Using Induction to Prove Properties of Distributed Programs

Vijay K. Garg

*

Alexander 1. Tomlinson

Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712

email: vijay@pine.ece.utexas.edu

Abstract

Proofs of distributed programs are often informal
due to the difficulty of developing formal proofs. Prop-
erties of distributed programs are often stated using
Lamport’s causally-precedes relation and tts comple-
ment, not-causally-precedes. Properties that involve
the causally-precedes relation are fairly straight for-
ward to prove using tnduction. However, properties
that involve not-causally-precedes are quite difficult
to prove. Such properties are common since predi-
cates on the global state of a system implicitly use the
not-causally-precedes relation. This paper presents a
method of induction on the not-causally-precedes rela-
tion and demonstrates the technigue by formally prov-
mg a vartant of the well known algorithm for main-
taining a vector clock.

1 Introduction

In this paper we present a method to prove prop-
erties of asynchronous distributed programs. Our
method is based upon the causally-precedes relation
as defined by Lamport [7]. We show how properties
using the causally-precedes relation (—) and its com-
plement, “not causally-precedes” (+), can be proven
using induction. Proof by induction on — is fairly
common, however, to the best of our knowledge, in-
duction on its complement is novel. The main contri-
bution of this paper is the development of the induc-
tive proof technique on the + relation. The technique
is 1llustrated by proving the correctness of a variant of
the well known vector clock algorithm [8, 3]. This
variant is used in [5] to detect weak conjunctive pred-
icates.

*Research supported in part by NSF Grant CCR 9110605,
Army Grant NO0O0039-88-C-0082, TRW faculty assistantship
award, and an IBM grant.

The need to prove properties stated with /4 arises
in two common situations: when a claim is made
about the global state of a system (e.g. mutual ex-
clusion) and when a claim involves a necessary and
sufficient condition about certain predicates involving
— (e.g. vector clocks). We give an example of each
situation below.

Mutual exclusion

Processes Py and P, use a shared resource which
cannot be accessed by more than one process at
a time. access; 1s a boolean variable in P; which
1s true when P; has access to this resource. The
mutual exclusion property holds if and only if in
all global states —(accessy A accessy) is true. Let
s;.access denote the value of access; 1n some state
s; of P;. Then the mutual exclusion exclusion
property can be stated as: (sg /4 s1 A s1 £~ sg)
implies —(sg.access A sj.access). This property
cannot be proven by induction on —, but it can
be proven by induction on 4 using the techniques
presented in this paper.

Vector clock

Each process maintains a vector clock v which is
an array of integers. Let s and ¢ denote local
states (which process they belong to is not im-
portant) and let s.v and ¢.v denote the value of v
in states s and t respectively. For any two vectors
v and v/, v < v’ if and only if each element of v
is less than the corresponding element in v’. The
vector clock algorithm ensures that:

s —1t=>sv<tlw

st = (sv < tw)

The first property can be proven by induction on
— and the second property can be proven by in-
duction on . We prove a variant of this example
in this paper.

The remainder of this paper is organized as follows.
Section 2 describes our computation model the nota-
tion we use in the paper. Section 3 defines two re-

lations, . and 72, and proves six properties of them
which enable the inductive proof technique to be used
on — and . The proof technique is illustrated in
section 4 by proving a variant of the well known vec-
tor clock algorithm [8, 3]. Section b describes related
research and section 6 concludes the paper.

2 Model and Notation

We use the following notation for quantified expres-
sions: (op free_var_list : range_of free_vars : expr).
For example, (+u : u € S; : 1) equals the cardinality
of S; (provided S; is a finite set).

An execution of a distributed program that consists
of processes Pp, ... Px can be modeled with a deposet
(decomposed partially ordered set) [4, 11]. A deposet
is a tuple (S1,...Sn,~) where S; is the sequence of
local states in P;, and s ~ t is a relation that models
a message sent immediately after local state s and
received immediately before local state t. Formally, a
deposet is a tuple (Sy,...Sn,~) such that:

1. For all z such that 1 < ¢ < N, S; is sequence of
distinct states. We say that s < ¢ if and only if s
tmmediately precedes t in some sequence S;. For
convenience, we sometimes refer to S; as a set.

2. (S,—) is an irreflexive partial order where

S = U; S; and — is defined to be the transitive
closure of < U ~+. We refer to — as the causally-
precedes relation.

