
International Conference onComputer System and Education, IISc, 1994Maintaining Global Assertions on DistributedSystems �Alexander I. Tomlinson Vijay K. GargDepartment of Electrical and Computer EngineeringThe University of Texas at AustinAustin, Texas 78712AbstractThis paper develops a method for main-taining global assertions on a network ofdistributed processes. The global asser-tion has the form (X11X12 � � �X1N1) + : : : +(XM1 XM2 � � �XMNM) � K, where Xji is a vari-able which is local to one process in a dis-tributed system and K is a constant. It isassumed that the initial values of all localvariables are known and that the global as-sertion initially holds. This form is more gen-eral than the summation form considered inearlier work.This research has applications in dis-tributed software development, and as ageneral synchronization mechanism. Manyclassical synchronization problems (mu-tual exclusion, dining philosophers, read-ers/writers) can be solved with the resultsof this work.�Research supported in part by NSF Grant CCR9110605, Navy Grant N00039-88-C-0082, TRW fac-ulty assistantship award, IBM Agreement 153, and aMicroelectronics Computer Development Fellowship.

1 IntroductionA global assertion is an expression whosevalue depends on the state of multiple pro-cesses in a distributed system.1 Given an ini-tially true global assertion,NXj=1(Xj1Xj2 � � �XjNj) � Kwhere Xji is a variable which is local to oneprocess in a distributed system and K is aconstant, the goal is to approve changes tothe values of Xji such that the truth of theglobal assertion is invariant.Note that although Xji is a variable, it canrepresent any function local to a process. Forexample, it might represent a function suchas y3, or log(y); the assertion is concernedwith the value of the function.Without the ability to continuously mon-itor the global state, maintaining global as-sertions becomes a di�cult problem. Giventhe global state, the assertion could be eas-ily evaluated. However, it is impossible to1Message exchange is assumed to be ordered andreliable.

know the exact global state without haltingthe execution of all processes[3]. An alter-native is to use consistent global states us-ing a global snapshot algorithm[3]. Howeverconsistent global states are not su�cient formaintaining global assertions; the the asser-tion may be temporarily invalidated betweensnapshots.Maintaining global assertions has applica-tions in distributed software engineering asa general synchronization mechanism and asa debugging tool. The synchronization con-straints for many classic problems such asproducer/consumer, readers/writers, mutualexclusion, and dining philosophers can becharacterized by a global assertion. The abil-ity to maintain global assertions can simplifythe development of distributed programs; asdemonstrated in the following example.Example 1 Suppose the US governmenthas the power to set monetary exchange ratesbetween the dollar and foreign currencies.Let Cm, Cf , Cy denote cost (in dollars) of themark, franc and yen. Thusmmarks is equiv-alent to mCm dollars. The government is re-quired to maintain a minimum investment ofD dollars in foreign currency. The exchangerates are determined by di�erent computers,and the total investment in any one foreigncurrency is distributed among several banks.For example one bank has m1 marks, andanother bank has m2 marks. The followingglobal assertion models this scenario.m1Cm+f1Cf+y1Cy+m2Cm+f2Cf+y2Cy � DEach quantity is a non-constant local vari-able: mi, fi, and yi are maintained by thevarious banks, and Cm, Cf , and Cy are main-tained by the federal government. The aboveassertion holds if and only if the total invest-ment in foreign currency is at least D dol-lars. The ability to maintain the global as-sertion greatly simpli�es the task of solvingthis problem.

The problem of maintaining global as-sertions is similar to managing globalresources[1]. Consider the assertion X1 +X2 + X3 � 0, where each Xi has arbitrarybehavior, and initiallyX1+X2+X3 = 75. Inthis example the total slack is 75. If the slackis treated as a resource and managed so thatslack � 0, then the assertion holds. Increas-ing (decreasing)Xi corresponds to producing(consuming) resources.However, there are signi�cant di�er-ences between maintaining global assertions(MGA) and global resource management(GRM):� The total amount of resources in GRMis bounded; this is not necessarily truein MGA.� GRM assumes a user eventually pro-duces as much as it consumes (user'sborrow resources); MGA makes no suchassumption (users arbitrarily produceand consume resources).� GRM manages one type of resource;MGA manages two types (product slackand sum slack, which are convertiblewith each other).� The goal of GRM is to resolve dead-lock (through avoidance or recovery);the goal of MGA is to ensure that theassertion holds and to not introduce anypossibility of deadlock that did not pre-viously exist.[5]One of the implications of these di�erencesis the method of dealing with deadlock andfairness.Since the variables have arbitrary behav-ior, there is no way to avoid deadlock. Forexample, if the total slack at a given instantis 10, and every process requests 20 units, astate of deadlock results. This scenario can-not be avoided due to the arbitrary behaviorof the variables. Thus the policy with respect

