Consistency Conditions for Multi-Object Distributed Operations

Neeraj Mittal and Vijay K. Garg

TR-PDS-1998-005 June 1998

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering
University of Texas at Austin
Austin, Texas 78712

Consistency Conditions for Multi-Object Distributed Operations

Neeraj Mittal * Vijay K. Garg |
neerajm@cs.utexas.edu gargQece.utexas.edu
Dept. of Computer Sciences Dept. of Electrical and Computer Engg.

Parallel and Distributed Systems Laboratory
http://maple.ece.utexas.edu
The University of Texas at Austin, Austin, TX 78712

Abstract

The traditional Distributed Shared Memory (DSM) model provides atomicity at levels of read and write on
single objects. Therefore, multi-object operations such as double compare and swap, and atomic m-register
assignment cannot be efficiently expressed in this model. We extend the traditional DSM model to allow
operations to span multiple objects. We show that memory consistency conditions such as sequential con-
sistency and linearizability can be extended to this general model. We also provide algorithms to itmplement
these consistency conditions in a distributed system.

1 Introduction

Applications such as distributed file systems, transaction systems and cache coherence for multiprocessors
require concurrent accesses to shared data. The underlying system must provide certain guarantees about
the values returned by data accesses, possibly to distinct copies of a single logical data object. A consistency
condition specifies what guarantees are provided by the system. The consistency conditions should be
strong enough to enable easy programming. Sequential consistency and linearizability are two well-known
consistency conditions defined in the literature.

Sequential consistency was proposed by Lamport [15] to formulate a correctness criterion for a multi-
processor shared-memory system. It requires that all data operations appear to have executed atomically,
in some sequential order that is consistent with the order seen by individual processes.

Linearizability was introduced by Herlihy and Wing [12] to exploit the semantics of abstract data types.
It provides the illusion that each operation applied by concurrent processes takes effect instantaneously at
some point between its invocation and response. Linearizability is stronger than sequential consistency and
has two advantages over it. First, it is more convenient to use because it preserves real-time ordering of
operations, and hence corresponds more naturally to the intuitive notion of atomic execution of operations.
Consequently, it is easier to develop programs assuming a linearizable implementation of shared objects.
Second, linearizability satisfies the local property, that is the system as a whole is linearizable whenever
the implementation of each object is linearizable.

These and other consistency conditions [16, 3, 8, 6, 14, 9] are based on the model in which an opera-
tion is invoked on a single object. In fact, the traditional Distributed Shared Memory (DSM) provides

*supported in part by the MCD Fellowship
tsupported in part by the NSF Grants ECS-9414780, CCR-9520540, Texas Higher Education Board grant ARP-320, a
General Motors Fellowship, and an IBM grant

atomicity only at levels of read and write on single objects. While this may be appropriate for models at
the level of hardware, they do not provide an expressive [11] and convenient abstraction for concurrent
programming. Herlihy [12] extended the model to arbitrary operations on single objects. That allows the
representation of more powerful concurrent objects, for example test and set, fetch and add, FIFO queues
and stacks. However, the model assumes that all operations are unary, that is, they are invoked on a single
object. There are many applications in which operations are more naturally expressed as encompassing
multiple objects. For example, operations like double compare and swap (DCAS)! [10] cannot be efficiently
expressed in that model. DCAS reduces the allocation and copy cost thereby permitting a more efficient
implementation of concurrent objects. As another application, if a transaction in a database is viewed as
an atomic operation then it is clear that it operates, in general, on multiple data items.

In this paper, we develop a framework for consistency conditions for distributed objects with multi-
object operations or multi-methods. We introduce a formal model for execution of operations that span
multiple objects, denoted by m-operations. In this model, each process executes multiple m-operations and
each m-operation consists of multiple operations (possibly on different objects). We extend the definitions
of sequential consistency and linearizability to give m-sequential consistency and m-linearizability respec-
tively. With the increasing popularity of distributed objects it is important to understand the conditions
for their consistency in presence of replication and caches. Independently, Raynal et al [22] also generalized
the Herlihy’s model to transactions on multiple objects but they focussed on weaker consistency conditions,
namely causal consistency and causal serializability.

Besides practical implications, our model has nice theoretical consequences. It serves to unify results
from two areas. By restricting the number of m-operations per process to one, the model reduces to that
of database transactions. Similarly, if we restrict each m-operation to execute operations on a single object
then the model reduces to that of distributed shared memory [1] on concurrent objects [12]. Thus with
our model, one set of consistency conditions, their implementation, and complexity results are applicable
to both the areas.

It has been shown that determining whether a given execution is sequentially consistent is an NP-complete
problem [23]. We show that the problem of checking whether a given history is m-linearizable is also
NP-complete. This is true even when the reads-from relation (defined later) is known. Note that when
the reads-from relation is known, the linearizability can be checked in polynomial time [19].

