International Conference on
Computer System and Education, IISc, 1994

Maintaining Global Assertions on Distributed

Systems

Alexander I. Tomlinson

*

Vijay K. Garg

Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712

Abstract

This paper develops a method for main-
taining global assertions on a network of
distributed processes. The global asser-
tion has the form (Xllel---X}\,l) + ...+
(XMX--- X)) > K, where X7 is a vari-
able which is local to one process in a dis-
tributed system and K is a constant. It is
assumed that the initial values of all local
variables are known and that the global as-
sertion initially holds. This form is more gen-
eral than the summation form considered in
earlier work.

This research has applications in dis-
tributed software development, and as a
general synchronization mechanism. Many
classical synchronization problems (mu-
tual exclusion, dining philosophers, read-
ers/writers) can be solved with the results
of this work.

*Research supported in part by NSF Grant CCR
9110605, Navy Grant N00039-88-C-0082, TRW fac-
ulty assistantship award, IBM Agreement 153, and a
Microelectronics Computer Development Fellowship.

1 Introduction

A global assertion is an expression whose
value depends on the state of multiple pro-
cesses in a distributed system.! Given an ini-
tially true global assertion,

N
SUX{X) XL 2 K

i=1

where X{ is a variable which is local to one
process in a distributed system and K is a
constant, the goal is to approve changes to
the values of X7 such that the truth of the
global assertion is invariant.

Note that although X/ is a variable, it can
represent any function local to a process. For
example, it might represent a function such
as y°, or log(y); the assertion is concerned
with the value of the function.

Without the ability to continuously mon-
itor the global state, maintaining global as-
sertions becomes a difficult problem. Given
the global state, the assertion could be eas-
ily evaluated. However, it is impossible to

! Message exchange is assumed to be ordered and
reliable.

know the exact global state without halting
the execution of all processes[3]. An alter-
native is to use consistent global states us-
ing a global snapshot algorithm[3]. However
consistent global states are not sufficient for
maintaining global assertions; the the asser-
tion may be temporarily invalidated between
snapshots.

Maintaining global assertions has applica-
tions in distributed software engineering as
a general synchronization mechanism and as
a debugging tool. The synchronization con-
straints for many classic problems such as
producer/consumer, readers/writers, mutual
exclusion, and dining philosophers can be
characterized by a global assertion. The abil-
ity to maintain global assertions can simplify
the development of distributed programs; as
demonstrated in the following example.

Example 1 Suppose the US government
has the power to set monetary exchange rates
between the dollar and foreign currencies.
Let Cy,, Cy, C, denote cost (in dollars) of the
mark, franc and yen. Thus m marks is equiv-
alent to m(C,, dollars. The government is re-
quired to maintain a minimum investment of
D dollars in foreign currency. The exchange
rates are determined by different computers,
and the total investment in any one foreign
currency is distributed among several banks.
For example one bank has m; marks, and
another bank has my marks. The following
global assertion models this scenario.

mlcm—I'flcf—I'ley—l'mZCm—l'fZCf‘l’yQCy Z D

Each quantity is a non-constant local vari-
able: m;, f;, and y; are maintained by the
various banks, and C,,, Cy, and (), are main-
tained by the federal government. The above
assertion holds if and only if the total invest-
ment in foreign currency is at least D dol-
lars. The ability to maintain the global as-
sertion greatly simplifies the task of solving
this problem.

The problem of maintaining global as-
sertions is similar to managing global
resources[l]. Consider the assertion X; +
Xy 4+ X3 > 0, where each X; has arbitrary
behavior, and initially X1+ X;4+ X5 = 75. In
this example the total slack is 75. If the slack
is treated as a resource and managed so that
slack > 0, then the assertion holds. Increas-
ing (decreasing) X; corresponds to producing
(consuming) resources.

However, there are significant differ-
ences between maintaining global assertions
(MGA) and global resource management

(GRM):

e The total amount of resources in GRM
is bounded; this is not necessarily true

in MGA.

o GRM assumes a user eventually pro-
duces as much as it consumes (user’s
borrow resources); MGA makes no such
assumption (users arbitrarily produce
and consume resources).

e GRM manages one type of resource;
MGA manages two types (product slack
and sum slack, which are convertible
with each other).

o The goal of GRM is to resolve dead-
lock (through avoidance or recovery);
the goal of MGA is to ensure that the
assertion holds and to not introduce any
possibility of deadlock that did not pre-
viously exist.[5]

One of the implications of these differences
is the method of dealing with deadlock and
fairness.

Since the variables have arbitrary behav-
ior, there is no way to avoid deadlock. For
example, if the total slack at a given instant
is 10, and every process requests 20 units, a
state of deadlock results. This scenario can-
not be avoided due to the arbitrary behavior
of the variables. Thus the policy with respect

to deadlock is to not introduce any possibil-
ity of deadlock that did not previously exist.

