AN ALGORITHM FOR MINIMALLY LATENT GLOBAL
VIRTUAL TIME *

Alexander 1. Tomlinson

Vijay K. Garg

Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas 78712

This paper appears in:
Proceedings of the 7th Workshop on Parallel and Distrubuted Simulation, San Diego, CA, May 1993.

Abstract

Global virtual time (GVT) is used in dis-
tributed simulations to reclaim memory,
commit output, detect termination, and han-
dle errors. It is a global function that is
computed many times during the course of a
simulation. A small GVT latency (delay be-
tween its occurrence and detection) allows for
more efficient use of resources. We present an
algorithm which minimizes the latency, and
we prove its correctness. The algorithm is
unique in that a target virtual time (TVT)
is predetermined by an initiator who then
detects when GVT > TVT. This approach
eliminates the avalanche effect because the
collection phase is spread out over time, and
it allows for regular and timely GVT updates.
The algorithm does not require messages to
be acknowledged, which significantly reduces
the message overhead of the simulation. One
possible application is with interactive sim-
ulators, where regular and timely updates
would produce output that 1s up to date and
appears smooth.

1 Introduction

Discrete event simulation is used to analyze the behav-
ior of systems which are too complex for mathematical
models. As a result of this complexity, simulations are
extremely computation intensive. Distributed simula-
tion attempts to speed up a simulation by sharing the
computational load among several computers.

A simulation consists of a set of processes inter-
acting with each other through events. Each process
has a local virtual time (LVT) which indicates its simu-
lation time. Each event has a destination process and
a timestamp. The destination process is responsible

*Research supported in part by NSF Grant CCR
9110605, Navy Grant N00039-88-C-0082, TRW faculty as-
sistantship award, IBM Agreement 153, and a Microelec-
tronics Computer Development Fellowship.

for simulating the event; the timestamp indicates at
what simulation time the event occurs. Each process
executes events in order of timestamps and also pro-
duces events for other processes. A process’ LVT is
equal to the timestamp of the last event executed.

Within a distributed computing system events are
implemented as messages. Due to variable process ex-
ecution times and message delays, processes will often
recelve events with a timestamp that is less than the
process’ LVT (indicating that one or more previous
events have been executed out of order). This situ-
ation is referred to as a causality error. Events that
result in causality errors are referred to as stragglers.

Distributed simulation implementations can be
broadly categorized [Rey88] by their method of dealing
with causality errors. Conservative systems [CM8]]
prevent their occurrence while optimistic systems
[Jef85, Jef87] recover from their occurrence. A survey
of both optimistic and pessimistic schemes appears in
[Fuj90]. This paper addresses concerns regarding op-
timistic systems only.

Time Warp [Jef85] is a synchronization mecha-
nism that solves the causality problem for optimistic
systems. In Time Warp, a process that receives a
straggler event is rolled back to a LVT before the
timestamp of the straggler event. In order to roll
back, a process must periodically checkpoint its inter-
nal state as well as save copies of all events it executed
and generated. This leads to high memory require-
ments. One of the functions of global virtual time is
to enable the reclaiming of memory.

Global virtual time i1s an example of a distributed
monotonic function. Tel[Tel91] provides an excellent
overview of distributed monotonic computations and
describes several algorithms for computing them.

Time Warp uses the notion of global virtual time
to monitor the progress of the simulation. At any point
during the simulation, there exists a simulation time,
exact_GVT, such that no process will ever roll back
to a LVT less than exact_GVT. In terms of processes
and events, exact_GVT 1s the minimum element in the
set that includes: the LVT of every process and the

timestamp of every event (message) in transit. In a
distributed simulation, it is impossible to determine
an exact value for exact_GVT without halting the sim-
ulation. However, it is possible to determine a lower
bound on exact_GVT without halting the simulation.
In this paper, “GVT” refers to a value that is a lower
bound estimate of exact_GVT, while “global virtual
time” refers to the concept.

Since global virtual time is monotonic[Jef85] and
the simulation will never roll back to a simulation time
less than GVT, GVT is a measure of system progress.
The simulation is correct up to GVT. Time Warp
repeatedly calculates GVT during the simulation in
order to detect normal termination, reclaim stor-
age, commit output events, and handle errors[Jef85].
Timely global virtual time updates reduce the mem-
ory requirements and system output delays. However,
there is a tradeoff since calculation of GVT takes com-
puting time away from the application.

