 < i � hi1 : maxx:(1; i)) for each debugmessage sent (R1) and received (R2). The aggregate complexity of this is at most A1(R1 + R2)since there are A1 elements in maxx:(1; �). P2 has similar overhead. Other processes have neitherthe overhead of monitoring local variables nor of computing the expression.4.6 Centralized AlgorithmThis version of the algorithm can be used as a checker process which runs concurrently with theunderlying program, or which runs post-mortem. We describe the post-mortem version which readsdata from trace �les generated by P1 and P2. Since the trace �les are accessed sequentially, thealgorithm can be easily adapted to run concurrently with the underlying program by replacing �leI/O with message I/O. First we explain what data is stored in the trace �les, then we show howthe predicate can be detected by one process which has access to both trace �les.Let R1 be the number of receive intervals in P1 and let Q1[k], 1 � k � R1, be a record containingthe values of lo1,hi1,lo2, and hi2 in the kth receive interval. De�ne R2 and Q2[1 : : :R2] similarly.The elements of both Q1 and Q2 must be checked to determine if one of the elements represents akey interval (i.e., satis�es the requirements of KEY in lemma 4.By virtue of their construction, both Q1 and Q2 are already sorted in terms of all their �elds.That is, for Q = Q1 or Q = Q2, and for every component x 2 flo1; lo2; hi1; hi2g, Q[�]:x is a sortedarray. This results from the fact that the elements are generated in order on a single process; thusthe receive interval represented by Q[k] happens before Q[k+ 1].P1's trace �le contains two arrays of data: maxx:(1; i) for each interval (1; i), and Q1[1::R1].Likewise P2's trace �le contains maxx:(2; j) and Q2[1::R2]. We have already demonstrated how todetermine lo1,hi1,lo2 and hi2 for any interval in P1 or P2, and generating the values for the maxxfunction is straight forward. 14

The trace �les are analyzed in two independent passes. We describe a function check(Q[1 : : :R])such that the predicate has occurred if and only if check(Q1[1 : : :R1]) or check(Q2[1 : : :R2]) returnstrue. Check uses two heaps: heap1 and heap2. Heapp contains tuples of the form hn;maxx:(p; n)iwhere (p; n) is an interval in Pp. The �rst element of a tuple h is accessed via h:interval; the secondelement is accessed via h:value. The heap is sorted with the value �eld.The algorithm maintains the following properties (HEAP holds at all times; I1 and I2 hold afterS4 and before S5; k is a program variable):HEAP � (8h; p : h 2 heapp : heapp:top():value � h:value)I1 � (8i; p : Q[k]:lop < i � Q[k]:hip : hi;maxx:(p; i)i 2 heapp)I2 � (8p :: Q[k]:lop < heapp:top():interval � Q[k]:hip)HEAP is an inherent property of heaps: the top element, heap.top(), is the maximum elementin the heap. Heaps are designed to e�ciently maintain the maximum element of an ordered set.Statements S1 and S2 ensure I1, which states that in the kth iteration of the for loop, all intervals inthe sequences de�ned by Q[k] are represented in the heaps. Statements S3 and S4 ensure I2, whichstates that the top of heapp is in the sequence de�ned by Q[k]. The text of the check function isshown in �gure 5 and theorem 2 proves its correctness.Theorem 2 There exists a value for program variable k such that at statement S5 (heap1:top():value+heap2:top():value > K) if and only if (9�1; �2 : �1 2 S1 ^ �2 2 S2 ^ �1 k �2 : �1:x+ �2:x > K)Proof:Proof of) : Let hi;maxx:(1; i)i= heap1:top() and hj;maxx:(2; j)i= heap2:top().By lemma 3, it su�ces to show that (1; i)k(2; j). By I2 we know that Q[k]:lo1 < i � Q[k]:hi1 andQ[k]:lo1 < i � Q[k]:hi1. Then by lemma 4 we know that (1; i)k(2; j).Proof of (: Assume (9�1; �2 : �1 2 S1 ^ �2 2 S2 ^ �1 k �2 : �1:x+ �2:x > K).By lemma 3 we know (9i; j : (1; i) k (2; j) : maxx:(1; i)+maxx:(2; j)> K). Referring to lemma 4,if the KEY interval is in P1 then let Q = Q1 and let k equal the number of messages received atP1 before KEY . Likewise for KEY in P2. Then Q[k] corresponds to KEY . Then by lemma 4Q[k]:lo1 < i � Q[k]:hi1 and Q[k]:lo2 < j � Q[k]:hi2. By invariant I1, hi;maxx:(1; i)i is in heap1,and hj;maxx:(2; j)i is in heap1. And by invariant HEAP, heap1:top():value � maxx:(1; i), andheap2:top():value � maxx:(2; j). Thus in iteration k, heap1:top():value+ heap2:top():value > K.4.6.1 Overhead and ComplexityIf we consider each record written to a trace �le to be a debug message then the message complexityanalysis is identical to the decentralized algorithm (except that the debug messages have a di�erentdestination).P1 and P2 do not need to maintain maxx:(�; �), thus the only memory overhead for each appli-cation processes is the 4 integers needed for the matrix clock.The computation overhead consists of monitoring the local variables. The rest of the compu-tation is o�oaded to the checker process which uses the following data: Q1[1 : : :R1], Q2[1 : : :R2],maxx:(1; i) for 1 � i � A1, and maxx:(2; j) for 1 � j � A2. Recall from section 4.5.1 that Ri isthe number of messages received by Pi and Ai equals Ri plus the number of messages sent by Pi .15