Starvation cannot be avoided. Consider
the assertion X7 + X3+ X3 > 0, and suppose
the system slack is currently 10. Suppose X;
and X, make repeated requests to decrease
their value by 20 and 10 respectively. Let
X3 be an adversary that increases its value
by 10 if and only if X,’s request is satisfied.
In this scenario X; will always starve regard-
less of the allocation policy. If the algorithm
waits for enough slack to satisfy Xi, it will
wait forever. If it satisfy X,’s request, then
Xy will request 10 more units and X3 will
produce 10 units, which results in the same
initial scenario outlined above.

The term “SOP” is used to refer to the
class of global assertions that can be ex-
pressed as a sum of products. This paper
uses the SOP class of global assertions for
several reasons.

First, it is more general than previous work
[5, 6, 7] which only addresses global asser-
tions of the form "%, X; > K, (denoted by
“SUM?”). Second, there is a one to one cor-
respondence between the set of polynomials
and the assertions in the SOP class. Poly-
nomial functions are widely used for analysis
and modeling in scientific disciplines, hence
the ability to represent them with a global
assertion is valuable. Third, the SOP class
is a superset of the product of sum (POS)
class. And finally, boolean expressions can
be transformed into global assertions whose
variables take on values from the set {0,1}.
This can be done by a simple substitution of
variables and operators.

Section 2 reviews related work such as dis-
tributed synchronization and global asser-
tions. Section 3 presents most of the theoret-
ical work of the paper. The concept of criti-
cal values and critical points are defined and
subsequently used to decompose the global
assertion into local assertions. It is proven
that the conjunction of all the local asser-
tions implies the global assertion. Methods

for adjusting the local assertions are also pre-
sented in Section 3. Section 4 presents the
algorithm and provides proof that it does
maintain the global assertion. Section 5 dis-
cusses algorithm performance and alterna-
tive algorithms. Section 6 presents example
applications and section 7 concludes the pa-
per.

2 Related Work

Global assertions can be characterized by
their expressive power. The most general
form defines the global assertion’s domain to
be the set of global states. This allows any
set of global states to be expressed as an as-
sertion. These forms have been studied al-
though no algorithms have been developed
due to the complexity of the problem. Less
general forms typically use process variables
to define the assertion. The work of this pa-
per falls into this category.

Carvalho and Roucairol [2] define a global
assertion as a mapping from the set of global
states to { TRUE, FALSE}. This allows any
combination of global states to be character-
ized with a single global assertion. They de-
compose the global assertion into local and
communication assertions using lattice the-
ory and Galois connections. The authors ac-
knowledge that finding the protocols neces-
sary to maintain the communication asser-
tions a much more difficult task, and only
indicate some principles that can be used
in their design. Although this paper use a
less general global assertion, it allows the de-
velopment of simple closed form expressions
for assertion decomposition and the develop-
ment of an algorithm.

Raynal [5, 6, 7] describe algorithms for
implementing global assertions of the form
vazl o;x; < k where a; = £1, k is an in-
teger constant, and each x; is a local vari-
able. Several variations of the algorithm
are presented depending on the type of vari-
ables and the assumptions regarding commu-

nication (ie, reliability, ordering). The algo-
rithms use upper and lower bounds on the lo-
cal variables to maintain the assertion. This
paper uses a more general form than theirs
and avoids the problem of maintaining mul-
tiple copies of each upper and lower bound.
The function of the bounds is replaced by
critical values, which represent the aggregate
effect of all the bounds.

Herman [4] presents a high level language
abstraction for implementing global synchro-
nization. The language consists of building
expressions out of counter variables. The
abstraction is equivalent in generality to
maintaining assertions in a summation form
where all variables are either monotonically
increasing or decreasing.

In summary, previous work in global as-
sertions has focused on algorithms for main-
taining assertions of the form > a; X; <0, or
on the decomposition of an assertion into lo-
cal and communication assertions. The main
contributions of this paper are:

1. To consider a global assertion more gen-
eral than the summation form.

2. To develop and prove a decomposition
into local assertions.

3. To develop and prove an algorithm for
maintaining the global assertion.

3 Decomposing the As-
sertion

This section presents the decomposition of
the global assertion into local assertions, pro-
vides closed form expressions for determining
the local assertions, proves that the conjunc-
tion of all local assertions imply the global
assertion, and presents methods for adjust-
ing the local assertions to allow the system
to evolve (ie, to reach states where the global
assertion holds, but would not be reachable
without adjusting the local assertions).

For no-
tational convenience, define P’ 2 NoX7
and § 2 Z]‘]\i1 PJ7. The initial values of all
local and derived variables are assumed to be
known, and are denoted by X07, P07, and
S0. It is assumed that the global assertion is
initially true, i.e., SO > K.

The global assertion is maintained by set-
ting constraints on the values of X7, denoted
by constraint(X;). If the constraints on
all variables are respected, then the global
assertion will be maintained.

The constraints on X{ are determined in
two steps. The first step defines product term
constraints for each P’ such that their con-
junction implies S > K. The second step de-
fines local variable constraints for each prod-
uct term constraint such that the conjunction
local variable constraints imply the product
term constraint. The end result is that if all
local variable constraints are maintained, the
global assertion is satisfied.

