
Causality for Time:How to Specify and Verify Distributed AlgorithmsVijay K. Garg 1Alexander I. TomlinsonDepartment of Electrical and Computer Engineering,University of Texas, Austin, TX 78712-1084email: vijay@pine.ece.utexas.eduAbstractWe illustrate a technique for proving properties of distributed programs. Our tech-nique avoids the notion of global time or global state. Furthermore, it does not requireany use of temporal logic. All properties are proven using induction on the happened-before relation and its complement. We illustrate our technique by providing a formalproof of Lamport's algorithm for mutual exclusion.1 IntroductionWe de�ne a distributed system as a collection of processors geographically distributed whichdo not share any memory or clock. Further, it is assumed that di�erent clocks cannotbe perfectly synchronized due to uncertainty in communication delays. The importance ofdistinction between causality and time in such an environment was �rst emphasized by LeslieLamport in [9]. It is now well understood that the concept of time can be replaced by thatof causality with many advantages. For example, even though it is impossible to detect aglobal property that became true at some physical time, it is possible to detect a globalproperty which occurred in a consistent global state [2, 7, 11]. As another example, messageguarantees that are based on causality can be easily implemented whereas the analogousguarantee based on time is impossible to implement in absence of the shared clock. [1].If we accept the premise that the concept of physical time is not useful in specifying andreasoning about a distributed system, then we are forced to abandon the concept of physicalglobal state as well. However, it is common in the research community to use physicalglobal state to specify and prove properties of distributed programs. A classical example isdistributed mutual exclusion in which the absence of violation of mutual exclusion is speci�edas 2:(CS1 ^ CS2). That is, there is no global state in which CS1 and CS2 are true. Inthis paper, we argue against using the notion of global states.We view a distributed program as a set of deposets (decomposed partially ordered sets).An execution of the program corresponds to one poset. Each poset is a set of local statesS ordered with the happened-before relation. Program properties are speci�ed by statingproperties of the posets generated by the program. That is, a program satis�es a propertyif and only if all posets which can be generated by the program satisfy the property. Forexample, the safety property of mutual exclusion can be written as skt) :(cs(s) ^ cs(t)).1supported in part by the NSF Grant CCR-9110605, the Army Grant N00039-91-C-0082, a TRW facultyassistantship award, General Motors Fellowship, and an IBM grant.1

2 Related WorkOwicki and Gries [13] extended the idea of Hoare triples [8] to include concurrent sharedmemory programs. Their technique involves annotating each process with statement precon-ditions and postconditions, and then proving that the annotated processes are interferencefree (i.e., for each statement S in each program, it must be shown that S does not falsifythe precondition of any statement in any other process.Tel [14] adopts the Owicki-Gries method for use with distributed message passing pro-grams and extends it to include events and atomic actions. The events (typically a messagesend or receive) invoke an atomic action which changes the state of the process. This ap-proach also involves annotation and interference free proofs.In their work on UNITY, Chandy and Misra [3] develop a higher level view of program-ming and veri�cation. In the UNITY approach, a problem speci�cation (in terms of safetyand progress properties) is taken through a series of re�nements. Each re�nement is provento implement the speci�cation which it re�nes. This process continues until the speci�cationsare at a low enough level to implement directly as UNITY statements.This paper deals with proofs of predicates on the partial order of local states which isgenerated by a distributed program as it executes. Two executions of the same program mayproduce di�erent partial orders due to inherent non-determinism which results from internalnon-deterministic statements or reordering of messages. This paper deals with predicateson the partial orders of local states which result from executing a particular program. Thepredicates are proven from the program text, hence they are valid for all executions of theprogram.3 Our ModelWe assume a loosely-coupled message-passing system without any shared memory or a globalclock. A distributed program consists of a set of n processes denoted by fP1; P2; :::; Pngcommunicating solely via asynchronous messages. Our work does not make any assumptionson the ordering or the reliability of messages.We view a distributed program as a set of runs. During one run of a program, eachprocess Pi generates a sequence of states Si. We use s:p to denote the process in which soccurs. That is, s:p = i if and only if s 2 Si. We de�ne S = [iSi to be the set of all localstates.We de�ne the locally precedes relation, �im, between states in S as follows: s �im t ifand only if s immediately precedes t in some sequence Si. We use � for irre
exive transitiveclosure and � for for re
exive transitive closure of �im. We also say that s:next = t andt:prev = s whenever s �im t.States s; t 2 S are de�ned to be related by; if and only if a message is sent from state sand that same message is received in state t. We de�ne the causally precedes relation, ; asthe transitive closure of union of �im and;. That is, s! t if and only if (s �im t)_(s; t)or (9u :: (s ! u) ^ (u ! t)). We say that s and t are concurrent, skt, if and only if:(s! t) ^ :(t! s).A global clock C is a map from S 0 to the set of natural numbers with the following2

