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Consisteny Conditions for Multi-Objet Distributed OperationsNeeraj Mittal � Vijay K. Garg yneerajm�s.utexas.edu garg�ee.utexas.eduDept. of Computer Sienes Dept. of Eletrial and Computer Engg.Parallel and Distributed Systems Laboratoryhttp://maple.ee.utexas.eduThe University of Texas at Austin, Austin, TX 78712AbstratThe traditional Distributed Shared Memory (DSM) model provides atomiity at levels of read and write onsingle objets. Therefore, multi-objet operations suh as double ompare and swap, and atomi m-registerassignment annot be eÆiently expressed in this model. We extend the traditional DSM model to allowoperations to span multiple objets. We show that memory onsisteny onditions suh as sequential on-sisteny and linearizability an be extended to this general model. We also provide algorithms to implementthese onsisteny onditions in a distributed system.1 IntrodutionAppliations suh as distributed �le systems, transation systems and ahe oherene for multiproessorsrequire onurrent aesses to shared data. The underlying system must provide ertain guarantees aboutthe values returned by data aesses, possibly to distint opies of a single logial data objet. A onsistenyondition spei�es what guarantees are provided by the system. The onsisteny onditions should bestrong enough to enable easy programming. Sequential onsisteny and linearizability are two well-knownonsisteny onditions de�ned in the literature.Sequential onsisteny was proposed by Lamport [15℄ to formulate a orretness riterion for a multi-proessor shared-memory system. It requires that all data operations appear to have exeuted atomially,in some sequential order that is onsistent with the order seen by individual proesses.Linearizability was introdued by Herlihy and Wing [12℄ to exploit the semantis of abstrat data types.It provides the illusion that eah operation applied by onurrent proesses takes e�et instantaneously atsome point between its invoation and response. Linearizability is stronger than sequential onsisteny andhas two advantages over it. First, it is more onvenient to use beause it preserves real-time ordering ofoperations, and hene orresponds more naturally to the intuitive notion of atomi exeution of operations.Consequently, it is easier to develop programs assuming a linearizable implementation of shared objets.Seond, linearizability satis�es the loal property, that is the system as a whole is linearizable wheneverthe implementation of eah objet is linearizable.These and other onsisteny onditions [16, 3, 8, 6, 14, 9℄ are based on the model in whih an opera-tion is invoked on a single objet. In fat, the traditional Distributed Shared Memory (DSM) provides�supported in part by the MCD Fellowshipysupported in part by the NSF Grants ECS-9414780, CCR-9520540, Texas Higher Eduation Board grant ARP-320, aGeneral Motors Fellowship, and an IBM grant



atomiity only at levels of read and write on single objets. While this may be appropriate for models atthe level of hardware, they do not provide an expressive [11℄ and onvenient abstration for onurrentprogramming. Herlihy [12℄ extended the model to arbitrary operations on single objets. That allows therepresentation of more powerful onurrent objets, for example test and set, feth and add, FIFO queuesand staks. However, the model assumes that all operations are unary, that is, they are invoked on a singleobjet. There are many appliations in whih operations are more naturally expressed as enompassingmultiple objets. For example, operations like double ompare and swap (DCAS)1 [10℄ annot be eÆientlyexpressed in that model. DCAS redues the alloation and opy ost thereby permitting a more eÆientimplementation of onurrent objets. As another appliation, if a transation in a database is viewed asan atomi operation then it is lear that it operates, in general, on multiple data items.In this paper, we develop a framework for onsisteny onditions for distributed objets with multi-objet operations or multi-methods. We introdue a formal model for exeution of operations that spanmultiple objets, denoted bym-operations. In this model, eah proess exeutes multiplem-operations andeah m-operation onsists of multiple operations (possibly on di�erent objets). We extend the de�nitionsof sequential onsisteny and linearizability to give m-sequential onsisteny and m-linearizability respe-tively. With the inreasing popularity of distributed objets it is important to understand the onditionsfor their onsisteny in presene of repliation and ahes. Independently, Raynal et al [22℄ also generalizedthe Herlihy's model to transations on multiple objets but they foussed on weaker onsisteny onditions,namely ausal onsisteny and ausal serializability.Besides pratial impliations, our model has nie theoretial onsequenes. It serves to unify resultsfrom two areas. By restriting the number of m-operations per proess to one, the model redues to thatof database transations. Similarly, if we restrit eah m-operation to exeute operations on a single objetthen the model redues to that of distributed shared memory [1℄ on onurrent objets [12℄. Thus withour model, one set of onsisteny onditions, their implementation, and omplexity results are appliableto both the areas.It has been shown that determining whether a given exeution is sequentially onsistent is an NP-ompleteproblem [23℄. We show that the problem of heking whether a given history is m-linearizable is alsoNP-omplete. This is true even when the reads-from relation (de�ned later) is known. Note that whenthe reads-from relation is known, the linearizability an be heked in polynomial time [19℄.We show that exeution onstraints proposed by Mizuno et al [20℄ to ensure eÆient implementation forsequential onsisteny an also be used for operations that span multiple objets. Spei�ally, under theseexeution onstraints, it is neessary and suÆient to ensure legality of reads to guarantee m-sequentialonsisteny (and m-linearizability).Finally, we provide algorithms for ensuring proposed onsisteny onditions in a distributed system.Several papers [2, 4, 18, 20℄ have proposed sequentially onsistent implementations for read/write ob-jets. Attiya and Welh [4℄ provide sequentially onsistent and linearizable implementations for read/writeobjets, FIFO queues and staks. In addition, they also give an analysis of the response time of their im-plementations. But their implementation for linearizability assumes that loks are perfetly synhronizedand there is an upper bound on the delay of the message. Our algorithm for m-sequential onsistenyis an extension of the algorithm proposed by them. We show that their algorithm also works for multi-objet operations. More importantly, we provide an algorithm for implementation of m-linearizability inan asynhronous distributed system whih does not make any assumptions about lok synhronization orthe message delay.It should be noted that there may be a temptation to model multi-methods by de�ning an aggregate1DCAS atomially updates loations addr1 and addr2 to values new1 and new2 respetively if addr1 holds value old1 andaddr2 holds old2 when the operation is invoked. 2



objet that represents the state of all objets. However, this tehnique has serious drawbaks. For example,if there are n read-write registers and one multi-method sum that takes two registers as arguments, thetehnique will fore all registers to be treated as one objet. This results in loss of loality and onurreny.This paper is organized as follows. Setion 2 gives our model of a onurrent system with multi-objetoperations and presents the onsisteny onditions appropriate in this model. In Setion 3 we show theNP-ompleteness of veri�ation of m-linearizability. Setion 4 imposes additional onstraints on exeutionfor eÆient implementation of distributed objets. In Setion 5 we present algorithms for implementationof m-sequential onsisteny and m-linearizability in an asynhronous distributed systems.2 De�nitions2.1 System ModelA onurrent system onsists of a �nite set of sequential threads of ontrol alled proesses, denoted byP1; P2; : : : ; Pn, that ommuniate through a set of shared data strutures alled objets (or onurrentobjets) X . Eah objet an be aessed by read and write operations. A write into an objet de�nes anew value for the objet; a read allows to obtain the value of the objet. A write operation on an objet xis denoted by w(x)v, where v is the value written to x by this operation. A read operation on x is denotedby r(x)v, where v is the value of objet x returned by this operation.Proesses are sequential and manipulate objets through m-operations. An m-operation is a sequeneof operations possibly spanning several objets. Intuitively, an m-operation is a \deterministi proedure"of read and write operations on shared objets. Eah proess applies a sequene of m-operations toobjets, alternately issuing an invoation and then reeiving the assoiated response. Let �(arg; res) bean m-operation issued at Pi; arg and res denote �'s input and output parameters respetively. Exeutionof an m-operation takes ertain time; this is modeled by two events, namely an invoation event and aresponse event. For an m-operation �, invoation and response events, inv(�(arg)) at Pi and resp(�(res))at Pi, will be abbreviated as inv(�) and resp(�) when parameters and proess identity are not neessary.An event e ours-before event f , denoted by e < f , i� event e preedes event f in real time. We will usegreek symbols �, �, , Æ, et. to denote m-operations.If two m-operations � and � are issued by the same proess, say Pi, and � is issued before �, then wesay � preedes � in Pi's proess order and is written as �;Pi �. If proess identity is not important thenproess order is denoted by ;P . In Figure 1, �;P1 �.If a read operation r(x)v reads the value written by the write operation w(x)v, then r(x)v is said toread-from w(x)v. An m-operation � reads-from a distint m-operation � the value of objet x, written as� ;rf �, if there exists at least one read operation of � that reads from some write operation of � thevalue of objet x. In Figure 1, �;rf Æ and � ;rf Æ.We assume that an imaginarym-operation that writes to all objets is performed to initialize the objetsbefore the �rst operation by any proess is exeuted. In all the examples onsidered in this paper, unlessspei�ed otherwise, we assume that initial value of all objets is 0.2.2 HistoriesInformally, an exeution of a onurrent system is modeled by a history, whih is a �nite sequene ofm-operation invoation and response events. Formally, a history H is denoted by a tuple hop(H);;Hi,where op(H) is the set of m-operations and ;H is some irreexive transitive relation de�ned on the set ofm-operations whih inludes the partial order imposed by proess orders and reads-from relation.3