We use the term timestamp to refer to the event
attribute which 1s used in the calculation of GVT.
The parameter may be the event’s send time or the
receive time; the choice depends on implementation
issues such as flow control and message exchange.

This paper introduces an algorithm for minimally
latent global virtual time. We define the latency of a
GVT calculation as the delay between the occurrence
of exact_GVT = x and the detection of GVT > z.
The latency of a global virtual time algorithm is the
worst case delay in terms of:

t, = worst case time required to execute a
send or receive operation.
t,, = worst case message transmission delay

The parameter ¢, allows us to model the fact that send-
ing N messages costs the sender more than sending 1
message.

In our algorithm, an initiator (any process can be
the initiator) schedules a special event at all processes
to be executed at a target virtual time (TVT). When
a process executes this event it sends a report to the
initiator. The initiator can then determine when GVT
becomes greater than or equal to TVT. Each process
submits its report when its local virtual time equals

TVT.

This algorithm has two important characteristics:
1) minimal latency, and 2) specification of TVT which
will be the next computed value of GVT. The algo-
rithm is initiated by any process when it needs an
updated value of GVT. At the very least, a process
should initiate the algorithm when 1t runs low on mem-
ory. This provides a feedback mechanism for deciding
when to compute GVT.

One possible application is interactive simula-
tion, where the output delay should be minimized and
the simulation-time interval between successive out-
put commits should regular. The output delay is min-
imized due to the minimal latency, and the regular
output commits can be achieved by setting the target
times at regular virtual time intervals.

Section 2 of this paper summarizes related work
on global virtual time algorithms. Section 3 presents
a few definitions and describes our notation. The al-
gorithm 1s presented in section 4, and proof of its cor-
rectness appears in section 5. In Section 6 we discuss
the latency and message overhead of our algorithm and
compare to other algorithms. We conclude the paper
in section 7.

2 Related Work

In this section we briefly describe other global vir-
tual time algorithms. Since the same approach is
used in each algorithm, we first describe the approach
and then describe the individual algorithms. Most
global virtual time algorithms make the assumption
that all executed events are acknowledged[BL89] (our
algorithm does not assume this).

Suppose we could take an instantaneous global
snapshot at some real time RT. Then, using the as-
sumption of acknowledged events, calculation of GVT
is easily accomplished as follows. At RT each process
determines a virtual time vt that is equal to the min-
imum of: the timestamps of all its unacknowledged
events and its its local virtual time. It then forwards
vt to an initiator process which calculates GVT to be
the minimum vt received from all processes.

In reality, instantaneous global snapshots are not
possible, thus we cannot determine an exact value for
RT. (We assume that a global clock is not available).
However, we can set upper and lower bounds on RT at
each process by creating intervals that overlap in real
time [GW92]. Each process can then forward infor-
mation to the initiator as it leaves the interval. This
is the approach taken in most global virtual time al-
gorithms. We will first describe how GV'T can be de-
termined from a set of intervals, and then review how
different algorithms create the intervals.

Let [start;, stop;] denote an interval at process 1.
The set of intervals {[start;, stop;] | i ELP} must share
a common real time, RT. Each process knows that RT
occurs within the interval, but does not know exactly
where it occurs within the interval. Figure 1 shows an
example.

Each process ¢ calculates a virtual time vt; and
forwards it to the initiator at stop;. Figure 2 shows
exactly how vt; 1s calculated. The initiator collects

Process 1 Process 2 Process 3
& startz ¢ starts
¢ starty
RT - e L
& Stops
¢ siom & stopz
Y Y ¥

Figure 1: Virtual time intervals overlapping in real
time.

FE1; :={e.ts | e was sent from ¢ before start; A
e has not been acknowledged }

E2; .= {e.ds | e was sent from i between start;
and stop; }

vt = min(El; UE2, U{LVT,; at stop;})

Figure 2: Calculating vt; at process ¢. (For an event
e, e.ts refers to its timestamp.)

the values of all vt;, determines the minimum, and as-
serts that the new GVT equals this minimum value.
Note that if start; = stop; then the above algorithm
is equivalent to the instantaneous global snapshot ver-
sion.

Using this approach, calculation of GVT involves
four phases. The START and STOP phases to generate
start; and stop; at each process, the COLLECT phase
to collect the information needed to calculate GVT,
and the NOTIFY phase to notify all processes of the
updated GVT. The sToP and COLLECT phases can
often be combined. Similarly, the NOTIFY phase from a
previous round can be combined with the START phase
of the next round. We note here that the latency of
this approach is the time required to execute the sTOP
and COLLECT phases.