constraint: s �im t _ s; t) C(s) < C(t)We use C to denote the set of all global clocks which satisfy the above constraint. Theinterpretation of C(s) for any s 2 S is that the process s:p enters the state s when the clockvalue is C(s). Thus, it stays in the state s from time C(s) to C(s:next)� 1. This constraintmodels the sequential nature of execution at each process and the physical requirement thatany message transmission requires a non-zero amount of time. From the de�nition of !,and the transitivity of <, it is equivalent to:s! t) 8C 2 C : C(s) < C(t) (CC)The condition (CC) is widely used as the de�nition of a logical clock since its proposal byLamport in [9].We now show that the set C also satis�es the converse of (CC), i.e.,s 6! t) 9C 2 C : :(C(s) < C(t))To this end, it is su�cient to show thatukv) 9C 2 C : (C(u) = C(v))That is, if two local states are concurrent, then there exists a global clock such that bothstates are assigned the same timestamp. We show this result for any subset X of S whichcontains pairwise concurrent states.Lemma 1 For any X � S,(8u; v 2 X : ukv)) 9C 2 C : 8u; v 2 X : C(u) = C(v).Combining Lemma 1 with (CC), we get the following pleasant characterization of !:8s; t 2 S : (s! t, 8C 2 C : C(s) < C(t))Intuitively, the above formula says that s causally precedes t in a run if and only if allpossible observers of the run agree that s happened before t. Alternatively, if two statess and t are concurrent, then there exists an observer for whom these states would appearsimultaneous. Therefore, in distributed systems the notion of concurrency is often used forpossible simultaneity. It is important to observe that simultaneity and concurrency relationsdo not satisfy the same properties. For example, simultaneity is a transitive relation whereasit is quite possible for ekf and fkg, but :ekg.The steps in our method of specifying and verifying a distributed program are as follows:1. The program is speci�ed by stating properties of states which are related by the rela-tions �im and ;. For example: s �im t) t:x = s:x+ 1. Any poset that satis�es thestated properties is a valid run of the program.2. The desired properties of the program are speci�ed using!, 6! and k. It is importantto note that the concept of global time and therefore the global state is completelyavoided in this approach. Any variable, x, has meaning only in the context of a localstate (i.e. s:x). 3

