
Using Induction to Prove Properties of Distributed Programs �Vijay K. Garg Alexander I. TomlinsonDepartment of Electrical and Computer EngineeringThe University of Texas at AustinAustin, TX 78712email: vijay@pine.ece.utexas.eduAbstractProofs of distributed programs are often informaldue to the di�culty of developing formal proofs. Prop-erties of distributed programs are often stated usingLamport's causally-precedes relation and its comple-ment, not-causally-precedes. Properties that involvethe causally-precedes relation are fairly straight for-ward to prove using induction. However, propertiesthat involve not-causally-precedes are quite di�cultto prove. Such properties are common since predi-cates on the global state of a system implicitly use thenot-causally-precedes relation. This paper presents amethod of induction on the not-causally-precedes rela-tion and demonstrates the technique by formally prov-ing a variant of the well known algorithm for main-taining a vector clock.1 IntroductionIn this paper we present a method to prove prop-erties of asynchronous distributed programs. Ourmethod is based upon the causally-precedes relationas de�ned by Lamport [7]. We show how propertiesusing the causally-precedes relation (!) and its com-plement, \not causally-precedes" (6!), can be provenusing induction. Proof by induction on ! is fairlycommon, however, to the best of our knowledge, in-duction on its complement is novel. The main contri-bution of this paper is the development of the induc-tive proof technique on the 6! relation. The techniqueis illustrated by proving the correctness of a variant ofthe well known vector clock algorithm [8, 3]. Thisvariant is used in [5] to detect weak conjunctive pred-icates.�Research supported in part by NSF Grant CCR 9110605,Army Grant N00039-88-C-0082, TRW faculty assistantshipaward, and an IBM grant.

The need to prove properties stated with 6! arisesin two common situations: when a claim is madeabout the global state of a system (e.g. mutual ex-clusion) and when a claim involves a necessary andsu�cient condition about certain predicates involving! (e.g. vector clocks). We give an example of eachsituation below.Mutual exclusionProcesses P0 and P1 use a shared resource whichcannot be accessed by more than one process ata time. accessi is a boolean variable in Pi whichis true when Pi has access to this resource. Themutual exclusion property holds if and only if inall global states :(access0 ^ access1) is true. Letsi:access denote the value of accessi in some statesi of Pi. Then the mutual exclusion exclusionproperty can be stated as: (s0 6! s1 ^ s1 6! s0)implies :(s0:access ^ s1:access). This propertycannot be proven by induction on !, but it canbe proven by induction on 6! using the techniquespresented in this paper.Vector clockEach process maintains a vector clock v which isan array of integers. Let s and t denote localstates (which process they belong to is not im-portant) and let s:v and t:v denote the value of vin states s and t respectively. For any two vectorsv and v0, v < v0 if and only if each element of vis less than the corresponding element in v0. Thevector clock algorithm ensures that:s! t) s:v < t:vs 6! t) :(s:v < t:v)The �rst property can be proven by induction on! and the second property can be proven by in-duction on 6!. We prove a variant of this examplein this paper.