Figure 5: Check function used in centralized algorithm for two integer variables.function check(Q[1 : : :R])n1 := 1; n2 := 1;for k := 1 to R doS1: while (n1 � Q[k]:hi1) doheap1:insert(hn1; maxx:(1; n1)i);n1 := n1 + 1;end whileS2: while (n2 � Q[k]:hi2) doheap2:insert(hn2; maxx:(2; n2)i);n2 := n2 + 1;end whileS3: while (heap1:top():interval � Q[k]:lo1) doheap1:removetop();end whileS4: while (heap2:top():interval � Q[k]:lo2) doheap2:removetop();end whileS5: if (heap1:top():value+ heap2:top():value > K) thenreturn TRUE;end ifend forreturn FALSE;end function
16

Consider the call check(Q1[1 : : :R1]). On a heap of N elements, insert() and removetop()each cost �(lg N) and top() costs �(1). Each element of maxx:(1; �) is inserted at most onceand removed at most once from heap1 for a total cost of �(A1 lg A1). Similarly, the total cost ofoperations on heap2 is �(A2 lg A2). The outer loop executes R1 times but is added to the costof the heap operations since the heap operations are spread out through all R1 iterations. Thusthe total cost of check(Q1[1 : : :R1]) is �(R1 + A1 lg A1 + A2 lg A2). Since R1 � A1, this simpli�esto �(A lg A) where A = max(A1; A2). Since check is only called twice, the total complexity is�(A lg A).4.7 GeneralizationIn this section, let �i represent a state in Si. The algorithm given in this section for two integervariables detects the predicate (9�1; �2 : �1 k �2 : �1:x+�2:x > K). Our approach was to computethe maximum values of �1:x and �2:x and compare their sum to K. Since + distributes over max(i.e., a+max(b; c) = max(a+ b; a+ c)), this is equivalent to computing(max �1; �2 : �1 k �2 : �1:x+ �2:x)and comparing it to K. The algorithm presented in this paper repeatedly calculates the aboveexpression for di�erent segments of a run; due to the idempotency of max it could be easilymodi�ed to determine the value of the expression for the entire run. The above expression usesmax and + over integers. This can be generalized to two operators, " and �, over a domain Dwhich meet the following requirements:Domain DAddition ": D �D 7! DMultiplication � : D �D 7! DCommutativity a " b = b " aAssociativity a " (b " c) = (a " b) " cIdempotency a " a = aDistributivity a� (b " c) = (a� b) " (a� c)Unit Element (9a : a 2 D : b 2 D) a " b = a)Let �i:x denote the value of a variable x with domain D in state �i 2 Si. Then our algorithmcalculates (" �1; �2 : �1 k �2 : �1:x� �2:x)This generalization is very useful as shown by the following examples.Example 1 (D; ";�) := (Integers;max;+).The resulting calculation is (max �1; �2 : �1 k �2 : �1:x + �2:x). This is the construction used inthe presentation of the algorithm.Example 2 (D; ";�) := (Reals which are greater than or equal to 1.0;max; �).The resulting calculation is (max �1; �2 : �1 k �2 : �1:x � �2:x) which is the maximum value of�1:x � �2:x in any global state. 17