3. The desired properties are shown using properties derived from the program text. Thisis done using induction on ! and 6!. The concept of induction on 6! was introducedin [12] where the technique was illustrated on Mattern's vector clock algorithm [10].4 Induction on k! and k6!We use two relations, k! and k6!, which were initially presented in [12]. This section is asummary of that work which shows how to perform a proof by induction on k.The relations k! and k6! are based on chains: a chain is a sequence of states s0; s1; : : : snsuch that si � si+1 or si ; si+1. The function ml(s; t) is de�ned to be the length of thelongest chain from s to t. The function ml(Init; t) is de�ned to be the length of the longestchain from some initial state to t. Using these functions, k! and k6! are de�ned as follows:for k > 0: s k! t 4= ml(s; t) = kfor k � 0: s k6! t 4= s 6! t ^ ml(Init; t) = kThus s k! t if and only if s! t and the longest chain from s to t has length k, and s k6! t ifand only if s 6! t and the longest chain from some initial state to t has length k.The following expressions show how k! and k6! are related to ! and 6!.s! t , (9k : k > 0 : s k! t)s 6! t , (9k : k � 0 : s k6! t)To give the
avor of how a proof by induction on k6! would proceed, consider a claim ofthe form: s 6! t) R(s; t). We note that it is su�cient to prove s k6! t) R(s; t) for allk � 0, and proceed by induction on k. To prove the base case, we need to show that R(s; t)holds when t is an initial state. To prove the inductive case, we need to show that thereexists a j less than k such that s j6! u, where u! t. (It is easy to show that u exists sincek > 0 ^ s k6! t imply that t is not an initial state. The following table shows the lemmasneeded to perform induction on k! and k6!.k! Base Case: s 1! t) s �im t _ s; tk! Induction Case: s k! t ^ (k > 1)) (9u :: s k�1! u ^ u 1! t)k6! Base Case: s 06! t , t is an initial statek6! Induction Case: k > 0 ^ s k6! t ^ u! t) (9j : 0 � j < k : s j6! u)4

5 Properties of the Mutual Exclusion AlgorithmWe illustrate our method by verifying Lamport's mutual exclusion algorithm. Let a systemconsist of a �xed number of processes and a shared resource which we call the critical section.It is required that no more than one process use the critical section at any time. Thealgorithm to coordinate access to the critical section must satisfy the following informallystated properties:Safety: Two processes should not have permission to use the critical section simultaneously.Liveness: Every request for the critical section is eventually granted.Fairness: Di�erent requests must be granted in the order they are made.Let us �rst formalize the problem. To start, Lamport's algorithm assumes that all chan-nels are FIFO. The FIFO property can be stated as follows:s � t ^ s; u ^ t; v) :(v � u)For any state s, we de�ne predicates req(s) and cs(s). req(s) is true if the process Ps:phas requested the critical section and has not yet released it. cs(s) is true if the processPs:p has permission to enter the critical section in the state s. These predicates are de�nedformally in the algorithm.A process behaves as follows. In an initial state s, both req(s) and cs(s) are false. Anytime a process requests the critical section, req(s) becomes true and remains true until thecritical section is released, at which time req(s) becomes false. It is assumed that a processwhich is granted access to the critical section eventually releases it.cs(s)) (9t : s � t : :req(t)) (Fairness Assumption)Our task is to develop a distributed algorithm to ensure the required safety, liveness andprogress properties. The informal safety property uses the notion of simultaneity. We replaceit with concurrency. skt) :(cs(s) ^ cs(t)) (Safety)req(s)) (9t :: s � t ^ cs(t)) (Liveness)Fairness properties usually refer to time for ordering. We substitute a logical notion oftime. Let next cs(s) = minftjs � t ^ cs(t)gInformally, next cs(s) is the �rst local state after s in which the process Ps:p has access tothe critical section. Also, de�ne a boolean function req start(s) as follows:req start(s) = req(s) ^ :req(s:prev)Thus, req start(s) is true if and only if Ps:p made a request for the critical section in states. Then, the fairness property can be stated as:5