Bellenot [Bel90] describes the algorithm used in
the JPL Mark IIT Hypercube implementation of Time
Warp (we refer to this algorithm as the broadcast algo-
rithm). This algorithm uses broadcasts to create the
overlapping intervals. An initiator broadcasts a START
message to all processors. After all processes respond
with a START_ACK message, the initiator broadcasts a
STOP message and waits for STOP_ACK messages. Each
processor defines defines start; to be the time at which
START was received, and stop; to be the time at which
sTOP was received. Each process calculates vt; imme-
diately after receiving sTOP and forwards the result to
the initiator as part of the sToP_AcK. The initiator
collects vi; from all processes and calculates GVT to

be the minimum of all vt;.

Bellenot [Bel90] improves on the Mark TIT algo-
rithm by using a binary tree forwarding mechanism
(we refer to this algorithm as the tree algorithm). In-
stead of broadcasting START and STOP, they are propa-
gated throughout the system using binary trees. Two
binary trees are embedded in the process graph and
their leaves are connected as shown in figure 3. The
root of the left tree sends START to both children, and
the children propagate the message. When the right
root receives START from both children, 1t sends sTOP
along with vt; to both children, who propagate the
message. The minimum vt; can be calculated as sTOP
propagates to the left root. The left root determines
GVT when it receives sTOP from both children.

Left root

Right root

Figure 3: Message paths for the Bellenot’s tree algo-
rithm.

Another variant is to impose a ring on the pro-
cesses and pass a token around the ring[Bel90] (we
refer to this as the token algorithm). The same token
implements the three phases for three different rounds.
When a process receives a token, it defines start; for
round n, stop; for round n — 1, and propagates GVT
for round n — 2.

There are algorithms that do not use the over-
lapping intervals technique. Concepcion describes a
hierarchical approach with tokens in [CK91]. He de-
fines an intersecting hierarchy of token rings. Only
half the nodes in the system are used for simulation;
the other half are used for GVT calculation and other
system duties. The lowest level tokens interact with
the simulation processes. These tokens carry the mini-
mum vt; for all the nodes on it’s ring. The upper level
tokens propagate vt; up to the highest level, at which
point GVT is calculated.

3 Notation

In this section we define the components of an event
timestamp and a process. We describe the algorithm
for one initiator and one active round only. The

reader’s attention is directed to the new component:
rollback counts. A process must maintain its rollback
count and include it as part of the timestamp of every
message 1t generates. The rollback count is defined
later in this section.

LP = Set of Local Processes

1P = Initiator Process, IP € LP
GVT = Global Virtual Time
TVT = Target Virtual Time
TARGET = Target Event

Each event e contains {

e.sndr = process that sent event
e.rcvr = Pprocess to receive event
ets = timestamp

e.rb = rollback count

1

Each process must maintain a set of event queues.
This overhead already exists in optimistic distributed
simulation systems such as Time Warp. Thus it is not
an overhead of the algorithm; we just make use of the
information.

A relevant rollback at process ¢ is defined to be
one which resets LVT; from a value greater or equal
TVT to a value less than TVT. The rollback count,
rb;, for process i 1s a non-negative integer value equal
to the number of relevant rollbacks experienced by 1.
An event e is a relevant event if and only if GVT <
els < TVT. Note that an event is relevant if and only
if it can cause a relevant rollback. Relevant events are
the events that we keep track of for a given round of
the algorithm.

As a final comment, we wish to stress that this
algorithm detects when GVT > TVT as opposed to
calculating a value for GVT.

4 Algorithm

This algorithm assumes that messages are not ac-
knowledged, channels are reliable, and message deliv-
ery is not ordered (non-FIFO). For simplicity, we de-
scribe the algorithm for the case where there 1s only
one initiator. Upon initiating a round, the initiator
must wait until that round is completed before initi-
ating another. It i1s easy to extend the algorithm to
handle multiple rounds concurrently (at most N con-
current rounds would be needed, where N is the num-
ber of processes in the simulation).

When the initiator process, IP, begins to run low
on memory, it sets TVT equal to its LVT and initiates
a round by initializing its local data and sending a

TARGET event to each process. Choosing the target
virtual time equal to LVT ensures that exact_ GVT <
TVT. The timestamp of TARGET is set to TVT, thus
each process will execute TARGET when its local vir-
tual time equals TVT. IP then waits for the processes
to respond to the TARGET events.