We show that execution constraints proposed by Mizuno et al [20] to ensure efficient implementation for
sequential consistency can also be used for operations that span multiple objects. Specifically, under these
execution constraints, it is necessary and sufficient to ensure legality of reads to guarantee m-sequential
consistency (and m-linearizability).

Finally, we provide algorithms for ensuring proposed consistency conditions in a distributed system.
Several papers [2, 4, 18, 20] have proposed sequentially consistent implementations for read/write ob-
jects. Attiya and Welch [4] provide sequentially consistent and linearizable implementations for read /write
objects, FIFO queues and stacks. In addition, they also give an analysis of the response time of their im-
plementations. But their implementation for linearizability assumes that clocks are perfectly synchronized
and there is an upper bound on the delay of the message. Our algorithm for m-sequential consistency
is an extension of the algorithm proposed by them. We show that their algorithm also works for multi-
object operations. More importantly, we provide an algorithm for implementation of m-linearizability in
an asynchronous distributed system which does not make any assumptions about clock synchronization or
the message delay.

It should be noted that there may be a temptation to model multi-methods by defining an aggregate

IDCAS atomically updates locations addr; and addrs to values new; and news respectively if addr; holds value old; and
addrs holds old> when the operation is invoked.

object that represents the state of all objects. However, this technique has serious drawbacks. For example,
if there are n read-write registers and one multi-method sum that takes two registers as arguments, the
technique will force all registers to be treated as one object. This results in loss of locality and concurrency.

This paper is organized as follows. Section 2 gives our model of a concurrent system with multi-object
operations and presents the consistency conditions appropriate in this model. In Section 3 we show the
NP-completeness of verification of m-linearizability. Section 4 imposes additional constraints on execution
for efficient implementation of distributed objects. In Section 5 we present algorithms for implementation
of m-sequential consistency and m-linearizability in an asynchronous distributed systems.

2 Definitions

2.1 System Model

A concurrent system consists of a finite set of sequential threads of control called processes, denoted by
Py, P, ..., P,, that communicate through a set of shared data structures called objects (or concurrent
objects) X . Each object can be accessed by read and write operations. A write into an object defines a
new value for the object; a read allows to obtain the value of the object. A write operation on an object x
is denoted by w(x)v, where v is the value written to « by this operation. A read operation on z is denoted
by r(x)v, where v is the value of object x returned by this operation.

Processes are sequential and manipulate objects through m-operations. An m-operation is a sequence
of operations possibly spanning several objects. Intuitively, an m-operation is a “deterministic procedure”
of read and write operations on shared objects. Each process applies a sequence of m-operations to
objects, alternately issuing an invocation and then receiving the associated response. Let a(arg,res) be
an m-operation issued at P;; arg and res denote a’s input and output parameters respectively. Execution
of an m-operation takes certain time; this is modeled by two events, namely an invocation event and a
response event. For an m-operation «, invocation and response events, inv(a(arg)) at P; and resp(a(res))
at P;, will be abbreviated as inv(a) and resp(a) when parameters and process identity are not necessary.
An event e occurs-before event f, denoted by e < f, iff event e precedes event f in real time. We will use
greek symbols «, 3, v, 4, etc. to denote m-operations.

If two m-operations a and § are issued by the same process, say P;, and « is issued before (3, then we
say a precedes (in P;’s process order and is written as o~ p (. If process identity is not important then
process order is denoted by ~p. In Figure 1, a~p B.

If a read operation r(z)v reads the value written by the write operation w(z)v, then r(z)v is said to
read-from w(x)v. An m-operation « reads-from a distinct m-operation 3 the value of object x, written as
I5] O if there exists at least one read operation of « that reads from some write operation of 3 the
value of object z. In Figure 1, o~ ¢ § and 7~ 4.

We assume that an imaginary m-operation that writes to all objects is performed to initialize the objects
before the first operation by any process is executed. In all the examples considered in this paper, unless
specified otherwise, we assume that initial value of all objects is 0.

2.2 Histories

Informally, an execution of a concurrent system is modeled by a history, which is a finite sequence of
m-operation invocation and response events. Formally, a history H is denoted by a tuple (op(H),~),
where op(#) is the set of m-operations and ~+y is some irreflexive transitive relation defined on the set of
m-operations which includes the partial order imposed by process orders and reads-from relation.

a = r(x)0w(y)2w(z)2 B =r(wow(v)l

Pl . - . """
P, \\.6 = r(y)2r(z)3\\‘]
4 x
P . n =r(v)Owx)1 w23 I,’ u“: r(v)1
inv(n) resp(nN)

—I>= process order - - reads-from

Figure 1: An execution history #,,

A history S is sequential iff (1) its first event is an invocation event, (2) each invocation event is
immediately followed by a matching response event, and (3) ~+s is a total order consistent with the order
of m-operation invocation events.

