
AN ALGORITHM FOR MINIMALLY LATENT GLOBALVIRTUAL TIME �Alexander I. Tomlinson Vijay K. GargDepartment of Electrical and Computer EngineeringThe University of Texas at Austin, Austin, Texas 78712This paper appears in:Proceedings of the 7th Workshop on Parallel and Distrubuted Simulation, San Diego, CA, May 1993.AbstractGlobal virtual time (GVT) is used in dis-tributed simulations to reclaim memory,commit output, detect termination, and han-dle errors. It is a global function that iscomputed many times during the course of asimulation. A small GVT latency (delay be-tween its occurrence and detection) allows formore e�cient use of resources. We present analgorithm which minimizes the latency, andwe prove its correctness. The algorithm isunique in that a target virtual time (TVT)is predetermined by an initiator who thendetects when GVT � TVT. This approacheliminates the avalanche e�ect because thecollection phase is spread out over time, andit allows for regular and timelyGVT updates.The algorithm does not require messages tobe acknowledged, which signi�cantly reducesthe message overhead of the simulation. Onepossible application is with interactive sim-ulators, where regular and timely updateswould produce output that is up to date andappears smooth.1 IntroductionDiscrete event simulation is used to analyze the behav-ior of systems which are too complex for mathematicalmodels. As a result of this complexity, simulations areextremely computation intensive. Distributed simula-tion attempts to speed up a simulation by sharing thecomputational load among several computers.A simulation consists of a set of processes inter-acting with each other through events. Each processhas a local virtual time (LVT) which indicates its simu-lation time. Each event has a destination process anda timestamp. The destination process is responsible�Research supported in part by NSF Grant CCR9110605, Navy Grant N00039-88-C-0082, TRW faculty as-sistantship award, IBM Agreement 153, and a Microelec-tronics Computer Development Fellowship.

for simulating the event; the timestamp indicates atwhat simulation time the event occurs. Each processexecutes events in order of timestamps and also pro-duces events for other processes. A process' LVT isequal to the timestamp of the last event executed.Within a distributed computing system events areimplemented as messages. Due to variable process ex-ecution times and message delays, processes will oftenreceive events with a timestamp that is less than theprocess' LVT (indicating that one or more previousevents have been executed out of order). This situ-ation is referred to as a causality error. Events thatresult in causality errors are referred to as stragglers.Distributed simulation implementations can bebroadly categorized [Rey88] by their method of dealingwith causality errors. Conservative systems [CM81]prevent their occurrence while optimistic systems[Jef85, Jef87] recover from their occurrence. A surveyof both optimistic and pessimistic schemes appears in[Fuj90]. This paper addresses concerns regarding op-timistic systems only.Time Warp [Jef85] is a synchronization mecha-nism that solves the causality problem for optimisticsystems. In Time Warp, a process that receives astraggler event is rolled back to a LVT before thetimestamp of the straggler event. In order to rollback, a process must periodically checkpoint its inter-nal state as well as save copies of all events it executedand generated. This leads to high memory require-ments. One of the functions of global virtual time isto enable the reclaiming of memory.Global virtual time is an example of a distributedmonotonic function. Tel[Tel91] provides an excellentoverview of distributed monotonic computations anddescribes several algorithms for computing them.Time Warp uses the notion of global virtual timeto monitor the progress of the simulation. At any pointduring the simulation, there exists a simulation time,exact GVT, such that no process will ever roll backto a LVT less than exact GVT. In terms of processesand events, exact GVT is the minimumelement in theset that includes: the LVT of every process and the