IP: To initiate a round

for each i € LP do {

Nsent; := 0
Nexec; :=0
Rb; := -1
RV;:=0

send TARGET to ¢ with timestamp TVT
}

Now let us consider what happens at a process p €
LP that receives a TARGET event. When the TAR-
GET event is received, it is placed in the pendingQ
and executed in turn. However, a TARGET event is
not really executed, it just triggers the algorithm at p.
When it comes time to execute the TARGET event, p
gathers some local information and sends a REPORT
message to IP. If multiple events have a timestamp
of TVT, the TARGET event should be the first one
executed (this is not necessary, but it decreases the
latency of the calculation).

Note that if TARGET arrives at p when its lo-
cal virtual time is greater than or equal to TVT,
then p may roll back. However, TARGET will
not effect state;, thus a better idea is to “exe-
cute” TARGET without rolling back (similar to lazy
reevaluation[RFBJ90]).

LP: To execute TARGET event

nexec := size of
{ e € executedQ | (GVT < e.ts < TVT) }
nsent := size of { e € outQ | (GVT < e.ts < TVT) }
for each 1 € LP do
velk[z] := max ({0} U {e.rb | e € executedQ A
esndr =1 A (GVT <ets< TVT)})
REPORT := <nsent, nexec, rb, vclk>
send REPORT to IP
CutMark /* For proof: this defines part of VCUT */

If p incurs a relevant rollback, then p’s roll back
count is incremented. During a relevant rollback the
TARGET event is not canceled; instead it is moved
back to the pending@. As p executes forward after
the rollback, the TARGET event will be replayed and
another REPORT message will be generated. The
new REPORT message will contain the new rollback
count. Outgoing events will also include the new roll-
back count, which will be used at the receivers to con-
struct the rollback vectors that are included in their

REPORT messages.

The REPORT message contains information that
IP uses to determine when GVT > TVT. It contains
four fields. Nezec is the number of relevant events that
p has executed. Nsentis the number of relevant events
p has generated. The REPORT message also contains
p’s rollback count and a rollback vector.

The rollback wvector is a vector clock [Mat89]
built from the rollback counts included in each event’s
timestamp. If; at process p, velk[i] = n then p received
a relevant event from i after i’s n'? relevant rollback.
Note that the rollback vector is produced from the
event queues; the only tag appended to messages is
the integer valued rollback count rb.

Now we consider IP to see how it handles incom-
ing REPORT messages. IP collects reports from all
processes and uses the information contained within
to determine when GVT > TVT.

IP evaluates the expression TVT_Validated,
which is true if and only if GVT > TVT. Due to
rollback, a process may send more than one report,
however, TVT _Validated forces IP to wait for the cor-
rect set of REPORT messages. Once TVT _Validated
becomes true, no more REPORT messages will be re-
ceived.

IP keeps track of incoming reports in local data
structures. When a report is received from p, the
rb, nsent, and nexec parameters from the report are
copied directly to Rb,, Nsent,, and Nexec,. The velk
vector parameter is used to update the rollback vector
RV. 1If process p’s velk[i] = n, then i sent to p an
event e such that GVT < e.ts < TVT, and ¢ incurred
n relevant rollbacks prior to generating e. This means
that ¢ must submit a report afterit’s n*® relevant roll-
back in order for TVT to be validated. RV contains
the rollback count needed from #; in this case 1t would
be n (unless RV; was already greater than n from a
different report that was received out of order).

IP: To receive REPORT=<nsent,nexec,rb,vclk> from p

if (Rb,, < 1b) {

Rby, :=1b
Nsent, := nsent
Nexec, := nexec

for each 2 € LP
RV; := max(vclk[¢],RV;)
if (TVT_Validated) then
Assert GVT = TVT
} else

/* report received our of order, ignore it */

IP: To evaluate TVT _Validated

TVT Validated < (Vi € LP: Rb; > RV)) A
(CieLp Nsents =37, 1 p Nexec))

TVT_Validated is true only when every process
has submitted an up to date report and the sum of all
relevant events generated equals the sum of all rele-
vant events executed. We prove the correctness of this
algorithm in the next section.

5 Proof

We prove that TVT_Validated is TRUE if and only if
exact_GVT > TVT. First we develop the notion of a
virtual cut, then define a few notational conveniences,
followed by some lemmas and finally the proof.