For our purposes, some restrictions on the de-
poset are required. First we define the initial

Init(s) 2 —(Ju

Final(s) = —(Ju 1 s < u). The restrictions are:

and final states: u < s) and

1. Init(s) = =(Fu 1 u~s)
2. Final(s) = —=(Ju :: s ~ u)
3.s<t=> |{uls~uVu~t}|<1

The first restriction ensures that no state causally pre-
cedes an initial state. The second restriction ensures
that a final state does not causally precede any state.
The third restriction means that at most one message
is sent or received in between consecutive states in a
process.

For every pair of consecutive states, s < ¢, exactly
one event occurs between s and ¢. There are three
types of events denoted by int, snd, and rcv. Which
event occurs between two states can be determined
from the deposet structure as shown in the following
definitions.

(s,snd(u),1) 2 s<t AN s~u
(s, rcv(u),t) 2 s<t AN u~t
(s,snd,) 2 (Ju (s, snd(u), 1))
(s,rev,) 2 (Fu (s, rev(u),t))
(s,int,t) 2 os<t A (s, snd,t) A (s, rev,t)

The above relations model the events that occur be-
tween consecutive local states: (s, snd,t) models a
message send, (s, rcv,t) models a message receive, and
(s,int,t) models an internal event.

A chain in (S, —) is a sequence of states cg, ¢1, . ..¢n
such that ¢; < ¢;41 or ¢; ~ ¢;41. For any chain ¢ =
o, €1, ... Cn, we define first(c) = cg, last(c) = cp,
and length(c) = n. The inductive proof technique can
be used on (S, —) because every decreasing chain in
(S, —) is finite. That is, for any state ¢, every chain
¢ such that last(¢) = ¢ has finite length. For any pair
of states s,¢ we define the maximum length function,
ml(s,t) as follows:

(maxe: first(c) =s A last(c) =t : length(c))

if s =t V s=1and —1 otherwise. The max expres-
sion 1s well defined since there are a finite number of
states which causally precede ¢. This implies that ml
has a well defined value for every pair of states s and
t.

If s — t, then mli(s,t) equals the length of the
longest chain between s and ¢. If s = ¢, then
ml(s,t) = 0. We use ml(Init,t) to denote (maxwu :
Init(u) : ml(u,t)). Thus mi(Init,t) is length of the
longest chain from some initial state to ¢. The follow-
ing statement is true by definition of ml and is used in
some of our proofs. We refer to it as the chain lemma.

ml(s,t) >0 <
(Fu :ml(s,u) = ml(s,t) — 1 A mi(u,t) =1)

A summary of some of the notation used in this
paper appears below:

s,t,u,w local states (i.e., elements of S)

s.p unique identity of the process to which
s belongs (i.e., s.p =i < 5 € 5;)

s <t s immediately precedes ¢ and are in
the same process

s~ a message was sent in state s and
received in state ¢

s —t s causally precedes t

s At s does not causally precede ¢
(i.e., complement of —)

3 Basis for Proof Technique

The causally-precedes relation, —, and 1ts comple-
ment, /4, has been quite useful in designing, analyzing
and debugging asynchronous distributed programs. In
this section, we define variants of these relations so
that properties based on them can be proven by in-
duction. The new relations defined in this section are

k
* and +. Figure 1 shows examples of these two re-
lations.

First we define the LA relation which 1s used for
induction on —. For k£ > 0 we define

PR ml(s,t) =k

Thus s % ¢ if and only if s — ¢ and the longest chain
from s to ¢ has length k.

In combination with the results of lemmas 1, 2 and
3, this new relation can be used to prove claims which
are expressed in terms of —. For example, suppose we
wish to prove the claim s — ¢ = P(s,t) where P(s,t)
is some predicate on the local variables in s and t.
From lemma 1 we note that 1t 1s sufficient to prove

PELAFIEN P(s,t) for all k > 0. The proof can proceed
by induction on k, using lemma 2 for the base case
and lemma 3 for the induction. The base case, s L t,
implies that either states s and ¢ are consecutive states
in a process, or a message was sent in s and received
in t. Generally the base case can be easily proven
from the program text since it involves only one state
transition or one message.