The remainder of this paper is organized as follows.Section 2 describes our computation model the nota-tion we use in the paper. Section 3 de�nes two re-lations, k! and k6!, and proves six properties of themwhich enable the inductive proof technique to be usedon ! and 6!. The proof technique is illustrated insection 4 by proving a variant of the well known vec-tor clock algorithm [8, 3]. Section 5 describes relatedresearch and section 6 concludes the paper.2 Model and NotationWe use the following notation for quanti�ed expres-sions: (op free var list : range of free vars : expr).For example, (+u : u 2 Si : 1) equals the cardinalityof Si (provided Si is a �nite set).An execution of a distributed program that consistsof processes P1; : : :PN can be modeled with a deposet(decomposed partially ordered set) [4, 11]. A deposetis a tuple (S1; : : :SN ;;) where Si is the sequence oflocal states in Pi, and s; t is a relation that modelsa message sent immediately after local state s andreceived immediately before local state t. Formally, adeposet is a tuple (S1; : : :SN ;;) such that:1. For all i such that 1 � i � N , Si is sequence ofdistinct states. We say that s � t if and only if simmediately precedes t in some sequence Si. Forconvenience, we sometimes refer to Si as a set.2. (S;!) is an irre
exive partial order whereS 4= [i Si and ! is de�ned to be the transitiveclosure of � [;. We refer to ! as the causally-precedes relation.For our purposes, some restrictions on the de-poset are required. First we de�ne the initialand �nal states: Init(s) 4= :(9u :: u � s) andFinal(s) 4= :(9u :: s � u). The restrictions are:1. Init(s)) :(9u :: u; s)2. Final(s)) :(9u :: s; u)3. s � t) j fu j s; u _ u; tg j � 1The �rst restriction ensures that no state causally pre-cedes an initial state. The second restriction ensuresthat a �nal state does not causally precede any state.The third restriction means that at most one messageis sent or received in between consecutive states in aprocess.

For every pair of consecutive states, s � t, exactlyone event occurs between s and t. There are threetypes of events denoted by int, snd, and rcv. Whichevent occurs between two states can be determinedfrom the deposet structure as shown in the followingde�nitions.(s; snd(u); t) 4= s � t ^ s; u(s; rcv(u); t) 4= s � t ^ u; t(s; snd; t) 4= (9u :: (s; snd(u); t))(s; rcv; t) 4= (9u :: (s; rcv(u); t))(s; int; t) 4= s � t ^ :(s; snd; t) ^ :(s; rcv; t)The above relations model the events that occur be-tween consecutive local states: (s; snd; t) models amessage send, (s; rcv; t) models a message receive, and(s; int; t) models an internal event.A chain in (S;!) is a sequence of states c0; c1; : : :cnsuch that ci � ci+1 or ci ; ci+1. For any chain c =c0; c1; : : : cn, we de�ne first(c) = c0, last(c) = cn,and length(c) = n. The inductive proof technique canbe used on (S;!) because every decreasing chain in(S;!) is �nite. That is, for any state t, every chainc such that last(c) = t has �nite length. For any pairof states s; t we de�ne the maximum length function,ml(s; t) as follows:(max c : first(c) = s ^ last(c) = t : length(c))if s! t _ s = t and �1 otherwise. The max expres-sion is well de�ned since there are a �nite number ofstates which causally precede t. This implies that mlhas a well de�ned value for every pair of states s andt. If s ! t, then ml(s; t) equals the length of thelongest chain between s and t. If s = t, thenml(s; t) = 0. We use ml(Init; t) to denote (maxu :Init(u) : ml(u; t)). Thus ml(Init; t) is length of thelongest chain from some initial state to t. The follow-ing statement is true by de�nition of ml and is used insome of our proofs. We refer to it as the chain lemma.ml(s; t) > 0,(9u :: ml(s; u) = ml(s; t) � 1 ^ ml(u; t) = 1)

A summary of some of the notation used in thispaper appears below:s,t,u,w local states (i.e., elements of S)s:p unique identity of the process to whichs belongs (i.e., s:p = i, s 2 Si)s � t s immediately precedes t and are inthe same processs; t a message was sent in state s andreceived in state ts! t s causally precedes ts 6! t s does not causally precede t(i.e., complement of !)3 Basis for Proof TechniqueThe causally-precedes relation, !, and its comple-ment, 6!, has been quite useful in designing, analyzingand debugging asynchronous distributed programs. Inthis section, we de�ne variants of these relations sothat properties based on them can be proven by in-duction. The new relations de�ned in this section arek! and k6!. Figure 1 shows examples of these two re-lations.First we de�ne the k! relation which is used forinduction on !. For k > 0 we de�nes k! t 4= ml(s; t) = kThus s k! t if and only if s ! t and the longest chainfrom s to t has length k.In combination with the results of lemmas 1, 2 and3, this new relation can be used to prove claims whichare expressed in terms of!. For example, suppose wewish to prove the claim s! t) P (s; t) where P (s; t)is some predicate on the local variables in s and t.From lemma 1 we note that it is su�cient to proves k! t) P (s; t) for all k > 0. The proof can proceedby induction on k, using lemma 2 for the base caseand lemma 3 for the induction. The base case, s 1! t,implies that either states s and t are consecutive statesin a process, or a message was sent in s and receivedin t. Generally the base case can be easily provenfrom the program text since it involves only one statetransition or one message.