3.1 Product Term Constraints

Consider the global assertion: Zj]\il pPi >
K. The global state space is an M dimen-
sional space with coordinates P!, ..., PM.
Figure 1 shows the state space for Pl +
P? > 5. Initially the global assertion
holds, thus P0' + P0? > 5. Given the ini-
tial coordinates (P0",P0?), the critical point,
(PC*, PC?), is defined to be any point such
that M, PC7 = K and Vj : PCY < PO,
Figure 1 shows the initial point and a valid
critical point.

The critical point is used to define con-
straints on the values of P/. The constraint
is defined to be: P7 > P(CJ. The shaded
area in figure 1 shows the states reachable un-
der these constraints. If P! requested a new
value less than PC', then it would have to
agree with P? to exchange “resources”. This
corresponds to sliding the critical point along
the line P! + P? = K as shown in figure 1.

Formally, the constraint is defined in equa-

tion 2 and the critical point is defined as
any point such that equation 1 holds and
constraint(P0’) holds for all j.

M .
S PO = K (1)
7=1

constraint(Pj) 2 pi > pCY (2)

An example of a closed form solution for

valid critical values is: PC" 2 PO — (50—

K)/M. Lemma 1 proves that if these con-
straints are maintained, then the global as-
sertion is maintained. It is obvious from the
definition of PCY, that the constraints ini-
tially hold.

Lemma 1 [Vj: constraint(P/)] = § > K

Proof: By equation 2, Vj
constraint(P’) is equivalent to Vj : P/ >
PCY. This implies that Zj]\il P>
Z]‘]\i1 PCi. By definition of S, the left hand
side equals S, and by equation 1, the right
hand side equals K. Thus S > K. [

3.2 Local Variable Constraints

The product term constraints specify that
P> PCI. In terms of local vari-
ables, the constraints are: [[Y, X7 > PCY.
For each j, the constraints on the lo-
cal variables, constraint(Xij), must imply
constraint(P’). Let the superscript j be
understood for the remainder of this section.

The goal is to develop constraints on X/
such that

N
Vi constraint(XJi)] = [[Xi > PCI (3)

i=1
The problem is broken into three cases ac-
cording to the value of PC. Figure 2 shows
the three cases (PC < 0, PC =0, PC > 0)
for N = 2. The shaded areas represent the

valid state space (those which satisfy equa-
tion 3).

3.2.1 Case 1: PC =0

The constraint is defined in equation 5 and
the critical point is defined as any point such
that equation 4 holds and constraint(X0;)
holds for all .

N
H XCZ > 0 (4)
=1

constraint(X;) = X;/XC; >0(5)

Lemma 2 proves that these constraints en-
sure the product term constraint (equation 3)
holds. Initially the constraints are satisfied;
this is apparent from the definition of X .

Lemma 2
[Vi : constraint(X;)] = [[v, X; > PC

Proof: If any X; = 0, then [[Y, X; =
0, and the lemma holds. Otherwise, the
constraints (equation 5) imply that T, X;
has the same polarity as MY, XC;. And
since [TL, XC7 > 0 (by equation 4), then
Y, X; > PC =0. -

3.2.2 Case 2: PC >0

The constraint is defined in equation 7 and
the critical point is defined as any point such
that equation 6 holds and constraint(X0;)
holds for all .

N
H XC, = PC (6)
=1

constraint(X;) = X,/ XC; > 1(7)

This definition is valid since XC; # 0.
This is due to the fact that, in this case,
[IY, XC; = PC # 0. This defines the crit-
ical point to be a point on the border be-
tween the valid and invalid state spaces? such

2The border is a curve for N = 2, a surface for
N =3, etc.

that each coordinate X, is closer to the ori-
gin than the corresponding initial coordinate

X0;. One closed form solution for valid crit-

ical values 1s: XC; 2 XOZ'(PC/PO)I/N.
Lemma 3 proves that these constraints en-

sure the product term constraint (equation 3)

holds. From the definition of X}, it is obvi-
ous that initially the constraints hold.

Lemma 3
[Vi : constraint(X;)] = [Iv, X; > PC

Proof:

By equation 7, Vi constraint(X;) is
equivalent to Vi : X;/XC; > 1. This im-
plies Vi : |X;| > |X4|. Thus ‘vazl X;| >
‘vazl XC(;|. By equation 6, and since PC' >
0, X, xC;| = PC. Thus |[TX, Xi| >
PC. Since Vi : X;/XC; > 1, the polar-
ity of TIY, X; and [IY, XC; must be the
same. And since [[Y, XC; = PC > 0, then

N, X; > 0, which implies that ‘vazl X
1Y, X;. Thus, [TY, X; > PC. n

3.2.3 Case 3: PC <0

This case is subdivided into two overlapping
cases depending on the initial value PO =
[TY, X0;. The two cases are shown in fig-
ure 3.

Case 3A: PC < 0 and P0 > 0: The
constraint is defined in equation 9 and the
critical point is defined as any point such that
equation 8 holds and the constraint(X0;)
holds for all .

N
[[XC; > o (8)
i=1

constraint(X;) = X;/XC; >0(9)

These definitions are identical to that of
case 1 (PC =0). In this case, PO > 0, thus
lemma 2 proves that the constraints satisty
the product term constraint for this case too.