Lemma 1 5—>t¢>(§|k:k>0:5i>t)

Proof:
s —1
by defn of a chain, and since — is the
= .
transitive closure of ~ U <

(Fe :: first(c) =s A last(e) = 1)
< { defnof ml }
(Fk:k>0:ml(s,t) =k)
< { defn of £ }
Bk k>0:s21)

Lemma 2 5i>t:>5<t V s~~1

Proof:
s —1
= { defn of ER }
ml(s,t) =1

= { defn of ml }

(Fe = first(c) =s A last(c) =t A len(c) = 1)

= { defn of a chain }

s<t V s~1
[

The converse of lemma 2 does not hold in the case
where messages are received out of order. For exam-
ple, in figure 1 sl ~+ ¢4 holds but not sl L 14 does
not. The reason is that there is a chain of length four

from sl to t4, thus sl 214,

Lemma 3 5£t/\(/€>1):>(E|u::5k;>1u/\ui>t)

Proof:
LAY (k>1)
= { defn of ER }
ml(s,t) =k A k>1
= { chain lemma }
(Fuml(s,u) =k —1 A ml(u,t) =1)
= { defn of *, }
(Eluzzsk;lu A ui>t)
n
The proof technique for — outlined above is fairly
intuitive since — 1s defined using transitive closure.
The main contribution of this paper i1s an inductive
proof technique for 4 as described below. We define
for & > 0:

k
sﬁtésﬁt A ml(Init t) =k

k
Thus s 4 t if and only if s 4 ¢ and the longest chain
from some initial state to ¢ has length &.

Lemmas 4, 5 and 6 are used in inductive proofs for

k
properties stated with the -4 relation. The method

is similar to the one described above for . Suppose

s 4t = R(s,t). Lemma 4 tells us that it is sufficient
k
to prove s £~ t = R(s,t) for all k£ > 0, which can be

proven by induction on k. To prove the base case,

s 7OL> t, we need to show that R(s,t) holds when ¢ is an
initial state. The inductive case (k > 0) uses lemma 6.
It is not immediately obvious that this lemma applies
in the inductive case, but consider the following. The

assumption in the inductive case is &k > 0 A s 7kL> t.
This implies that ¢ is not an initial state (see lemma 5),
which in turn implies that there exists some state u
such that v — ¢. Thus the right hand side of lemma 6
is true in the induction case.

k
Lemma4 s At< (Fk:k>0:541)

Proof:
s At
< { by defn of mi(Init,t) }
st A mi(Init,t) >0
< { defn of A }

(EIk:kZO:s;Lt)

m
0
Lemma 5 s /4t < Init(l)
Proof: .
s At
0
< {defnof £}
ml(Init,t) =0 A s /41
< { defn of mi(Init,t) }
S(Fuu—t) A sht
< { left conjunct implies right conjunct }
—(Fuu—1)
< { defn of Inét(t) }
Init(t)
m

E
Lemma6 k>0 A sAtAu—1t=(3j:0<j<

k:57]L>u)

Proof:

k
E>0 A sAt A u—t
= { otherwise s — ¢ }

k
k>0 AN shu A sht

= { defn of7kL>}
k>0 A sAu A mi(Init,t) =k
= { otherwise mi(Init,u) >k }
k>0 A sAu A mi(Init,s) <k

j
= {defnof £}
J
(Fj:0<j<k:stu)

OO0

Figure 1: Some examples of our relations on states:

1 2 4 9 3
$3 =13, t1 =13, s1 — t4, s2 £ t1, s4 £~ 3.

4 Example of Proof Technique

In this section we demonstrate the proof technique
by proving the correctness of an algorithm for main-
taining vector clocks in a distributed program. The
traditional vector clock algorithm was developed inde-
pendently by Fidge [3] and Mattern [8]. We demon-
strate our proof technique on a variant of the tradi-
tional algorithm. We use this example because it is
simple, well known, and widely used in applications
such as debugging, concurrency control in databases,
recovery in fault tolerant systems, and ordered broad-
cast. We use a variant of the traditional algorithm
because it highlights the advantages of our proof tech-
nique.

4.1 The Vector Clock Algorithm

Vectors of integers can be partially ordered by an
appropriately defined comparison relation <. Hence
they are useful for characterizing the relationship be-
tween local states. (Recall that the set of local states
in an execution of a distributed program are partially
ordered by —.) For vectors u, v of length N,

u<v 2 (Vk:l<k<N:ulk] <olk]) A
(F7: 1 <5 <N ufj] <vlj])
u<wv 2 (u<v)V(u=0v)

The traditional vector clock algorithm assigns a
vector s.v to every local state s such that s.v < t.v
if and only if s — t. We use a slightly different ver-
sion in which this condition holds when s and ¢ are on
different processes. We use this version because it is
harder to prove (as discussed later) and also because
it is practical: It conserves state space since the vec-
tor components are incremented less frequently; and
in general, one is interested in causal relationships be-
tween states on different processes. The version we
use maintains the following property:

(Vs,t:spFtp:sv<tuves—t)

Let there be N processes uniquely identified by an
integer value between 1 and N inclusive. Recall that
for any state s, s.p indicates the identity of the process
to which it belongs. It is not required that message
communication be ordered or reliable. The algorithm
is described by the initial conditions and the actions
taken for each event type.