Let VCUT be a cut in virtual time (simi-
lar to Mattern’s consistent cuts [Mat89]) defined
by the occurrence of CutMark in the procedure
LP:To_execute_TARGET event. VCUT corresponds
to the most recent time each process submitted a re-
port. We say VCUT is complete if and only if each
process has submitted at least one REPORT message.

Messages can cross VCUT in both the forward
and backward directions. A message m travels back-
ward across VCOUT if and only if its sender has not sub-
mitted a REPORT message since sending m, and its
receiver has submitted a REPORT message since re-
ceiving m. A message m travels forward across VCUT
if and only if its sender has submitted a REPORT
message since sending m, and its receiver has not sub-
mitted a REPORT message since receiving m. Note
that we are only concerned with relevant messages that

cross VCUT.

For notational convenience we define the follow-

ing:
A
NS z ZiELP Nsenti
NX = ZiELP Nexec;
s =2 {event e [3j : e € outQ; A
GVT <etls<TVT }
X = {event e|3Jj:e € executedQ; A

GVT <edls<TVT }

NS is the sum of the nsent parameters of the
REPORT messages, which is equal to the total num-
ber of relevant messages generated before VCUT. NX
is the sum of the nezec parameters of the REPORT
messages, which is equal to the total number of rel-
evant messages executed before VCUT. S is the set
of relevant events generated; X is the set of relevant
events executed. Note that NS and NX correspond to
VCUT, while S and X correspond to a real time. If, as
in the unattainable instantaneous snapshot algorithm,
CutMark; occurred at real time RT for all ¢, then NS
and NX would equal the cardinality of S and X. In
fact, part of the proof establishes that this is true if
TVT_Validated is true.

To avoid confusion, we point out that Rb; is a
variable in IP, while rb; is a variable at process : € LP.
Our goal 1s to show that we detect GVT > TVT if and
only if it occurs:

(Vi € LP : Rb; > RV;) A (NS = NX)
-
(Yi: LVT, > TVT) A (S = X)

detect :

oceur :
Lemma 1 IfVCUT is incomplete then detect is false.

Proof: If VCUT is incomplete, then there exists a
process 2 that has not submitted a REPORT message.
Thus Rb; = —1 (its initial value), which implies that
Rb; < RV;. Therefore, detect is false. n

Lemma 2 If a relevant message m crosses a complete

VCUT, then detect s false.

Proof: 1If m travels backward across VCUT, then
m.sndr’s rollback count shows up in m.revr’s RE-
PORT message as vclky, spgr, which in turn shows up
as RV, snar- This value is greater than Rb,, sn4- since
m travels backwards. Thus Rb,, ¢nar < RV sndr-
Therefore detect is false for this case.

On the other hand, if m travels forward across VCUT,
then consider two cases.

Case One: No relevant message travels backward
across VCUT. Then m creates a surplus of relevant
messages sent forward across VCUT. Thus NS # NX,
and detect 1s false for case 1.

Case Two: There is a relevant message m’ that travels
backward across VCUT. Then m' causes detect to be
false, as shown above. [

Theorem 1 detect = occur

Proof: We will prove the contrapositive:
—occur = —detect. There are two cases to consider.

Case 1: Ji : LVI; <TVT.

If 7 is in its 0'* incarnation (rb; = 0), then VCUT
is not complete, thus by lemma 1 detect is false. If
rb; = n, for n > 0, then there must exist a message
that crosses VCUT. Thus by lemma 2, detect is false.

Case 2: § £ X.

Then X C S (since by definition, X C S, i.e. events
must be created before they can be executed). If
VCUT is not complete then detect is false. If VCUT is
complete, then, since X C S, there must exist a mes-
sage that crosses VCUT. Thus by lemma 2, detect is
false. [

Theorem 2 occur = detect

Proof: We assume occur and show detect. If occur
holds, then no process will rollback over TVT. Thus
no process will incur any more relevant rollbacks, and
each processes has submitted its last REPORT mes-
sage. This implies that, for all ¢, Rb; is greater than
or equal to every rollback count value 7 included in
the timestamps of its outgoing events. Thus, for all ¢,

Rb; > RV;.

During the interval that begins when exact_ GVT ex-
ceeds TVT and ends when 7 sends its last REPORT
message, nsent and nexec at ¢ will not have changed.
Thus NS = | S |, and NX = | X |. Since S = X, then
NS = NX.