Example 3 (D; ";�) := (fT; Fg; _ ; ^).The resulting calculation is (_ �1; �2 : �1 k �2 : �1:x ^ �2:x). This is equivalent to weakconjunction [GW94] and \possibly �1:x ^ �2:x" [CM91].Example 4 (D; ";�) := (fT; Fg; ^ ; _).The resulting calculation is (^ �1; �2 : �1 k �2 : �1:x _ �2:x). This is the dual of example 3 andcould be called strong disjunction: in every cut either �1:x or �2:x is true.Example 5 (D; ";�) := (fT; Fg; ^ ; ^).The resulting calculation is (^ �1; �2 : �1 k �2 : �1:x ^ �2:x) which states that both �1:x and �2:xare invariant.5 N Boolean VariablesIn this section we consider the case when there are N Boolean variables at N processes and wewish to determine if there exists a global state in which at least K of these N variables are true.Let xi denote the boolean variable at process i. If we remove all states � from Si such that �:xi isfalse, then we have the reduced set of states at process i:Ri = f�j� 2 xi ^ �:xigWe de�ne (R;!) to be the poset which results from taking the union of all Ri.The problem of �nding a global state in S such that at least K of the variables xi are true isequivalent to �nding a cut, or antichain, in (R;!) of size at least K. Thus the (revised) problemstatement for this section is to determine if the following holds for a given execution:(9c : c 2 C :jcj� K) (PS2)where C refers to the set of all cuts in the reduced poset (R;!).The techniques used to solve PS2 are based on Dilworth's theorem [Dil50] which shows that themaximum size antichain in a poset equals the minimum number of chains which cover the poset. Itis known that if the poset is given in the form of an acyclic graph, then max-ow techniques [Law76]can be used to compute the width [Atk87]. However, to the best of our knowledge, the number ofcomparisons required to compute the width is not known if the poset is given in a chain-decomposedform. Two special cases of this problem (k = 2 and k = n) are solved in [Gar92].This is one of the fundamental problems in deposets. It has many applications in distributeddebugging. For example, we use the solution of the above problem to detect the unstable predicateof the form x1 + x2 + :::+ xN � Kwhere xi 2 f0; 1g is a variable in the process Pi for all i. As an example, consider the K-mutualexclusion problem. This problem requires a synchronization protocol such that no more than Kprocesses are ever in the critical section. This is useful if the number of resources (for example, thenumber of copies for a copyrighted program) in a network is constrained to be at most K. If xirepresents the fact that process Pi is in the critical section, then detection of the global predicatex1 + x2 + :::+ xN � K + 1 is equivalent to detection of violation of K-mutual exclusion.18

5.1 AlgorithmWe are given R already partitioned into N chains, Ri, and we need to determine if there existsan antichain of size at least K. It follows from Dilworth's theorem that R can be partitioned intoK � 1 chains if and only if there does not exist an antichain of size at least K. Therefore, we cansolve PS2 by trying to partition R into K � 1 chains. If we succeed then PS2 is false. If we failthen PS2 is true.So our problem is now reduced to taking the N chains Ri, 1 � i � N , and trying to mergethem into K � 1 chains. The approach we take is to choose K chains and try to merge them intoK � 1 chains. After this step we have N � 1 chains left. We do this step (\choose K chains, mergeinto K � 1 chains") N �K + 1 times. If we fail on any iteration, then R could not be partitionedinto K � 1 chains. Thus there exists an antichain c such that jcj> K. If we succeed then we havereduced R to K � 1 chains and there does not exist an antichain c such that jcj> K.The algorithm uses queues to represent chains. Each queue is stored in increasing order so thehead of a queue is the smallest element in the queue. An element represents a state, and a smallerstate \happens before" a larger state (this can be determined by comparing the vector clocks ofthe states). The algorithm uses the following operations on queues (q represents a queue):insert(q,e) insert element e in qdeletehead(q) remove the head of qempty(q) true if q is emptyhead(q) return the �rst item in q, or a maximal value if q is emptyThe algorithm FindAntiChain (�gure 6) calls the Merge function N � K + 1 times. TheMerge function takes K queues as input and returns K queues: Q1; : : : ; QK . If Qk is returnedempty, then the merge was successful (the result is in Q1; : : : ; QK�1) and Merge continues to thenext iteration. If Qk is not empty then an antichain has been found and is given by the heads ofthe returned queues.There are two important decisions in this algorithm. The �rst is how to choose the K chainsfor the merge operation. The answer follows from classical merge techniques used for sorting. Wechoose the chains which have been merged the fewest number of times. This is why the algorithmrotates Qlist after each merge operation. This reduces the number of comparisons required by thealgorithm.The second and more important decision is how to implement Merge. The merge is performedby repeatedly removing an element from one of the K input chains and inserting it in one of theK�1 output chains. Output chain QK is only used ifMerge fails, thus when we say \output chain"we are only referring the the chains which contain successfully merged output: Q1; : : : ; QK�1. Wemove the smallest elements �rst (that is, the ones which represent states that occurred earlier inthe computation). An element will be moved from the input to the output if it is smaller than anelement on the head of some other chain. The problem is deciding on which output chain to placethe element.Note that this is trivial for K = 2, when two input queues are merged into a single outputqueue as is done in the merge sort. For K > 2, the number of output queues is greater than one,and the algorithm needs to decide which output queue the element needs to be inserted in. Thesimple strategy of inserting the element in any output queue does not work as shown in �gure 8where there are three input queues (P1; P2; P3) which need to be merged into two output queues19