timestamp of every event (message) in transit. In adistributed simulation, it is impossible to determinean exact value for exact GVT without halting the sim-ulation. However, it is possible to determine a lowerbound on exact GVT without halting the simulation.In this paper, \GVT" refers to a value that is a lowerbound estimate of exact GVT, while \global virtualtime" refers to the concept.Since global virtual time is monotonic[Jef85] andthe simulation will never roll back to a simulation timeless than GVT, GVT is a measure of system progress.The simulation is correct up to GVT. Time Warprepeatedly calculates GVT during the simulation inorder to detect normal termination, reclaim stor-age, commit output events, and handle errors[Jef85].Timely global virtual time updates reduce the mem-ory requirements and system output delays. However,there is a tradeo� since calculation of GVT takes com-puting time away from the application.We use the term timestamp to refer to the eventattribute which is used in the calculation of GVT.The parameter may be the event's send time or thereceive time; the choice depends on implementationissues such as ow control and message exchange.This paper introduces an algorithm for minimallylatent global virtual time. We de�ne the latency of aGVT calculation as the delay between the occurrenceof exact GV T = x and the detection of GV T � x.The latency of a global virtual time algorithm is theworst case delay in terms of:tp = worst case time required to execute asend or receive operation.tm = worst case message transmission delayThe parameter tp allows us to model the fact that send-ing N messages costs the sender more than sending 1message.In our algorithm, an initiator (any process can bethe initiator) schedules a special event at all processesto be executed at a target virtual time (TVT). Whena process executes this event it sends a report to theinitiator. The initiator can then determine when GVTbecomes greater than or equal to TVT. Each processsubmits its report when its local virtual time equalsTVT.This algorithm has two important characteristics:1) minimal latency, and 2) speci�cation of TVT whichwill be the next computed value of GVT. The algo-rithm is initiated by any process when it needs anupdated value of GVT. At the very least, a processshould initiate the algorithmwhen it runs low on mem-ory. This provides a feedback mechanism for decidingwhen to compute GVT.

One possible application is interactive simula-tion, where the output delay should be minimized andthe simulation-time interval between successive out-put commits should regular. The output delay is min-imized due to the minimal latency, and the regularoutput commits can be achieved by setting the targettimes at regular virtual time intervals.Section 2 of this paper summarizes related workon global virtual time algorithms. Section 3 presentsa few de�nitions and describes our notation. The al-gorithm is presented in section 4, and proof of its cor-rectness appears in section 5. In Section 6 we discussthe latency and message overhead of our algorithmandcompare to other algorithms. We conclude the paperin section 7. 2 Related WorkIn this section we briey describe other global vir-tual time algorithms. Since the same approach isused in each algorithm, we �rst describe the approachand then describe the individual algorithms. Mostglobal virtual time algorithms make the assumptionthat all executed events are acknowledged[BL89] (ouralgorithm does not assume this).Suppose we could take an instantaneous globalsnapshot at some real time RT. Then, using the as-sumption of acknowledged events, calculation of GVTis easily accomplished as follows. At RT each processdetermines a virtual time vt that is equal to the min-imum of: the timestamps of all its unacknowledgedevents and its its local virtual time. It then forwardsvt to an initiator process which calculates GVT to bethe minimum vt received from all processes.In reality, instantaneous global snapshots are notpossible, thus we cannot determine an exact value forRT. (We assume that a global clock is not available).However, we can set upper and lower bounds on RT ateach process by creating intervals that overlap in realtime [GW92]. Each process can then forward infor-mation to the initiator as it leaves the interval. Thisis the approach taken in most global virtual time al-gorithms. We will �rst describe how GVT can be de-termined from a set of intervals, and then review howdi�erent algorithms create the intervals.Let [starti; stopi] denote an interval at process i.The set of intervals f[starti; stopi] j i 2LPg must sharea common real time, RT. Each process knows that RToccurs within the interval, but does not know exactlywhere it occurs within the interval. Figure 1 shows anexample.Each process i calculates a virtual time vti andforwards it to the initiator at stopi. Figure 2 showsexactly how vti is calculated. The initiator collects

? ? ?ssstop1start1Process 1 ssstop2start2Process 2 ssstop3start3Process 3RTFigure 1: Virtual time intervals overlapping in realtime.E1i := fe:ts j e was sent from i before starti ^e has not been acknowledged gE2i := fe:ts j e was sent from i between startiand stopi gvti := min(E1i [E2i [fLV Ti at stopig)Figure 2: Calculating vti at process i. (For an evente, e:ts refers to its timestamp.)the values of all vti, determines the minimum, and as-serts that the new GVT equals this minimum value.Note that if starti = stopi then the above algorithmis equivalent to the instantaneous global snapshot ver-sion.Using this approach, calculation of GVT involvesfour phases. The start and stop phases to generatestarti and stopi at each process, the collect phaseto collect the information needed to calculate GVT,and the notify phase to notify all processes of theupdated GVT. The stop and collect phases canoften be combined. Similarly, the notify phase from aprevious round can be combined with the start phaseof the next round. We note here that the latency ofthis approach is the time required to execute the stopand collect phases.Bellenot [Bel90] describes the algorithm used inthe JPL Mark III Hypercube implementation of TimeWarp (we refer to this algorithm as the broadcast algo-rithm). This algorithm uses broadcasts to create theoverlapping intervals. An initiator broadcasts a startmessage to all processors. After all processes respondwith a start ack message, the initiator broadcasts astopmessage and waits for stop ack messages. Eachprocessor de�nes de�nes starti to be the time at whichstart was received, and stopi to be the time at whichstop was received. Each process calculates vti imme-diately after receiving stop and forwards the result tothe initiator as part of the stop ack. The initiatorcollects vti from all processes and calculates GVT to