Thus for all ;, Rb; > RV; and NS = NX. Therefore

detect 1s true. n

6 Discussion

6.1 Latency

We compare the latency of our algorithm with the la-
tencies of the broadcast, tree, and token algorithms
described in section 2. We use the definition of la-
tency presented in section 1 and assume that there are
N processes in the system.

Recall that the broadcast, tree and token algo-
rithms all use the same strategy of creating overlap-
ping intervals (figure 1). The latency of an algorithm
using this strategy is the time required to terminate
these intervals and gather information. As mentioned
in section 2, this is the time required to execute the
sTOP and the COLLECT phases.

The broadcast algorithm terminates the intervals
with a 1 to N broadcast followed by an N to 1 col-
lection. The initiator must send and receive 2(N — 1)
messages, which contributes O(t,N) to the latency.
The message path has length two, which contributes
O(tym +tp). Thus the latency is O(t, +t,N). Similar
calculations result in a latency of O((tp, + t,) log N)
for the tree algorithm and a latency of O((t, +tm)N)
for the token algorithm.

Our algorithm has latency ¢, +2t, = O(t, + t;)
since the message path has length one. As soon as
a process determines that it is possible that GVT is
greater than TVT, it sends a message directly to the
initiator. It is clear that ¢, + 2¢, is the minimum
latency of any GVT algorithm on a distributed sys-
tem since this is the time needed to send one mes-
sage between two processes (send + transit + receive
=1, +tm +1t,). Figure 4 summarizes the latencies of
these algorithms.

Algorithm | GVT Latency

Ours tm +1p
Broadcast | t, +t,N

Tree (tm +tp) log N
Token (tm +tp)N

Figure 4: Comparison of asymptotic latency.

6.2 Message Overhead

The broadcast, tree, and token algorithms each require
that messages are acknowledged; our algorithm does
not require messages to be acknowledged. The mes-
sage overhead of these algorithms is shown in figure b
in terms of M, N, and R. M is the total number of
message acknowledgments; N is the number of pro-
cesses, and R is the total number of relevant rollbacks.

Figure 5 shows two components of the overhead:
fixed (per round), and variable (per simulation).

Fixed Variable
Algorithm ‘ (per round) ‘ (per simulation)
Ours N R
Broadcast 4N -1) M
Tree 3N * M
Token 2N M

Figure 5: Comparison of message overhead.
(* indicates an approximation)

The fixed overhead is incurred for each round of
the algorithm. For our algorithm this overhead is N
since each process sends at least one report to the ini-
tiator. The fixed overhead for the other algorithms
depends on how they create the overlapping intervals.
For example, the broadcast approach requires N — 1
messages for each of the four phases.

The variable overhead is incurred once during the
entire simulation. We characterize this overhead on a
per simulation basis because there is no way to deter-
mine how much of this overhead will occur for a given
round. Each of the other algorithms require message
acknowledgments, thus the variable overhead per sim-
ulation is M.

Our algorithm does not require message acknowl-
edgments, but does require one message for each rel-
evant event. Since a rollback can only occur after a
message 1s received, we know that R < M. In the
analysis of a large simulation, [WH'89] find that the
number or rollbacks is about one fourth of the num-
ber of messages. Since not every rollback will be a
relevant rollback, R would be less than AM/4 (in that
example). Thus the overhead of our algorithm is sig-
nificantly less than the any of the broadcast, tree, or

token algorithms.

7 Conclusion

We have presented and proved the correctness of an
algorithm for determining global virtual time which
is based on a novel idea. The algorithm enables an
initiator process to decide upon a virtual time, TVT,
that will be the next computed value of GVT. The
condition “GVT > TVT” is then detected with mini-
mal latency (the delay between the actual occurrence
of the condition and its detection). This algorithm has
two important and unique characteristics: 1) minimal
latency, and 2) specification of TVT which will be the
next computed value of GVT.

Contrary to previous algorithms, this algorithm
does not require messages to be acknowledged. This
results in a large savings on the number of messages
required in the overall simulation. In addition, the
fixed overhead per GVT calculation is less than other
well known algorithms.

This algorithm eliminates a problem with many
previous global virtual time algorithms: the avalanche
of messages during the collection phase. In our algo-
rithm, the collection phase is spread out over time,
thereby eliminating the avalanche problem.

