Causality for Time:
How to Specify and Verify Distributed Algorithms

Vijay K. Garg !
Alexander I. Tomlinson
Department of Electrical and Computer Engineering,
University of Texas, Austin, TX 78712-1084

email: vijay@pine.ece.uteras.edu

Abstract

We illustrate a technique for proving properties of distributed programs. Our tech-
nique avoids the notion of global time or global state. Furthermore, it does not require
any use of temporal logic. All properties are proven using induction on the happened-
before relation and its complement. We illustrate our technique by providing a formal
proof of Lamport’s algorithm for mutual exclusion.

1 Introduction

We define a distributed system as a collection of processors geographically distributed which
do not share any memory or clock. Further, it is assumed that different clocks cannot
be perfectly synchronized due to uncertainty in communication delays. The importance of
distinction between causality and time in such an environment was first emphasized by Leslie
Lamport in [9]. It is now well understood that the concept of time can be replaced by that
of causality with many advantages. For example, even though it is impossible to detect a
global property that became true at some physical time, it is possible to detect a global
property which occurred in a consistent global state [2, 7, 11]. As another example, message
guarantees that are based on causality can be easily implemented whereas the analogous
guarantee based on time is impossible to implement in absence of the shared clock. [1].

It we accept the premise that the concept of physical time is not useful in specifying and
reasoning about a distributed system, then we are forced to abandon the concept of physical
global state as well. However, it is common in the research community to use physical
global state to specify and prove properties of distributed programs. A classical example is
distributed mutual exclusion in which the absence of violation of mutual exclusion is specified
as O=(CS; A CS;). That is, there is no global state in which C'S; and C'Sy are true. In
this paper, we argue against using the notion of global states.

We view a distributed program as a set of deposets (decomposed partially ordered sets).
An execution of the program corresponds to one poset. Each poset is a set of local states
S ordered with the happened-before relation. Program properties are specified by stating
properties of the posets generated by the program. That is, a program satisfies a property
if and only if all posets which can be generated by the program satisfy the property. For
example, the safety property of mutual exclusion can be written as s||t = —(es(s) A es(?)).

lsupported in part by the NSF Grant CCR-9110605, the Army Grant N00039-91-C-0082, a TRW faculty

assistantship award, General Motors Fellowship, and an IBM grant.

2 Related Work

Owicki and Gries [13] extended the idea of Hoare triples [8] to include concurrent shared
memory programs. Their technique involves annotating each process with statement precon-
ditions and postconditions, and then proving that the annotated processes are interference
free (i.e., for each statement S in each program, it must be shown that S does not falsify
the precondition of any statement in any other process.

Tel [14] adopts the Owicki-Gries method for use with distributed message passing pro-
grams and extends it to include events and atomic actions. The events (typically a message
send or receive) invoke an atomic action which changes the state of the process. This ap-
proach also involves annotation and interference free proofs.

In their work on UNITY, Chandy and Misra [3] develop a higher level view of program-
ming and verification. In the UNITY approach, a problem specification (in terms of safety
and progress properties) is taken through a series of refinements. Each refinement is proven
to implement the specification which it refines. This process continues until the specifications
are at a low enough level to implement directly as UNITY statements.

This paper deals with proofs of predicates on the partial order of local states which is
generated by a distributed program as it executes. Two executions of the same program may
produce different partial orders due to inherent non-determinism which results from internal
non-deterministic statements or reordering of messages. This paper deals with predicates
on the partial orders of local states which result from executing a particular program. The
predicates are proven from the program text, hence they are valid for all executions of the
program.

3 Owur Model

We assume a loosely-coupled message-passing system without any shared memory or a global
clock. A distributed program consists of a set of n processes denoted by {P;, P, ..., P,}
communicating solely via asynchronous messages. Our work does not make any assumptions
on the ordering or the reliability of messages.

We view a distributed program as a set of runs. During one run of a program, each
process P; generates a sequence of states S;. We use s.p to denote the process in which s
occurs. That is, s.p = ¢ if and only if s € S;. We define S = U,5; to be the set of all local
states.