P1

P
δ = r(y)2 r(z)3

2

P3
µ = r(v)1η 

β = r(u)0 w(v)1= r(x)0 w(y)2 w(z)2α 

process order reads-from

inv(η) resp(η )

= r(v)0 w(x)1 w(z)3

Figure 1: An exeution history H0A history S is sequential i� (1) its �rst event is an invoation event, (2) eah invoation event isimmediately followed by a mathing response event, and (3) ;S is a total order onsistent with the orderof m-operation invoation events.A proess subhistory or loal history of Pi of a historyH, denoted byHjPi, is the subsequene of all eventsin H assoiated with the proess Pi. A history is well-formed i� eah proess subhistory is sequential. Allhistories onsidered in this paper are assumed to be well-formed.Two histories H and G are equivalent i� for every proess Pi, HjPi = GjPi and they have the samereads-from relation.Intuitively, a read operation is legal if it does not read from an overwritten write operation. Note thatif there exists a write operation w(x)v before a read operation r(x)u in an m-operation (suh that w(x)vis the last write on x before r(x)u) then u must be equal to v. Similarly, if there exists a write operationw(x)v after a write operation w(x)u in an m-operation then no read operation of another m-operationan read from w(x)u. In the rest of the paper, we ignore suh read and write operations. Let op(op(x)v)denote the m-operation assoiated with the operation op(x)v. A read operation r(x)v is legal i� thereexists a write operation w(x)v suh that r(x)v reads from w(x)v and there does not exist another writeoperation w0(x)u suh that op(w(x)v) ;H op(w0(x)u) ;H op(r(x)v). An m-operation is legal i� all itsread operations are legal. A history H is legal i� all its m-operations are legal.A history H is admissible with respet to ;H i� it is equivalent to some legal sequential history thatrespets ;H. We will omit the phrase \with respet to ;H" if ;H is lear from the ontext.2.3 Consisteny ConditionsA onsisteny poliy makes the behavior of a onurrent system equivalent to that of a non-onurrentsystem. A onsisteny ondition provides guarantees about the values returned by data aesses in thepresene of interleaved and/or overlapping aesses. Sequential onsisteny and linearizability are two wellknown onsisteny onditions. We extend their de�nitions to inlude m-operations to give m-sequentialonsisteny and m-linearizability. Our de�nitions are based on the de�nition of admissibility with thepartial order ;H appropriately de�ned.Let pro(�) and objets(�) denote the proess and the set of objets respetively assoiated with anm-operation �. In Figure 1, pro(�) = P1 and objets(�) = fx; y; zg. The m-operations � and � arerelated by real-time order, denoted by �;t �, i� the response of � is reeived before the invoation of �,that is, resp(�) < inv(�). The m-operations � and � are related by objet order, denoted by �;X �, i�both the m-operations share an objet and the response of � is reeived before the invoation of �, thatis, (objets(�) \ objets(�) 6= �) ^ (resp(�) < inv(�)). In Figure 1, �;t �, � ;t � and � ;X �.4



m-Sequential onsisteny requires that all m-operations appear to have exeuted atomially, in some se-quential order that is onsistent with the order seen by individual proesses. A history ism-sequentially onsistent i� it is admissible with respet to proess orders and reads-from relation. Inother words, let H = hop(H);;Hi be an exeution history suh that ;H onsists of proess orders andreads-from relation. Then H is m-sequentially onsistent i� it is admissible with respet to ;H. Ifm-operations are restrited to a single read or write operation, then our de�nition redues to traditionalde�nition of sequential onsisteny.m-Linearizability requires that: (1) eah m-operation should appear to take e�et instantaneously some-where between its invoation and response, and (2) the order of non-overlapping m-operations should bepreserved. A history ism-linearizable i� it is admissible with respet to proess orders, reads-from relationand real-time order. Formally, let H = hop(H);;Hi be an exeution history suh that ;H onsists ofproess orders, reads-from relation and real-time order. Then H is m-linearizable i� it is admissible withrespet to ;H.Garg and Raynal [8℄ proposed another de�nition of onsisteny, namely normality, whih is based onobjet order rather than real-time order. We also extend their de�nition of normality to give m-normality.A history is m-normal i� it is admissible with respet to proess orders, reads-from relation and objetorder. In other words, let H = hop(H);;Hi be an exeution history suh that ;H onsists of proessorders, reads-from relation and objet order. Then H is m-normal i� it is admissible with respet to;H. m-Normality is less restritive than m-linearizability sine it does not order two non-overlappingm-operations unless they at on a ommon objet. The results of Setion 3 and Setion 4 also holdfor m-normality. Sine the protool for m-linearizability also implements m-normality, we will fous onm-linearizability in the rest of the paper.3 NP-ompleteness of Consisteny ConditionsIt has been shown that asertaining whether a given exeution is sequentially onsistent when the operationsare restrited to a single objet is an NP-omplete problem [23℄. Sine our model is a generalization of thetraditional DSM model, determining whether a given exeution ism-sequentially onsistent is NP-ompletetoo. Misra proved that heking whether an exeution satis�es atomi onsisteny is solvable in polynomialtime when reads-from relation is known [19℄. It turns out that this is not the ase when the operationsan enompass multiple objets. In this setion we show that determining whether a given exeution ism-linearizable is an NP-omplete problem even when reads-from relation is known. We will use the resultsin databases to prove the NP-ompleteness of m-linearizability.Muh work on databases uses serializability [21, 5℄ as the basi orretness ondition for onur-rent omputations. Several notions of equivalene suh as view equivalene, strit view equivalene, andonit equivalene are de�ned [21℄. If we restrit eah proess to ontain a single operation (one for eahtransation) then the notion of orretness in the database world an be viewed as speial ase of theonsisteny onditions in our model. For instane, view equivalene an be onsidered as a speial aseof m-sequential onsisteny; strit view equivalene an be viewed as a speial ase of m-linearizability,and onit equivalene an be onsidered as a speial ase of m-normality under OO-onstraint (de�nedlater). Sine determining whether a shedule is strit view serializable is an NP-omplete problem, heneheking whether a history is m-linearizable is also an NP-omplete problem. It should be noted thatheking for m-linearizability of history H is not same as heking for ayliity of ;H. In partiular,;Hmay be ayli but H may not be m-linearizable.Theorem 1 Let H be an exeution history. Then it is NP-omplete to determine whether H ism-sequentially onsistent. 5