req start(s) ^ req start(t)^ s! t) next cs(s)! next cs(t) (Fairness)Note that next cs(s) and next cs(t) exist due to liveness. Further, next cs(s) andnext cs(t) are not concurrent due safety. Therefore, next cs(s) ! next cs(t) is equivalentto :(next cs(t)! next cs(s)).5.1 Direct Dependency Clock PropertiesIt is commonly believed that Lamport's algorithm uses only logical clocks. However, oncloser inspection it can be seen that his algorithm uses acknowledgments to implementdirect dependency clocks. Direct dependency clocks are a weaker version of vector clockalgorithms [10]. They require smaller message tags to implement (one integer vs. N),however, they provide a weaker form of causality information. For many applications suchas this one, the weaker version of the clock su�ces.We use a direct dependency clock (DDClock) in describing the mutual exclusion algo-rithm. The algorithm for maintaining a DDClock is described by the initial conditions andthe actions taken for each event type.For any initial state s:(8i : i 6= s:p : s:v[i] = 0) ^ (s:v[s:p] = 1)Rule for a send event or an internal event (ie, (s �im t) ^ :(9u :: u; t)):t:v[t:p] = s:v[t:p] + 1Rule for a receive event (ie, s �im t ^ u; p):t:v[t:p] = max(s:v[t:p]; u:v[u:p])+ 1t:v[u:p] = max(u:v[u:p]; s:v[u:p])Lemma 2 (proof appears in the appendix) states the DDClock property, which uses therelation !d, a subset of !. Given states s and t, s !d t is true if and only if s 6= t andthere is a path (ie, chain) from s to t which includes at most one message.s!d t � s �im t _ s; t _ 9u; v : s � u ^ u!d v ^ v � tLemma 2 8s; t : s 6= p : (s!d t), (s:v[s:p] � t:v[s:p])6 Speci�cation of the Mutual Exclusion AlgorithmWe give an informal description of original Lamport's algorithm followed by a formal descrip-tion using our notation. In the informal description, timestamps refer to Lamport's logicalclock as de�ned by equation CC. In addition, each process maintains a queue of requests.� To request the critical section, a process sends a timestamped message to all otherprocesses and adds a timestamped request to the queue.� On receiving a request message, the request and its timestamp is stored in the queueand an acknowledgment is replied. 6

� To release the critical section, a process sends a release message to all other processes.� On receiving a release message, the corresponding request is deleted from the queue.� A process determines that it can access the critical section if and only if: 1) it hasa request in the queue with timestamp t, and 2) t is less than all other requests inthe queue, and 3) it has received a message from every other process with timestampgreater t (the request acknowledgments ensure this).The formal description follows. The DDClock is maintained as described in section 5.1 (s:vrefers to the value of the DDClock in state s).Local variables: s:q[1::n], of integers, initially all 1.To request the critical section: t:q[t:p] = s:v[t:p]for all j : j 6= t:p : send (t:q[t:p]) to PjOn receiving a request message sentfrom state u and received in state t: t:q[u:p] = u:q[u:p]send ack to u:pTo release the critical section: t:q[t:p] =1for all j : j 6= t:p : send (t:q[t:p]) to PjOn receiving a release messagesent from state u: t:q[u:p] =1State s has received a request from Pi if s:q[i] 6=1, in which case the timestamp of therequest is the value of s:q[i]. State s has permission to access the critical section when thereis a request from Ps:p with timestamp less than all other requests and Ps:p has received amessage from every other process with a timestampgreater than that its request's timestamp.We use the predicates req(s) and cs(s) to denote that a request has been made and accesshas been granted. They are de�ned as follows:req(s) � s:q[s:p] 6=1cs(s) � (8j : j 6= s:p : (s:q[s:p]; s:p)< (s:v[j]; j) ^ (s:q[s:p]; s:p) < (s:q[j]; j))7 Proof of CorrectnessWe de�ne the predicate msg(s; t) � (9u; t0 : u � s : u; t0 ^ t � t0). That is, there exists amessage which was sent by Ps:p before s and received by Pt:p after t.The mutual exclusion algorithm satis�es the property stated in lemma 3. Intuitively, thelemma states that if no message sent after s arrives before t and no message sent before sarrives after t, then t:q[s:p] = s:q[s:p]. Prove of this lemma appears in the appendix.Lemma 3 Assume FIFO. 8s; t : s:p 6= t:p : s 6! t ^ :msg(s; t)) t:q[s:p] = s:q[s:p]:7