be the minimum of all vti.Bellenot [Bel90] improves on the Mark III algo-rithm by using a binary tree forwarding mechanism(we refer to this algorithm as the tree algorithm). In-stead of broadcasting start and stop, they are propa-gated throughout the system using binary trees. Twobinary trees are embedded in the process graph andtheir leaves are connected as shown in �gure 3. Theroot of the left tree sends start to both children, andthe children propagate the message. When the rightroot receives start from both children, it sends stopalong with vti to both children, who propagate themessage. The minimum vti can be calculated as stoppropagates to the left root. The left root determinesGVT when it receives stop from both children.Left roots ss ssss ss sRight root#####ccccc!!!!!aaaaa!!!!!aaaaaaaaaa!!!!!aaaaa!!!!!ccccc#####Figure 3: Message paths for the Bellenot's tree algo-rithm.Another variant is to impose a ring on the pro-cesses and pass a token around the ring[Bel90] (werefer to this as the token algorithm). The same tokenimplements the three phases for three di�erent rounds.When a process receives a token, it de�nes starti forround n, stopi for round n � 1, and propagates GVTfor round n� 2.There are algorithms that do not use the over-lapping intervals technique. Concepcion describes ahierarchical approach with tokens in [CK91]. He de-�nes an intersecting hierarchy of token rings. Onlyhalf the nodes in the system are used for simulation;the other half are used for GVT calculation and othersystem duties. The lowest level tokens interact withthe simulation processes. These tokens carry the mini-mum vti for all the nodes on it's ring. The upper leveltokens propagate vti up to the highest level, at whichpoint GVT is calculated.3 NotationIn this section we de�ne the components of an eventtimestamp and a process. We describe the algorithmfor one initiator and one active round only. The

reader's attention is directed to the new component:rollback counts. A process must maintain its rollbackcount and include it as part of the timestamp of everymessage it generates. The rollback count is de�nedlater in this section.LP = Set of Local ProcessesIP = Initiator Process, IP 2 LPGVT = Global Virtual TimeTVT = Target Virtual TimeTARGET = Target EventEach event e contains fe:sndr = process that sent evente:rcvr = process to receive evente:ts = timestampe:rb = rollback countgEach process must maintain a set of event queues.This overhead already exists in optimistic distributedsimulation systems such as Time Warp. Thus it is notan overhead of the algorithm; we just make use of theinformation.A relevant rollback at process i is de�ned to beone which resets LV Ti from a value greater or equalTVT to a value less than TVT. The rollback count,rbi, for process i is a non-negative integer value equalto the number of relevant rollbacks experienced by i.An event e is a relevant event if and only if GV T �e:ts < TV T . Note that an event is relevant if and onlyif it can cause a relevant rollback. Relevant events arethe events that we keep track of for a given round ofthe algorithm.As a �nal comment, we wish to stress that thisalgorithm detects when GVT � TVT as opposed tocalculating a value for GVT.4 AlgorithmThis algorithm assumes that messages are not ac-knowledged, channels are reliable, and message deliv-ery is not ordered (non-FIFO). For simplicity, we de-scribe the algorithm for the case where there is onlyone initiator. Upon initiating a round, the initiatormust wait until that round is completed before initi-ating another. It is easy to extend the algorithm tohandle multiple rounds concurrently (at most N con-current rounds would be needed, where N is the num-ber of processes in the simulation).When the initiator process, IP, begins to run lowon memory, it sets TVT equal to its LVT and initiatesa round by initializing its local data and sending a