Theorem 2 Let H be an exeution history. Then it is NP-omplete to determine whether H ism-linearizable.Proof: To prove that determining whether a history H is m-linearizable is NP-hard we redue strit viewserializability2 tom-linearizability. Let S = (trans(S);;S) be a shedule of transations in a database on-sisting of �nite set of entities E = fx1; x2; : : :g, where trans(S) denote the set of transations T1; T2; : : : ; Tn,and ;S represents the order of ations in the shedule. We onstrut a distributed system onsisting ofsequential proesses P0; P1; P2; : : : Pn; P1, one for eah transation in the augmented shedule3, and sharedobjets E. For eah ation in the shedule there is a orresponding operation. An operation ai reads fromoperation aj if the orresponding ation ai reads-from the orresponding ation aj in the shedule S. Eahproess Pi exeutes a single m-operation �i whose operations orrespond to the ations of the transationTi exeuted in the same order. The �rst and last ations of a transation de�ne the invoation and re-sponse events respetively of the orresponding m-operation. It is easy to see that two transations arenon-overlapping in the shedule S if and only if the orresponding m-operations are non-overlapping in H.The history H of the system is the history hop(H);;Hi where op(H) is the set of transations and ;Honsists of reads-from relation and real-time order.It an be easily proved that shedule S is strit view serializable if and only if the history H ism-linearizable. Moreover, it an be easily veri�ed that the problem is indeed in NP sine, given a se-quential history, we an easily hek that it is legal and equivalent to H.4 Consisteny Conditions with ConstraintsDue to Theorem 1 and Theorem 2 it is unlikely that there exists an eÆient algorithm that realizesm-sequential onsisteny (m-linearizability), that is, allows all m-sequentially onsistent (m-linearizable)histories and only these. Thus, as in onurreny ontrol protools [13℄, atual implementations need toenfore onstraints on exeutions. Mizuno et al [20℄ identi�ed two suh onstraints, namely WW -andOO-onstraints, for sequential onsisteny. We extend their work in two ways: we show that (1) theirresults extend to the ase when the operations an span multiple objets, and (2) similar results also holdfor m-linearizability. In the rest of the paper, we label the de�nitions by pre�x \D" and the properties bypre�x \P". Before proeeding further, we give some de�nitions we use in this setion.Let robjets(�) and wobjets(�) denote the objets read and written by � respetively. Note that afterexeution, the system knows the set of objets read and written by eah m-operation. An m-operation issaid to be an update m-operation i� it writes to some objet. An m-operation is a query m-operation i� itis not an update m-operation. Two distint operations are said to be oniting i� both at on the sameobjet and at least one of them is a write operation. Two distintm-operations are said to be oniting i�one of them ontains an operation that onits with some operation of the other. Let rfobjets(H; �; �)denote the set of objets that � reads from � in history H. The distint m-operations �, � and  aresaid to interfere in history H i�  writes to some objet that � reads from �. Note that if �, beta and interfere in H then they pairwise onit. In Figure 1, � onits with �, and m-operations Æ, � and �interfere. Formally,2A shedule S is strit view serializable if it is view equivalent to a serial shedule in whih transations that do not overlapin S are in the same order as in S.3a shedule augmented with an initial transation, T0, writing values to eah entity and a �nal transation, T1, readingvalues from eah entity. 6



(D 4.1) onflit(�; �) def= (� 6= �)^((objets(�) \ wobjets(�)) [ (objets(�) \ wobjets(�)) 6= �)(D 4.2) interfere(H; �; �; ) def= (�; � and  are distint operations)^(rfobjets(H; �; �) \ wobjets() 6= �)(P 4.1) interfere(H; �; �; )) onflit(�; �) ^ onflit(�; ) ^ onflit(; �)^(robjets(alpha) ^ wobjets(�) ^ wobjets() 6= �)The reads-from relation an be formally stated as follows,(D 4.3) � ;rf � def= h9 x : : x 2 rfobjets(H; �; �)iThe well-formedness of a history H an be represented as,(P 4.2) � ;p �) resp(�) < inv(�)A history G extends history H i� G is equivalent to H and ;G respets ;H. Note that if G extends Hthen G and H have idential set of interfering m-operations and \extends" is transitive. Formally,(D 4.4) extends(G;H) def= h8 i : 1 � i � n : HjPi = GjPii ^ (;Hrf=;Grf ) ^ (;H�;G)(P 4.3) extends(G;H)) h8 �; �;  2 op(G)(= op(H)) : :interfere(G; �; �; ) = interfere(H; �; �; )i(P 4.4) extends(F ;G) ^ extends(G;H)) extends(F ;H)The sequentiality, legality, and admissibility of a history an be de�ned using the above de�nitions asfollows,(D 4.5) sequential(H) def=;H is a total order(D 4.6) legal(H) def= h8 �; �;  2 op(H) : interfere(H; �; �; ) : :(� ;H ) _ :( ;H �)i(D 4.7) admissible(H) def= h9 S : extends(S;H) ^ sequential(S) : legal(S)iIntuitively, the onstraints impose additional ordering on the m-operations suh that it is eÆientlypossible to sequentialize a history to a legal one. In this paper, we fous on OO-and WW -onstraints.These onstraints are enfored by the underlying system by synhronizing ertain m-operations arossproesses. In WW -onstraint all update m-operations must be globally synhronized. If OO-onstraint isused, m-operations need to be synhronized only at eah objet level. However, m-operations that onlyread an objet must also be synhronized with other update m-operations on that objet. An alternateapproah is to impose onstraints on the program exeution (data rae free (DRF ) and onurrent writefree (CWF )) [3℄. The system an then provide weaker guarantees and have better performane. Theonus of enforing these onstraints then lies with the programmer whih makes appliation building morediÆult.A historyH satis�esWW -onstraint i� any pair ofm-operations performing write operations are orderedunder ;H. A history H satis�es OO-onstraint i� any pair of oniting m-operations are ordered under;H. We de�ne another another onstraint, namely WO-onstraint, whih is the intersetion of OO- and7



WW -onstraints. We use it to prove the results that are ommon to both OO- and WW -onstraints. Ahistory H satis�es WO-onstraint i� any pair of m-operations performing write operations on a ommonobjet are ordered under ;H. Formally,(D 4.8) OO(H) def= h8 �; � 2 op(H) : onflit(�; �) : (�;H �) _ (� ;H �)i(D 4.9) WW (H) def= h8 �; � 2 op(H) : (� 6= �) ^ (wobjets(�) 6= �) ^ (wobjets(�) 6= �) :(�;H �) _ (� ;H �)i(D 4.10) WO(H) def= h8 �; � 2 op(H) : (� 6= �) ^ (wobjets(�) \ wobjets(�) 6= �) :(�;H �) _ (� ;H �)i
P2

γ = w(x)1 = w(y)3δ

= r(x)0 w(y)2α 
P1

β = r(y)2

process order reads-from

WW-constraintFigure 2: An exeution history H1 under WW -onstraint
α = r(x)0 w(y)2 γ = w(x)1 = w(y)3δ β = r(y)2Figure 3: An extension of history H1 to a nonlegal history S1A history under WW -onstraint permits the m-operations, one of whih only reads from an objet andthe other writes on the same objet, to exeute onurrently. Simply extending the partial order ;Hto a total order may give sequential histories that are not legal. In Figure 2, the history H1 is underWW -onstraint. One of the possible extensions of ;H1 gives us the sequential history S1, as in Figure 3,whih is not legal. Therefore we de�ne a logial read-write preedene, denoted by;rw, between two suhm-operations whih are not ordered under ;H. Let H be an exeution history and let �, � and  bem-operations that interfere in H. Then � ;H  ) �;rw . Formally,(D 4.11) �;rwdef= h9 � : interfere(H; �; �; ) : � ;H iThe intuition is that in any legal sequential history equivalent to H,  has to our after �. We de�nean extended relation, denoted by ;+H, as,(D 4.12) ;+H= (;H [;rw)+The natural question now is whether the extended relation, ;+H, is still an irreexive partial order.Lemma 3 and Lemma 4 prove that legality is a suÆient ondition for ;+H to be irreexive if the historyis under OO- or WW -onstraint. 8



Lemma 3 Let H be a legal exeution history under OO-onstraint. Then ;+H is an irreexive transitiverelation.Proof: We �rst show that ;rw�;H. Consider m-operations �,  2 op(H) suh that �;rw . Then, bythe de�nition of ;rw, there exists an m-operation � suh that �, � and  interfere in H, and � ;H .Then, �;rw ) (�;rw ) ^ (� ;H ) ; D 4.11 (de�nition of ;rw)) onflit(�; ) ^ (� ;H ) ; P 4.1) ((�;H ) _ ( ;H �)) ^ (� ;H ) ; given H is under OO-onstraint, D 4.8� ((�;H ) ^ (� ;H )) _ (( ;H �) ^ (� ;H )) ; distributivity of ^ over _) (�;H ) _ ((� ;H ) ^ ( ;H �)) ; ommutativity of ^, prediate alulus) (�;H ) _ :legal(H) ; D 4.6 (de�nition of legality)) �;H  ; given H is legalThen, from D 4.12 we an onlude that ;+H =;H, and therefore ;+H is an irreexive and transitiverelation.Lemma 4 Let H be a legal exeution history under WW -onstraint. Then ;+H is an irreexive transitiverelation.Proof: We �rst prove that ;H [ ;rw is ayli. The proof is by indution on the number of pair ofm-operations, n, ordered by ;rw in a yle. Note that sine ;H is an irreexive transitive relation, anyyle onsists of at least one pair of m-operations ordered by ;rw.Base ase (n = 1): Any yle is of the form �;rw  ;H �. By de�nition of ;rw, there exists anm-operation � suh that �, � and  interfere in H. Then,(�;rw ) ^ ( ;H �)) (� ;H ) ^ ( ;H �) ; D 4.11 (de�nition of ;rw)� :(:(� ;H ) _ :( ;H �)) ; double negation, de morgan's law) :legal(H) ; D 4.6 (de�nition of legality)Hene H is not legal - a ontradition.Indution Step (n > 1): Let path(�; �) denote the fat that there is a path from � to � onsisting of a pairofm-operations ordered by;H or;rw. Let the yle be denoted by �;rw � ; � � �;  ;rw Æ ; � � �; �,where ; represents either ;H or ;rw. Then, 9