to deadlock is to not introduce any possibil-ity of deadlock that did not previously exist.Starvation cannot be avoided. Considerthe assertion X1+X2+X3 � 0, and supposethe system slack is currently 10. Suppose X1and X2 make repeated requests to decreasetheir value by 20 and 10 respectively. LetX3 be an adversary that increases its valueby 10 if and only if X2's request is satis�ed.In this scenario X1 will always starve regard-less of the allocation policy. If the algorithmwaits for enough slack to satisfy X1, it willwait forever. If it satisfy X2's request, thenX2 will request 10 more units and X3 willproduce 10 units, which results in the sameinitial scenario outlined above.The term \SOP" is used to refer to theclass of global assertions that can be ex-pressed as a sum of products. This paperuses the SOP class of global assertions forseveral reasons.First, it is more general than previous work[5, 6, 7] which only addresses global asser-tions of the form PNi=1Xi � K, (denoted by\SUM"). Second, there is a one to one cor-respondence between the set of polynomialsand the assertions in the SOP class. Poly-nomial functions are widely used for analysisand modeling in scienti�c disciplines, hencethe ability to represent them with a globalassertion is valuable. Third, the SOP classis a superset of the product of sum (POS)class. And �nally, boolean expressions canbe transformed into global assertions whosevariables take on values from the set f0; 1g.This can be done by a simple substitution ofvariables and operators.Section 2 reviews related work such as dis-tributed synchronization and global asser-tions. Section 3 presents most of the theoret-ical work of the paper. The concept of criti-cal values and critical points are de�ned andsubsequently used to decompose the globalassertion into local assertions. It is proventhat the conjunction of all the local asser-tions implies the global assertion. Methods

for adjusting the local assertions are also pre-sented in Section 3. Section 4 presents thealgorithm and provides proof that it doesmaintain the global assertion. Section 5 dis-cusses algorithm performance and alterna-tive algorithms. Section 6 presents exampleapplications and section 7 concludes the pa-per.2 Related WorkGlobal assertions can be characterized bytheir expressive power. The most generalform de�nes the global assertion's domain tobe the set of global states. This allows anyset of global states to be expressed as an as-sertion. These forms have been studied al-though no algorithms have been developeddue to the complexity of the problem. Lessgeneral forms typically use process variablesto de�ne the assertion. The work of this pa-per falls into this category.Carvalho and Roucairol [2] de�ne a globalassertion as a mapping from the set of globalstates to f true, falseg. This allows anycombination of global states to be character-ized with a single global assertion. They de-compose the global assertion into local andcommunication assertions using lattice the-ory and Galois connections. The authors ac-knowledge that �nding the protocols neces-sary to maintain the communication asser-tions a much more di�cult task, and onlyindicate some principles that can be usedin their design. Although this paper use aless general global assertion, it allows the de-velopment of simple closed form expressionsfor assertion decomposition and the develop-ment of an algorithm.Raynal [5, 6, 7] describe algorithms forimplementing global assertions of the formPNi=1 �ixi � k where �i = �1, k is an in-teger constant, and each xi is a local vari-able. Several variations of the algorithmare presented depending on the type of vari-ables and the assumptions regarding commu-

nication (ie, reliability, ordering). The algo-rithms use upper and lower bounds on the lo-cal variables to maintain the assertion. Thispaper uses a more general form than theirsand avoids the problem of maintaining mul-tiple copies of each upper and lower bound.The function of the bounds is replaced bycritical values, which represent the aggregatee�ect of all the bounds.Herman [4] presents a high level languageabstraction for implementing global synchro-nization. The language consists of buildingexpressions out of counter variables. Theabstraction is equivalent in generality tomaintaining assertions in a summation formwhere all variables are either monotonicallyincreasing or decreasing.In summary, previous work in global as-sertions has focused on algorithms for main-taining assertions of the formP�iXi � 0, oron the decomposition of an assertion into lo-cal and communication assertions. The maincontributions of this paper are:1. To consider a global assertion more gen-eral than the summation form.2. To develop and prove a decompositioninto local assertions.3. To develop and prove an algorithm formaintaining the global assertion.3 Decomposing the As-sertionThis section presents the decomposition ofthe global assertion into local assertions, pro-vides closed form expressions for determiningthe local assertions, proves that the conjunc-tion of all local assertions imply the globalassertion, and presents methods for adjust-ing the local assertions to allow the systemto evolve (ie, to reach states where the globalassertion holds, but would not be reachablewithout adjusting the local assertions).

For no-tational convenience, de�ne P j 4= QNi=1Xjiand S 4= PMj=1 P j . The initial values of alllocal and derived variables are assumed to beknown, and are denoted by X0ji , P0j , andS0. It is assumed that the global assertion isinitially true, i.e., S0 � K.The global assertion is maintained by set-ting constraints on the values of Xji , denotedby constraint(Xji). If the constraints onall variables are respected, then the globalassertion will be maintained.The constraints on Xji are determined intwo steps. The �rst step de�nes product termconstraints for each P j such that their con-junction implies S � K. The second step de-�nes local variable constraints for each prod-uct term constraint such that the conjunctionlocal variable constraints imply the productterm constraint. The end result is that if alllocal variable constraints are maintained, theglobal assertion is satis�ed.3.1 Product Term ConstraintsConsider the global assertion: PMj=1 P j �K. The global state space is an M dimen-sional space with coordinates P 1; : : : ; PM .Figure 1 shows the state space for P 1 +P 2 � 5. Initially the global assertionholds, thus P01 + P02 � 5. Given the ini-tial coordinates (P01,P02), the critical point,(PC1; PC2), is de�ned to be any point suchthat PMj=1 PCj = K and 8j : PCj � P0j.Figure 1 shows the initial point and a validcritical point.The critical point is used to de�ne con-straints on the values of P j. The constraintis de�ned to be: P j � PCj. The shadedarea in �gure 1 shows the states reachable un-der these constraints. If P 1 requested a newvalue less than PC1, then it would have toagree with P 2 to exchange \resources". Thiscorresponds to sliding the critical point alongthe line P 1 + P 2 = K as shown in �gure 1.Formally, the constraint is de�ned in equa-