Lemma 1 s! t, (9k : k > 0 : s k! t)Proof: s! t, � by defn of a chain, and since ! is thetransitive closure of ; [� �(9c :: first(c) = s ^ last(c) = t), f defn of ml g(9k : k > 0 : ml(s; t) = k), f defn of k! g(9k : k > 0 : s k! t)Lemma 2 s 1! t) s � t _ s; tProof: s 1! t) f defn of k! gml(s; t) = 1) f defn of ml g(9c :: first(c) = s ^ last(c) = t ^ len(c) = 1)) f defn of a chain gs � t _ s; tThe converse of lemma 2 does not hold in the casewhere messages are received out of order. For exam-ple, in �gure 1 s1 ; t4 holds but not s1 1! t4 doesnot. The reason is that there is a chain of length fourfrom s1 to t4, thus s1 4! t4.Lemma 3 s k! t ^ (k > 1)) (9u :: s k�1! u ^ u 1! t)Proof: s k! t ^ (k > 1)) f defn of k! gml(s; t) = k ^ k > 1) f chain lemma g(9u :: ml(s; u) = k � 1 ^ ml(u; t) = 1)) f defn of k! g(9u :: s k�1! u ^ u 1! t)The proof technique for ! outlined above is fairlyintuitive since ! is de�ned using transitive closure.The main contribution of this paper is an inductiveproof technique for 6! as described below. We de�nefor k � 0: s k6! t 4= s 6! t ^ ml(Init; t) = kThus s k6! t if and only if s 6! t and the longest chainfrom some initial state to t has length k.

Lemmas 4, 5 and 6 are used in inductive proofs forproperties stated with the k6! relation. The methodis similar to the one described above for k!. Supposes 6! t) R(s; t). Lemma 4 tells us that it is su�cientto prove s k6! t) R(s; t) for all k � 0, which can beproven by induction on k. To prove the base case,s 06! t, we need to show that R(s; t) holds when t is aninitial state. The inductive case (k > 0) uses lemma 6.It is not immediately obvious that this lemma appliesin the inductive case, but consider the following. Theassumption in the inductive case is k > 0 ^ s k6! t.This implies that t is not an initial state (see lemma5),which in turn implies that there exists some state usuch that u! t. Thus the right hand side of lemma 6is true in the induction case.Lemma 4 s 6! t, (9k : k � 0 : s k6! t)Proof: s 6! t, f by defn of ml(Init; t) gs 6! t ^ ml(Init; t) � 0, f defn of k! g(9k : k � 0 : s k6! t)Lemma 5 s 06! t, Init(t)Proof: s 06! t, f defn of 06! gml(Init; t) = 0 ^ s 6! t, f defn of ml(Init; t) g:(9u :: u! t) ^ s 6! t, f left conjunct implies right conjunct g:(9u :: u! t), f defn of Init(t) gInit(t)Lemma 6 k > 0 ^ s k6! t ^ u ! t) (9j : 0 � j <k : s j6! u)Proof:

k > 0 ^ s k6! t ^ u! t) f otherwise s! t gk > 0 ^ s 6! u ^ s k6! t) f defn of k6! gk > 0 ^ s 6! u ^ ml(Init; t) = k) f otherwise ml(Init; u) > k gk > 0 ^ s 6! u ^ ml(Init; s) < k) f defn of j6! g(9j : 0 � j < k : s j6! u)
s1 s2 s3