function FindAntiChain (K:integer, Qlist : list of queues of vector clocks) : antichain; beginassume: 1 � K �jQlistjassume: q 2 Qlist) :empty(q)for (n :=jQlistj;n � K;n := n � 1) do(p1; ::; pN) := Qlist;(q1; : : : ; qK) := Merge(p1; : : : ; pK);if (empty(qk))then Qlist := (pK+1; ::; pn; q1; ::; qk�1); rotate listelse return (fhead(qi) j 1 � i � Kg);end ifend forreturn(;);end functionFigure 6: Function that determines if an antichain of size K exists in the poset encoded by thequeues of vectors listed in Qlist(Q1; Q2). Suppose we use a simple strategy which results in the operations listed below. InitiallyQ1 and Q2 are empty. Each operation moves an element from the head of P1, P2 or P3 to one ofthe two output queues. Note that we can only move the head of Pi if it is smaller than the thehead of some other queue Pj . The operations we perform are:1. (1; 0; 0)< (2; 0; 0). So move (1; 0; 0) to some output queue, say Q1.2. (0; 1; 0)< (1; 1; 0). So move (0; 1; 0) to some output queue, say Q2.3. (1; 1; 0)< (2; 2; 0). So move (1; 1; 0) to some output queue, say Q1.4. (1; 2; 0)< (2; 2; 0). So move (1; 2; 0) to some output queue, say Q1.5. (2; 0; 0)< (2; 2; 0). So move (1; 2; 0) to some output queue, but which one?Notice that we have worked ourselves into a corner because when we decide to move (2; 0; 0) there isno output queue in which we can insert it. The output queues must be sorted since they representchains. This is done by inserting the elements in increasing order, but (2; 0; 0) is not larger thanthe tails of any of the output queues. Thus we have nowhere to insert it.This situation does not imply that the input queues cannot be merged. In fact in this case theycan be merged into two queues as shown on the right side of �gure 8. It merely implies that we didnot intelligently insert the elements in the output queues. The function FindQ chooses the outputqueue without running into this problem. Discussion of FindQ is deferred until after we describethe details of the Merge function.TheMerge function compares the heads of each input queue with the heads of all other queues.Whenever it �nds a queue whose head is less than the head of another queue, it marks the smallerof the two to be deleted from its input queue and inserted in one of the output queues. It repeatsthis process until no elements can be deleted from an input queue. This occurs when the heads of20

all the queues are incomparable, that is, they form an antichain. Note that it may be the case thatsome input queues are empty. If none are empty, then we have found an antichain of size K. Theheads of the input queues form the antichain. If one or more are empty, the merge operation (whichis not complete yet) will be successful. All that is left to do is to take the non-empty input queuesand append them to the appropriate output queues. This is done by the FinishMerge functionwhose implementation is not described because it is straight forward.The Merge algorithm is shown in �gure 7. Note that it only compares the heads of queueswhich have not been compared earlier. It keeps track of this in the variable ac, which is a set ofindices indicating those input queues whose heads are known to form an antichain. Initially ac isempty. TheMerge algorithm terminates when either ac has K elements or one of the input queuesis empty.The �rst for loop in Merge compares the heads of all queues which are not already known toform an antichain. That is, we compare each queue not in ac to every other queue. This avoidscomparing two queues which are already in ac. Suppose ei = head(Pi) and ej = head(Pj) andinside the �rst for loop it is determined that ei < ej . This implies that ei is less than all elementsin Pj . Thus, ei cannot be in an antichain with any element in Pj and therefore cannot be in anyantichain of size K which is a subset of the union of the input queues. Thus, we can safely move eito an output queue, which eliminates it from further consideration. The set moved records whichelements will be moved from an input queue to an output queue. The array bigger records thelarger of the two elements which were compared. In this example, bigger[i] equals j, implying thatthat the head of Pj is bigger than the head of Pi. This information is used by FindQ to choose theoutput queue where the head of Pi will be inserted.The second for loop just moves all elements in move to an output queue. Consider the state ofthe program just before the second for loop begins. If the head, e, of an input queue is not markedto be moved, then e is not less than the head of any other input queue or else it would have beenmarked to be moved. This implies that any two elements which are not moved are concurrent,which in turn implies that set of heads which are are not moved form an antichain. This antichainis recorded in ac for the next iteration of the while loop.We now return to describing how FindQ works. The formal description of FindQ is shown in�gure 10. Given the queue which contains the element to be moved, and the queue with whichthis element was compared (it must be smaller than the head of another queue in order to moveit), the procedure FindQ determines which output queue to use. The FindQ function takes threeparameters: G : an undirected graph called queue insert graphi : the input queue from which the element x is to be deletedj : the queue in which all elements are bigger than xA \queue insert graph" is used to deduce the queue in which the next element is inserted. Ithas K vertices and exactly K � 1 edges. An edge corresponds to an output queue and a vertexcorresponds to an input queue. Therefore, each edge (i; j) has a label, label(i; j) 2 f1; : : : ; K � 1g,which identi�es the output queue it corresponds with. No labels are duplicated in the graph, thuseach output queue is represented exactly once. Similarly, each input queue is represented exactlyonce.An edge (i; j) between vertex i and vertex j means that the heads of Pi and Pj are both biggerthan the tail of Qlabel(i;j). The goal is to ensure that for any input queue (i.e. any vertex) there21