Case 3B: PC < 0 and |P0| < |PC]| :
The constraint is defined in equation 11 and
the critical point is defined as any point such
that equation 10 holds and constraint(X0;)
holds for all .

N
[[xc| = |PC| (10)
=1

constraint(X;) 2 | X/ X < 1(11)

The critical point is a point on the
border (or an image of the border) such
that each X0, is closer to the origin than

XC,. A wvalid closed form solution is:

XC; 2 |x0;||PC/POMN,

Lemma 4 proves that the constraints imply
the product term constraints. The proof is
very straight forward and is left to the reader.

Lemma 4
[Vi : constraint(X;)] = [[v, X; > PC

Table 1 summarizes the case analysis. Re-
call that case 3A is treated identically to case
1, therefore it appears in the table with case
1. The algorithm is based on this table and
the “Mode” entry shows the term used to re-
fer to the case in the algorithm. Note that
in all three modes, the constraint is deter-
mined by the ratio X/XC, which is defined
as the slack of variable X. The slack of X
represents the amount of leeway X has be-
fore invalidating the constraint. The concept
of slack is used in the algorithm.

The constraints were defined to take a vari-
able X and return a value TRUE or FALSE
depending on the current mode and value of
XC. From table 1 it is apparent that the
constraint depends on the slack of X. Thus,
at this point the constraint function is rede-
fined to take the mode and slack as an argu-
ment and return TRUE or FALSE. The new
definition is shown below:

(P01, PO2)

E(PCl, PC2)

Product Critical Point and the o .)
resulting restricted state space. Adjusting Product Critical Point

Figure 1: Product Term Critical Values

S

PC=0 PC>0 PC<O0

Figure 2: Three cases for local variable constraints.

Case 3A Case 3B

Figure 3: Two cases for PC < 0, based on initial value P0

Case ‘ Value of PC ‘ Mode ‘ Constraint
2 PC >0 GTZ X/XC>1
3B PC <0 LTZ IX/XC| <1

1,3A PC =0 EQZ X/XC >0

Table 1: Summary of case analysis.

Boolean constraint(mode,a)

switch (mode) {
case GTZ : return (a > 1);
case LTZ : return (|o|< 1);
case EQZ : return (o >0);
b

3.3 Adjusting the Constraints

The constraints are built around critical val-
ues, which must be adjusted in order to allow
the system to reach all valid states. Figure 1
shows a critical point being adjusted. It is
apparent that if critical points could not be
adjusted then much of the valid state space
would be unreachable. In this section the
procedure for adjusting the critical values is
described.

Suppose X wants to change its value to
X7 It s
known that constraint(Modej,Xf/XCf)
holds since it holds initially and is in-
variant. If constraint(Modej,Xf//XCf)
holds then the change can be made
with no change to XC{. If the con-
straint does mnot hold then XCY must be
changed to some value o] XC? such that
constraint(Modej,Xg//(anCf)) holds
before the change can take place. In this
situation the process in which X7 resides is
blocked until an adjustment to the critical
point (XC{,XC3,..., XCy) can be made in
which the new value of XC7 is of XC/. Let
ozf be defined as ozf 2 Xf//XCZ»j.

Lemma5 If o = Xf//XCf, then
constraint(Modej,Xf//(ozfXCf)) holds
regardless of Mode;.

Proof: By definition of ozf,
X{l/(anCf) = 1. And also by definition,
constraint(Mode;, 1) is true regardless of
Mode;. Hence the lemma is proven. [

Since the local variables are being changed
concurrently, there may exist several blocked

processes waiting for an adjustment to the
critical point (XCY, XCj,..., XC%), which
is initially assumed to both valid and re-
spected. The value of the needed change to
XC{ is indicated by ozf. If, after the adjust-
ment, all critical points are still valid and
respected, the the global assertion will con-
tinue to hold.

The procedures for adjusting the critical
points such that they remain valid and re-
spected are presented in the next two sec-
tions. 4 4 4

One way to adjust (XC{, XC3,..., XC})
is to redistribute the slack among each local
variable. Another way is to obtain slack from
a different product term P*, k # j. This is
accomplished by an adjustment to the criti-
cal point (PCY, PC? ... PCM).

3.3.1 Adjusting Point:

4 Critical
(XC{,XC3,..

L XCY)

Adjusting this critical point corresponds to
moving the critical point along the border?
defined by [TY., XC! = PC? with no change
to the value of PC7. This redistributes the
slack among the local variables in product
term P’. No other product terms are af-
fected. If the critical point can be adjusted
so that the product of the critical values re-
mains constant, then the critical point re-
mains valid. The following lemma proves
this.

Lemma 6 Given a valid critical point
(XC{,XC3,...,XC%) and ol, 1 <i <N,
such that Hf\;l al =1, 4 4

then (o XC,a XCy,...,anXCY) is a

valid critical point.

Proof: By definition, the validity of a sum
critical point depends only upon the product
of its coordinates. Since [T, ol = 1, then

[Ix¢ =1Toi [T XC7 = [[(eiXCY)
=1 =1 =1 =1

3This visualization is not accurate for EQZ mode.