tion 2 and the critical point is de�ned asany point such that equation 1 holds andconstraint(P0j) holds for all j.MXj=1PCj = K (1)constraint(P j) 4= P j � PCj (2)An example of a closed form solution forvalid critical values is: PCj 4= P0j � (S0�K)=M . Lemma 1 proves that if these con-straints are maintained, then the global as-sertion is maintained. It is obvious from thede�nition of PCj, that the constraints ini-tially hold.Lemma 1 �8j : constraint(P j)�) S � KProof: By equation 2, 8j :constraint(P j) is equivalent to 8j : P j �PCj. This implies that PMj=1 P j �PMj=1 PCj. By de�nition of S, the left handside equals S, and by equation 1, the righthand side equals K. Thus S � K.3.2 Local Variable ConstraintsThe product term constraints specify thatP j � PCj. In terms of local vari-ables, the constraints are: QNi=1Xji � PCj.For each j, the constraints on the lo-cal variables, constraint(Xji), must implyconstraint(P j). Let the superscript j beunderstood for the remainder of this section.The goal is to develop constraints on Xjisuch thath8i : constraint(Xji)i) NYi=1Xi � PCj (3)The problem is broken into three cases ac-cording to the value of PC. Figure 2 showsthe three cases (PC < 0, PC = 0, PC > 0)for N = 2. The shaded areas represent thevalid state space (those which satisfy equa-tion 3).

3.2.1 Case 1: PC = 0The constraint is de�ned in equation 5 andthe critical point is de�ned as any point suchthat equation 4 holds and constraint(X0i)holds for all i.NYi=1XCi > 0 (4)constraint(Xi) 4= Xi=XCi � 0 (5)Lemma 2 proves that these constraints en-sure the product term constraint (equation 3)holds. Initially the constraints are satis�ed;this is apparent from the de�nition of XCi.Lemma 2[8i : constraint(Xi)]) QNi=1Xi � PCProof: If any Xi = 0, then QNi=1Xi =0, and the lemma holds. Otherwise, theconstraints (equation 5) imply that QNi=1Xihas the same polarity as QNi=1XCi. Andsince QNi=1XCji > 0 (by equation 4), thenQNi=1Xi � PC = 0.3.2.2 Case 2: PC > 0The constraint is de�ned in equation 7 andthe critical point is de�ned as any point suchthat equation 6 holds and constraint(X0i)holds for all i.NYi=1XCi = PC (6)constraint(Xi) 4= Xi=XCi � 1 (7)This de�nition is valid since XCi 6= 0.This is due to the fact that, in this case,QNi=1XCi = PC 6= 0. This de�nes the crit-ical point to be a point on the border be-tween the valid and invalid state spaces2 such2The border is a curve for N = 2, a surface forN = 3, etc.

that each coordinate XCi is closer to the ori-gin than the corresponding initial coordinateX0i. One closed form solution for valid crit-ical values is: XCi 4= X0i(PC=P0)1=N .Lemma 3 proves that these constraints en-sure the product term constraint (equation 3)holds. From the de�nition of XCi, it is obvi-ous that initially the constraints hold.Lemma 3[8i : constraint(Xi)]) QNi=1Xi � PCProof:By equation 7, 8i constraint(Xi) isequivalent to 8i : Xi=XCi � 1. This im-plies 8i : jXij � jXCij. Thus ���QNi=1Xi��� ����QNi=1XCi���. By equation 6, and since PC �0, ���QNi=1XCi��� = PC. Thus ���QNi=1Xi��� �PC. Since 8i : Xi=XCi � 1, the polar-ity of QNi=1Xi and QNi=1XCi must be thesame. And since QNi=1XCi = PC > 0, thenQNi=1Xi � 0, which implies that ���QNi=1Xi��� =QNi=1Xi. Thus, QNi=1Xi � PC.3.2.3 Case 3: PC < 0This case is subdivided into two overlappingcases depending on the initial value P0 =QNi=1X0i. The two cases are shown in �g-ure 3.Case 3A: PC < 0 and P0 � 0: Theconstraint is de�ned in equation 9 and thecritical point is de�ned as any point such thatequation 8 holds and the constraint(X0i)holds for all i.NYi=1XCi > 0 (8)constraint(Xi) 4= Xi=XCi � 0 (9)These de�nitions are identical to that ofcase 1 (PC = 0). In this case, P0 � 0, thuslemma 2 proves that the constraints satisfythe product term constraint for this case too.