TARGET event to each process. Choosing the targetvirtual time equal to LVT ensures that exact GVT �TVT. The timestamp of TARGET is set to TVT, thuseach process will execute TARGET when its local vir-tual time equals TVT. IP then waits for the processesto respond to the TARGET events.IP: To initiate a roundfor each i 2 LP do fNsenti := 0Nexeci := 0Rbi := �1RVi := 0send TARGET to i with timestamp TVTgNow let us consider what happens at a process p 2LP that receives a TARGET event. When the TAR-GET event is received, it is placed in the pendingQand executed in turn. However, a TARGET event isnot really executed, it just triggers the algorithm at p.When it comes time to execute the TARGET event, pgathers some local information and sends a REPORTmessage to IP. If multiple events have a timestampof TVT, the TARGET event should be the �rst oneexecuted (this is not necessary, but it decreases thelatency of the calculation).Note that if TARGET arrives at p when its lo-cal virtual time is greater than or equal to TVT,then p may roll back. However, TARGET willnot e�ect statei, thus a better idea is to \exe-cute" TARGET without rolling back (similar to lazyreevaluation[RFBJ90]).LP: To execute TARGET eventnexec := size off e 2 executedQ j (GVT � e.ts < TVT) gnsent := size of f e 2 outQ j (GVT � e.ts < TVT) gfor each i 2 LP dovclk[i] := max (f0g [fe.rb j e 2 executedQ ^e.sndr = i ^ (GVT � e.ts < TVT)g)REPORT := <nsent, nexec, rb, vclk>send REPORT to IPCutMark /* For proof: this de�nes part of VCUT */If p incurs a relevant rollback, then p's roll backcount is incremented. During a relevant rollback theTARGET event is not canceled; instead it is movedback to the pendingQ. As p executes forward afterthe rollback, the TARGET event will be replayed andanother REPORT message will be generated. Thenew REPORT message will contain the new rollbackcount. Outgoing events will also include the new roll-back count, which will be used at the receivers to con-struct the rollback vectors that are included in theirREPORT messages.

The REPORT message contains information thatIP uses to determine when GVT � TVT. It containsfour �elds. Nexec is the number of relevant events thatp has executed. Nsent is the number of relevant eventsp has generated. The REPORT message also containsp's rollback count and a rollback vector.The rollback vector is a vector clock [Mat89]built from the rollback counts included in each event'stimestamp. If, at process p, vclk[i] = n then p receiveda relevant event from i after i's nth relevant rollback.Note that the rollback vector is produced from theevent queues; the only tag appended to messages isthe integer valued rollback count rb.Now we consider IP to see how it handles incom-ing REPORT messages. IP collects reports from allprocesses and uses the information contained withinto determine when GVT � TVT.IP evaluates the expression TVT Validated,which is true if and only if GVT � TVT. Due torollback, a process may send more than one report,however, TVT Validated forces IP to wait for the cor-rect set of REPORT messages. Once TVT Validatedbecomes true, no more REPORT messages will be re-ceived.IP keeps track of incoming reports in local datastructures. When a report is received from p, therb, nsent, and nexec parameters from the report arecopied directly to Rbp, Nsentp, and Nexecp. The vclkvector parameter is used to update the rollback vectorRV . If process p's vclk[i] = n, then i sent to p anevent e such that GVT � e:ts < TVT, and i incurredn relevant rollbacks prior to generating e. This meansthat i must submit a report after it's nth relevant roll-back in order for TVT to be validated. RVi containsthe rollback count needed from i; in this case it wouldbe n (unless RVi was already greater than n from adi�erent report that was received out of order).IP: To receive REPORT=<nsent,nexec,rb,vclk> from pif (Rbp < rb) fRbp := rbNsentp := nsentNexecp := nexecfor each i 2 LPRVi := max(vclk[i],RVi)if (TVT Validated) thenAssert GVT = TVTg else/* report received our of order, ignore it */IP: To evaluate TVT ValidatedTVT Validated , (8i 2 LP : Rbi � RVi) ^�Pi2LPNsenti =Pi2LP Nexeci�

TVT Validated is true only when every processhas submitted an up to date report and the sum of allrelevant events generated equals the sum of all rele-vant events executed. We prove the correctness of thisalgorithm in the next section.5 ProofWe prove that TVT Validated is TRUE if and only ifexact GVT � TVT. First we develop the notion of avirtual cut, then de�ne a few notational conveniences,followed by some lemmas and �nally the proof.Let VCUT be a cut in virtual time (simi-lar to Mattern's consistent cuts [Mat89]) de�nedby the occurrence of CutMark in the procedureLP:To execute TARGET event. VCUT correspondsto the most recent time each process submitted a re-port. We say VCUT is complete if and only if eachprocess has submitted at least one REPORT message.Messages can cross VCUT in both the forwardand backward directions. A message m travels back-ward across VCUT if and only if its sender has not sub-mitted a REPORT message since sending m, and itsreceiver has submitted a REPORT message since re-ceiving m. A message m travels forward across VCUTif and only if its sender has submitted a REPORTmessage since sending m, and its receiver has not sub-mitted a REPORT message since receiving m. Notethat we are only concerned with relevant messages thatcross VCUT.For notational convenience we de�ne the follow-ing: NS 4= Pi2LP NsentiNX 4= Pi2LP NexeciS 4= fevent e j 9j : e 2 outQj ^GVT � e:ts < TV T gX 4= fevent e j 9j : e 2 executedQj ^GVT � e:ts < TV T gNS is the sum of the nsent parameters of theREPORT messages, which is equal to the total num-ber of relevant messages generated before VCUT. NXis the sum of the nexec parameters of the REPORTmessages, which is equal to the total number of rel-evant messages executed before VCUT. S is the setof relevant events generated; X is the set of relevantevents executed. Note that NS and NX correspond toVCUT, while S and X correspond to a real time. If, asin the unattainable instantaneous snapshot algorithm,CutMarki occurred at real time RT for all i, then NSand NX would equal the cardinality of S and X. Infact, part of the proof establishes that this is true ifTVT Validated is true.

To avoid confusion, we point out that Rbi is avariable in IP, while rbi is a variable at process i 2 LP .Our goal is to show that we detect GVT � TVT if andonly if it occurs:detect : (8i 2 LP : Rbi � RVi) ^ (NS = NX),occur : (8i : LV Ti � TV T) ^ (S = X)Lemma 1 If VCUT is incomplete then detect is false.Proof: If VCUT is incomplete, then there exists aprocess i that has not submitted a REPORT message.Thus Rbi = �1 (its initial value), which implies thatRbi < RVi. Therefore, detect is false.Lemma 2 If a relevant message m crosses a completeVCUT, then detect is false.Proof: If m travels backward across VCUT, thenm:sndr's rollback count shows up in m:rcvr's RE-PORT message as vclkm:sndr, which in turn shows upas RVm:sndr. This value is greater than Rbm:sndr sincem travels backwards. Thus Rbm:sndr < RVm:sndr.Therefore detect is false for this case.On the other hand, if m travels forward across VCUT,then consider two cases.Case One: No relevant message travels backwardacross VCUT. Then m creates a surplus of relevantmessages sent forward across VCUT. Thus NS 6= NX,and detect is false for case 1.Case Two: There is a relevant message m0 that travelsbackward across VCUT. Then m0 causes detect to befalse, as shown above.Theorem 1 detect) occurProof: We will prove the contrapositive::occur) :detect. There are two cases to consider.Case 1: 9i : LV Ti < TV T .If i is in its 0th incarnation (rbi = 0), then VCUTis not complete, thus by lemma 1 detect is false. Ifrbi = n, for n > 0, then there must exist a messagethat crosses VCUT. Thus by lemma 2, detect is false.Case 2: S 6= X.Then X � S (since by de�nition, X � S, i.e. eventsmust be created before they can be executed). IfVCUT is not complete then detect is false. If VCUT iscomplete, then, since X � S, there must exist a mes-sage that crosses VCUT. Thus by lemma 2, detect isfalse.Theorem 2 occur) detect