t1 t2 t3

s4

t4Figure 1: Some examples of our relations on states:s3 1! t3, t1 2! t3, s1 4! t4, s2 06! t1, s4 36! t3.4 Example of Proof TechniqueIn this section we demonstrate the proof techniqueby proving the correctness of an algorithm for main-taining vector clocks in a distributed program. Thetraditional vector clock algorithm was developed inde-pendently by Fidge [3] and Mattern [8]. We demon-strate our proof technique on a variant of the tradi-tional algorithm. We use this example because it issimple, well known, and widely used in applicationssuch as debugging, concurrency control in databases,recovery in fault tolerant systems, and ordered broad-cast. We use a variant of the traditional algorithmbecause it highlights the advantages of our proof tech-nique.4.1 The Vector Clock AlgorithmVectors of integers can be partially ordered by anappropriately de�ned comparison relation <. Hencethey are useful for characterizing the relationship be-tween local states. (Recall that the set of local statesin an execution of a distributed program are partiallyordered by !.) For vectors u; v of length N ,

u < v 4= (8k : 1 � k � N : u[k] � v[k]) ^(9j : 1 � j � N : u[j] < v[j])u � v 4= (u < v) _ (u = v)The traditional vector clock algorithm assigns avector s:v to every local state s such that s:v < t:vif and only if s ! t. We use a slightly di�erent ver-sion in which this condition holds when s and t are ondi�erent processes. We use this version because it isharder to prove (as discussed later) and also becauseit is practical: It conserves state space since the vec-tor components are incremented less frequently; andin general, one is interested in causal relationships be-tween states on di�erent processes. The version weuse maintains the following property:(8s; t : s:p 6= t:p : s:v < t:v , s! t)Let there be N processes uniquely identi�ed by aninteger value between 1 and N inclusive. Recall thatfor any state s, s:p indicates the identity of the processto which it belongs. It is not required that messagecommunication be ordered or reliable. The algorithmis described by the initial conditions and the actionstaken for each event type.For any initial state s:(8i : i 6= s:p : s:v[i] = 0) ^ (s:v[s:p] = 1)Rule for a send event (s; snd; t):t:v := s:v;t:v[t:p] + +;Rule for a receive event (s; rcv(u); t):for i := 1 to Nt:v[i] := max(s:v[i]; u:v[i]);Rule for an internal event (s; int; t):t:v := s:v;The version presented above is harder to prove thanthe traditional algorithm because of the message re-ceive action. In the traditional algorithm, when amessage is received in state s, the local clock, s:p, isincremented. This ensures that (s; rcv(u); t) impliess:v < t:v and u:v < t:v. The action taken in this ver-sion, t:v := max(s:v; u:v), does not imply s:v < t:vnor does it imply u:v < t:v. This makes this versionsigni�cantly more di�cult to prove.We use the following properties of the algorithm inour proof. Their validity is clear from the algorithmtext. Our proof is derived strictly from these prop-erties; the algorithm itself is not used. Therefore theproof is valid for any algorithm which satis�es these

properties. For example, in the send rule of the al-gorithm, t:v[t:p] could be increased by any positiveamount and our proof would still be valid.Init rule:Init(s))(8i : i 6= s:p : s:v[i] = 0) ^ (s:v[s:p] = 1)Snd rule(s; snd; t))(8i : i 6= t:p : t:v[i] = s:v[i]) ^ t:v[t:p] > s:v[t:p]Rcv rule(s; rcv(u); t)) (8i :: t:v[i] = max(s:v[i]; u:v[i]))Int rule (s; int; t)) t:v = s:v4.2 Example ProofIn this section we prove the property stated ear-lier: (8s; t : s:p 6= t:p : s:v < t:v , s ! t). This isaccomplished by proving the following claims:s:p 6= t:p ^ s! t) s:v < t:v (1)s:p 6= t:p ^ s:v < t:v) s! t (2)Lemma 7 states that if there is a chain of eventsfrom s to t then s:v � t:v. In the traditional algo-rithm, proof of the property s! t) s:v < t:v (whichdoes not hold here) is essentially the same as thisproof. This is because, in the traditional algorithm,local clocks are incremented for every event type. Notealso that the proof of lemma 7 does not use the initialconditions. Thus the lemma holds independent of theinitial values of the vectors.Lemma 7 s! t) s:v � t:vProof: It is su�cient to show that for all k > 0:s k! t) s:v � t:v. We use induction on k.Base (k = 1) :s 1! t) f lemma 2 gs � t _ s; t) f expand s � t and s; t g(s; int; t) _ (s; snd; t) _ (9u :: (s; rcv(u); t))_ (9u :: (u; rcv(s); t))) f Snd, Rcv, and Int rules g(s:v = t:v) _ (s:v < t:v) _ (s:v � t:v)_ (s:v � t:v)) f simplify gs:v � t:v