The following Lemma is crucial in proving the safety property. (Its proof also appearsin the appendix). The remaining lemmas prove that the algorithm satis�es the requiredproperties: safety, liveness, and fairness.Lemma 4 8s; t : s:p 6= t:p : s 6! t ^ s:q[s:p] < t:v[s:p]) t:q[s:p] = s:q[s:p]Lemma 5 (Safety) s:p 6= t:p ^ skt) :(cs(s) ^ cs(t)).Proof: We will show that (skt) ^ cs(s) ^ cs(t) implies false.Case 1:t:v[s:p]< s:q[s:p]; s:v[t:p]< t:q[t:p]We get the following cycle.s:q[s:p]< fcs(s)gs:v[t:p]< f this case gt:q[t:p]< fcs(t)gt:v[s:p]< f this case gs:q[s:p].
Case 2: s:q[s:p] < t:v[s:p]; t:q[t:p]< s:v[t:p]We get the following cycle.s:q[s:p]< fcs(s) gs:q[t:p]= ft:q[t:p]< s:v[t:p]; t 6! s, Lemma 4 gt:q[t:p]< fcs(t) gt:q[s:p]= fs:q[s:p] < t:v[s:p]; s 6! t, Lemma 4 gs:q[s:p].Case 3: s:q[s:p] < t:v[s:p]; s:v[t:p]< t:q[t:p]We get the following cycle.s:q[s:p]< f cs(s) gs:v[t:p]< f this case gt:q[t:p]< f cs(t) gt:q[s:p]= fs:q[s:p] < t:v[s:p]; s 6! t, Lemma 4 gs:q[s:p].
Case 4: is similar to Case 3.

Lemma 6 (Liveness) req(s)) 9t : s � t ^ cs(t)Proof: req(s) is equivalent to s:q[s:p] 6= 1. s:q[s:p] 6= 1 implies that there existss1 2 Ps:p such that s1:v[s:p] = s:q[s:p] ^ event(s1) = request.We show existence of required t with the following two claims:Claim 1: 9t1 : 8j 6= s:p : t1:v[j]> s:q[s:p] ^ s:q[s:p] = t1:q[s:p]Claim 2: 9t2 : 8j 6= s:p : t2:q[j]> s:q[s:p] ^ s:q[s:p] = t2:q[s:p]By choosing t = max(t1; t2) and verifying that cs(t) holds we get the desired result.8

Claim 1 is true because the message sent at s1 will eventually be acknowledged. It isenough to note that 8j : j 6= s:p : 9wj 2 Pj : s1 ; wj. From the program, we get that onreceiving request, the message is acknowledged. Thus, 8j : j 6= s:p : 9uj 2 Pi : wj ; uj. Byde�ning t1 = max j : j 6= s:p : uj, and observing that for any j, wj:v[j] > s:q[s:p], we getthe claim 1.To show claim 2, we use induction on the number of requests smaller than s:q[s:p] in t1:q.We de�ne nreq(u) = j fk j u:q[k]< u:q[u:p]g j:If nreq(t1) = 0, then s:q[s:p] is minimum at t1:q and therefore cs(t1) holds. Assume forinduction that the claim holds for nreq(t1) = k; (k � 1): Now, let nreq(t1) = k+1: Considerthe process with the smallest request, that is assume that t1:q[j] is minimum for some j.Let u be the state in Pj such that u:v[j] = t1:q[j]. We claim that nreq(u) = 0. If not,let m be such that u:q[m] < u:q[u:p]. This implies that u:q[m] < u:q[u:p] < s:q[s:p]. Sinces:q[s:p] < t1:v[m], from FIFO it follows that t1:q[m] = u:q[m]. However, u:q[u:p] is thesmallest request message; a contradiction.Therefore, we know that process u:p will enter critical section and thus eventually set itsq[u:p] to 1. This will reduce the number of requests at t1.p by 1.Lemma 7 (Fairness) (req(s) ^ req(t)) ^ (s:q[s:p] < t:q[t:p])) (next cs(s)! next cs(t))Proof: First observe that req(s) ^ req(t) implies that s:q[s:p] 6=1 ^ t:q[t:p] 6=1. Lets0 = next cs(s) and t0 = next cs(t).cs(t0)) f defn crit gt0:q[t:p] < t0:v[s:p]) f s:q[s:p] < t:q[t:p] gs:q[s:p] < t0:v[s:p]) f FIFO g9u : u � t0 : u:q[s:p] = s:q[s:p]However, cs(t0) implies t0:q[t:p] < t0:q[s:p]: This implies that there exists w : event(w) =release such that s0 ! w and w! t0. From this it follows that s0 ! t0.8 ConclusionsThere are some important di�erences in the view point advocated in this paper and thecurrently prevalent views in veri�cation of distributed programs. These are the explicitnaming of local states and the static vs. dynamic view of programs.We explicitly name local states which allows us to associate values of variables with localstates. This is in contrast to popular practice in which values of variables are consideredwith respect to global states. Neither the concept of a current value nor a value in a globalstate exist in our method. An advantage of our method is that we can refer to states that are9