Therefore, (oz{XC{, oz‘%XC%, e ,oszXC]]Q) is

a valid critical point. [

3.3.2 Adjusting Critical Point:

(PCY, PC?,... PCM)

Adjusting this critical point transfers slack
from one product term to another. If adjust-
ing (XC{, XC3,...XC%) failed to satisfy all
requests in P7, then slack can be transferred
from another product term in an attempt to
satisfy those requests. Only binary trans-
fers are considered between product terms
PY and P7 since the algorithm uses only that
technique.

Let Xg 2 1 for all j, and P° 2 0. Then

the global assertion may be rewritten as

M N
PP TIX > K

7=1:1=0

The variables Xg, P° have critical values
Xy, PC° They are used as intermediaries
when transferring slack from one variable to
another.

The algorithm assumes that Mode; is
constant,* thus changes of mode will not be
considered.

The following lemma demonstrates how to
adjust the product critical point.

Lemma 7 Assuming all sum and product
critical points are initially valid and re-
spected, then after executing the following se-
quence of commands, they will all remain
valid and respected — assuming that Mode;
remains constant.

A = P°—pc°

a) = (PCT—A)/PC?
PC® = PC°+A

PCI = PCY—A
Xcl = o)X}

4This assumption keeps the algorithm simple and
efficient.

Proof: We need only to consider
the critical points (PC°, PC*,... PC™) and
(XC§,XCY,...XC%) since no others are af-
fected. Let XCY, P/ refer to the initial values

and XC{’, P7' refer values after execution of
the commands. It is assumed that Mode;
is constant, thus this sequence of commands
cannot be executed if Mode; or Modeg is EQZ
since it would cause the mode to change.
Thus only modes GTZ and LTZ are consid-

ered. The proof is in four parts.

1) Product critical point remains valid if

M opi = K.

It is evident from the proposed sequence

of commands that the sum of the co-

ordinates of the product critical point

remain unchanged. Thus Z]‘]\io PCi =
M PCT =K.

2) Product critical point remains re-

spected if pY > PCY and P/’ > pcY

It is obvious that PC? = P° and since
PY = P° then PY > PCY. Since PO >
PC? (initially respected), then A > 0.
Thus PCY = PC7 — A < PCY. And
since PCY < PJ (initially respected),
then PC# < Pi. And since PV = Pi,
then PCY/ < pil.

3) Sum critical point remains valid if
Yy, xc!’ = pci.

The critical point is initially valid, thus
MY, XC! = PC?. By algebraic ma-
nipulation, 1y, XCZ?/ = ozé Y, XC{
= oy PC7 = ((PCY — A)/PCHPCIT =
PCI— A = pcY

4) Sum critical point remains respected
if constraint(Modej,Xé//XCé/) is

true.
Recall that A > 0 (from part 2).

Consider Mode; = GTZ, Since Mode;
is constant, A C7. This fact, in
>

< P
h A 0 and PC7 >

conjunction wit

0, implies that 0 < ozé < 1. Since
constraint(GTZ,Xé/XCé) holds (ini-
tially respected), then XS/XCS >
1. And since 0 < ozé < 1, then
Xg//XCS/ = X} /(aXCy) > 1. Hence
constraint (GTZ, Xg//XCS/) holds.

Consider Mode; = LTZ, then PC7 <0
and A > 0. This implies Qzé > 1. Since
constraint (LTZ,X]/ X C}) holds, then
X3/ XCH| < 1. Thus 1> [X§/XCH| >
X8/ (ebx o)) = |x¢ /xcdl| <.

Thus constraint(LTZ, Xg//XCS/)
holds.

4 Algorithm

In this section we present an algorithm for
the case when Mode; is constant for all j,
1 <5 < M. Recall that the slack of X{
is XJ/XC!. Define the slack of P/ to be
Pi — PC’. The slack indicates how much
leeway a variable has before invalidating its
constraint.

There are two types of processes: Product
Term Managers (PTM) and Local Variable
Managers (LVM). Each LVM manages one
local variable X/, and each PTM manages
one product term P?. The communication
structure is shown in figure 4. Each LVM has
one parent (a PTM) and each PTM has mul-
tiple children (LVMs) who make up its prod-
uct term. These terms are used in presenting
the algorithm. When PTM is referred to in
the context of a specific LVM, then the PTM
referred to is the parent PTM. The subscripts
and superscripts will be omitted for most of
this section except to avoid ambiguity.

LVMs communicate with their parent
PTM through direct message exchange.
PTMs communicate with other PTMs via a
token. The function of an LVM is to ap-
prove requests for changing the value of its

local variable. An application process re-
quests to change X to X’ with the function
call change(X, X’). The local assertion is in-
variant outside of this function. This ensures
that the applications view of X is one which
satisfies the local assertion. The local asser-
tion is assumed to hold upon entry to change
and guaranteed to hold upon return.

When change(X, X’) is invoked, LVM
evaluates the local assertion with the new
value. If it holds then the change is made
and control is returned to the application. If
it does not hold then a message is sent to
PTM requesting an adjustment to X', and
the process is blocked until PTM acknowl-
edges the request. The acknowledgment indi-
cates that the adjustment has been approved.