We define the locally precedes relation, <;,,, between states in S as follows: s <, ¢ if
and only if s immediately precedes t in some sequence S;. We use < for irreflexive transitive
closure and =< for for reflexive transitive closure of <,,. We also say that s.next = t and
t.prev = s whenever s <;,, t.

States s, € S are defined to be related by ~» if and only if a message is sent from state s
and that same message is received in state . We define the causally precedes relation, ~» as
the transitive closure of union of <;,, and ~». That is, s — ¢ if and only if (s <, 1)V (s ~> 1)
or (Ju : (s — u) A (u — t)). We say that s and ¢ are concurrent, s||¢, if and only if
(s = 1) A =t — s).

A global clock C' is a map from S’ to the set of natural numbers with the following

constraint:
§=<imt V s~t=C(s) < C(t)

We use C to denote the set of all global clocks which satisfy the above constraint. The
interpretation of C'(s) for any s € S is that the process s.p enters the state s when the clock
value is C'(s). Thus, it stays in the state s from time C(s) to C'(s.next) — 1. This constraint
models the sequential nature of execution at each process and the physical requirement that
any message transmission requires a non-zero amount of time. From the definition of —,
and the transitivity of <, it is equivalent to:

s—=t=VYCeC:(C(s) <C(t) (CC)

The condition (CC) is widely used as the definition of a logical clock since its proposal by
Lamport in [9].
We now show that the set C also satisfies the converse of (CC), i.e.,

sAt=3CeC:~(C(s) < C(t))
To this end, it is sufficient to show that

ullv = 3C €C: (C(u) = C(v))

That is, if two local states are concurrent, then there exists a global clock such that both
states are assigned the same timestamp. We show this result for any subset X of S which
contains pairwise concurrent states.

Lemma 1 For any X C 5,
(Vu,v € X tuljv) = 3IC €C:Vu,ve X : Cu) =C(v).

Combining Lemma 1 with (CC), we get the following pleasant characterization of —:
Vs,teS:(s—=teVOel:C(s) <C(t))

Intuitively, the above formula says that s causally precedes ¢ in a run if and only if all
possible observers of the run agree that s happened before t. Alternatively, if two states
s and t are concurrent, then there exists an observer for whom these states would appear
simultaneous. Therefore, in distributed systems the notion of concurrency is often used for
possible simultaneity. It is important to observe that simultaneity and concurrency relations
do not satisfy the same properties. For example, simultaneity is a transitive relation whereas
it is quite possible for e||f and f||g, but —el|g.

The steps in our method of specifying and verifying a distributed program are as follows:

1. The program is specified by stating properties of states which are related by the rela-
tions <, and ~. For example: s <;,, t = t.x = s.x + 1. Any poset that satisfies the
stated properties is a valid run of the program.

2. The desired properties of the program are specified using —, /4 and ||. It is important
to note that the concept of global time and therefore the global state is completely
avoided in this approach. Any variable, x, has meaning only in the context of a local
state (i.e. s.x).

3. The desired properties are shown using properties derived from the program text. This
is done using induction on — and . The concept of induction on 4 was introduced
in [12] where the technique was illustrated on Mattern’s vector clock algorithm [10].

k
4 Induction on % and S

k
We use two relations, £ and #, which were initially presented in [12]. This section is a
summary of that work which shows how to perform a proof by induction on .

k
The relations = and ++ are based on chains: a chain is a sequence of states sg, s1,...5,
such that s; < s;41 or s; ~ $;41. The function ml(s,t) is defined to be the length of the
longest chain from s to t. The function mi(In:t,t) is defined to be the length of the longest

k
chain from some initial state to {. Using these functions, % and #+ are defined as follows:

for k>0. s5¢ 2 ml(s,t) =k

2

k
for k>0 sAt sAHt A ml(Init,t) =k

3
Thus s 5 ¢ if and only if s — ¢ and the longest chain from s to ¢ has length &, and s /4 ¢ if
and only if s /& t and the longest chain from some initial state to ¢ has length &.