not concurrent. For example, the assertion s! t) s:v[s:p] < t:v[t:p] is di�cult to expressusing conventional methods.Our model allows us to use a static view of program execution. A program is viewed as aset of posets rather than the traditional dynamic system. An example of a property speci�edin the traditional view is x leads-to y. This property states that if x is true in the currentglobal state, then y will eventually become true. The same property can be expressed in theposet model as: s:x) (9t : s � t : t:y).We advocate that the concept of time be totally avoided in formal reasoning of distributedsystems. A program is just a set of posets. A property is simply a boolean expression aboutthe states in the poset. Veri�cation of a property simply means that all posets satisfy therequired property.References[1] K. Birman and T. Joseph, \Reliable Communications in presence of failures," ACMTrans. on Comp. Systems, 5 (1) (1987) 47 - 76.[2] K.M. Chandy and L. Lamport, \Distributed Snapshots: Determining Global States ofDistributed Systems", ACM Transactions on Computer Systems, Vol. 3, No. 1, pp. 63{ 75, February 1985.[3] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,Reading, MA, 1989.[4] R. Cooper and K. Marzullo, \Consistent Detection of Global Predicates", Proc. of theACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, California,pp. 163 { 173, May 1991.[5] C. Fidge, \Partial Orders for Parallel Debugging", Proc. of the ACM Workshop onParallel and Distributed Debugging, Madison, Wisconsin, May 1988, pp. 130 { 140.[6] V. K. Garg, \Some Optimal Algorithms for Decomposed Partially Ordered Sets," In-formation Processing Letters 44, November 1992, pp 39-43.[7] V.K. Garg and B. Waldecker, \Detection of Unstable Predicate in Distributed Pro-grams," Proc. 12th Conference on the Foundations of Software Technology & TheoreticalComputer Science, Lecture Notes in Computer Science 652, Springer-Verlag, Dec 1992,pp 253-264. (to appear in IEEE Transactions on Parallel and Distributed Systems.[8] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of theACM, pages 576{580, October 1969.[9] L. Lamport, \Time, Clocks, and the Ordering of Events in a Distributed System",Communications of the ACM, July, 1978, pp. 558 { 565.[10] F. Mattern, \Virtual time and global states of distributed systems", Parallel and Dis-tributed Algorithms: Proceedings of the International Workshop on Parallel and Dis-tributed Algorithms, Elsevier Science Publishers B. V., 1989, pp. 215{226.10

[11] A.I. Tomlinson and V.K.Garg, \Detecting Relational Global Predicates in DistributedSystems," Proc. 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, SanDiego, California, May 1993, pp. 21 { 31.[12] A.I. Tomlinson and V.K.Garg, \Using Induction to Prove Properties of DistributedPrograms". In Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing.Dallas, Texas, Dec 1993, pp. 478 { 485.[13] S Owicki and D. Gries. An axiomatic proof technique for parallel programs. ActaInformatica, 6:319{340, 1976.[14] Gerard Tel. Topics in Distributed Algorithms. Cambridge University Press, Cambridge,England, 1991.