One possible application is with interactive sim-
ulators where 1t i1s desirable to get global virtual time
updates at regular virtual time intervals with minimal
latency. These characteristics allow output to appear
continuous and up to date.

8 Acknowledgments

We would like to thank the referees of this paper for
providing insightful comments. We would also like to
thank Steven Glicker and David Brant who reviewed
earlier versions of this paper.

References

[Bel90] Steven Bellenot. Global virtual time al-
gorithms. In Proc. of the SCS MultiCon-
ference on Distributed Simulation, volume
22(1), pages 122-127. Society for Computer

Simulation, January 1990.

S. Bellenot and M. Di Loreto. Tools for
measuring the performance and diagnosing
the behavior of distributed simulations us-
ing time warp. In Proc. of the SCS Multi-
Conference on Distributed Simulation, vol-
ume 21(2), pages 145-150. Society for Com-
puter Simulation, March 1989.

[BL89)

[CKI1]

[CM81]

[Fujoo]

[GW92]

[Jef85]

[Jef87]

[Mat89]

[Rey88]

[RFBI90]

[Tel91]

[WH*89]

Arturo I. Concepcion and Scott G. Kelly.
Computing global virtual time using the
multi-level token passing algorithm. In
Proc. of the SCS MultiConference on Dis-
tributed Simulation, volume 23(1), pages
63-68. Society for Computer Simulation,
January 1991.

K. M. Chandy and J. Misra. Asynchronous
distributed simulation via a sequence of
parallel computations. Communications of

the ACM, 24(11), April 1981.

R. M. Fujimoto. Parallel discrete event
simulation. Communications of the ACM,

33(10), October 1990.

V.K. Garg and B. Waldecker. Detection
of unstable predicates in distributed pro-
grams. In Proc. of 12th Conference on the
Foundations of Software Technology & The-
oretical Computer Science, pages 253-264.
Springer Verlag, December 1992. Lecture
Notes in Computer Science 652.

David R. Jefferson. Virtual time. ACM
Transactions on Programming Languages

and Systems, 7(3), July 1985.

David Jefferson. The time warp operating
system. In Eleventh Symposium on Operat-
wng System Principles, pages 77-93, Novem-
ber 1987. vol 21, no 5.

F. Mattern. Virtual time and global
states of distributed systems. In Par-
allel and Distributed Algorithms: Proc.
of the International Workshop on Parallel
and Distributed Algorithms, pages 215-226.
Elsevier Science Publishers B.V. (North-
Holland), 1989.

Paul Reynolds. A spectrum of options for
parallel simulation protocols. In Winter
Simulation Conference Proceedings, pages

325-332, December 1988.

P Reiher, R. Fujimoto, S. Bellenot, and
D. Jefferson. Cancellation strategies in op-
timistic execution systems. In Proc. of the
SCS MultiConference on Distributed Sim-
ulation, volume 22(1), pages 112-121. So-
ciety for Computer Simulation, January

1990.

Gerard Tel. Topics in Distributed Algo-
rithms. Cambridge University Press, Cam-

bridge, England, 1991.

Frederick Wieland, Lawrence Hawley, et al.
Distributed combat simulation and time
warp: The model and its performance. In
Proc. of the SCS MultiConference on Dis-
tributed Simulation, volume 21(2), pages
14-20. Society for Computer Simulation,
March 1989.

Alexander I. Tomlinson is currently enrolled in the
PhD program in the Department of Electrical and
Computer Engineering at The University of Texas at
Austin. His research focus is distributed systems. In
the past Alex has worked at Sandia National Labo-
ratories, Hewlett-Packard Company, and Digital Tele-
phone Systems (a subsidiary of Harris Corporation).
Alex received his BS in Computer Engineering from
Carnegie Mellon University in 1986 where he was a
University Scholar and earned an NCAA Academic All
American award for his role on the varsity soccer team.
He received his MS from UT Austin in 1992 with the
support of a University Fellowship.

Vijay K. Garg received his Bachelor of Technology de-
gree in computer engineering from the Indian Insti-
tute of Technology, Kanpur, in 1984. He continued
his education at the University of California, Berkeley
where he received his MS in 1985 and Ph.D. in 1988
in Electrical Engineering and Computer Science. He
is currently an assistant professor in the Department
of Electrical and Computer Engineering at the Univer-
sity of Texas, Austin. His research interests are in the
areas of distributed systems and supervisory control of
discrete event systems.