k
The following expressions show how % and ++ are related to — and 4.

s—1t & (Elk:k>0:3i>t)

sht & (3k2k2028712>t)

k
To give the flavor of how a proof by induction on 4 would proceed, consider a claim of

k
the form: s 4 t = R(s,t). We note that it is sufficient to prove s /4 t = R(s,t) for all
k >0, and proceed by induction on k. To prove the base case, we need to show that R(s,t)
holds when t is an initial state. To prove the inductive case, we need to show that there

J

exists a j less than k such that s /4 u, where u — ¢. (It is easy to show that u exists since
k

k>0 A s - timply that ¢ is not an initial state. The following table shows the lemmas

k
needed to perform induction on % and ad

%, Base Case: 5i>t:>3<imt\/5«f>t

*. Induction Case: s-5¢ A (k>1) = (Juis' S u A ut)
k 0

+/ Base Case: s /1 & tis an initial state

k k J
Induction Case: k>0 A sAtANu—t = (Fj:0<j<k:sAhu)

5 Properties of the Mutual Exclusion Algorithm

We illustrate our method by verifying Lamport’s mutual exclusion algorithm. Let a system
consist of a fixed number of processes and a shared resource which we call the critical section.
It is required that no more than one process use the critical section at any time. The
algorithm to coordinate access to the critical section must satisty the following informally
stated properties:

Safety: Two processes should not have permission to use the critical section simultaneously.
Liveness: Every request for the critical section is eventually granted.
Fairness: Different requests must be granted in the order they are made.

Let us first formalize the problem. To start, Lamport’s algorithm assumes that all chan-
nels are FIFO. The FIFO property can be stated as follows:

§<t AN s~uANt~v=-(v=<u)

For any state s, we define predicates req(s) and cs(s). reg(s) is true if the process P,
has requested the critical section and has not yet released it. cs(s) is true if the process
P, , has permission to enter the critical section in the state s. These predicates are defined
formally in the algorithm.

A process behaves as follows. In an initial state s, both req(s) and cs(s) are false. Any
time a process requests the critical section, req(s) becomes true and remains true until the
critical section is released, at which time req(s) becomes false. It is assumed that a process
which is granted access to the critical section eventually releases it.

cs(s) = (Ft:s <t:req(t)) (Fairness Assumption)

Our task is to develop a distributed algorithm to ensure the required safety, liveness and
progress properties. The informal safety property uses the notion of simultaneity. We replace
it with concurrency.

sl[t = —(es(s) A es(t)) (Safety)
req(s) = (Ft s <t A es(t)) (Liveness)

Fairness properties usually refer to time for ordering. We substitute a logical notion of
time. Let
next_cs(s) = min{t|s <t A cs(1)}

Informally, next_cs(s) is the first local state after s in which the process Ps, has access to
the critical section. Also, define a boolean function req_start(s) as follows:

req_start(s) = req(s) N —req(s.prev)

Thus, reg_start(s) is true if and only if P;, made a request for the critical section in state
s. Then, the fairness property can be stated as:

req_start(s) A req_start(t) A s — t = next_cs(s) — next_cs(t) (Fairness)

Note that next_cs(s) and next_cs(t) exist due to liveness. Further, next_cs(s) and
next_cs(t) are not concurrent due safety. Therefore, next_cs(s) — next_cs(t) is equivalent
to = (next_cs(t) — next_cs(s)).

5.1 Direct Dependency Clock Properties

It is commonly believed that Lamport’s algorithm uses only logical clocks. However, on
closer inspection it can be seen that his algorithm uses acknowledgments to implement
direct dependency clocks. Direct dependency clocks are a weaker version of vector clock
algorithms [10]. They require smaller message tags to implement (one integer vs. N),
however, they provide a weaker form of causality information. For many applications such
as this one, the weaker version of the clock suffices.