There is one omission in the above descrip-
tion: before LVM returns control to the ap-
plication, excess slack is donated to PTM.
This simplifies the algorithm by avoiding the
need for the PTM to explicitly collect excess
slack when servicing requests. In fact dona-
tions and requests are lumped into one mes-
sage: < “SLACK?”, id, a >, where id identifies
the sender and @ = X'/ XC. The meaning
depends on the value of a. If « satisfies the
local assertion then it is a donation, other-
wise it is a request. The code for LVM is
shown below.

LVM: Change(X, X’)

XC : critical value, initially X0;
ud : unique process identifier;

a=X"/XC;
send < “SLACK?”, vd, a > to parent PTM;
if not constraint(Mode, o)

then Wait for < “ACK” >;
XC=aX(C;
X =X

The PTM accepts “SLACK” messages
from its children and redistributes it as nec-
essary. The redistribution takes the form

of adjustments to (XCo, XCq,... XCy) and

(PCO, PCY, ... PCM). Ad-
justments to (XCo, XC4,...XCy) are im-
plemented directly by PTM. Adjustments
to (PCY, PCY, ... PCM) are accomplished by
transferring slack between PTMs via the to-
ken.

Each PTM has a local variable, X, with
a constant value 1. This variable appears in
the global assertion as follows:

M N = M N

SXTIX =>][X! > K

=1 =1 j=1i=0
Note that the truth of the assertion is not
affected. As with any other local variable,
X, has a critical value XCy. Xj 1s used as
an intermediary when transferring slack from
one local variable to another.

Analogous to Xy, the token has a crit-

ical point PC? which carries slack between
the product terms. The corresponding prod-

uct term is P° 2 0. PC° must follow the
same set rules that other PC7 critical values
follow. Initially, all the slack in the system
(S0 — K) is given to PC°.

An array «;, 0 < ¢ < N is main-
tained which indicates the amount of slack
requested or donated by child ¢ (which con-
tains variable X;). If a; = 1, then no request
or donation from X, is outstanding.

PTM: Data Structures

a;,0<i<N : slack from X;;

PC : product term critical value, initially PO;

Xy : local variable, constant value 1;
X Cy @ critical value, initially Xg;

When PTM receives slack from one of its
children, it records the event in its slack ar-
ray and calls AdjustXC.

PTM: To rev < 7SLACK?”, ¢, a > from child

o; = Q;

AdjustXC();

PTM: AdjustXC()

while (37 C {1,2,...N} such that
(Viel:a;#1) AN (I#£0) A

constraint(Mode, (Xo/ X Co) [Tier i))

begin
ag = 1/(TTies i)
XCO = OéoXCo
foreach 1 € [
begin
if not constraint(Mode, a;)then
begin

Send < “ACK” > to child LVM i

endif
a;, =1
endfor
endwile

The algorithm for adjust() is a direct im-
plementation of lemma 6. If 3; is defined as
follows:

[0 ZE]
62': (&%) ZZO

1 otherwise

then Hf\; Bi = aollierew = 1. Thus
by lemma 6, the new critical point,
(5o X Co, 1 XCq,. .. nXCn), is valid.

The new critical point is respected if
constraint(Mode, X|/(a; XC;)) is true for
all = € [and for ¢ = 0, where X! is the
new value of X;. Consider ¢ € I: By defi-
nition, o; = X!/ XC;. Thus, as a result of
lemma 5, constraint(Mode, X|/(c; XC}))
holds. Consider ¢ = 0: from the code it can
be seen that oy = 1/T];c; ;. Thus

(Xo/XCO) H Q;p = Xo/(a()XCO) = Xé/(a()XCO)
iel

The left hand side of the above equation is
the argument to constraint () in the test of
the while loop in the algorithm. Thus the
value of constraint (Mode, X{/(co X Cy)) is
true. Therefore the new critical point is re-
spected. And since it is also valid (as shown
above), the global assertion holds.

If adjusting (XC{, XCi,. .. XC]jV), can not
satisfy all requests, then slack may be trans-
ferred from another product term P*. The
token carries slack between PTMs, allowing
each PTM to use the slack it needs to sat-
isfy its requests. The token represents a pre-

defined product term, P°, where P° 2.
Associated with P is a critical value PC®°.

When the token visits the PTM repre-
senting product term P7, its slack is trans-
ferred from PC° to XC§ in the procedure
Transfer_From_Token After the transfer a
call to AdjustXC is made, the left over slack
is transferred back to the token with a call
to Transfer_To_Token

PTM: To rcv < “TOKEN”, P°, PC° >

Transfer_From _Token(P°, PCY);
AdjustXC();
Transfer_To_Token(P?, PC°);
Pass Token to next PTM;

PTM:Transfer_From_Token(P°, PC?)