(�;rw �) ^ path(�; ) ^ ( ;rw Æ) ^ path(Æ; �)) (�;rw �) ^ path(�; ) ^ ( ;rw Æ) ^ path(Æ; �) ^ (wobjets(�) 6= �) ^ (wobjets(Æ) 6= �); D 4.11 (de�nition of ;rw), P 4.1) (�;rw �) ^ path(�; ) ^ ( ;rw Æ) ^ path(Æ; �) ^ (� ;H Æ) _ (Æ ;H �); given H is under WW -onstraint, D 4.9) ((�;rw �) ^ (� ;H Æ) ^ path(Æ; �)) _ (path(�; ) ^ ( ;rw Æ) ^ (Æ ;H �)); prediate alulus) :legal(H) ; indution hypothesisHene H is not legal - a ontradition.Thus, by indution we an onlude that ;H [ ;rw is ayli. Therefore ;+H= (;H [ ;rw)+ is anirreexive transitive relation.We now show that;+H an be extended to any total order to obtain a legal sequential history equivalentto the history H.Lemma 5 Let H be a legal exeution history under WO-onstraint. If ;+H is an irreexive transitiverelation then H is admissible.Proof: Let H+ denote the history hop(H);;+Hi. We �rst prove a stronger result that any extension of H+is legal if ;+H is an irreexive transitive relation and H is under WO-onstraint. Formally,(P 4.5) (;+H is an irreexive transitive relation) ^ extends(G;H+) ^WO(H)) legal(G)The proof is as follows. Consider m-operations �, �,  2 op(H) that interfere in H. Then,wobjets(�) \ wobjets() 6= � ; P 4.1) (� ;H ) _ ( ;H �) ; given H is under WO-onstraint, D 4.10) (�;rw ) _ ( ;H �) ; D 4.11 (de�nition of ;rw)) (�;G ) _ ( ;G �) ; ;G� (;H [;rw)) :( ;G �) _ :(� ;G ) ; ;G is an irreexive transitive relationThus, from D 4.6 we an onlude that G is legal. We now prove the lemma. Let us extend ;+H to anytotal order, say ;S , and denote the resulting history by S. Then,extends(S;H+) ^ sequential(S)) extends(S;H+) ^ sequential(S) ^ legal(S) ; given H is under WO-onstraint, P 4.5) extends(S;H) ^ sequential(S) ^ legal(S) ; extends(H+;H), P 4.4) h9 S : extends(S;H) ^ sequential(S) : legal(S)i ; prediate alulus� admissible(H) ; D 4.7 (de�nition of admissibility)10



Hene H is admissible.Lemma 3, Lemma 4 and Lemma 5 establish that legality is a suÆient ondition for a history underOO- or WW -onstraint to be admissible. Lemma 6 show that legality is also neessary for admissibility.Lemma 6 Let H be an exeution history. If H is admissible then it is legal.Proof: We �rst prove a stronger result that if any extension of H is legal then H is legal. Formally,(P 4.6) extends(G;H) ^ legal(G)) legal(H)The proof is as follows. Consider m-operations �, �,  2 op(G) that interfere in G. Then,:(� ;G ) _ :( ;G �) ; given G is legal, D 4.6) :(� ;H ) _ :( ;H �) ; ;G�;HHene, using P 4.3 we an infer that H is legal. We now prove the lemma.admissible(H) ; given H is admissible� h9 S : extends(S;H) ^ sequential(S) : legal(S)i ; D 4.7 (de�nition of admissibility)) legal(H) ; P 4.6Hene H is legal.The next theorem ombines the results of Lemma 3-6.Theorem 7 Let H be an exeution history under OO- or WW -onstraint. Then H is admissible if andonly if it is legal.Proof: From Lemma 3 and Lemma 5, we an infer that legality is suÆient for a history under OO-onstraint to be admissible. From Lemma 4 and Lemma 5, we an onlude that legality is also suÆientfor a history under WW -onstraint to be admissible. Lemma 6 implies that legality is neessary for aadmissibility. Thus, legality is both neessary and suÆient for a history under OO - or WW -onstraintto be admissible.The next setion illustrates how WW -onstraint an be used e�etively to implement m-sequentialonsisteny and m-linearizability in an asynhronous distributed system.5 Implementation of Consisteny ConditionsOur protools for implementing onsisteny onditions introdued in Setion 2.3 are based onWW -onstraint. The protools assume that proesses and hannels are reliable and a message sent iseventually reeived. However, the messages an get reordered. As disussed in Setion 4, to ensure thatthe exeution follows WW -onstraint the system need to synhronize all update m-operations. We useatomi broadast to ahieve our objetive. In general, the system may not know beforehand the set ofobjets an m-operation will aess during exeution. In fat, the set of objets read and written by an11



m-operation may atually depend on the values read during its exeution. We take a onservative approahand treat an m-operation as an update m-operation if it an potentially write to some objet.In our protools, eah proess keeps a loal opy of every shared objet. On reeiving an atomibroadast, the proess applies the m-operation to its loal opy. The legality of the read operations ofan update m-operation is maintained sine atomi broadast ensures that all proesses apply all updatem-operations in the same order. The algorithm for maintaining the legality of read operations of a querym-operation depends on the onsisteny ondition in onsideration.Before desribing the protools, we present the properties that the protools should satisfy to be orret.Let H = hop(H);;Hi be an exeution history and ;�H be an irreexive relation de�ned on op(H), where;H is the irreexive transitive losure of ;�H, suh that ;�H satis�es the properties,(P 5.1) (� ;�H �) ^ (wobjets(�) = �) ^ (wobjets(�) = �)) � ;t �(P 5.2) (wobjets(�) 6= �) ^ (wobjets(�) 6= �)) (�;�H �) _ (� ;�H �)We assoiate a timestamp with every m-operation. The timestamp is a vetor of integers with one entryfor every objet. Intuitively, it represents the version of an objet. Two timestamps are equal i� theirorresponding entries are idential. We order timestamps lexiographially. A timestamp ts is less than orequal to timestamp ts0, denoted by ts � ts0, i� every entry of ts is less than or equal to the orrespondingentry of ts0. A timestamp ts is less than timestamp ts0, denoted by ts � ts0, i� ts is less than or equal tots0 and they are not equal.Let ts(�) denote the timestamp assoiated with an m-operation �. Lemma 8 gives the properties of;�H and ts that ensure that the exeution is under WW -onstraint. The property P 5.3 states thatts is monotoni with respet to ;�H. The properties P 5.4 and P 5.2 imply that every write to anobjet establishes a new version for that objet. From property P 5.1 we an infer that ;�H ordersquery m-operations only when neessary. Lemma 9 states the additional properties needed to ensure thelegality of all m-operations. The properties P 5.7 and P 5.8 ensure that only a write an reate newversions.Lemma 8 If ;�H and ts satisfy the properties,(P 5.3) � ;�H �) ts(�) � ts(�)(P 5.4) (� ;�H �) ^ (x 2 wobjets(�)) ) ts(�)[x℄ < ts(�)[x℄then H is under WW -onstraint.Proof: It is easy to prove that properties P 5.3 and P 5.4 also hold for ;H. Formally,(P 5.5) � ;H �) ts(�) � ts(�)(P 5.6) (� ;H �) ^ (x 2 wobjets(�)) ) ts(�)[x℄ < ts(�)[x℄We �rst show that ;�H is ayli. Assume, on the ontrary, that ;�H ontains a yle, say C. Let op(C)denote the set of m-operations involved in C. Note that any yle ontains at least two m-operationssine ;�H is irreexive. Assume that �, � 2 op(C). There are two ases to onsider: op(C) ontains an12