A process subhistory or local history of P; of a history H, denoted by #|P;, is the subsequence of all events
in H associated with the process P;. A history is well-formed iff each process subhistory is sequential. All
histories considered in this paper are assumed to be well-formed.

Two histories # and G are equivalent iff for every process P;, H|P; = G|P; and they have the same
reads-from relation.

Intuitively, a read operation is legal if it does not read from an overwritten write operation. Note that
if there exists a write operation w(x)v before a read operation 7(z)u in an m-operation (such that w(z)v
is the last write on z before r(z)u) then u must be equal to v. Similarly, if there exists a write operation
w(z)v after a write operation w(z)u in an m-operation then no read operation of another m-operation
can read from w(x)u. In the rest of the paper, we ignore such read and write operations. Let op(op(z)v)
denote the m-operation associated with the operation op(z)v. A read operation r(z)v is legal iff there
exists a write operation w(z)v such that r(z)v reads from w(x)v and there does not exist another write
operation w'(z)u such that op(w(z)v) ~y op(w'(z)u) ~3 op(r(z)v). An m-operation is legal iff all its
read operations are legal. A history H is legal iff all its m-operations are legal.

A history #H is admissible with respect to ~»4 iff it is equivalent to some legal sequential history that
respects ~¢. We will omit the phrase “with respect to ~»4” if ~+4 is clear from the context.

2.3 Consistency Conditions

A consistency policy makes the behavior of a concurrent system equivalent to that of a non-concurrent
system. A consistency condition provides guarantees about the values returned by data accesses in the
presence of interleaved and/or overlapping accesses. Sequential consistency and linearizability are two well
known consistency conditions. We extend their definitions to include m-operations to give m-sequential
consistency and m-linearizability. Our definitions are based on the definition of admissibility with the
partial order ~»g appropriately defined.

Let proc(a) and objects(a) denote the process and the set of objects respectively associated with an
m-operation «. In Figure 1, proc(a) = P, and objects(a) = {z,y,z}. The m-operations o and (are
related by real-time order, denoted by a ~+, 3, iff the response of « is received before the invocation of 3,
that is, resp(a) < inv(B). The m-operations o and 3 are related by object order, denoted by o~y 3, iff
both the m-operations share an object and the response of « is received before the invocation of 3, that
is, (objects(a) Nobjects(B) # @) A (resp(a) < inv(F)). In Figure 1, o~ p, 7 ~>, B and n~ G.

m-Sequential consistency requires that all m-operations appear to have executed atomically, in some se-
quential order that is consistent with the order seen by individual processes. A history is
m-sequentially consistent iff it is admissible with respect to process orders and reads-from relation. In
other words, let H = (op(H),~+) be an execution history such that ~»3; consists of process orders and
reads-from relation. Then # is m-sequentially consistent iff it is admissible with respect to ~». If
m-operations are restricted to a single read or write operation, then our definition reduces to traditional
definition of sequential consistency.

m-Linearizability requires that: (1) each m-operation should appear to take effect instantaneously some-
where between its invocation and response, and (2) the order of non-overlapping m-operations should be
preserved. A history is m-linearizable iff it is admissible with respect to process orders, reads-from relation
and real-time order. Formally, let H = (op(#),~%) be an execution history such that ~»3 consists of
process orders, reads-from relation and real-time order. Then # is m-linearizable iff it is admissible with
respect to ~».

Garg and Raynal [8] proposed another definition of consistency, namely normality, which is based on
object order rather than real-time order. We also extend their definition of normality to give m-normality.
A history is m-normal iff it is admissible with respect to process orders, reads-from relation and object
order. In other words, let # = (op(H),~) be an execution history such that ~»3; consists of process
orders, reads-from relation and object order. Then H is m-normal iff it is admissible with respect to
~+9,. m-Normality is less restrictive than m-linearizability since it does not order two non-overlapping
m-operations unless they act on a common object. The results of Section 3 and Section 4 also hold
for m-normality. Since the protocol for m-linearizability also implements m-normality, we will focus on
m-linearizability in the rest of the paper.

3 NP-completeness of Consistency Conditions

It has been shown that ascertaining whether a given execution is sequentially consistent when the operations
are restricted to a single object is an NP-complete problem [23]. Since our model is a generalization of the
traditional DSM model, determining whether a given execution is m-sequentially consistent is NP-complete
too. Misra proved that checking whether an execution satisfies atomic consistency is solvable in polynomial
time when reads-from relation is known [19]. It turns out that this is not the case when the operations
can encompass multiple objects. In this section we show that determining whether a given execution is
m-linearizable is an NP-complete problem even when reads-from relation is known. We will use the results
in databases to prove the NP-completeness of m-linearizability.