11

A AppendixProof of Lemma 2 8s; t : s 6= p : (s!d t), (s:v[s:p] � t:v[s:p])Proof:First prove) by induction on k!d, then prove the (direction by induction on k6!d.) Base: s 1!d t means that the longest chain from s to t has length 1 and that ;must be in this chain. Thus, s ; t. From the program it can be seen that s ; t impliess:v[s:p] � t:v[s:p].) Induction: k > 0 and s k!d t imply that there exists a state u such that either: 1)s �im u ^ u k�1!d t, or 2) s k�1!d u ^ u �im t. In either case, we use the induction hypothesisand program properties for �im to conclude that s:v[s:p] � t:v[s:p].(Base: s 06!d t implies t is an initial state. We know s:v[s:p] � 1. If s:p 6= t:pwe know t:v[s:p] = 0, thus s:v[s:p] > t:v[s:p]. If s:p = t:p we know t �im s, thus agains:v[s:p] > t:v[s:p].(Induction: Let u �im t. Then s j6!d u and j < k and by induction we know s:v[s:p] >u:v[s:p]. Suppose the event between u and t was not a receive, then u:v[s:p] = t:v[s:p] ands:v[s:p] > t:v[s:p].Suppose the event was a receive and w ; t. If w:p 6= s:p then u:v[s:p] = t:v[s:p] impliess:v[s:p] > t:v[s:p]. If w:p = s:p, then since s 6! t, we know w � s. Therefore a message wassent from s:p between w and s, and by send rule we know w:v[s:p] < s:v[s:p]. By receiverule of this message we know t:v[s:p] = w:v[s:p]. Hence, s:v[s:p] > t:v[s:p].Proof of Lemma 3Assume FIFO. 8s; t : s:p 6= t:p : s 6! t ^ :msg(s; t)) t:q[s:p] = s:q[s:p]:Proof: We will use induction on k6!.Base Case: (k = 0) � Init(t)If Init(s), then the result follows from the initial assignment. Otherwise, let u be the initialstate in the process s:p. From :msg(s; t) and the rule that any change in s:q[s:p] requiressend of a message it follows that s:q[s:p] = u:q[s:p] (This argument can be formalized usinginduction on the the number of states that precede s in the process s:p.) From initialassignment, it again follows that t:q[s:p] = s:q[s:p].Induction case: s j6! t:prev; j < kLet u = t:prev: Let event(u) 6= receive, then :msg(s; t) implies :msg(s; u). Using inductionhypothesis, we get that u:q[s:p] = s:q[s:p] and by using program text, we conclude thatt:q[s:p] = u:q[s:]. Now let event(u) = receive(w). If w:p 6= s:p, the previous case applies.So, let w:p = s:p. Since s 6! t, it follows that w � s. Let w0 = w:next. From program,w0:q[s:p] = t:q[s:p]. We now claim that s:q[s:p] = w0:q[s:p] from which the result follows. Ifnot, there exists y such that w0 � y � s and y:prev:q[s:p] 6= y:q[s:p]. From the program,there exists a message from y to the process t:p received in the state z (assuming reliablemessages). t < z violates :msg(s; t), t = z is not possible as exactly one message is receivedbefore t which is w; and z < t violates FIFO as w < y but z < t.12

Process s.p

Process t.p

w

u
t

sw’ yFigure 1: Proof for the induction caseProof of Lemma 4 8s; t : s:p 6= t:p : s 6! t ^ s:q[s:p] < t:v[s:p]) t:q[s:p] = s:q[s:p]Proof: Let u � s be such that u:v[s:p] = s:q[s:p]. s:q[s:p] is set di�erent from 1 only atthe event request. From event description it follows that for all y such that u < y < s:event(y) 6= request ^ event(y) 6= release. Thus there is no request/release message sentafter u. (1)Since u:v[u:p] < t:v[s:p], from Lemma 2, we get that u!d t. Therefore, there exists w; t0such that w:p = s:p; t:p = t0:p and w:v[s:p] = t:v[s:p] ^ w ; t0 ^ t0 � t. From FIFO andu:v[s:p] < w:v[s:p] it follows that :msg(u; t). (2)From (1) and (2), we get :msg(s; t) which gives us that t:q[s:p] = s:q[s:p] using Lemma3.

13