We use a direct dependency clock (DDClock) in describing the mutual exclusion algo-
rithm. The algorithm for maintaining a DDClock is described by the initial conditions and
the actions taken for each event type.

For any initial state s:
(Vi:i#£sp:sofi]=0) A (sv[s.p]=1)

Rule for a send event or an internal event (ie, (s <;m t) A —(Ju t u~~t)):
twlt.p] = swft.p] + 1

Rule for a receive event (ie, s < t A u~> p):
t.o[t.p] = max(s.v[t.p], u.v[u.p]) + 1
t.o[u.p] = max(u.v[u.p], s.v[u.p)

Lemma 2 (proof appears in the appendix) states the DDClock property, which uses the
relation —,, a subset of —. Given states s and ¢, s —4 ¢ is true if and only if s # ¢ and
there is a path (ie, chain) from s to ¢ which includes at most one message.

§ =gt =8=<ippt Vs~tV du,v:s=u AN u—gv Av=t

Lemma 2 Vs, t:s £ p: (s —4t) < (s.v[s.p] < to[s.p])

6 Specification of the Mutual Exclusion Algorithm

We give an informal description of original Lamport’s algorithm followed by a formal descrip-
tion using our notation. In the informal description, timestamps refer to Lamport’s logical
clock as defined by equation CC. In addition, each process maintains a queue of requests.

o To request the critical section, a process sends a timestamped message to all other
processes and adds a timestamped request to the queue.

o On receiving a request message, the request and its timestamp is stored in the queue
and an acknowledgment is replied.

o To release the critical section, a process sends a release message to all other processes.
e On receiving a release message, the corresponding request is deleted from the queue.

e A process determines that it can access the critical section if and only if: 1) it has
a request in the queue with timestamp ¢, and 2) ¢ is less than all other requests in
the queue, and 3) it has received a message from every other process with timestamp
greater ¢ (the request acknowledgments ensure this).

The formal description follows. The DDClock is maintained as described in section 5.1 (s.v
refers to the value of the DDClock in state s).

Local variables: s.q[1..n], of integers, initially all co.

To request the critical section: t.q[t.p] = s.v[t.p]
for all j : j # t.p: send (f.¢[t.p]) to P;

On receiving a request message sent t.q[u.p] = u.q[u.p]
from state u and received in state t: send ack to u.p

To release the critical section: t.q[t.p] = oo
for all j : j # t.p: send (f.¢[t.p]) to P;

On receiving a release message t.qlu.p] = 0o
sent from state w:

State s has received a request from P; if s.¢q[i] # oo, in which case the timestamp of the
request is the value of s.¢[i]. State s has permission to access the critical section when there
is a request from P;, with timestamp less than all other requests and P, has received a
message from every other process with a timestamp greater than that its request’s timestamp.
We use the predicates reg(s) and c¢s(s) to denote that a request has been made and access
has been granted. They are defined as follows:

req(s) = s.q[s.p] # o
cs(s) = (Vi) #sp:(sqlsplsp)<(sol],j) A (sqlsplsp) < (s.q[],)))

7 Proof of Correctness

We define the predicate msg(s,t) = (Ju,t’' :u < s:u~~>1t" At <t'). That is, there exists a
message which was sent by F;, before s and received by P, after ¢.

The mutual exclusion algorithm satisfies the property stated in lemma 3. Intuitively, the
lemma states that if no message sent after s arrives before ¢ and no message sent before s
arrives after ¢, then t.¢[s.p] = s.q[s.p]. Prove of this lemma appears in the appendix.

Lemma 3 Assume FIFO. Vs,t:s.p#tp: s/t A —msg(s,t) = t.q[s.p] = s.q[s.p].

The following Lemma is crucial in proving the safety property. (Its proof also appears
in the appendix). The remaining lemmas prove that the algorithm satisfies the required
properties: safety, liveness, and fairness.

Lemma4 Vs, t:sp#tp:sht A sq[s.p] <twlsp] = tq[s.p| = s.q[s.p]
Lemma 5 (Safety) s.p #t.p A s||t = —(es(s) A es(t)).