function Merge(P1; :::; PK:queues) : Q1; :::; QK: queues;const all = f1,: : :Kg;var ac,move: subsets of all;bigger: array[1..k] of 1..k;G: initially any acyclic graph on k-1 vertices;beginac := ;;while (jacj6= K _ :(9i : 1 � i � K : empty(Pi))) domove := fg;for i 2 all - ac and j 2 all doif head(Pi) < head(Pj) thenmove := move [fig;bigger[i] := j;end if;if head(Pj) < head(Pi) thenmove := move [fjg;bigger[j] := i;end if;end forfor i in move dodest := FindQ(G,i,bigger[i]);x := deletehead(Pi)insert(Qdest, x);end forac := all - move;end whileif (9i :: empty(Pi)) thenFinishMerge(G;P1; : : :PK ; Q1; : : :QK�1);R1: return (Q1; : : : ; QK�1; ;);elseR2: return (P1; : : : ; PK);end ifend function Figure 7: Generalized Merge Procedure for deposets22

d:(0,1,0)Q2P2e:(2,2,0)a:(1,0,0)P1c:(1,2,0)b:(1,1,0)Q1 f:(2,0,0)g:(2,3,0)P3P1a:(1,0,0)Q1c:(1,2,0)b:(1,1,0)f:(2,0,0)g:(2,3,0)P3d:(0,1,0)P2e:(2,2,0)Q2 Q1a:(1,0,0)g:(2,3,0)e:(2,2,0)f:(2,0,0) Q2d:(0,1,0)c:(1,2,0)b:(1,1,0)(A) (B) (C)Figure 8: An example of a failed naive strategy. DiagramA shows the initial con�guration. DiagramB shows the point at which the strategy fails: there is no where to insert (2; 0; 0). Diagram C showsthat this example can be merged into two chains.exists an output queue (i.e. an edge) in which the head of input queue can be inserted. Thisconstraint is equivalent to the requirement that every vertex has at least one edge adjacent to it. Itis also equivalent to the requirement that the graph is a tree (i.e., acyclic) since there are K nodesand K � 1 edges.FindQ uses the queue insert graph as follows. Consider the function call FindQ(G; i; j). Theelement to be deleted is ei = head(Pi), and it is smaller than ej = head(Pj) (i.e., bigger[i] = j).FindQ adds the edge (i; j) to G. Since G was a tree before adding edge (i; j), it now containsexactly one cycle which includes (i; j). Let (i; k) be the other edge incident on vertex i which ispart of this cycle (it is possible that k = j). FindQ deletes (i; k) and adds (i; j), and then sets thelabel of (i; j) equal to the label of (i; k). FindQ then returns the label associated with the newedge. This label indicates which queue ei will be inserted in.Q2d:(0,1,0)Q1a:(1,0,0) b:(1,1,0)d:(0,1,0)Q2a:(1,0,0)Q1P3P2 P1 Q1Q2 P3P2 P1 Q1Q2Figure 9: Using a queue insert graph to �nd the output queue23

function FindQ(G: graph; i,j:1..K) : label;add edge (i; j) to G;(i; k) := the edge such that (i; j) and (i; k) are part of the same cycle in G;remove edge (i; k) from G;label(i; j) := label(i; k);return label(i; j);end functionFigure 10: Function that �nds which output queue to insert an element which is being deleted fromthe head of input queue Pj . The chosen output queue is Qlabel(i;j).Consider our previous example with the naive algorithm. It made a bad decision when it placedelement (1; 1; 0) on Q1. Figure 9 shows the state of the queues and of the graph before and afterthe correct decision made by FindQ. Element (1; 1; 0) is in P1 and is less than the head of P2.Thus the edge (1; 2) is added to the graph (dashed line in �gure 9). It forms a cycle with the otheredge (1; 2) which is labeled with Q2. We copy this label to the new edge, delete the old edge andreturn Q2, indicating that (1; 1; 0) should be inserted in Q2.An important invariant of the queue insert graph is that given any edge (i; k) and the outputqueue associated with it, the queue is empty or the tail of the queue is less than all elements ininput queues Pi and Pk . This is stated and proven in lemma 5 and is used later to show that theoutput queues are always sorted.Lemma 5 (i; k) 2 G) (empty(Qlabel(i;k)) _ (8e : e 2 Pi [Pk : tail(Qlabel(i;k)) � e))Proof: Initially, the lemma holds since all output queues are empty. Now assume that the lemmaholds and we need to insert ei = head(Pi) into output queue Ql where l = FindQ(G; i; j) andj = bigger[i]. Since j = bigger[i], we know ei � head(Pj). Since Pi and Pj are sorted, we knowei � e for any element e 2 Pi [Pk. After moving ei to Ql, the tail of Ql will be ei and the lemmawill still hold.The merge operation must produce sorted output queues. Lemma 6 proves that our algorithmmeets this requirement.Lemma 6 If the elements are inserted in the output queues using FindQ, then all output queuesare always sorted.Proof: Initially all output queues are empty. Now assume each output queue is sorted and weneed to move ei = head(Pi) to an output queue. The FindQ procedure will return Qlabel(i;j), where(i; j) is some edge in G. By lemma 5, the tail of this queue is less than or equal to ei. Thus afterinserting ei in Ql, Ql is still sorted. No other output queues are modi�ed, thus the lemma stillholds.Lemma 7 Suppose (Q1; : : :QK) =Merge(P1; : : : ; PK) and each queue Pi is sorted. Then(A) empty(QK)) P1; : : :PK have been merged into K � 1 sorted queues Q1; : : :QK�1.(B) :empty(QK)) fhead(Pi) j 1 � i � Kg is an antichain of size K.(C) :empty(QK) () there exists an antichain of size K.24