Proof: We assume occur and show detect. If occurholds, then no process will rollback over TVT. Thusno process will incur any more relevant rollbacks, andeach processes has submitted its last REPORT mes-sage. This implies that, for all i, Rbi is greater thanor equal to every rollback count value i included inthe timestamps of its outgoing events. Thus, for all i,Rbi � RVi.During the interval that begins when exact GVT ex-ceeds TVT and ends when i sends its last REPORTmessage, nsent and nexec at i will not have changed.Thus NS = j S j, and NX = j X j. Since S = X, thenNS = NX.Thus for all i, Rbi � RVi and NS = NX. Thereforedetect is true. 6 Discussion6.1 LatencyWe compare the latency of our algorithm with the la-tencies of the broadcast, tree, and token algorithmsdescribed in section 2. We use the de�nition of la-tency presented in section 1 and assume that there areN processes in the system.Recall that the broadcast, tree and token algo-rithms all use the same strategy of creating overlap-ping intervals (�gure 1). The latency of an algorithmusing this strategy is the time required to terminatethese intervals and gather information. As mentionedin section 2, this is the time required to execute thestop and the collect phases.The broadcast algorithm terminates the intervalswith a 1 to N broadcast followed by an N to 1 col-lection. The initiator must send and receive 2(N � 1)messages, which contributes O(tpN) to the latency.The message path has length two, which contributesO(tm + tp). Thus the latency is O(tm + tpN). Similarcalculations result in a latency of O((tp + tm) log N)for the tree algorithm and a latency of O((tp + tm)N)for the token algorithm.Our algorithm has latency tm +2tp = O(tm + tp)since the message path has length one. As soon asa process determines that it is possible that GVT isgreater than TVT, it sends a message directly to theinitiator. It is clear that tm + 2tp is the minimumlatency of any GVT algorithm on a distributed sys-tem since this is the time needed to send one mes-sage between two processes (send + transit + receive= tp + tm + tp). Figure 4 summarizes the latencies ofthese algorithms.

Algorithm GVT LatencyOurs tm + tpBroadcast tm + tpNTree (tm + tp) logNToken (tm + tp)NFigure 4: Comparison of asymptotic latency.6.2 Message OverheadThe broadcast, tree, and token algorithms each requirethat messages are acknowledged; our algorithm doesnot require messages to be acknowledged. The mes-sage overhead of these algorithms is shown in �gure 5in terms of M ,N , and R. M is the total number ofmessage acknowledgments; N is the number of pro-cesses, and R is the total number of relevant rollbacks.Figure 5 shows two components of the overhead:�xed (per round), and variable (per simulation).Fixed VariableAlgorithm (per round) (per simulation)Ours N RBroadcast 4(N � 1) MTree 3N � MToken 2N MFigure 5: Comparison of message overhead.(* indicates an approximation)The �xed overhead is incurred for each round ofthe algorithm. For our algorithm this overhead is Nsince each process sends at least one report to the ini-tiator. The �xed overhead for the other algorithmsdepends on how they create the overlapping intervals.For example, the broadcast approach requires N � 1messages for each of the four phases.The variable overhead is incurred once during theentire simulation. We characterize this overhead on aper simulation basis because there is no way to deter-mine how much of this overhead will occur for a givenround. Each of the other algorithms require messageacknowledgments, thus the variable overhead per sim-ulation is M .Our algorithm does not require message acknowl-edgments, but does require one message for each rel-evant event. Since a rollback can only occur after amessage is received, we know that R � M . In theanalysis of a large simulation, [WH+89] �nd that thenumber or rollbacks is about one fourth of the num-ber of messages. Since not every rollback will be arelevant rollback, R would be less than M=4 (in thatexample). Thus the overhead of our algorithm is sig-ni�cantly less than the any of the broadcast, tree, or