Proof: We will show that (s]|t) A es(s) A es(t) implies false.

Case I:t.v][s.p] < s.q[s.p], s.v[t.p] < t.q[t.p] Case 2: s.q[s.p] < t.w]s.p],t.q[t.p] < s.v[t.p]

We get the following cycle. We get the following cycle.
s.q[s.p] s.q[s.p]

< fes(3)) < fes(s))
s.o[t.p] s.q[t.p]

< { this case } = {t.q[t.p] < s.w[t.p],t / s, Lemma 4 }
t.q[t.p] t.q[t.p]

< {es(t)) < feslt))
t.o[s.p] t.q[s.p]

< { this case } = {s.q[s.p] < t.w[s.p],s /1, Lemma 4 }
s.q[s.pl. s.q[s.pl.

Case 3: s.q[s.p] < t.w[s.p],s.v[t.p] < t.q[t.p] Case 4: is similar to Case 3.
We get the following cycle.

s.q[s.p]
< {es(s))
s.o[t.p]
< { this case }
t.q[t.p]
< {es(t))
t.q[s.p]
= {s.q[s.p] < tw[s.p],s /~ t, Lemma 4 }
s.q[s.pl.

Lemma 6 (Liveness) req(s) = 3Jt:s <t A es(t)

Proof: req(s) is equivalent to s.q[s.p] # oo. s.q[s.p] # oo implies that there exists
sl € Py, such that sl.v[s.p] = s.¢[s.p] A event(sl) = request.

We show existence of required ¢ with the following two claims:
Claim 1: 31 : ¥y # s.p: tlwfj] > s.q[s.p] A s.q[s.p] = tl.q[s.p]
Claim 2: 32 :Vj # s.p: 12.¢[j] > s.q[s.p] N s.q[s.p] = 12.q[s.p]

By choosing t = max(t1,12) and verifying that e¢s(?) holds we get the desired result.

8

Claim 1 is true because the message sent at sl will eventually be acknowledged. It is
enough to note that Vj : j # s.p: Jw; € P; : s1 ~ w;. From the program, we get that on
receiving request, the message is acknowledged. Thus, Vj : j # s.p: Ju; € P : w; ~ u;. By
defining t1 = max j : j # s.p : u;, and observing that for any j, w;.v[j] > s.q[s.p], we get
the claim 1.

To show claim 2, we use induction on the number of requests smaller than s.¢[s.p] in t1.q.

We define
nreq(u) = | {k [u.q[k] <u.qlupl} |

If nreg(tl) = 0, then s.¢[s.p] is minimum at ¢1.¢ and therefore c¢s(¢1) holds. Assume for
induction that the claim holds for nreq(t1) = k, (k > 1). Now, let nreq(t1) = k+1. Consider
the process with the smallest request, that is assume that ¢1.¢[j] is minimum for some j.
Let u be the state in P; such that u.v[j] = tl.¢[j]. We claim that nreg(u) = 0. If not,
let m be such that u.q[m] < u.¢[u.p]. This implies that u.q[m] < u.q[u.p] < s.q[s.p]. Since
s.q[s.p] < tl.w[m], from FIFO it follows that t1.q[m] = u.¢q[m]. However, u.q[u.p] is the
smallest request message; a contradiction.

Therefore, we know that process u.p will enter critical section and thus eventually set its
q[u.p] to oo. This will reduce the number of requests at t1.p by 1.

|
Lemma 7 (Fairness) (req(s) A req(t)) A (s.q[s.p] < t.q[t.p]) = (next_cs(s) — next_cs(t))

Proof: First observe that req(s) A req(t) implies that s.q[s.p] # oo A t.¢[t.p] # co. Let
s =next_cs(s) and t' = next_cs(t).
es(t)
= { defn crit }
t'.qlt.p] < t'.v]s.p]
= { s.qls.p] < t.qt.p] }
s.q[s.p] < t'.v[s.p]
— { FIFO }
Ju:u <1 ug[s.p] = s.q[s.p]
However, ¢s(t') implies #'.¢[t.p] < t'.¢[s.p]. This implies that there exists w : event(w) =
release such that s’ — w and w — ¢’. From this it follows that s’ — ¢’

& Conclusions

There are some important differences in the view point advocated in this paper and the
currently prevalent views in verification of distributed programs. These are the explicit
naming of local states and the static vs. dynamic view of programs.