Proof: We use the following invariant of the while loop:i 2 ac ^ j 2 ac ^ :empty(Pi) ^ :empty(Pj)) head(Pi)khead(Pj):(A): Suppose empty(QK). Then Merge returned via statement R1 and just before returningthere existed i such that empty(Pi). Let PK be the empty one. Then all elements reside in oneof P1; : : :PK�1 or Q1; : : :QK�1. Thus after FinishMerge all elements are in Q1; : : :QK�1 which bylemma 6 are sorted. Thus the original input queues have been merged into K � 1 output queues.(B): Suppose :empty(QK). Then Merge returned via R2 and just before returning there wasno i such that empty(Pi). Then by the invariant and since ac = all we know head(Pi) is concurrentwith the head of every other Pj . Thus fhead(Pi) j 1 � i � Kg is an antichain of size K.(C): Follows from (A), (B), and Dilworth's theorem.Theorem 3 There exists an antichain of sizeK in [1�i�KPi if and only if FindAntiChain((P1; : : :PK))returns an antichain of size K.Proof: Assume there exists an antichain which satis�es the left hand side. Then by Dilworth'sresult, [1�i�KPi cannot be merged into K � 1 chains. Thus by lemma 7, Merge will return anantichain of size K.Now assume there does not exist such an antichain. Then [1�i�KPi can be merged in K � 1chains and Merge will return with PK empty on iteration N �K + 1 of the while loop, which willcause FindAntiChain to return the empty set.5.2 ComplexityIn this section, we analyze the complexity based on the number of comparisons required by thealgorithm (i.e., the number of times the heads of two queues are compared in theMerge function. Weprove an upper bound and a lower bound. The lower bound is proven by de�ning an adversary whichproduces a set of input queues that forces the merge algorithm to use at least KMN comparisons,where M is the number of elements in the largest input queue.5.2.1 An Upper BoundTheorem 4 The maximum number of comparisons required by the above algorithm is KMN(K+log�N).Proof: We �rst calculate the complexity of merging K queues into K � 1 queues. From theMerge algorithm it is clear that each element must be in ac before it passes to an output queueand it requires K comparisons to be admitted to ac. Thus, if the total number of elements to bemerged is l, then l elements must pass through ac on their way to the output queue for a total ofKl comparisons.Initially l � KM but the queues grow for each successive call to Merge. At this point, ourtechnique of rotating the list of queues to be merged is useful. Let level:i denote the maximumnumber of merge operations that any element in Pi has participated in. The algorithm rotatesQlist to ensure that in each iteration the K queues with the smallest level numbers will be merged.Initially, there are N queues at level 0. Each of the �rst N=K merge operations reduces K queueswith level 0 to K � 1 queues with level 1. This pattern continues until there are 2K queues left, at25