For any initial state s:

(Vi:i#sp:sw[il =0) A (sw[s.p]=1)
Rule for a send event (s, snd,t):

t.v = s5.;

tft.p] + +;

Rule for a receive event (s, rev(u),t):
fori:=1to N
t.v[i] .= max(s.v[i], u.v[i]);
Rule for an internal event (s, int, t):
t.v = s5.;

The version presented above is harder to prove than
the traditional algorithm because of the message re-
ceive action. In the traditional algorithm, when a
message 1is received in state s, the local clock, s.p, is
incremented. This ensures that (s,rcv(u),t) implies
s.w < t.w and u.v < t.v. The action taken in this ver-
sion, t.v := max(s.v,u.v), does not imply s.v < t.v
nor does it imply u.v < t.v. This makes this version
significantly more difficult to prove.

We use the following properties of the algorithm in
our proof. Their validity is clear from the algorithm
text. Our proof is derived strictly from these prop-
erties; the algorithm itself is not used. Therefore the
proof is valid for any algorithm which satisfies these

properties. For example, in the send rule of the al-
gorithm, ¢.v[t.p] could be increased by any positive
amount and our proof would still be valid.

Init rule:
Init(s) =
(Vi:i#sp:sw[i]l=0) A (sw[sp]=1)
Snd rule
(s,snd,t) =
(Vi:i#tp:toli] =soi]) A tolt.p] > swlt.p]
Recv rule
(s,rev(u), t) = (Vi to[l] = max(s.0[d], u.v[i]))
Int rule

(s,int, 1) = tw=sw
4.2 Example Proof

In this section we prove the property stated ear-

lier: (Vs,t :sp#£tp:swv <twves —t). Thisis

accomplished by proving the following claims:
spEtp AN s—1t=sv<tw (1)
spEtp AN sv<tv=s—t1 (2)

Lemma 7 states that if there is a chain of events
from s to ¢ then s.v < t.v. In the traditional algo-
rithm, proof of the property s — t = s.v < t.v (which
does not hold here) is essentially the same as this
proof. This is because, in the traditional algorithm,
local clocks are incremented for every event type. Note
also that the proof of lemma 7 does not use the initial
conditions. Thus the lemma holds independent of the
initial values of the vectors.

Lemma 7 s -t = s.v <tw

Proof: It is sufficient to show that for all & > 0:
st = s < t.v. We use induction on k.

Base (k=1):
st
= {lemma?2}
s<t V s~1
= {expand s <tand s~1 }
(s,int,t) V (s,snd,t) vV (3u: (s,rev(u),t))
Vo (Fu i (u, rev(s),)
= { Snd, Rev, and Int rules }
(sv=tw) V (sv <tw) V (sw<tw)
Vo (s.v <tw)
= { simplify }
s <tw

Induction: (k> 1)
sEt A (k>1)
= {lemma3}
(Eluzzsk;lu A ui>t)
= {induction hypothesis }
(Fu:sv<uwv A uo <tw)
= { simplify }

s <tw
]

Lemma 8 states that if two states s and ¢ are on
different processes, and s does not causally precede
t, then t.w[s.p] < s.v[s.p]. Our formal proof of this
lemma is nontrivial. This proof is by induction on k

k
in the £ relation.

Lemma 8 (Vs,t : s.p # tp : s & t = tu[sp] <
s.v[s.p])

Proof: It is sufficient to show that for all £ > 0:

k
s At AN sp#tp=tu[sp] < svs.p]. We use in-
duction on k.