update m-operation (h9  2 op(C) : : wobjets() 6= �i) or there are no update m-operations in op(C)(h8  2 op(C) : : wobjets() = �i).Case 1 [h9  2 op(C) : : wobjets() 6= �i℄: Without loss of generality, let � be the m-operation withwobjets(�) 6= �. Then,(�;H � ;H �) ^ (wobjets(�) 6= �) ; assumption� (�;H � ;H �) ^ h9 x : : x 2 wobjets(�)i ;) (ts(�) � ts(�) � ts(�)) ^ h9 x : : ts(�)[x℄ < ts(�)[x℄i ; P 5.5, P 5.6) ts(�) � ts(�) � ts(�) ;� false ; ontraditionCase 2 [h8  2 op(C) : : wobjets() = �i℄: Sine the yle C does not ontain any update m-operation,from P 5.1 we an onlude that the yle will have all the pair ofm-operations ordered by;t. Furthermore,sine ;t is a transitive relation therefore �;t �. Thus resp(�) < inv(�) - a ontradition.Therefore ;�H is ayli and hene ;H is an irreexive transitive relation. Thus, H is indeed a validexeution history. Furthermore, using P 5.2 we an infer that H is under WW -onstraint.Lemma 9 If ts satis�es P 5.5, P 5.6 and the properties,(P 5.7) (x 2 rfobjets(H; �; �)) ^ (x 62 wobjets(�)) ) ts(�)[x℄ = ts(�)[x℄(P 5.8) (x 2 rfobjets(H; �; �)) ^ (x 2 wobjets(�)) ) ts(�)[x℄ = ts(�)[x℄� 1then H is legal.Proof: Consider m-operations �, �,  2 op(H) and let x denote a shared objet. We �rst prove that if �,�,  interfere in H on an objet x then  annot be ordered between � and �. Formally,(P 5.9) (x 2 rfobjets(H; �; �)) ^ (x 2 wobjets()) ^ (� ;H  ;H �)) falseThere are two ases to onsider: � does not write to x (x 62 wobjets(�)) or � writes to x (x 2 wobjets(�)).Case 1 [x 62 wobjets(�)℄:(x 2 rfobjets(H; �; �)) ^ (x 2 wobjets()) ^ (x 62 wobjets(�)) ^ (� ;H  ;H �)) (ts(�)[x℄ = ts(�)[x℄) ^ (ts(�)[x℄ < ts()[x℄ � ts(�)[x℄); P 5.7, P 5.5, P 5.6) ts(�)[x℄ < ts(�)[x℄ ;� false ; ontraditionCase 2 [x 2 wobjets(�))℄: 13



(x 2 rfobjets(H; �; �)) ^ (x 2 wobjets()) ^ (x 2 wobjets(�)) ^ (� ;H  ;H �)) (ts(�)[x℄ = ts(�)[x℄� 1) ^ (ts(�)[x℄ < ts()[x℄ < ts(�)[x℄); P 5.8, P 5.5, P 5.6) ts(�)[x℄ < ts()[x℄ < ts(�)[x℄ + 1 ;) ts(�)[x℄ < ts(�)[x℄ ;� false ; ontraditionTherefore, h9 x : : (x 2 rfobjets(H; �; �)) ^ (x 2 wobjets())i ^ (� ;H  ;H �)) false; onjuntion of P 5.9 over all x� interfere(H; �; �; ) ^ (� ;H  ;H �)) false ; D 4.2� interfere(H; �; �; )) :(� ;H ) _ :( ;H �) ; prediate alulusHene we an onlude from D 4.6 that H is legal.We ombine the results of Lemma 8 and Lemma 9 in Theorem 10Theorem 10 If ;�H and ts satisfy the properties P 5.1-5.4 and P 5.7-5.8 then H is admissible.Proof: Sine ;�H and ts satisfy the properties P 5.1-5.4 therefore from Lemma 8 we an infer that H isunderWW -onstraint. Furthermore, sine;�H and ts also satisfy the properties P 5.7 and P 5.8 thereforefrom Lemma 9 we an onlude that H is legal. Finally, using Theorem 7 we an onlude that H isadmissible.5.1 Implementation of m-Sequential ConsistenyOur protool for m-sequential onsisteny is an extension of Welh and Attiya's protool [4℄. It onsistsof three ations, eah of whih is performed loally and atomially. When a proess issues an updatem-operation, it atomially broadasts it to all proesses (A1). On reeiving atomi broadast of anm-operation, the proess applies it to its loal opy of the shared objets (A2). On the other hand, aquery m-operation simply reads from the loal opy of its issuing proess (A3). The protool is formallydesribed in Figure 4. The statements in urly braes are not part of the protool but are merely used toestablish its orretness. Before proving the orretness of the protool we give some de�nitions.Let H be an exeution generated by the protool in Figure 4. Let e be an event of proess Pk. We de�nethe timestamp, ts, assoiated with an event as,ts(e) def= ts of Pk on ourene of eLet e and f be the events on the same proess. Sine ts of any proess never dereases,(P 5.10) e < f ) ts(e) � ts(f) (monotoniity)14



Pi ::varX : array of shared objets, initially ?fts : array[1..jX j℄ of integer, initially 0g(A1) On invoation of an m-operation � suh that potentially wobjets(�) 6= �;atomially broadast � to all proesses;(A2) On reeiving atomi broadast of � from Pk;apply � to X;f8 x : x 2 wobjets(�) : ts[x℄ + +gif pro(�) = Pi thengenerate response for �;endif;(A3) On invoation of an m-operation � suh that wobjets(�) = �;apply � to X;generate response for �;Figure 4: Implementation of m-Sequential ConsistenyIn the disussion that follows, onsider distint m-operations �, � 2 op(H). Let Pi denote the proessthat issued � and Pk be any proess. Let x denote a shared objet and abast(�) denote the fat that �was atomially broadast in the exeution. Furthermore, any property P (k) involving Pk atually impliesh8 k : 1 � k � n : P (k)i. In addition to inv(�) and resp(�) events, we de�ne start(k; �) and finish(k; �)events for an m-operation � and proess Pk. If � is atomially broadast then start(k; �) and finish(k; �)are de�ned for every proess, otherwise they are only de�ned for the proess that issued �.inv(�) def= � if abast(�) then start event of ation (A1) at Pi for �else start event of ation (A3) at Pi for �resp(�) def= � if abast(�) then �nish event of ation (A2) at Pi for �else �nish event of ation (A3) at Pi for �start(k; �) def= � if abast(�) then start event of ation (A2) at Pk for �else if Pk = Pi then start event of ation (A3) at Pk for �finish(k; �) def= � if abast(�) then �nish event of ation (A2) at Pk for �else if Pk = Pi then �nish event of ation (A3) at Pk for �Figure 5 illustrates the working of the protool and labels the various events de�ned before. It an beeasily veri�ed from the protool that the following property is true.(P 5.11) inv(�) � start(i; �) < finish(i; �) � resp(�)Let ;ww denote the order in whih update m-operations are atomially broadast. Then,15
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atomic broadcastFigure 5: An example exeution of the protool in Figure 4(P 5.12) wobjets(�) 6= �) abast(�)(P 5.13) (wobjets(�) 6= �) ^ (wobjets(�) 6= �) � (� ;ww �) _ (�;ww �)(P 5.14) � ;ww �) start(k; �) < start(k; �)Note that ts of any proess is updated only in ation (A2), and any two m-operations that are atomiallybroadast are exeuted in the same order by all proesses. Therefore the timestamps of \start" and \�nish"events, if � is atomially broadast, are respetively idential for all proesses. Formally,(P 5.15) abast(�)) (ts(start(i; �)) = ts(start(k; �))) ^ (ts(finish(i; �)) = ts(finish(k; �)))We an use this property to abbreviate ts(start(k; �)) and ts(finish(k; �)) as ts(start(�)) andts(finish(�)) respetively when � is atomially broadast. Furthermore, when � is not atomially broad-ast we use ts(start(�)) and ts(finish(�)) as a shorthand for ts(start(i; �)) and ts(finish(i; �)) respe-tively.Intuitively, � reads from � the value of objet x if no other operation writes to x after � has writtento x and before � reads from x. In other words, � reads the version of x written by �. We an use thetimestamp ts to apture this notion. The value of ts at the \start" event of � aptures the version of theobjets read by �. Moreover, if � writes to an objet the version of that objet in ts is inremented by1. Thus, the value of ts at the \�nish" event gives the new version of the written objets. Formally, thereads-from relation ;rf an be de�ned using D 4.3 as follows,(D 5.1) x 2 rfobjets(H; �; �) def= (x 2 robjets(�)) ^ (x 2 wobjets(�))^(ts(finish(�))[x℄ = ts(start(�))[x℄)16