Case 3B: PC < 0 and jP0j � jPCj :The constraint is de�ned in equation 11 andthe critical point is de�ned as any point suchthat equation 10 holds and constraint(X0i)holds for all i.����� NYi=1XCi����� = jPCj (10)constraint(Xi) 4= jXi=XCij � 1(11)The critical point is a point on theborder (or an image of the border) suchthat each X0i is closer to the origin thanXCi. A valid closed form solution is:XCi 4= jX0ij jPC=P0j1=N .Lemma 4 proves that the constraints implythe product term constraints. The proof isvery straight forward and is left to the reader.Lemma 4[8i : constraint(Xi)]) QNi=1Xi � PCTable 1 summarizes the case analysis. Re-call that case 3A is treated identically to case1, therefore it appears in the table with case1. The algorithm is based on this table andthe \Mode" entry shows the term used to re-fer to the case in the algorithm. Note thatin all three modes, the constraint is deter-mined by the ratio X=XC, which is de�nedas the slack of variable X. The slack of Xrepresents the amount of leeway X has be-fore invalidating the constraint. The conceptof slack is used in the algorithm.The constraints were de�ned to take a vari-able X and return a value true or falsedepending on the current mode and value ofXC. From table 1 it is apparent that theconstraint depends on the slack of X. Thus,at this point the constraint function is rede-�ned to take the mode and slack as an argu-ment and return true or false. The newde�nition is shown below:

P1

P2

Adjusting Product Critical Point
Product Critical Point and the
resulting restricted state space.

P1

P2

(P01, P02)

(PC1, PC2)

Figure 1: Product Term Critical Values
PC = 0 PC > 0 PC < 0Figure 2: Three cases for local variable constraints.

Case 3A Case 3BFigure 3: Two cases for PC < 0, based on initial value P0Case Value of PC Mode Constraint2 PC > 0 GTZ X=XC � 13B PC < 0 LTZ jX=XCj � 11,3A PC = 0 EQZ X=XC � 0Table 1: Summary of case analysis.

Boolean constraint(mode,�)switch (mode) {case GTZ : return (� � 1);case LTZ : return (j�j� 1);case EQZ : return (� � 0);}3.3 Adjusting the ConstraintsThe constraints are built around critical val-ues, which must be adjusted in order to allowthe system to reach all valid states. Figure 1shows a critical point being adjusted. It isapparent that if critical points could not beadjusted then much of the valid state spacewould be unreachable. In this section theprocedure for adjusting the critical values isdescribed.Suppose Xji wants to change its value toXj0i . It isknown that constraint(Modej;Xji =XCji)holds since it holds initially and is in-variant. If constraint(Modej ;Xj0i =XCji)holds then the change can be madewith no change to XCji . If the con-straint does not hold then XCji must bechanged to some value �jiXCji such thatconstraint(Modej ;Xj0i =(�jiXCji)) holdsbefore the change can take place. In thissituation the process in which Xji resides isblocked until an adjustment to the criticalpoint (XCj1 ;XCj2; : : : ;XCjN) can be made inwhich the new value of XCji is �jiXCji . Let�ji be de�ned as �ji 4= Xj0i =XCji .Lemma 5 If �ji = Xj0i =XCji , thenconstraint(Modej;Xj0i =(�jiXCji)) holdsregardless of Modej .Proof: By de�nition of �ji ,Xj0i =(�jiXCji) = 1. And also by de�nition,constraint(Modej; 1) is true regardless ofModej. Hence the lemma is proven.Since the local variables are being changedconcurrently, there may exist several blocked

processes waiting for an adjustment to thecritical point (XCj1;XCj2; : : : ;XCjN), whichis initially assumed to both valid and re-spected. The value of the needed change toXCji is indicated by �ji . If, after the adjust-ment, all critical points are still valid andrespected, the the global assertion will con-tinue to hold.The procedures for adjusting the criticalpoints such that they remain valid and re-spected are presented in the next two sec-tions.One way to adjust (XCj1;XCj2; : : : ;XCjN)is to redistribute the slack among each localvariable. Another way is to obtain slack froma di�erent product term P k, k 6= j. This isaccomplished by an adjustment to the criti-cal point (PC1; PC2; : : : PCM).3.3.1 Adjusting Critical Point:(XCj1;XCj2; : : : ;XCjN)Adjusting this critical point corresponds tomoving the critical point along the border3de�ned by QNi=1XCji = PCj with no changeto the value of PCj. This redistributes theslack among the local variables in productterm P j . No other product terms are af-fected. If the critical point can be adjustedso that the product of the critical values re-mains constant, then the critical point re-mains valid. The following lemma provesthis.Lemma 6 Given a valid critical point(XCj1;XCj2; : : : ;XCjN) and �ji , 1 � i � N ,such that QNi=1 �ji = 1,then (�j1XCj1; �j2XCj2; : : : ; �jNXCjN) is avalid critical point.Proof: By de�nition, the validity of a sumcritical point depends only upon the productof its coordinates. Since QNi=1 �ji = 1, thenNYi=1XCji = NYi=1�ji NYi=1XCji = NYi=1(�jiXCji)3This visualization is not accurate for EQZ mode.