which time the maximum level will be log�N where � is the reducing factor and equals K=(K� 1).Merging the remaining 2K queues into K � 1 adds K more levels. Thus the maximum level of any�nal output queue is K+ log�N . Thus, there are at mostMN elements, each of which participatesin at mostK+log�N merge operations at a cost ofK comparisons per element per merge. Thereforethe maximum number of comparisons required by the above algorithm is KMN(K + log�N).Note that for the special case when K = 2, the complexity is O(mn logN). This is shownto be optimal in [Gar92]. Further, if M = 1 and K = 2, this reduces to the well-known mergesort algorithm with the complexity of O(N log N) comparisons. Another noteworthy special caseis when K = N . In this case, the complexity becomes O(MN2) which is also known to be optimal[Gar92].5.2.2 A Lower BoundIn this section, we provide a lower bound on the number of comparisons required by any algorithmto solve the above problem.Proposition 1 Let (P;<) be any partially ordered �nite set of size MN . We are given a decompo-sition of P into N sets P1; :::PN such that Pi is a chain of size M . Any algorithm which determinesif there exists an anti-chain of size K must make at least
(KMN) comparisons.Proof: We use an adversary argument. Let Pi[s] denote the sth element in the queue Pi. Theadversary will give the algorithm Pi's with the following characteristic:(8i; j; s :: Pi[s] < Pj [s + 1])Formally, on being asked to compare Pi[s] and Pj [t], (s 6= t) the adversary uses:if (s < t) then return Pi[s] < Pj [t]if (t < s) then return Pj [t] < Pi[s]Thus, the above problem reduces toM independent instances of the problem which checks if a posetof N elements has a subset of size K containing pairwise incomparable elements. If the algorithmdoes not completely solve one instance then the adversary chooses that instance to show a posetconsistent with all its answers but di�erent in the �nal outcome.We now show that the number of comparisons to determine whether any poset of size N has ananti-chain of sizeK is at leastN(K�1)=2. The adversary will give that poset to the algorithm whichhas either K � 1 or K chains such that any pair of elements in di�erent chains are incomparable.In other words, the poset is a simple union of either K � 1 or K chains. The adversary keeps atable numq such that numq[x] denotes the number of questions asked about the element x. Thealgorithm for the adversary is shown in Fig. 11.If the algorithm does not ask K � 1 questions about any element x, the adversary can producea poset inconsistent with the answer of the algorithm. If the algorithm answered that no anti-chainof size K exists then the adversary can produce an anti-chain which includes one element fromeach of the K � 1 chains and the element x. On the other hand, if the algorithm answered that ananti-chain exists, then the adversary could put x and all other elements for which K � 1 questionshave not been asked in K � 1 chains. 26

var numq[N]:integer initially 0; number of questions asked about element xfunction compare (x,y:elements)numq[x]++; numq[y]++;if (numq[x] = K � 1) thenchain[x] := chain in which no element has been compared with x so far;end ifif (numq[y] = K � 1) thenchain[y] := chain in which no element has been compared with y so far;end ifif (numq[x] < K � 1) or (numq[y] < K � 1) thenreturn xjjy;end ifif (chain[x] 6= chain[y]) thenreturn xjjy;else if x inserted earlier than y then return (x < y);else return (y < x);end ifend ifend function Figure 11: Algorithm for the Adversary
27

Since each comparison involves two elements, we get that the algorithm must ask at leastN(K�1)=2 questions for each level. Thus, overall any algorithm must make at leastMN(K�1)=2comparisons.It is easy to see that the lower bound is not tight. If we choose M = 1 and K = 2, we get thelower bound of N=2. However, the lower bound of N logN is well known for this case.6 ConclusionIn this paper we developed algorithms for monitoring the value of a global function of the formx1+ x2+ : : :xN where xi is a variable local to process i. We monitor an execution of a distributedprogram to determine if the value of the function exceeds some constant K. More precisely, wedetermine if there exists a global state (i.e., a set of local states which are mutually concurrent)such thatP1�i�N xi > K. The ability to monitor functions like this is useful for debugging, testingand analyzing distributed programs.We consider two special cases of this problem. The �rst case imposes the following restrictions:each xi is an integer variable, and N = 2. Notice that there can be more than two processes, butonly two can contribute local variables to the global function. The second case restricts xi to takeon values from the set f0; 1g, and does not restrict N .For the case of two integer variables, we presented a centralized and a decentralized algorithm,proved its correctness and analyzed its complexity. The algorithm requires four integers to bepiggybacked onto messages generated by the underlying program (i.e., application messages). Inaddition, the monitoring algorithm generates one debug message per application message receivedat one of the two processes contributing variables to the global function. The computationalcomplexity for the centralized algorithm is �(A lg A) where A is the number of messages sent plusthe number received at the two contributing processes.For the case of N Boolean variables, we present and prove an algorithm which has an upperbound complexity of KMN dlog((N �K)=(K � 1))e where M is the number of times xi changedvalue in the computation. We also presented a lower bound of
(KMN).There are several open problems relating to this research. A general problem is: \What classes ofglobal functions can be e�ciently monitored on distributed programs?" In this paper we addressedspecial cases of one class of global functions. Another more speci�c problem is: \Can we e�cientlydetect more general cases than those considered in this paper?" For example, can these resultsbe extended to consider N integer variables at N processes. Another area of future research isdetermining how the properties of global functions a�ect the ability to monitor it. For example,for in this paper we identi�ed the property \addition distributes over max" as being important toenable e�cient monitoring of the global function. In this paper we have only touched on this lineof reasoning, but we believe it merits further study.7 AcknowledgmentsWe are grateful to J. Roger Mitchell, Ken Marzullo, Michel Raynal and Jong-Deok Choi for helpfulcomments on earlier versions of this paper. 28