Sine after appliation of � in ation (A2) the omponents of ts for whih � performs a write areinremented by one, therefore,(P 5.16) x 62 wobjets(�) ) ts(start(�))[x℄ = ts(finish(�))[x℄(P 5.17) x 2 wobjets(�) ) ts(start(�))[x℄ = ts(finish(�))[x℄� 1We de�ne the timestamp, ts, assoiated with an m-operation � as follows,(D 5.2) ts(�) def= ts(finish(�))We de�ne ;�H as,(D 5.3) ;�Hdef=;P [;rf [;wwNow we prove that the protool in Figure 4 implements m-sequential onsisteny. Let H be anexeution history generated by the protool. For the proofs that follow onsider distint m-operations�, � 2 op(H) . Let pro(�) = Pi and x be a shared objet.Lemma 11 If � ;�H � then finish(i; �) is de�ned. Furthermore, finish(i; �) < start(i; �).Proof: Intuitively, the lemma says that if � is ordered before � then � is applied to Pi's loal opy before�. There are three ases to onsider: � ;P � or � ;rf � or � ;ww �.Case 1 [� ;P �℄: finish(i; �) is de�ned sine pro(�) = pro(�) = Pi.� ;P �) resp(�) < inv(�) ; P 4.2 (well-formedness of history)) finish(i; �) < start(i; �) ; P 5.11, pro(�) = PiCase 2 [� ;rf �℄: Using D 4.3 and D 5.1, we an infer that wobjets(�) 6= �. From P 5.12, wean onlude that � is atomially broadast and hene finish(i; �) is de�ned. Without loss of generality,assume x 2 rfobjets(H; �; �). Therefore x 2 wobjets(�).start(i; �) < finish(i; �) ; assumption) start(i; �) < start(i; �) < finish(i; �) ; atomiity of ations) ts(start(�)) � ts(start(�)) � ts(finish(�)) ; P 5.10 (montoniity of ts)) (ts(start(�)) � ts(start(�)) � ts(finish(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); P 5.17 (� writes to x)) ts(start(i)�)[x℄ < ts(finish(i)�)[x℄) ; simpli�ation) (ts(start(�))[x℄ < ts(finish(�))) ^ (ts(finish(�))[x℄ = ts(start(�))[x℄)17



; D 5.1 (� reads the value of x from �)� false ; ontraditionThus, we an onlude that finish(i; �) < start(i; �).Case 3 [� ;ww �℄: From P 5.13, we an infer that wobjets(�) 6= �. Therefore as disussed in previousase finish(i; �) is de�ned.� ;ww �) start(i; �) < start(i; �) ; P 5.14 (� is reeived before � at Pi)) finish(i; �) < start(i; �) ; atomiity of ationsHene if � ;�H � then finish(i; �) is de�ned and finish(i; �) < start(i; �).Lemma 12 The protool in Figure 4 satis�es P 5.1 and P 5.2.Proof: The proof of property P 5.1 is as follows,(� ;�H �) ^ (wobjets(�) = �) ^ (wobjets(�) = �)) ((� ;P �) _ (� ;rf �) _ (� ;ww �)) ^ (wobjets(�) = �); D 5.3 (de�nition of ;�H)) ((� ;P �) _ (wobjets(�) 6= �) _ (wobjets(�) 6= �)) ^ (wobjets(�) = �); D 5.1, de�nition of ;ww) � ;P � ; distribution of ^ over _, ontradition) � ;t � ; P 4.2 (well-formedness of history)The property P 5.2 an be proved as follows,(wobjets(�) 6= �) ^ (wobjets(�) 6= �)� (�;ww �) _ (� ;ww �) ; P 5.13) (�;�H �) _ (� ;�H �) ; D 5.3 (;�H ontains ;ww)Hene P 5.1 and P 5.2 are satis�ed by the protool in Figure 4.Lemma 13 The protool in Figure 4 satis�es P 5.3 and P 5.4.Proof: The property P 5.3 an be proved as follows,18



� ;�H �) finish(i; �) < start(i; �) ; Lemma 11 (� is applied before � at Pi)) finish(i; �) < start(i; �) < finish(i; �) ;) ts(finish(�)) � ts(finish(�)) ; P 5.10 (montoniity of ts)� ts(�) � ts(�) ; D 5.2The proof of property P 5.4 is as follows,(� ;�H �) ^ (x 2 wobjets(�))) (finish(i; �) < start(i; �)) ^ (x 2 wobjets(�)) ; Lemma 11 (� is applied before � at Pi)) (ts(finish(�)) � ts(start(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); P 5.10 (montoniity of ts), P 5.17) ts(finish(�))[x℄ � ts(start(�))[x℄ < ts(finish(�))[x℄) ; simpli�ation� ts(�)[x℄ < ts(�)[x℄ ; D 5.2Hene P 5.3 and P 5.4 are satis�ed by the protool in Figure 4.Lemma 14 The protool in Figure 4 satis�es P 5.7 and P 5.8.Proof: The proof of property P 5.7 is as follows,(x 2 rfobjets(H; �; �)) ^ (x 62 wobjets(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 62 wobjets(�)); D 5.1 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄); P 5.16 (� does not write to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄ ; simpli�ation� ts(�)[x℄ = ts(�)[x℄ ; D 5.2The property P 5.8 an be proved as follows,(x 2 rfobjets(H; �; �)) ^ (x 2 wobjets(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 2 wobjets(�)); D 5.1 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄ � 1)19



; P 5.17 (� writes to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄� 1 ; simpli�ation� ts(�)[x℄ = ts(�)[x℄� 1 ; D 5.2Hene P 5.7 and P 5.8 are satis�ed by the protool in Figure 4.Theorem 15 All the exeutions generated by the protool in Figure 4 are m-sequentially onsistent.Proof: From Lemma 12-14, we an onlude that the protool in Figure 4 satisfy properties P 5.1-5.4 andP 5.7-5.8. Therefore, from Theorem 10, we an infer that all the exeutions generated by the protool inFigure 4 are m-sequentially onsistent.5.2 Implementation of m-LinearizabilityOur protool for m-linearizability onsists of six ations, eah of whih is performed loally and atomially.The ations on invoation of an updatem-operations are idential to those in the protool for m-sequentialonsisteny (A1 and A2). But to ensure that a query m-operation does not read a stale value, theproess sends a \query" message to all proesses asking them for their opy of the shared objets andthe assoiated timestamps (A3). On reeiving a \query" message the proess sends its loal opy alongwith the timestamps to the requesting proess (A4). The requesting proess then onstruts a opy ofthe shared objets from the information reeived seleting the most reent version for all objets (A5).Finally, when responses from all proesses have been reeived the query m-operation reads from the opyonstruted (A6). The protool is formally desribed in Figure 6. Again as in Setion 5.1, before provingthe orretness of the protool we give some de�nitions.Let H be an exeution generated by the protool in Figure 6. Let e be an event of proess Pk. We de�nethe timestamps, myts and othts, assoiated with an event as,myts(e) def= myts of Pk on ourene of eothts(e) def= othts of Pk on ourene of eLet e and f be the events on the same proess. Sine myts of any proess never dereases,(P 5.18) e < f ) myts(e) � myts(f) (monotoniity)In the disussion that follows, onsider distint m-operations �, � 2 op(H). Let Pi denote the proessthat issued � and Pk be any proess. Let x denote a shared objet and abast(�) denote the fat that� was atomially broadast in the exeution. Moreover, any property P (k) involving Pk atually impliesh8 k : 1 � k � n : P (k)i. In addition to inv(�) and resp(�) events, we de�ne start(k; �) and finish(k; �)events for an m-operation � and proess Pk as in Setion 5.1. If � is atomially broadast then start(k; �)and finish(k; �) are de�ned for every proess, otherwise they are only de�ned for the proess that issued�. 20