Induction: (k > 1)s k! t ^ (k > 1)) f lemma 3 g(9u :: s k�1! u ^ u 1! t)) f induction hypothesis g(9u :: s:v � u:v ^ u:v � t:v)) f simplify gs:v � t:vLemma 8 states that if two states s and t are ondi�erent processes, and s does not causally precedet, then t:v[s:p] < s:v[s:p]. Our formal proof of thislemma is nontrivial. This proof is by induction on kin the k6! relation.Lemma 8 (8s; t : s:p 6= t:p : s 6! t) t:v[s:p] <s:v[s:p])Proof: It is su�cient to show that for all k � 0:s k6! t ^ s:p 6= t:p) t:v[s:p] < s:v[s:p]. We use in-duction on k.Base (k = 0) :s 06! t ^ s:p 6= t:p) f lemma 5 gInit(t) ^ s:p 6= t:p) f let u be initial state in s:p gInit(t) ^ s:p 6= t:p ^(9u : Init(u) ^ u:p = s:p : u = s _ u! s)) f lemma 7 gInit(t) ^ s:p 6= t:p ^(9u : Init(u) ^ u:p = s:p : u:v = s:v _ u:v � s:v)) f Init rule gt:v[s:p] = 0^ (9u : u:v[s:p] = 1 : u:v = s:v _ u:v � s:v)) f simplify gt:v[s:p] < s:v[s:p]Induction: (k > 0)s k6! t ^ s:p 6= t:p ^ k > 0) f let u satisfy u � t, u exists since :Init(t) gs k6! t ^ s:p 6= t:p ^ u:p = t:p ^ u � t) f lemma 6 gs j6! u ^ 0 � j < k ^ u:p 6= s:p ^ u � t) f inductive hypothesis gu:v[s:p] < s:v[s:p] ^ u � t) f expand u � t gu:v[s:p] < s:v[s:p]^ ((u; int; t) _ (u; snd; t) _ (u; rcv(w); t))

Consider each disjunct separately:Case 1: (u; int; t)u:v[s:p] < s:v[s:p] ^ (u; int; t)) f Int rule gu:v[s:p] < s:v[s:p] ^ t:v = u:v) f simplify gt:v[s:p] < s:v[s:p]Case 2: (u; snd; t)u:v[s:p] < s:v[s:p] ^ (u; snd; t)) f Snd rule, s:p 6= t:p gu:v[s:p] < s:v[s:p] ^ t:v[s:p] = u:v[s:p]) f simplify gt:v[s:p] < s:v[s:p]Case 3: (u; rcv(w); t)u:v[s:p] < s:v[s:p] ^ (u; rcv(w); t)) f Rcv rule gu:v[s:p] < s:v[s:p] ^ (u; rcv(w); t)^ (t:v[s:p] = u:v[s:p] _ t:v[s:p] = w:v[s:p])) f simplify gt:v[s:p] < s:v[s:p]_ ((u; rcv(w); t) ^ t:v[s:p] = w:v[s:p])For case 3, it su�ces to prove the following two cases.Case 3A: w:p = s:pt:v[s:p] = w:v[s:p] ^ (u; rcv(w); t) ^ w:p = s:p) � let x satisfy w � x, x exists sincew; t implies :Final(w) �t:v[s:p] = w:v[s:p] ^ (w; snd; x) ^ w:p = s:p) f otherwise s! t gt:v[s:p] = w:v[s:p] ^ (w; snd; x) ^ w:p = s:p^ w ! s) f since w � x gt:v[s:p] = w:v[s:p] ^ (w; snd; x) ^ w:p = s:p^ (x = s _ x! s)) f Snd rule gt:v[s:p] = w:v[s:p] ^ w:v[s:p] < x:v[s:p]^ (x = s _ x! s)) f lemma 7 gt:v[s:p] = w:v[s:p] ^ w:v[s:p] < x:v[s:p]^ x:v � s:v) f simplify gt:v[s:p] < s:v[s:p]Case 3B: w:p 6= s:p