Base (k=0) :

0
sht A sp#Etp
= {lemmab }
Init(t) A sp#£tp
= { let u be initial state in s.p }
Init(t) A sp#£tp A
(Fu:Init(u) N up=sp:u=sV u—s)
= {lemma7}
Init(t) A sp#£tp A

(Fu:Init(u) A up=sp:uv=sv V uv < s.9)

= { Init rule }

t.u[s.p] =0

A (Fu:uv[spl=1:uv=sv V uv<sv)
= { simplify }

twls.p] < s.v[s.p]

Induction: (k > 0)

k
st AN spEtp AN k>0
= { let u satisfy u < ¢, u exists since =Init(t) }

k
sAt AN spEtp ANup=tp N u<t
= {lemma6 }

57]L>u ANOLZj<k ANup#sp AN u<t
= { inductive hypothesis }

w.ols.p] < s.vfs.p] A u=<t
= {expand u <1}

u.v[s.p] < s.v[s.p]

A ((u,int, 1) V (u,snd,t) V (u,rev(w),t))

Consider each disjunct separately:

Case 1: (u,int,t)
w.o[s.p] < s.v[s.p] A (u,int,t)
= {Int rule }
w.v[s.p] < s.v[s.p] A t.o=uw
= { simplify }
twls.p] < s.v[s.p]

Case 2: (u,snd,1)
w.o[s.p] < s.v[s.p] A (u,snd,t)
= {Sndrule, sp#£tp}
w.v[s.p] < s.v[s.p] A t.u[s.p] = w.v[s.p]
= { simplify }
twls.p] < s.v[s.p]

Case 3: (u, rev(w),t)
w.ols.p] < s.wfs.p] A (u,rev(w),t)
= { Revrule }
w.os.p] < s.v[s.p] A (u,rev(w),t)
A (twfs.p] = wwls.p] V tw[s.p] = w.ols.p])
= { simplify }
twls.p] < s.v[s.p]
V' ((u, rev(w),t) A tufs.p] = w.ols.p])

For case 3, it suffices to prove the following two cases.

Case 3A: w.p=sp
to[s.p] = wls.p] A (u,rev(w),t) A wp=sp
let z satisfy w < x, ¥ exists since
w ~ t implies = Final(w) }
tu[s.p] = wols.p] A (w,snd,z) A wp=s.p
= { otherwise s — ¢ }
tu[s.p] = wols.p] A (w,snd,z) A wp=s.p
AN w—s
= {sincew <z}
tu[s.p] = wols.p] A (w,snd,z) A wp=s.p
A(x=sVar—s)
= { Snd rule }
t.u[s.p] = ws.p] A w.ols.p] < zv[s.p]
A(x=sVar—s)
= {lemma7}
t.u[s.p] = ws.p] A w.ols.p] < zv[s.p]
AN zv<sw
= { simplify }
twls.p] < s.v[s.p]

Case 3B: w.p #£ s.p

t.o[s.p] = wls.p] A (u,rev(w),t) A w.p#sp
k
= {uses/t k>0, and lemmat }

tu[sp] =wwlsp] AN wp#sp A s 7]L> w
ANO<j<k
= { inductive hypothesis }
t.u[s.p] = wls.p] A wls.p] < s.v[s.p]
= { simplify }
twls.p] < s.v[s.p]

Lemma 9 is a refinement of lemma 7 for the case
when s.p # t.p, in which case s.v < t.v. This step
would not be necessary for the traditional algorithm
because that case’s version of lemma 7 would have
shown this result. Note that the result of lemma 8 is
used in this proof, indicating that perhaps it is neces-
sary to prove claim 1 in order to prove claim 2. This
is interesting because intuition tells us that claim 2
should be easier to prove than claim 1.

Lemma 9 (Vs,t:sp#tp:s—1= sv<tw)

Prkoof: It is sufficient to show that for all & > 0:
s =t A sp#tp=tv<s.wv. We use induction on
k.
Base (k=1):

st A spEitp

= { defn of 2 and lemma 2 }
s~1t A spFtp
= {let usatisfy u <1 }
sp#up A (u,rev(s),t)
N { otherwise ¢ — s (since there is only one }
event between u and 1)
us A spFup A (u,rev(s),t)
= {lemma 8 and rcv rule }
s.v[s.p] < w.v[s.p]
A (Vi tofi] = max(u.vi], s.0[4]))

s <tw

Induction (k > 0) :

sEUAE>0 A sp#£tp

= {lemma3}

(Eluzzsk;lu Aust A s.p#tp)

= { w.p can not have two values }
(Eluzzsk;lu Aut A
(wp#tp V up#sp))

(Elu::(sk;lu Aut A up#tp) V

(sk;lu AustA u.p £ $.p))

= { inductive hypothesis }
(Fu (s A e < t.v) Vv
(sv<uwv A u R 1))
= {lemma7}
(Fu (s <uw A uww<to)V
(s <uw A uwv<tw))

s <tw
[

Theorem 10 states the property which we set out
to prove at the beginning of this section.