Pi ::varmyX, othX : array of shared objets, initially ?;myts, othts : array[1..jX j℄ of integer, initially 0;(A1) On invoation of an m-operation � suh that potentially wobjets(�) 6= �;atomially broadast � to all proesses;(A2) On reeiving atomi broadast of � from Pk;apply � to myX;8 x : x 2 wobjets(�) : myts[x℄ + +;if pro(�) = Pi thengenerate response for �;endif;(A3) On invoation of an m-operation � suh that wobjets(�) = �;othts := 0;send \query" to all proesses;(A4) On reeiving a \query" for � from Pk;send hmyX;mytsi to Pk;(A5) On reeiving \query response", hX; tsi, from Pk;if (othts � ts) then hothX; othtsi := hX; tsi;(A6) If all the responses for the \query" of � have been reeived thenapply � to othX;generate response for �;Figure 6: Implementation of m-Linearizabilityinv(�) def= � if abast(�) then start event of ation (A1) at Pi for �else start event of ation (A3) at Pi for �resp(�) def= � if abast(�) then �nish event of ation (A2) at Pi for �else �nish event of ation (A6) at Pi for �start(k; �) def= � if abast(�) then start event of ation (A2) at Pk for �else if Pk = Pi then start event of ation (A6) at Pk for �finish(k; �) def= � if abast(�) then �nish event of ation (A2) at Pk for �else if Pk = Pi then �nish event of ation (A6) at Pk for �In addition, we also de�ne a query(k; �) for every proess when � is not atomially broadast as follows,query(k; �) def= if :abast(�) then start event of ation (A4) at Pk for �It an be easily veri�ed from the protool that the following property is true.21
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Figure 7: An example exeution of the protool in Figure 6(P 5.19) inv(�) � start(i; �) < finish(i; �) � resp(�)A \query" for an m-operation is sent only after its invoation and the issuing proess generates theresponse event only after it has reeived response for its \query" from all the proesses. Therefore,(P 5.20) :abast(�)) inv(�) < query(k; �) < resp(�)Similarly, sine an m-operation is atomially broadast only after its invoation therefore,(P 5.21) abast(�)) inv(�) < start(k; �)Let ;ww denote the order in whih update m-operations are atomially broadast. Then,(P 5.22) wobjets(�) 6= �) abast(�)(P 5.23) (wobjets(�) 6= �) ^ (wobjets(�) 6= �) � (� ;ww �) _ (�;ww �)(P 5.24) � ;ww �) start(k; �) < start(k; �)Note that myts of any proess is updated only in ation (A2), and any two m-operations that areatomially broadast are exeuted in the same order by all proesses. Therefore the timestamps, myts,of \start" and \�nish" events, if � is atomially broadast, are respetively idential for all proesses.Formally, 22



(P 5.25) abast(�)) (myts(start(i; �)) = myts(start(k; �)))^(myts(finish(i; �)) = myts(finish(k; �)))We an use this property to abbreviate myts(start(k; �)) and myts(finish(k; �)) as myts(start(�))and myts(finish(�)) respetively when � is atomially broadast. Furthermore, when � is not atom-ially broadast we use othts(start(�)) and othts(finish(�)) as a shorthand for othts(start(i; �)) andothts(finish(i; �)) respetively. Note that ation (A6) for � is exeuted only after responses for its \query"from all the proesses have been reeived and as soon as a response is reeived othts is assigned the maxi-mum of othts and the timestamp in the \query" response (ation (A5)). Therefore,(P 5.26) :abast(�)) (othts(start(�)) = othts(finish(�)) = max1�k�nfmyts(query(k; �))g)Intuitively, if � is not atomially broadast then the value of othts at the \start" event of � gives theversion of the objets read by �. Similarly, if � is atomially broadast then the value of myts at the\start" event of � aptures the version of objets read by � and its value at the \�nish" event gives thenew version of the written objets. Thus, we de�ne the timestamp ts assoiated with the \start" and\�nish" events of an m-operation � as follows,(D 5.4) ts(start(�)) def= � if abast(�) then myts(start(�))else othts(start(�))(D 5.5) ts(finish(�)) def= � if abast(�) then myts(finish(�))else othts(finish(�))The reads-from relation ;rf an be de�ned identially to D 5.1 as follows,(D 5.6) x 2 rfobjets(H; �; �) def= (x 2 robjets(�)) ^ (x 2 wobjets(�))^(ts(finish(�))[x℄ = ts(start(�))[x℄)Sine after appliation of � in ation (A2) the omponents of myts for whih � performs a write areinremented by one and othts is not modei�ed in (A6), therefore,(P 5.27) x 62 wobjets(�) ) ts(start(�))[x℄ = ts(finish(�))[x℄(P 5.28) x 2 wobjets(�) ) ts(start(�))[x℄ = ts(finish(�))[x℄� 1We de�ne the timestamp assoiated with an m-operation � as follows,(D 5.7) ts(�) def= ts(finish(�))Sine ;P �;t, we de�ne ;�H as,(D 5.8) ;�Hdef=;rf [;t [;wwNow we prove that the protool in Figure 6 implements m-linearizability. Let H be an exeution historygenerated by the protool. For the proofs that follow onsider distint m-operations �, � 2 op(H) . Letpro(�) = Pi and pro(�) = Pj , and let x denote a shared objet.Lemma 16 If � ;�H � then ts(finish(�)) � ts(start(�)).23



Proof: This lemma is weaker than Lemma 16 in Setion 5.1 for m-sequential onsisteny. Again, thereare three ases to onsider: � ;rf � or � ;t � or � ;ww �.Case 1 [� ;rf �℄: Using D 4.3 and D 5.6, we an infer that wobjets(�) 6= �. From P 5.22, wean onlude that � is atomially broadast. Without loss of generality, assume x 2 rfobjets(H; �; �).Therefore x 2 wobjets(�). There are two subases to onsider depending on whether � is atomiallybroadast.Case 1.1 [:abast(�)℄:h8 k :: query(k; �) < start(k; �) < finish(k; �)i ; assumption) h8 k :: myts(query(k; �)) � myts(start(�)) � myts(finish(�))i; P 5.18 (monotoniity of myts)) max1�k�nfmyts(query(k; �))g � myts(start(�)) � myts(finish(�))) othts(start(�)) � myts(start(�)) � myts(finish(�)) ; P 5.26, P 5.18 (montoniity of myts)) (ts(start(�)) � ts(start(�)) � ts(finish(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); D 5.4, D 5.5, P 5.28 (� writes to x)) (ts(start(�))[x℄ < ts(finish(�))[x℄) ^ (ts(finish(�))[x℄ = ts(start(�))[x℄); D 5.6 (� reads from � the value of x)� false ; ontraditionTherefore,h9 k :: start(k; �) < finish(k; �) < query(k; �)i ; atomiity of ations) h9 k :: myts(finish(�)) � myts(query(k; �))i ; P 5.18 (monotoniity of myts)) myts(finish(�)) � max1�k�nfmyts(query(k; �))g = othts(start(�)); P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 1.2 [abast(�)℄:start(i; �) < finish(i; �) ; assumption) start(i; �) < start(i; �) < finish(i; �) ; atomiity of ations) myts(start(�)) � myts(start(�)) � myts(finish(�)) ; P 5.18 (monotoniity of myts)) (ts(start(�)) � ts(start(�)) � ts(finish(�))) ^ (ts(start(�))[x℄ < ts(finish�)[x℄); D 5.4, D 5.5, P 5.28 (� writes to x)24



) (ts(start(�))[x℄ < ts(finish(beta))[x℄) ^ (ts(finish(�))[x℄ = ts(start(�))[x℄); D 5.6 (� reads the value of x from �)� false ; ontraditionTherefore,finish(i; �) < start(i; �)) myts(finish(�)) � myts(start(�)) ; P 5.18 (monotoniity of myts)� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 2 [� ;t �℄: From the de�nition of ;t, we an infer that resp(�) < inv(�). There are foursubases to onsider depending on whether � and � are atomially broadast.Case 2.1 [:abast(�) ^ :abast(�)℄:resp(�) < inv(�)) h8 k :: query(k; �) < query(k; �)i ; P 5.20) h8 k :: myts(query(k; �)) � myts(query(k; �))i ; P 5.18 (monotoniity of myts)) max1�k�nfmyts(query(k; �))g � max1�k�nfmyts(query(k; �))g) othts(finish(�)) � othts(start(�)) ; P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 2.2 [abast(�) ^ :abast(�)℄:resp(�) < inv(�)) finish(j; �) < query(j; �) ; P 5.19, P 5.20) myts(finish(�)) � myts(query(j; �)) ; P 5.18 (monotoniity of myts)) myts(finish(�)) � max1�k�nfmyts(query(k; �))g = othts(start(�)); P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 2.3 [:abast(�) ^ abast(�)℄:resp(�) < inv(�)) h8 k :: query(k; �) < start(k; �)i ; P 5.20, P 5.2125