A =P pCY

a = (PC7 —A)/PCI
PCY = PC° + A
PCI = PCT — A
XCO = OéXCO

PTM:Transfer_To_Token(P°, PC?)

a = Xo/XCo
A= PCI(1-a)
PCY = PC° - A
PCI = PCI + A
XCO = OéXCO

The text of the pro-
cedure Transfer_From_Token matches ex-
actly the code that appears in lemma 7.
Thus, by lemma 7 Transfer_From_Token
maintains the validity and respectedness of
all critical points. The same is true of
Transfer_To_Token; since it is the inverse

of Transfer_From_Token, it merely undoes
the effect of Transfer_To_Token. It has al-
ready been shown that AdjustXC maintains
the validity and respectedness of all critical
points.

It has been shown that all procedures used
in this algorithm maintain the validity and
respectedness of all critical points. In addi-
tion, we have shown that if all critical points
are valid and respected, then the global as-
sertion holds. Therefore the algorithm pre-
sented here maintains the global assertion.

5 Algorithm Analysis

In this section different algorithms for main-
taining the global assertion are analyzed in
terms performance. The approaches can be
broadly categorized by their software struc-
ture: centralized, client /server, or token ring.
Centralized algorithms are not considered
because of the obvious bottleneck that would
result.

There are two kinds of slack: product slack
and sum slack. There are three levels of
slack management: local, product term, and
global. The local managers and product term
managers exchange product slack, while the
product term managers and the global man-
ager exchange sum slack.

The goal is to distribute both kinds of slack
throughout the system in order to satisty
consume operations. The slack can be dis-
tributed according to one of two policies: de-
mand driven or supply driven. In demand
driven distribution, slack remains where it is
produced until it is demanded by a consumer.
In supply driven distribution, slack is given
to the manager when it is produced, and con-
sumers request slack from the manager. The
distribution mechanisms considered are: to-
ken ring, and client /server.

Note that the management of the two
types of slack need not use the same tech-
niques. Sum slack is used (produced and con-

sumed) by the PTMs and managed by the

GM, and product slack is used by the LMs
and managed by the PTMs. The algorithm
presented in this paper uses a supply driven
client/server for product slack, and a supply
driven token ring for sum slack.

5.1 Comparison of Different
Approaches

The approaches are compared on the basis of
the worst case cost and delay per operation.
An operation is a consume or produce event.
The cost is defined to be the number of mes-
sages per operation. The delay is defined to
be the maximum length sequence of causally
related messages. The unit of cost is MSG,
and the unit of delay is HOP. For example, a
request /acknowledge exchange has a cost of
2 MSGS and a delay of 2 HOPS. A broadcast
to n processes followed by acknowledgments
has a cost of 2n MSGS and a delay of 2 HOPS.

For slack consumption, it is assumed that
the amount of slack distributed throughout
the system is enough to satisfy the request.
The performance is given in terms of n, which
is defined (in this section only) to be the
number of slack users. The delay of produce
operations are always zero since a producer
of slack never blocks.

5.1.1 Client/Server

In this approach the slack manager is the
server and the users are the clients.

With a supply driven policy, when slack is
produced it is immediately forwarded to the
manager (server). This takes one message,
thus has a cost of 1 MSG. When slack is con-
sumed, the consumer must request slack from
the manager and the manager replies when
the requested amount is available. Thus a
consume event costs 2 MSGS and incurs a de-
lay of 2 HOPS.

With a demand driven policy, slack re-
mains where it was produced until it is de-
manded by another process. Thus no mes-

sages are required and the cost is zero. A
consume event can cost up to 2n MSGS and
have a delay of 4 HOPS. This situation arises
when the consumer sends a request to the
manager, who in turn broadcasts to the other
users, collects the slack, and forwards it to
the consumer.

5.1.2 Token Ring

Only the delay is determined in this case.
Cost can only be analyzed in terms of aver-
age cost since the token circulates indepen-
dently of operations. However, the average
cost depends ratio between the number of
operations and the number of token circu-
lations, which is an unknown quantity.

With a supply driven policy, when slack is
produced it is given to the token which car-
ries it to other users that may need it. A con-
sume operation can have a delay of n HOPS,
which occurs when the user requests slack
immediately after the token was forwarded.
The token must circulate once, visiting all n
users, before returning to the consumer.

With a demand driven policy, In this ap-
proach the token carries requests for slack.
The slack itself remains at the site of pro-
duction until a request on the token needs it.
A consume operation has a worst case delay
of 2n HOPS. This occurs when the request
is made just after the token leaves. It must
travel around the ring once before the con-
sumer gets it, then the consumer places it’s
request on the token and it travels around
the ring again.

5.2 Overall Performance

It is apparent that the supply driven
client /server approach has the best local per-
formance, ie, performance on one level of
slack management only. This approach is
used for product slack management, however
sum slack is managed with the supply driven
token ring approach. The reasoning for this

is based on the global performance of the al-
gorithm.

Given that many requests will likely be
satisfied via exchange of product slack with-
out having to resort to exchange of sum slack,
it makes sense to use the most efficient algo-
rithm for product slack management. Hence,
the supply driven client/server approach is
used for managing product slack. The alter-
natives for managing sum slack are consid-
ered next.

With a supply driven client/server the
overall algorithm would in effect be central-
ized. Each user would forward product slack
to the product term manager, which would
then forward it to the global manager. Thus
all slack would be distributed through a sin-
gle point, the global manager. This design
would create a bottleneck at the global man-
ager and therefore it is not used.