Therefore, (�j1XCj1; �j2XCj2; : : : ; �jNXCjN) isa valid critical point.3.3.2 Adjusting Critical Point:(PC1; PC2; : : : PCM)Adjusting this critical point transfers slackfrom one product term to another. If adjust-ing (XCj1;XCj2; : : :XCjN) failed to satisfy allrequests in P j , then slack can be transferredfrom another product term in an attempt tosatisfy those requests. Only binary trans-fers are considered between product termsP 0 and P j since the algorithm uses only thattechnique.Let Xj0 4= 1 for all j, and P 0 4= 0. Thenthe global assertion may be rewritten asP 0 + MXj=1 NYi=0Xji � KThe variables Xj0 ; P 0 have critical valuesXCj0; PC0. They are used as intermediarieswhen transferring slack from one variable toanother.The algorithm assumes that Modej isconstant,4 thus changes of mode will not beconsidered.The following lemma demonstrates how toadjust the product critical point.Lemma 7 Assuming all sum and productcritical points are initially valid and re-spected, then after executing the following se-quence of commands, they will all remainvalid and respected | assuming that Modejremains constant.� = P 0 � PC0�j0 = (PCj ��)=PCjPC0 = PC0 +�PCj = PCj ��XCj0 = �j0XCj04This assumption keeps the algorithm simple ande�cient.

Proof: We need only to considerthe critical points (PC0; PC1; : : : PCM) and(XCj0;XCj1; : : :XCjN) since no others are af-fected. LetXCji ; P j refer to the initial valuesand XCj0i ; P j0 refer values after execution ofthe commands. It is assumed that Modejis constant, thus this sequence of commandscannot be executed ifModej orMode0 is EQZsince it would cause the mode to change.Thus only modes GTZ and LTZ are consid-ered. The proof is in four parts.1) Product critical point remains valid ifPMj=0 PCj0 = K.It is evident from the proposed sequenceof commands that the sum of the co-ordinates of the product critical pointremain unchanged. Thus PMj=0 PCj0 =PMj=0 PCj = K.2) Product critical point remains re-spected if P 00 � PC00 and P j0 � PCj0.It is obvious that PC00 = P 0, and sinceP 00 = P 0, then P 00 � PC00. Since P 0 �PC0 (initially respected), then � � 0.Thus PCj0 = PCj � � � PCj. Andsince PCj � P j (initially respected),then PCj0 � P j. And since P j0 = P j,then PCj0 � P j0.3) Sum critical point remains valid ifQNi=0XCj0i = PCj0.The critical point is initially valid, thusQNi=0XCji = PCj. By algebraic ma-nipulation, QNi=0XCj0i = �j0QNi=0XCji= �j0PCj = ((PCj � �)=PCj)PCj =PCj �� = PCj04) Sum critical point remains respectedif constraint(Modej;Xj00 =XCj00) istrue.Recall that � � 0 (from part 2).Consider Modej = GTZ, Since Modejis constant, � � PCj. This fact, inconjunction with � � 0 and PCj �

0, implies that 0 < �j0 � 1. Sinceconstraint(GTZ,Xj0=XCj0) holds (ini-tially respected), then Xj0=XCj0 �1. And since 0 < �j0 � 1, thenXj00 =XCj00 = Xj0=(�j0XC0) � 1. Henceconstraint(GTZ, Xj00 =XCj00) holds.Consider Modej = LTZ, then PCj � 0and � � 0. This implies �j0 � 1. Sinceconstraint(LTZ,Xj0=XCj0) holds, then���Xj0=XCj0 ��� � 1. Thus 1 � ���Xj0=XCj0��� ����Xj0=(�j0XCj0)��� = ���Xj00 =XCj00 ��� � 1.Thus constraint(LTZ, Xj00 =XCj00)holds.4 AlgorithmIn this section we present an algorithm forthe case when Modej is constant for all j,1 � j � M . Recall that the slack of Xjiis Xji =XCji . De�ne the slack of P j to beP j � PCj. The slack indicates how muchleeway a variable has before invalidating itsconstraint.There are two types of processes: ProductTerm Managers (PTM) and Local VariableManagers (LVM). Each LVM manages onelocal variable Xji , and each PTM managesone product term P j . The communicationstructure is shown in �gure 4. Each LVM hasone parent (a PTM) and each PTM has mul-tiple children (LVMs) who make up its prod-uct term. These terms are used in presentingthe algorithm. When PTM is referred to inthe context of a speci�c LVM, then the PTMreferred to is the parent PTM. The subscriptsand superscripts will be omitted for most ofthis section except to avoid ambiguity.LVMs communicate with their parentPTM through direct message exchange.PTMs communicate with other PTMs via atoken. The function of an LVM is to ap-prove requests for changing the value of its