t:v[s:p] = w:v[s:p] ^ (u; rcv(w); t) ^ w:p 6= s:p) f use s k6! t, k > 0, and lemma 6 gt:v[s:p] = w:v[s:p] ^ w:p 6= s:p ^ s j6! w^ 0 � j < k) f inductive hypothesis gt:v[s:p] = w:v[s:p] ^ w:v[s:p] < s:v[s:p]) f simplify gt:v[s:p] < s:v[s:p]Lemma 9 is a re�nement of lemma 7 for the casewhen s:p 6= t:p, in which case s:v < t:v. This stepwould not be necessary for the traditional algorithmbecause that case's version of lemma 7 would haveshown this result. Note that the result of lemma 8 isused in this proof, indicating that perhaps it is neces-sary to prove claim 1 in order to prove claim 2. Thisis interesting because intuition tells us that claim 2should be easier to prove than claim 1.Lemma 9 (8s; t : s:p 6= t:p : s! t) s:v < t:v)Proof: It is su�cient to show that for all k > 0:s k! t ^ s:p 6= t:p) t:v < s:v. We use induction onk.Base (k = 1) :s 1! t ^ s:p 6= t:p) f defn of 1! and lemma 2 gs; t ^ s:p 6= t:p) f let u satisfy u � t gs:p 6= u:p ^ (u; rcv(s); t)) � otherwise t! s (since there is only oneevent between u and t) �u 6! s ^ s:p 6= u:p ^ (u; rcv(s); t)) f lemma 8 and rcv rule gs:v[s:p] < u:v[s:p]^ (8i :: t:v[i] = max(u:v[i]; s:v[i]))) s:v < t:vInduction (k > 0) :

s k! t ^ k > 0 ^ s:p 6= t:p) f lemma 3 g(9u :: s k�1! u ^ u 1! t ^ s:p 6= t:p)) f u:p can not have two values g(9u :: s k�1! u ^ u 1! t ^(u:p 6= t:p _ u:p 6= s:p))) (9u :: (s k�1! u ^ u 1! t ^ u:p 6= t:p) _(s k�1! u ^ u 1! t ^ u:p 6= s:p))) f inductive hypothesis g(9u :: (s k�1! u ^ u:v < t:v) _(s:v < u:v ^ u 1! t))) f lemma 7 g(9u :: (s:v � u:v ^ u:v < t:v) _(s:v < u:v ^ u:v � t:v))) s:v < t:vTheorem 10 states the property which we set outto prove at the beginning of this section.Theorem 10 (8s; t : s:p 6= t:p : s! t, s:v < t:v)Proof: Immediate from Lemmas 8 and 9.5 Related WorkOwicki and Gries [9] extended the idea of Hoaretriples [6] to include concurrent shared memory pro-grams. Their technique involves annotating each pro-cess with statement preconditions and postconditions,and then proving that the annotated processes are in-terference free (i.e., for each statement S in each pro-gram, it must be shown that S does not falsify theprecondition of any statement in any other process.Tel [10] adopts the Owicki-Gries method for usewith distributed message passing programs and ex-tends it to include events and atomic actions. Theevents (typically a message send or receive) invoke anatomic action which changes the state of the process.This approach also involves annotation and interfer-ence free proofs.In their book, Bernstein and Lewis [1] give a de-tailed description of how to annotate programs andshow noninterference. They demonstrate the tech-nique for several communication primitives includingasynchronous send and receive, synchronous send andreceive, and rendezvous.In their work on UNITY, Chandy and Misra [2]develop a higher level view of programming and ver-i�cation. In the UNITY approach, a problem spec-