With a demand driven client/server a pro-
duce would have cost/delay of 1/0 and a con-
sume would have cost/delay of 2 4+ 2m/6,
where m is the number of product terms.
With a supply driven token ring a produce
would have cost/delay of */0 and a consume
would have cost/delay of 0/2 4+ m. With a
demand driven token ring a produce would
have cost/delay of */0 and a consume would
have cost/delay of 0/2 + 2m.

These values are obtained by adding the
appropriate entries from table 2. It is easy
to see that the supply driven token ring of-
fers the best performance, and that is the
approach used for management of sum slack.

6 Example Applications

The problem of mutual exclusion between M
processes can be solved with the assertion
Zj]\il X; > —1, where initially X; = 0 for
all 2. The entry and exit protocols would be
requests to change X; to —1 or 0. Thus the
users code for process 1 would appear as fol-
lows:

change(X;,-1);
program is in critical section
change(X;,0);

A call to change(X;,-1) will block if an-
other process is already in the critical region.
When the call returns, then entry has been
granted. Upon exiting the critical region a
process calls change (X;,0) which will never
block because it is producing slack.

One solution to “five dining philosophers”
is limiting the number of eating philoso-
phers to four, and implementing mutual ex-
clusion on the forks. We can define mul-
tiple global assertions: one for the num-
ber of eaters, and one each for the forks.
The assertion Z?Zl eat; > —4 restricts the
number of eaters; and Vi : left_fork,+
right_fork(it1)mods > —1 implements mu-
tual exclusion on the forks. The code for
philosopher ¢ is:

change(eat;,-1);
change(left_fork;,-1);
change(right_fork;,-1);
eat();
change(right_fork;,0) ;
change(left_fork;,0);
change(eat;,0) ;

7 Conclusion

A global assertion in a sum of products form
is more general than the summation form
used in earlier work. This paper developed
a decomposition of the global assertion and
an algorithm for maintaining the global as-
sertion based on the decomposition. Proofs
of the correctness of the decomposition and
the algorithm were presented.

The global assertion was decomposed into
a set of local assertions, and it was proven
that the conjunction of these local assertions
imply that the global assertion holds. The
decomposition was based on the concept of

critical points. The notions of valid and re-
spected critical points were developed and it
was shown that if all critical points are both
valid and respected, then the global asser-
tion holds. This result was used in the proof
of the correctness of the algorithm. Closed
form expressions were developed for generat-
ing initial critical points that are valid and
respected.

This work has applications as a gen-
eral synchronization mechanism, and in dis-
tributed debugging. Many classical synchro-
nization problems can be trivially written
as a global assertion. Mutual exclusion was
given as an example. The family of Boolean
logic equations can also be expressed as a
special case of the global assertions.

The algorithm presented is valid for all
global assertions, however it does not allow
the system to evolve into all valid states due
to the assumption that the “mode” is con-
stant.

The algorithm presented here has been im-
plemented. Future work includes looking
into fairness and deadlock issues, which de-
mand consideration from a novel view point.
An interesting algorithmic issue is determin-
ing the optimal distribution of slack. Ide-
ally it would be best to keep the slack more
distributed than in the algorithm. This
greatly complicates the algorithm, causes
higher message complexity, and makes fair-
ness issues even harder to work out. Future
work also includes developing a complemen-
tary algorithm for detecting global predicates
of the same form.

References

[1] Y. Afek, B. Awerbuch, S. A. Plotkin,
and M. Saks. Local management of a
global resource in a communication net-
work. In Proc. of the Conference on
the Foundations of Computer Science,

pages 347-357. IEEE, August 1987.

[2] O. Carvalho and G. Roucairol. On the
distribution of an assertion. In Prin-

ciples of Distributed Computing, pages
121-131, 1982.

[3] K.M. Chandy and L. Lamport. Dis-
tributed snapshots: Determining global
states of distributed systems. ACM
Transactions on Computer Systems,

3(1):63-75, February 1985.

[4] D. Herman. Distributed Computing Sys-
tems, page 51. Academic Press, 1983.
(Parker-Verjus Ed.).

[5] M. Raynal. Networks and Distributed
Computation: Concepts, Tools and Al-
gorithms. The MIT Press Series in Com-
puter Systems, Cambridge, MA, 1988.

[6] M. Raynal and J.M. Helary. Synchro-
nization and Control of Distributed Sys-

tems and Programs. John Wiley and
Sons Ltd, Chichester, England, 1990.

[7] M. Raynal. Distributed Algorithms and
Protocols. John Wiley and Sons Ltd,
Chichester, England, 1988.

Token Ring

2N
ORIOROR® ()

xPoeoxE o X2 o« X2+ X2+ ox >= K
1 2 1 2 1 2

Figure 4: Communication structure of the algorithm.

Produce Consume

cost | delay | cost | delay

client/server | supply driven 1 0 2 2
demand driven | 0 0 2n 4
token ring supply driven * 0 * n
demand driven | * 0 * 2n

Table 2: Performance summary of algorithm alternatives with n users.