local variable. An application process re-quests to change X to X 0 with the functioncall change(X;X 0). The local assertion is in-variant outside of this function. This ensuresthat the applications view of X is one whichsatis�es the local assertion. The local asser-tion is assumed to hold upon entry to changeand guaranteed to hold upon return.When change(X;X 0) is invoked, LVMevaluates the local assertion with the newvalue. If it holds then the change is madeand control is returned to the application. Ifit does not hold then a message is sent toPTM requesting an adjustment to XC, andthe process is blocked until PTM acknowl-edges the request. The acknowledgment indi-cates that the adjustment has been approved.There is one omission in the above descrip-tion: before LVM returns control to the ap-plication, excess slack is donated to PTM.This simpli�es the algorithm by avoiding theneed for the PTM to explicitly collect excessslack when servicing requests. In fact dona-tions and requests are lumped into one mes-sage: < \SLACK", id, � >, where id identi�esthe sender and � = X 0=XC. The meaningdepends on the value of �. If � satis�es thelocal assertion then it is a donation, other-wise it is a request. The code for LVM isshown below.LVM: Change(X;X 0)XC : critical value, initially X0;id : unique process identi�er;� = X 0=XC;send < \SLACK", id, � > to parent PTM;if not constraint(Mode; �)then Wait for < \ACK" >;XC = �XC;X = X 0;The PTM accepts \SLACK" messagesfrom its children and redistributes it as nec-essary. The redistribution takes the formof adjustments to (XC0;XC1; : : :XCN) and

(PC0; PC1; : : : PCM). Ad-justments to (XC0;XC1; : : :XCN) are im-plemented directly by PTM. Adjustmentsto (PC0; PC1; : : : PCM) are accomplished bytransferring slack between PTMs via the to-ken.Each PTM has a local variable, X0, witha constant value 1. This variable appears inthe global assertion as follows:MXj=1Xj0 NYi=1Xji = MXj=1 NYi=0Xji � KNote that the truth of the assertion is nota�ected. As with any other local variable,X0 has a critical value XC0. X0 is used asan intermediary when transferring slack fromone local variable to another.Analogous to XC0, the token has a crit-ical point PC0 which carries slack betweenthe product terms. The corresponding prod-uct term is P 0 4= 0. PC0 must follow thesame set rules that other PCj critical valuesfollow. Initially, all the slack in the system(S0�K) is given to PC0.An array �i, 0 � i � N is main-tained which indicates the amount of slackrequested or donated by child i (which con-tains variable Xi). If �i = 1, then no requestor donation from Xi is outstanding.PTM: Data Structures�i; 0�i�N : slack from Xi;PC : product term critical value, initially P0;X0 : local variable, constant value 1;XC0 : critical value, initially X0;When PTM receives slack from one of itschildren, it records the event in its slack ar-ray and calls AdjustXC.PTM: To rcv < "SLACK", i, � > from child�i = �;AdjustXC();

PTM: AdjustXC()while (9 I � f1; 2; : : :Ng such that(8i 2 I : �i 6= 1) ^ (I 6= ;) ^constraint(Mode; (X0=XC0)Qi2I �i))begin�0 = 1=(Qi2I �i)XC0 = �0XC0for each i 2 Ibeginif not constraint(Mode; �i)thenbeginSend < \ACK" > to child LVM iendif�i = 1endforendwileThe algorithm for adjust() is a direct im-plementation of lemma 6. If �i is de�ned asfollows: �i = 8><>: �i i 2 I�0 i = 01 otherwisethen QNi=1 �i = �0Qi2I �i = 1. Thusby lemma 6, the new critical point,(�0XC0; �1XC1; : : : �NXCN), is valid.The new critical point is respected ifconstraint(Mode;X 0i=(�iXCi)) is true forall i 2 I and for i = 0, where X 0i is thenew value of Xi. Consider i 2 I: By de�-nition, �i = X 0i=XCi. Thus, as a result oflemma 5, constraint(Mode;X 0i=(�iXCi))holds. Consider i = 0: from the code it canbe seen that �0 = 1=Qi2I �i. Thus(X0=XC0)Yi2I �i = X0=(�0XC0) = X00=(�0XC0)The left hand side of the above equation isthe argument to constraint() in the test ofthe while loop in the algorithm. Thus thevalue of constraint(Mode;X 00=(�0XC0)) istrue. Therefore the new critical point is re-spected. And since it is also valid (as shownabove), the global assertion holds.

If adjusting (XCj1;XCj2; : : :XCjN), can notsatisfy all requests, then slack may be trans-ferred from another product term P k. Thetoken carries slack between PTMs, allowingeach PTM to use the slack it needs to sat-isfy its requests. The token represents a pre-de�ned product term, P 0, where P 0 4= 0.Associated with P 0 is a critical value PC0.When the token visits the PTM repre-senting product term P j , its slack is trans-ferred from PC0 to XCj0 in the procedureTransfer_From_Token After the transfer acall to AdjustXC is made, the left over slackis transferred back to the token with a callto Transfer_To_TokenPTM: To rcv < \TOKEN", P 0, PC0 >Transfer From Token(P 0, PC0);AdjustXC();Transfer To Token(P 0, PC0);Pass Token to next PTM;PTM:Transfer From Token(P 0, PC0)� = P 0 � PC0� = (PCj ��)=PCjPC0 = PC0 +�PCj = PCj ��XC0 = �XC0PTM:Transfer To Token(P 0, PC0)� = X0=XC0� = PCj(1� �)PC0 = PC0 ��PCj = PCj + �XC0 = �XC0The text of the pro-cedure Transfer_From_Token matches ex-actly the code that appears in lemma 7.Thus, by lemma 7 Transfer_From_Tokenmaintains the validity and respectedness ofall critical points. The same is true ofTransfer_To_Token; since it is the inverse