i�cation (in terms of safety and progress properties)is taken through a series of re�nements. Each re�ne-ment is proven to implement the speci�cation whichit re�nes. This process continues until the speci�ca-tions are at a low enough level to implement directlyas UNITY statements.This paper deals with proofs of predicates on thepartial order of local states which is generated by adistributed program as it executes. Two executions ofthe same programmayproduce di�erent partial ordersdue to inherent non-determinism which results frominternal non-deterministic statements or reordering ofmessages. This paper deals with predicates on thepartial orders of local states which result from execut-ing a particular program. The predicates are provenfrom the program text, hence they are valid for allexecutions of the program. There has been very lit-tle research devoted towards using the partial order oflocal states to prove properties of a distributed pro-gram.6 ConclusionsProving the correctness of distributed programs isa very di�cult problem, and as a result, the proofs areoften informal. This paper attempts to make the taskof proving distributed programs easier by introducingan induction technique on 6!, the complement of Lam-port's causally-precedes relation. The technique wasdemonstrated on a variant of the well known vectorclock algorithm.Induction on 6! is a valuable technique becausemany properties of distributed programs use this re-lation. For example, any predicate on the global stateof a system (e.g., mutual exclusion) uses 6! since aglobal state is valid if and only if no local state in theglobal state casually precedes any other local state inthe global state.7 AcknowledgmentsWe are grateful to Don Pazel at IBM YorktownHeights who insisted that we give him a formal proofof the vector algorithm.

References[1] A.J. Bernstein and P.M. Lewis. Concurrency inProgramming and Database Systems. Jones andBartlett Publishers, Boston, MA, 1993.[2] K.M. Chandy and J. Misra. Parallel Program De-sign: A Foundation. Addison-Wesley, Reading,MA, 1989.[3] C. J. Fidge. Partial orders for parallel debugging.Proceedings of the ACM SIGPLAN/SIGOPSWorkshop on Parallel and Distributed Debugging,published in ACM SIGPLAN Notices, 24(1):183{194, January 1989.[4] V. K. Garg. Some optimal algorithms for decom-posed partially ordered sets. Information Pro-cessing Letters, 44:39{43, November 1992.[5] V.K. Garg and Brian Waldecker. Detection ofweak unstable predicates in distributed programs.IEEE Transactions on Parallel and DistributedSystems, To appear.[6] C.A.R. Hoare. An axiomatic basis for computerprogramming. Communications of the ACM,pages 576{580, October 1969.[7] L. Lamport. Time, clocks, and the ordering ofevents in a distributed system. Communicationsof the ACM, 21(7):558{565, July 1978.[8] F. Mattern. Virtual time and global states of dis-tributed systems. In Parallel and Distributed Al-gorithms: Proc. of the International Workshop onParallel and Distributed Algorithms, pages 215{226. Elsevier Science Publishers B.V. (North-Holland), 1989.[9] S Owicki and D. Gries. An axiomatic proof tech-nique for parallel programs. Acta Informatica,6:319{340, 1976.[10] Gerard Tel. Topics in Distributed Algorithms.Cambridge University Press, Cambridge, Eng-land, 1991.[11] A.I. Tomlinson and V.K.Garg. Detecting rela-tional global predicates in distributed systems.In Proc. of the Workshop on Parallel and Dis-tributed Debugging, San Diego, CA, May 1993.ACM/ONR.