) h8 k :: myts(query(k; �)) < myts(start(�))i ; P 5.18 (monotoniity of myts)) max1�k�nfmyts(query(k; �))g �myts(start(�)) ;) othts(finish(�)) � myts(start(�)) ; P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4 , D 5.5Case 2.4 [abast(�) ^ abast(�)℄:resp(�) < inv(�)) finish(j; �) < start(j; �) ; P 5.19, P 5.21) myts(finish(�)) � myts(start(�)) ; P 5.18 (monotoniity of myts)� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 3 [� ;ww �℄: Using P 5.23 and P 5.22, we an infer that both � and � are atomially broadast.� ;ww �) start(i; �) < start(i; �) ; P 5.24 (� is reeived before � at Pi)) finish(i; �) < start(i; �) ; atomiity of ations) myts(finish(�)) � myts(start(�)) ; P 5.18 (monotoniity of myts)� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Hene if � ;�H � then ts(finish(�)) < ts(start(�)).Lemma 17 The protool in Figure 6 satis�es P 5.1 and P 5.2.Proof: The proof of property P 5.1 is as follows,(� ;�H �) ^ (wobjets(�) = �) ^ (wobjets(�) = �)) ((� ;rf �) _ (� ;t �) _ (� ;ww �)) ^ (wobjets(�) = �); D 5.8 (de�nition of ;�H)) ((wobjets(�) 6= �) _ (� ;t �) _ (wobjets(�) 6= �)) ^ (wobjets(�) = �); D 5.6, de�nition of ;ww) � ;t � ; distribution of ^ over _, ontraditionThe property P 5.2 an be proved as follows, 26



(wobjets(�) 6= �) ^ (wobjets(�) 6= �)� (�;ww �) _ (� ;ww �) ; P 5.23) (�;�H �) _ (� ;�H �) ; D 5.8 (;�H ontains ;ww)Hene P 5.1 and P 5.2 are satis�ed by the protool in Figure 6.Lemma 18 The protool in Figure 6 satis�es P 5.3 and P 5.4.Proof: The property P 5.3 an be proved as follows,� ;�H �) ts(finish(�)) � ts(start(�)) ; Lemma 16) ts(finish(�)) � ts(start(�)) � ts(finish(�)) ; onjuntion of P 5.27 and P 5.28) ts(finish(�)) � ts(finish(�)) ; simpli�ation� ts(�) � ts(�) ; D 5.7The proof of property P 5.4 is as follows,(� ;�H �) ^ (x 2 wobjets(�))) (ts(finish(�)) � ts(start(�))) ^ (x 2 wobjets(�)) ; Lemma 16) (ts(finish(�)) � ts(start(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); P 5.28 (� writes to x)) ts(finish(�))[x℄ � ts(start(�))[x℄ < ts(finish(�))[x℄) ; simpli�ation� ts(�)[x℄ < ts(�)[x℄ ; D 5.7Hene P 5.3 and P 5.4 are satis�ed by the protool in Figure 6.Lemma 19 The protool in Figure 6 satis�es P 5.7 and P 5.8.Proof: The proof of property P 5.7 is as follows,(x 2 rfobjets(H; �; �)) ^ (x 62 wobjets(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 62 wobjets(�)); D 5.6 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄); P 5.27 (� does not write to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄ ; simpli�ation� ts(�)[x℄ = ts(�)[x℄ ; D 5.727



The property P 5.8 an be proved as follows,(x 2 rfobjets(H; �; �)) ^ (x 2 wobjets(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 2 wobjets(�)); D 5.6 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄ � 1); P 5.28 (� writes to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄� 1 ; simpli�ation� ts(�)[x℄ = ts(�)[x℄� 1 ; D 5.7Hene P 5.7 and P 5.8 are satis�ed by the protool in Figure 6.Theorem 20 All the exeutions generated by the protool in Figure 6 are m-linearizable.Proof: From Lemma 17-19, we an onlude that the protool in Figure 6 satisfy properties P 5.1-5.4 andP 5.7-5.8. Therefore, from Theorem 10, we an infer that all the exeutions generated by the protool inFigure 6 are m-linearizable.Although in this protool a proess sends the whole opy of shared objets along with their timestampsin response to the \query", but it is easy to verify that the protool is still orret if only the relevantopies of the shared objets (objets(:)) and their timestamp is sent.6 ConlusionWe extend the traditional model of onurrent objets to allow operations that span multiple objets.We give the onsisteny onditions in this model, analyze their veri�ation omplexity and give eÆientalgorithms for ensuring them in distributed systems.Referenes[1℄ Sarita V. Adve and K. Gharahorloo. \Shared Memory Consisteny Models: A Tutorial". IEEEComputer, pages 66{76, Deember 1996.[2℄ Y. Afek, G. Brown, and M. Merritt. \Lazy Cahing". ACM Transations on Programming Languageand Systems, 15(1):182{205, January 1993.[3℄ Mustaque Ahamad, PhillipW. Hutto, and Ranjit John. \Causal memory: De�nitions, Implementationand Programming". Tehnial Report 93/55, College of Computing, Georgia Institute of Tehnology,September 1993.[4℄ Hagit Attiya and Jennifer L. Welh. \Sequential Consisteny versus Linearizability". ACM Transa-tions on Computer Systems, 12(2):91{122, May 1994.28



[5℄ P. Bernstein, V. Hadzilaos, and N. Goodman. \Conurreny Control and Reovery in DatabaseSystems". Addison-Wesley, Reading, MA, 1987.[6℄ Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H. Ran-dall. \Dag-Consistent Distributed Shared Memory". In Proeedings of the 10th International ParallelProessing Symposium (IPPS), pages 132{141, April 15-19, 1996.[7℄ C. J. Fidge. \Logial Time in Distributed Computing Systems". IEEE Computer, 24(8):28{33, 1991.[8℄ Vijay K. Garg and Mihel Raynal. \Normality: A Consisteny Conditions for Conurrent Objets".Tehnial Report TR-PDS-1996-010, The University of Texas at Austin, May 1996. To appear inParallel Proessing Letters.[9℄ K. Gharahorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. \Memory Consis-teny and Event Ordering in Salable Shared-Memory Multiproessors". In Proeedings of the 17thAnnual International Symposium on Computer Arhiteture, pages 15{26, May 1990.[10℄ Mihael Greenwald and David Cheriton. \The Synergy Between Non-bloking Synhronization andOperating System Struture". In Proeedings of the Seond Symposium on Operating System Designand Implementation, pages 123{136, USENIX, Seattle, Otober 1996.[11℄ Maurie Herlihy. \Wait-Free Synhronization". ACM Transations on Programming Language andSystems, 11(1):124{149, January 1991.[12℄ Maurie P. Herlihy and Jeannette M. Wing. \Linearizability: A orretness ondition for onurrentobjets". ACM Transations on Programming Language and Systems, 12(3):463{492, July 1990.[13℄ T. Ibaraki, T. Kameda, and T. Minoura. \Serializability with Constraints". ACM Transations onDatabase Systems, 12(3):429{452, 1987.[14℄ P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. \Treadmarks: Distributed Shared Mem-ory on Standard Workstations and operating systems". In Proeedings of the 1994 Winter UsenixConferene, pages 115{132, January 1994.[15℄ Leslie Lamport. \How to make a multiproessor omputer that orretly exeutes multiproess pro-grams". IEEE Transations on Computers, C28(9):690{691, September 1979.[16℄ Rihard J. Lipton and Jonathan S. Sandberg. \PRAM: A salable shared memory". Tehnial Report180-88, Department of Computer Siene, Prineton University, September 1988.[17℄ Friedemann Mattern. \Virtual time and global states of distributed systems". International Workshopon Parallel and Distributed Algorithms, pages 215{226, Otober 1988.[18℄ Marios Mavroniolas and Dan Roth. \Sequential Consisteny and Linearizability: Read/Write ob-jets". In Proeedings of Twenty-Ninth Annual Allerton Conferene on Communiation, Control andComputing, pages 683{692, Otober 1991.[19℄ Jayadev Misra. \Axioms for memory aess in asynhronous hardware systems". ACM Transationson Programming Language and Systems, 8(1):142{153, January 1986.
29



[20℄ M. Mizuno, M. Raynal, and J.Z. Zhou. \Sequential Consisteny in Distributed Systems". In K. Bir-man, F. Mattern, and A. Shiper, editors, Proeedings of International Workshop on \Theory andPratie in Distributed Systems", Springer-Verlag LNCS 938, pages 227{241, Dagstuhl, Germany,1994.[21℄ C. H. Papadimitriou. \The Theory of Conurreny Control". Computer Siene Press, May 1986.[22℄ M. Raynal, G. Thia-Kime, and M. Ahamad. \From Serializable to Causal Transations for Collabo-rative Appliations". Tehnial Report 983, Irisa - Rennes, February 1996. 22 pages.[23℄ Rihard N. Taylor. \Complexity of Analyzing the Synhronization Struture of Conurrent Programs".Ata Informatia, 19:57{84, 1983.

30