of Transfer_From_Token, it merely undoesthe e�ect of Transfer_To_Token. It has al-ready been shown that AdjustXC maintainsthe validity and respectedness of all criticalpoints.It has been shown that all procedures usedin this algorithm maintain the validity andrespectedness of all critical points. In addi-tion, we have shown that if all critical pointsare valid and respected, then the global as-sertion holds. Therefore the algorithm pre-sented here maintains the global assertion.5 Algorithm AnalysisIn this section di�erent algorithms for main-taining the global assertion are analyzed interms performance. The approaches can bebroadly categorized by their software struc-ture: centralized, client/server, or token ring.Centralized algorithms are not consideredbecause of the obvious bottleneck that wouldresult.There are two kinds of slack: product slackand sum slack. There are three levels ofslack management: local, product term, andglobal. The local managers and product termmanagers exchange product slack, while theproduct term managers and the global man-ager exchange sum slack.The goal is to distribute both kinds of slackthroughout the system in order to satisfyconsume operations. The slack can be dis-tributed according to one of two policies: de-mand driven or supply driven. In demanddriven distribution, slack remains where it isproduced until it is demanded by a consumer.In supply driven distribution, slack is givento the manager when it is produced, and con-sumers request slack from the manager. Thedistribution mechanisms considered are: to-ken ring, and client/server.Note that the management of the twotypes of slack need not use the same tech-niques. Sum slack is used (produced and con-sumed) by the PTMs and managed by the

GM, and product slack is used by the LMsand managed by the PTMs. The algorithmpresented in this paper uses a supply drivenclient/server for product slack, and a supplydriven token ring for sum slack.5.1 Comparison of Di�erentApproachesThe approaches are compared on the basis ofthe worst case cost and delay per operation.An operation is a consume or produce event.The cost is de�ned to be the number of mes-sages per operation. The delay is de�ned tobe the maximum length sequence of causallyrelated messages. The unit of cost is msg,and the unit of delay is hop. For example, arequest/acknowledge exchange has a cost of2 msgs and a delay of 2 hops. A broadcastto n processes followed by acknowledgmentshas a cost of 2n msgs and a delay of 2 hops.For slack consumption, it is assumed thatthe amount of slack distributed throughoutthe system is enough to satisfy the request.The performance is given in terms of n, whichis de�ned (in this section only) to be thenumber of slack users. The delay of produceoperations are always zero since a producerof slack never blocks.5.1.1 Client/ServerIn this approach the slack manager is theserver and the users are the clients.With a supply driven policy, when slack isproduced it is immediately forwarded to themanager (server). This takes one message,thus has a cost of 1 msg. When slack is con-sumed, the consumer must request slack fromthe manager and the manager replies whenthe requested amount is available. Thus aconsume event costs 2 msgs and incurs a de-lay of 2 hops.With a demand driven policy, slack re-mains where it was produced until it is de-manded by another process. Thus no mes-

sages are required and the cost is zero. Aconsume event can cost up to 2n msgs andhave a delay of 4 hops. This situation ariseswhen the consumer sends a request to themanager, who in turn broadcasts to the otherusers, collects the slack, and forwards it tothe consumer.5.1.2 Token RingOnly the delay is determined in this case.Cost can only be analyzed in terms of aver-age cost since the token circulates indepen-dently of operations. However, the averagecost depends ratio between the number ofoperations and the number of token circu-lations, which is an unknown quantity.With a supply driven policy, when slack isproduced it is given to the token which car-ries it to other users that may need it. A con-sume operation can have a delay of n hops,which occurs when the user requests slackimmediately after the token was forwarded.The token must circulate once, visiting all nusers, before returning to the consumer.With a demand driven policy, In this ap-proach the token carries requests for slack.The slack itself remains at the site of pro-duction until a request on the token needs it.A consume operation has a worst case delayof 2n hops. This occurs when the requestis made just after the token leaves. It musttravel around the ring once before the con-sumer gets it, then the consumer places it'srequest on the token and it travels aroundthe ring again.5.2 Overall PerformanceIt is apparent that the supply drivenclient/server approach has the best local per-formance, ie, performance on one level ofslack management only. This approach isused for product slack management, howeversum slack is managed with the supply driventoken ring approach. The reasoning for this