References[Atk87] M. D. Atkinson. The complexity of orders. In I. Rival, editor, Algorithms and Orders,volume 255 of NATO ASI Series, Mathematical and Physical Sciences, pages 195{230.1987.[BM93] �O. Babao�glu and K. Marzullo. Consistent global states of distributed systems: fun-damental concepts and mechanisms, in Distributed Systems, chapter 4. ACM Press,Frontier Series. (S.J. Mullender Ed.), 1993.[Bou87] L. Bouge. Repeated snapshots in distributed systems with synchronous communicationand their implementation in CSP. Theoretical Computer Science, 49:145{169, 1987.[BR94] �O. Babao�glu and M. Raynal. Speci�cation and detection of behavioral patterns indistributed computations. In Proc. of 4th IFIP WG 10.4 Int. Conference on DependableComputing for Critical Applications, San Diego, CA, January 1994. Springer VerlagSeries in Dependable Computing.[CL85] K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states ofdistributed systems. ACM Transactions on Computer Systems, 3(1):63{75, February1985.[CM91] R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of theWorkshop on Parallel and Distributed Debugging, pages 163{173, Santa Cruz, CA, May1991. ACM/ONR.[Dil50] R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. Math. 51,pages 161{166, 1950.[DJR93] C. Diehl, C. Jard, and J. X. Rampon. Reachability analysis on distributed executions.In Theory and Practice of Software Development, pages 629{643. TAPSOFT, SpringerVerlag, LNCS 668 (Gaudel and Jouannaud editors), April 1993.[Fid89] C. J. Fidge. Partial orders for parallel debugging. Proceedings of the ACM SIG-PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, published in ACMSIGPLAN Notices, 24(1):183{194, January 1989.[FRGT94] E. Fromentin, M. Raynal, V.K. Garg, and A.I. Tomlinson. On the y testing of regularpatterns in distributed computations. In Proc of the 23rd International Conference onParallel Processing, St. Charles, IL, August 1994.[Gar92] V.K. Garg. Some optimal algorithms for decomposed partially ordered sets. Informa-tion Processing Letters, 44:39{43, November 1992.[GCKM94] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Detecting conjunctive channelpredicates in a distribute programming environment. Technical Report TR-PDS-94-02,Parallel and Distributed Systems Laboratory, The University of Texas at Austin, 1994.29

[GTFR94] V.K. Garg, A.I. Tomlinson, E. Fromentin, and M. Raynal. An e�cient decentralizedalgorithm for detecting properties of distributed computations. Technical Report TR-PDS-94-04, Parallel and Distributed Systems Laboratory, The University of Texas atAustin, 1994.[GW92] V.K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs.In Proc. of 12th Conference on the Foundations of Software Technology & TheoreticalComputer Science, pages 253{264. Springer Verlag, December 1992. Lecture Notes inComputer Science 652.[GW94] V.K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed pro-grams. IEEE Transactions on Parallel and Distributed Systems, 5(3):299{307, March1994.[HPR93] M. Hur�n, N. Plouzeau, and M. Raynal. Detecting atomic sequences of predicates indistributed computations. In Proc. of the Workshop on Parallel and Distributed De-bugging, pages 32{42, San Diego, CA, May 1993. ACM/ONR. (Reprinted in SIGPLANNotices, Dec. 1993).[JJJR94] C. Jard, T. Jeron, G.V. Jourdan, and J.X. Rampon. A general approach to trace-checking in distributed computing systems. In Proc. of the International Conferenceon Distributed Computing Systems, Poznan, Poland, June 1994.[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-munications of the ACM, 21(7):558{565, July 1978.[Law76] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehartand Winston, 1976.[Mat89] F. Mattern. Virtual time and global states of distributed systems. In Parallel and Dis-tributed Algorithms: Proc. of the International Workshop on Parallel and DistributedAlgorithms, pages 215{226. Elsevier Science Publishers B.V. (North-Holland), 1989.[MC88] B.P. Miller and J. Choi. Breakpoints and halting in distributed programs. In Proc.of the 8th International Conference on Distributed Computing Systems, pages 316{323,San Jose, CA, July 1988. IEEE.[Ray92] M. Raynal. About logical clocks for distributed systems. ACM Operating SystemsReview, 26(1):41{48, 1992.[SK86] M. Spezialetti and P. Kearns. E�cient distributed snapshots. In Proc. of the 6thInternational Conference on Distributed Computing Systems, pages 382{388, 1986.[TG93] A.I. Tomlinson and V.K. Garg. Detecting relational global predicates in distributedsystems. In Proc. of the Workshop on Parallel and Distributed Debugging, San Diego,CA, May 1993. ACM/ONR. 30