token algorithms.7 ConclusionWe have presented and proved the correctness of analgorithm for determining global virtual time whichis based on a novel idea. The algorithm enables aninitiator process to decide upon a virtual time, TVT,that will be the next computed value of GVT. Thecondition \GVT � TVT" is then detected with mini-mal latency (the delay between the actual occurrenceof the condition and its detection). This algorithm hastwo important and unique characteristics: 1) minimallatency, and 2) speci�cation of TVT which will be thenext computed value of GVT.Contrary to previous algorithms, this algorithmdoes not require messages to be acknowledged. Thisresults in a large savings on the number of messagesrequired in the overall simulation. In addition, the�xed overhead per GVT calculation is less than otherwell known algorithms.This algorithm eliminates a problem with manyprevious global virtual time algorithms: the avalancheof messages during the collection phase. In our algo-rithm, the collection phase is spread out over time,thereby eliminating the avalanche problem.One possible application is with interactive sim-ulators where it is desirable to get global virtual timeupdates at regular virtual time intervals with minimallatency. These characteristics allow output to appearcontinuous and up to date.8 AcknowledgmentsWe would like to thank the referees of this paper forproviding insightful comments. We would also like tothank Steven Glicker and David Brant who reviewedearlier versions of this paper.References[Bel90] Steven Bellenot. Global virtual time al-gorithms. In Proc. of the SCS MultiCon-ference on Distributed Simulation, volume22(1), pages 122{127. Society for ComputerSimulation, January 1990.[BL89] S. Bellenot and M. Di Loreto. Tools formeasuring the performance and diagnosingthe behavior of distributed simulations us-ing time warp. In Proc. of the SCS Multi-Conference on Distributed Simulation, vol-ume 21(2), pages 145{150. Society for Com-puter Simulation, March 1989.

[CK91] Arturo I. Concepcion and Scott G. Kelly.Computing global virtual time using themulti-level token passing algorithm. InProc. of the SCS MultiConference on Dis-tributed Simulation, volume 23(1), pages63{68. Society for Computer Simulation,January 1991.[CM81] K. M. Chandy and J. Misra. Asynchronousdistributed simulation via a sequence ofparallel computations. Communications ofthe ACM, 24(11), April 1981.[Fuj90] R. M. Fujimoto. Parallel discrete eventsimulation. Communications of the ACM,33(10), October 1990.[GW92] V.K. Garg and B. Waldecker. Detectionof unstable predicates in distributed pro-grams. In Proc. of 12th Conference on theFoundations of Software Technology & The-oretical Computer Science, pages 253{264.Springer Verlag, December 1992. LectureNotes in Computer Science 652.[Jef85] David R. Je�erson. Virtual time. ACMTransactions on Programming Languagesand Systems, 7(3), July 1985.[Jef87] David Je�erson. The time warp operatingsystem. In Eleventh Symposium on Operat-ing System Principles, pages 77{93, Novem-ber 1987. vol 21, no 5.[Mat89] F. Mattern. Virtual time and globalstates of distributed systems. In Par-allel and Distributed Algorithms: Proc.of the International Workshop on Paralleland Distributed Algorithms, pages 215{226.Elsevier Science Publishers B.V. (North-Holland), 1989.[Rey88] Paul Reynolds. A spectrum of options forparallel simulation protocols. In WinterSimulation Conference Proceedings, pages325{332, December 1988.[RFBJ90] P Reiher, R. Fujimoto, S. Bellenot, andD. Je�erson. Cancellation strategies in op-timistic execution systems. In Proc. of theSCS MultiConference on Distributed Sim-ulation, volume 22(1), pages 112{121. So-ciety for Computer Simulation, January1990.[Tel91] Gerard Tel. Topics in Distributed Algo-rithms. Cambridge University Press, Cam-bridge, England, 1991.[WH+89] Frederick Wieland, Lawrence Hawley, et al.Distributed combat simulation and timewarp: The model and its performance. InProc. of the SCS MultiConference on Dis-tributed Simulation, volume 21(2), pages14{20. Society for Computer Simulation,March 1989.

Alexander I. Tomlinson is currently enrolled in thePhD program in the Department of Electrical andComputer Engineering at The University of Texas atAustin. His research focus is distributed systems. Inthe past Alex has worked at Sandia National Labo-ratories, Hewlett-Packard Company, and Digital Tele-phone Systems (a subsidiary of Harris Corporation).Alex received his BS in Computer Engineering fromCarnegie Mellon University in 1986 where he was aUniversity Scholar and earned an NCAA Academic AllAmerican award for his role on the varsity soccer team.He received his MS from UT Austin in 1992 with thesupport of a University Fellowship.Vijay K. Garg received his Bachelor of Technology de-gree in computer engineering from the Indian Insti-tute of Technology, Kanpur, in 1984. He continuedhis education at the University of California, Berkeleywhere he received his MS in 1985 and Ph.D. in 1988in Electrical Engineering and Computer Science. Heis currently an assistant professor in the Departmentof Electrical and Computer Engineering at the Univer-sity of Texas, Austin. His research interests are in theareas of distributed systems and supervisory control ofdiscrete event systems.