is based on the global performance of the al-gorithm.Given that many requests will likely besatis�ed via exchange of product slack with-out having to resort to exchange of sum slack,it makes sense to use the most e�cient algo-rithm for product slack management. Hence,the supply driven client/server approach isused for managing product slack. The alter-natives for managing sum slack are consid-ered next.With a supply driven client/server theoverall algorithm would in e�ect be central-ized. Each user would forward product slackto the product term manager, which wouldthen forward it to the global manager. Thusall slack would be distributed through a sin-gle point, the global manager. This designwould create a bottleneck at the global man-ager and therefore it is not used.With a demand driven client/server a pro-duce would have cost/delay of 1/0 and a con-sume would have cost/delay of 2 + 2m/6,where m is the number of product terms.With a supply driven token ring a producewould have cost/delay of */0 and a consumewould have cost/delay of 0/2 + m. With ademand driven token ring a produce wouldhave cost/delay of */0 and a consume wouldhave cost/delay of 0/2 + 2m.These values are obtained by adding theappropriate entries from table 2. It is easyto see that the supply driven token ring of-fers the best performance, and that is theapproach used for management of sum slack.6 Example ApplicationsThe problem of mutual exclusion between Mprocesses can be solved with the assertionPMj=1Xi � �1, where initially Xi = 0 forall i. The entry and exit protocols would berequests to change Xi to �1 or 0. Thus theusers code for process i would appear as fol-lows:

change(Xi,-1);program is in critical sectionchange(Xi,0);A call to change(Xi,-1) will block if an-other process is already in the critical region.When the call returns, then entry has beengranted. Upon exiting the critical region aprocess calls change(Xi,0) which will neverblock because it is producing slack.One solution to \�ve dining philosophers"is limiting the number of eating philoso-phers to four, and implementing mutual ex-clusion on the forks. We can de�ne mul-tiple global assertions: one for the num-ber of eaters, and one each for the forks.The assertion P5j=1 eati � �4 restricts thenumber of eaters; and 8i : left_forki+right_fork(i+1)mod4 � �1 implements mu-tual exclusion on the forks. The code forphilosopher i is:change(eati,-1);change(left_forki,-1);change(right_forki,-1);eat();change(right_forki,0);change(left_forki,0);change(eati,0);7 ConclusionA global assertion in a sum of products formis more general than the summation formused in earlier work. This paper developeda decomposition of the global assertion andan algorithm for maintaining the global as-sertion based on the decomposition. Proofsof the correctness of the decomposition andthe algorithm were presented.The global assertion was decomposed intoa set of local assertions, and it was proventhat the conjunction of these local assertionsimply that the global assertion holds. Thedecomposition was based on the concept of

critical points. The notions of valid and re-spected critical points were developed and itwas shown that if all critical points are bothvalid and respected, then the global asser-tion holds. This result was used in the proofof the correctness of the algorithm. Closedform expressions were developed for generat-ing initial critical points that are valid andrespected.This work has applications as a gen-eral synchronization mechanism, and in dis-tributed debugging. Many classical synchro-nization problems can be trivially writtenas a global assertion. Mutual exclusion wasgiven as an example. The family of Booleanlogic equations can also be expressed as aspecial case of the global assertions.The algorithm presented is valid for allglobal assertions, however it does not allowthe system to evolve into all valid states dueto the assumption that the \mode" is con-stant.The algorithm presented here has been im-plemented. Future work includes lookinginto fairness and deadlock issues, which de-mand consideration from a novel view point.An interesting algorithmic issue is determin-ing the optimal distribution of slack. Ide-ally it would be best to keep the slack moredistributed than in the algorithm. Thisgreatly complicates the algorithm, causeshigher message complexity, and makes fair-ness issues even harder to work out. Futurework also includes developing a complemen-tary algorithm for detecting global predicatesof the same form.References[1] Y. Afek, B. Awerbuch, S. A. Plotkin,and M. Saks. Local management of aglobal resource in a communication net-work. In Proc. of the Conference onthe Foundations of Computer Science,pages 347{357. IEEE, August 1987.

[2] O. Carvalho and G. Roucairol. On thedistribution of an assertion. In Prin-ciples of Distributed Computing, pages121{131, 1982.[3] K.M. Chandy and L. Lamport. Dis-tributed snapshots: Determining globalstates of distributed systems. ACMTransactions on Computer Systems,3(1):63{75, February 1985.[4] D. Herman. Distributed Computing Sys-tems, page 51. Academic Press, 1983.(Parker-Verjus Ed.).[5] M. Raynal. Networks and DistributedComputation: Concepts, Tools and Al-gorithms. The MIT Press Series in Com-puter Systems, Cambridge, MA, 1988.[6] M. Raynal and J.M. Helary. Synchro-nization and Control of Distributed Sys-tems and Programs. John Wiley andSons Ltd, Chichester, England, 1990.[7] M. Raynal. Distributed Algorithms andProtocols. John Wiley and Sons Ltd,Chichester, England, 1988.

PTM

LVMLVM

PTM

LVMLVM

PTM

LVMLVM

Token Ring

X X X X X X* + +* * >= K
1 2 1 12 2

1 1 22 3 3Figure 4: Communication structure of the algorithm.
Produce Consumecost delay cost delayclient/server supply driven 1 0 2 2demand driven 0 0 2n 4token ring supply driven * 0 * ndemand driven * 0 * 2nTable 2: Performance summary of algorithm alternatives with n users.