Theorem 10 (Vs,t:sp#tp:s —1< s.v<tw)

Proof: Immediate from Lemmas 8 and 9. []

5 Related Work

Owicki and Gries [9] extended the idea of Hoare
triples [6] to include concurrent shared memory pro-
grams. Their technique involves annotating each pro-
cess with statement preconditions and postconditions,
and then proving that the annotated processes are in-
terference free (i.e., for each statement S in each pro-
gram, it must be shown that S does not falsify the
precondition of any statement in any other process.

Tel [10] adopts the Owicki-Gries method for use
with distributed message passing programs and ex-
tends it to include events and atomic actions. The
events (typically a message send or receive) invoke an
atomic action which changes the state of the process.
This approach also involves annotation and interfer-
ence free proofs.

In their book, Bernstein and Lewis [1] give a de-
tailed description of how to annotate programs and
show noninterference. They demonstrate the tech-
nique for several communication primitives including
asynchronous send and receive, synchronous send and
receive, and rendezvous.

In their work on UNITY, Chandy and Misra [2]
develop a higher level view of programming and ver-
ification. In the UNITY approach, a problem spec-

ification (in terms of safety and progress properties)
is taken through a series of refinements. FEach refine-
ment is proven to implement the specification which
it refines. This process continues until the specifica-
tions are at a low enough level to implement directly
as UNITY statements.

This paper deals with proofs of predicates on the
partial order of local states which is generated by a
distributed program as it executes. Two executions of
the same program may produce different partial orders
due to inherent non-determinism which results from
internal non-deterministic statements or reordering of
messages. This paper deals with predicates on the
partial orders of local states which result from execut-
ing a particular program. The predicates are proven
from the program text, hence they are valid for all
executions of the program. There has been very lit-
tle research devoted towards using the partial order of
local states to prove properties of a distributed pro-
gram.

6 Conclusions

Proving the correctness of distributed programs is
a very difficult problem, and as a result, the proofs are
often informal. This paper attempts to make the task
of proving distributed programs easier by introducing
an induction technique on 4, the complement of Lam-
port’s causally-precedes relation. The technique was
demonstrated on a variant of the well known vector
clock algorithm.

Induction on 4 is a valuable technique because
many properties of distributed programs use this re-
lation. For example, any predicate on the global state
of a system (e.g., mutual exclusion) uses /4 since a
global state is valid if and only if no local state in the
global state casually precedes any other local state in
the global state.

7 Acknowledgments

We are grateful to Don Pazel at IBM Yorktown
Heights who insisted that we give him a formal proof
of the vector algorithm.

References

[1] A.J. Bernstein and P.M. Lewis. Concurrency in
Programmaing and Database Systems. Jones and
Bartlett Publishers, Boston, MA, 1993.

[2] K.M. Chandy and J. Misra. Parallel Program De-
sign: A Foundation. Addison-Wesley, Reading,
MA, 1989.

[3] C.J. Fidge. Partial orders for parallel debugging.
Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging,
published in ACM SIGPLAN Notices, 24(1):183~
194, January 1989.

[4] V. K. Garg. Some optimal algorithms for decom-
posed partially ordered sets. Information Pro-
cessing Letters, 44:39-43, November 1992.

[5] V.K. Garg and Brian Waldecker. Detection of
weak unstable predicates in distributed programs.
IEFEE Transactions on Parallel and Distributed
Systems, To appear.

[6] C.A.R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,

pages 576-580, October 1969.

[7] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications

of the ACM, 21(7):558-565, July 1978.

[8] F. Mattern. Virtual time and global states of dis-
tributed systems. In Parallel and Distributed Al-
gorithms: Proc. of the International Workshop on
Parallel and Distributed Algorithms, pages 215-
226. Elsevier Science Publishers B.V. (North-
Holland), 1989.

[9] S Owicki and D. Gries. An axiomatic proof tech-
nique for parallel programs. Acta Informatica,

6:319-340, 1976.

[10] Gerard Tel. Topics in Distributed Algorithms.
Cambridge University Press, Cambridge, Eng-
land, 1991.

[11] A.I. Tomlinson and V.K.Garg. Detecting rela-
tional global predicates in distributed systems.
In Proc. of the Workshop on Parallel and Dis-
tributed Debugging, San Diego, CA, May 1993.
ACM/ONR.