We explicitly name local states which allows us to associate values of variables with local
states. This is in contrast to popular practice in which values of variables are considered
with respect to global states. Neither the concept of a current value nor a value in a global
state exist in our method. An advantage of our method is that we can refer to states that are

not concurrent. For example, the assertion s — ¢ = s.v[s.p] < t.w[t.p] is difficult to express
using conventional methods.

Our model allows us to use a static view of program execution. A program is viewed as a
set of posets rather than the traditional dynamic system. An example of a property specified
in the traditional view is x leads-to y. This property states that if x is true in the current
global state, then y will eventually become true. The same property can be expressed in the
poset model as: s.x = (I :s <t :ty).

We advocate that the concept of time be totally avoided in formal reasoning of distributed
systems. A program is just a set of posets. A property is simply a boolean expression about
the states in the poset. Verification of a property simply means that all posets satisfy the
required property.

References

[1] K. Birman and T. Joseph, “Reliable Communications in presence of failures,” ACM

Trans. on Comp. Systems, 5 (1) (1987) 47 - 76.

[2] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global States of
Distributed Systems”, ACM Transactions on Computer Systems, Vol. 3, No. 1, pp. 63
— 75, February 1985.

[3] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
Reading, MA, 1989.

[4] R. Cooper and K. Marzullo, “Consistent Detection of Global Predicates”, Proc. of the
ACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, California,
pp. 163 — 173, May 1991.

[5] C. Fidge, “Partial Orders for Parallel Debugging”, Proc. of the ACM Workshop on
Parallel and Distributed Debugging, Madison, Wisconsin, May 1988, pp. 130 — 140.

[6] V. K. Garg, “Some Optimal Algorithms for Decomposed Partially Ordered Sets,” In-
formation Processing Letters 44, November 1992, pp 39-43.

[7] V.K. Garg and B. Waldecker, “Detection of Unstable Predicate in Distributed Pro-
grams,” Proc. 12th Conference on the Foundations of Software Technology & Theoretical
Computer Science, Lecture Notes in Computer Science 652, Springer-Verlag, Dec 1992,
pp 253-264. (to appear in IEEE Transactions on Parallel and Distributed Systems.

[8] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, pages 576-580, October 1969.

[9] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System”,
Communications of the ACM, July, 1978, pp. 558 — 565.

[10] F. Mattern, “Virtual time and global states of distributed systems”, Parallel and Dis-
tributed Algorithms: Proceedings of the International Workshop on Parallel and Dis-
tributed Algorithms, Elsevier Science Publishers B. V., 1989, pp. 215-226.

10

[11] A.L. Tomlinson and V.K.Garg, “Detecting Relational Global Predicates in Distributed
Systems,” Proc. 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, San
Diego, California, May 1993, pp. 21 - 31.

[12] A.L. Tomlinson and V.K.Garg, “Using Induction to Prove Properties of Distributed
Programs”. In Proc. of the 5" IEEE Symposium on Parallel and Distributed Processing.
Dallas, Texas, Dec 1993, pp. 478 — 485.

[13] S Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319-340, 1976.

[14] Gerard Tel. Topics in Distributed Algorithms. Cambridge University Press, Cambridge,
England, 1991.

11

A Appendix

Proof of Lemma 2 Vs, t:s#p: (s —41) & (s.v][s.p] < twls.p])
Proof:

First prove = by induction on —k>d, then prove the < direction by induction on 7f>d.

— Base: s —, t means that the longest chain from s to ¢ has length 1 and that ~»
must be in this chain. Thus, s ~» t. From the program it can be seen that s ~» ¢ implies
s.o[s.p] < twls.pl.

= Induction: k > 0 and s =5, ¢ imply that there exists a state u such that either: 1)

S <im U N U k—?}; t,or2) s k—:}; u A u <, t. In either case, we use the induction hypothesis
and program properties for <;,, to conclude that s.v[s.p] < t.v]s.pl.

0

< Base: s /4 t implies ¢ is an initial state. We know s.v[s.p] > 1. If s.p # tp
we know t.w[s.p] = 0, thus s.v[s.p] > t.w[s.p]. If s.p = t.p we know ¢ <;,, s, thus again
s.v[s.p] > t.w]s.p].

< Induction: Let u <, t. Then s 7Z>d u and j < k and by induction we know s.v[s.p] >
u.v[s.p]. Suppose the event between u and ¢ was not a receive, then u.v[s.p] = t.v[s.p] and
s.v[s.p] > t.w]s.p].

Suppose the event was a receive and w ~+ t. If w.p # s.p then w.v[s.p] = t.v][s.p] implies
s.o[s.p] > tw[s.p]. If w.p = s.p, then since s 4 ¢, we know w < s. Therefore a message was
sent from s.p between w and s, and by send rule we know w.v[s.p] < s.v[s.p]. By receive
rule of this message we know ¢.v[s.p] = w.v[s.p]. Hence, s.v[s.p] > t.v[s.p].

Proof of Lemma 3
Assume FIFO. Vs, t:s.p£tp:s /At A —msg(s,t) = t.q[s.p] = s.q[s.p].

Proof: We will use induction on 7]Z>

Base Case: (k= 0) = Init(t)

If Inet(s), then the result follows from the initial assignment. Otherwise, let u be the initial
state in the process s.p. From —msg(s,t) and the rule that any change in s.q[s.p] requires
send of a message it follows that s.q[s.p] = u.q[s.p] (This argument can be formalized using
induction on the the number of states that precede s in the process s.p.) From initial
assignment, it again follows that ¢.q[s.p] = s.q[s.p].

Induction case: s 7]L> t.prev,j < k
Let u = t.prev. Let event(u) # receive, then =msg(s,t) implies “msg(s, u). Using induction
hypothesis, we get that w.q[s.p] = s.q[s.p] and by using program text, we conclude that
t.q[s.p] = u.q]s.]. Now let event(u) = receive(w). If w.p # s.p, the previous case applies.
So, let w.p = s.p. Since s 4 t, it follows that w < s. Let w’ = w.next. From program,
w'.q[s.p] = t.¢q[s.p]. We now claim that s.q[s.p] = w’.q[s.p] from which the result follows. If
not, there exists y such that v’ <y < s and y.prev.q[s.p] # y.q[s.p]. From the program,
there exists a message from y to the process t.p received in the state z (assuming reliable
messages). t < z violates =msg(s,t), t = z is not possible as exactly one message is received
before ¢ which is w; and z < t violates FIFO as w < y but z < t.

12

[1%

Process s.p

Process t.p

—

Figure 1: Proof for the induction case

Proof of Lemma 4 Vs, t:sp#t.p:s/At A s.q[s.p] <tov[s.p] = tq[s.p]=s.q[s.p]
Proof: Let u < s be such that u.v[s.p] = s.¢[s.p]. s.q[s.p] is set different from oo only at
the event request. From event description it follows that for all ¥ such that v < y < s:
event(y) # request N event(y) # release. Thus there is no request/release message sent
after u. (1)

Since w.v[u.p] < t.v[s.p], from Lemma 2, we get that u —, t. Therefore, there exists w, t’
such that w.p = s.p,t.p = t".p and w.v[s.p] = t.w[s.p] A w~t" A ' < t. From FIFO and
u.v[s.p] < w.v[s.p] it follows that =msg(u,t). (2)

From (1) and (2), we get =msg(s,t) which gives us that f.¢[s.p] = s.¢[s.p] using Lemma
3.

13