Much work on databases uses serializability [21, 5| as the basic correctness condition for concur-
rent computations. Several notions of equivalence such as view equivalence, strict view equivalence, and
conflict equivalence are defined [21]. If we restrict each process to contain a single operation (one for each
transaction) then the notion of correctness in the database world can be viewed as special case of the
consistency conditions in our model. For instance, view equivalence can be considered as a special case
of m-sequential consistency; strict view equivalence can be viewed as a special case of m-linearizability,
and conflict equivalence can be considered as a special case of m-normality under OO-constraint (defined
later). Since determining whether a schedule is strict view serializable is an NP-complete problem, hence
checking whether a history is m-linearizable is also an NP-complete problem. It should be noted that
checking for m-linearizability of history H is not same as checking for acyclicity of ~»4. In particular, ~»¢
may be acyclic but ‘H may not be m-linearizable.

Theorem 1 Let H be an ezxecution history. Then it is NP-complete to determine whether H is
m-sequentially consistent.

Theorem 2 Let H be an execution history. Then it is NP-complete to determine whether H is
m-linearizable.

Proof: To prove that determining whether a history # is m-linearizable is NP-hard we reduce strict view
serializability? to m-linearizability. Let & = (trans(S),~s) be a schedule of transactions in a database con-
sisting of finite set of entities E = {x1, x2, ...}, where trans(S) denote the set of transactions Ty, T, ..., Ty,
and ~»g represents the order of actions in the schedule. We construct a distributed system consisting of
sequential processes Py, P, Ps, ... P,, Py, one for each transaction in the augmented schedule®, and shared
objects E. For each action in the schedule there is a corresponding operation. An operation a; reads from
operation a; if the corresponding action a; reads-from the corresponding action a; in the schedule S. Each
process P; executes a single m-operation «; whose operations correspond to the actions of the transaction
T; executed in the same order. The first and last actions of a transaction define the invocation and re-
sponse events respectively of the corresponding m-operation. It is easy to see that two transactions are
non-overlapping in the schedule § if and only if the corresponding m-operations are non-overlapping in H.
The history #H of the system is the history (op(#),~»y) where op(H) is the set of transactions and ~»y
consists of reads-from relation and real-time order.

It can be easily proved that schedule § is strict view serializable if and only if the history H is
m-linearizable. Moreover, it can be easily verified that the problem is indeed in NP since, given a se-
quential history, we can easily check that it is legal and equivalent to H. |

4 Consistency Conditions with Constraints

Due to Theorem 1 and Theorem 2 it is unlikely that there exists an efficient algorithm that realizes
m-sequential consistency (m-linearizability), that is, allows all m-sequentially consistent (m-linearizable)
histories and only these. Thus, as in concurrency control protocols [13], actual implementations need to
enforce constraints on executions. Mizuno et al [20] identified two such constraints, namely WW-and
OO-constraints, for sequential consistency. We extend their work in two ways: we show that (1) their
results extend to the case when the operations can span multiple objects, and (2) similar results also hold
for m-linearizability. In the rest of the paper, we label the definitions by prefix “D” and the properties by
prefix “P”. Before proceeding further, we give some definitions we use in this section.

Let robjects(a) and wobjects(a) denote the objects read and written by « respectively. Note that after
execution, the system knows the set of objects read and written by each m-operation. An m-operation is
said to be an update m-operation iff it writes to some object. An m-operation is a query m-operation iff it
is not an update m-operation. Two distinct operations are said to be conflicting iff both act on the same
object and at least one of them is a write operation. Two distinct m-operations are said to be conflicting iff
one of them contains an operation that conflicts with some operation of the other. Let rfobjects(H, o, 3)
denote the set of objects that o reads from (in history . The distinct m-operations «, 8 and ~ are
said to interfere in history H iff v writes to some object that « reads from 8. Note that if a, beta and ~
interfere in H then they pairwise conflict. In Figure 1, o conflicts with n, and m-operations J, 5 and «
interfere. Formally,

2A schedule S is strict view serializable if it is view equivalent to a serial schedule in which transactions that do not overlap
in § are in the same order as in S.

%a schedule augmented with an initial transaction, Ty, writing values to each entity and a final transaction, Tw, reading
values from each entity.

def

(D 4.1) conflict(a, B) = (a0 # B)A
((objects(a) Nwobjects(B)) U (objects(B) Nwobjects(a)) # ¢)
(D 4.2) interfere(H, o, 3,7) def (a, B and v are distinct operations)A
(rfobjects(H, a, B) N wobjects(y) # @)
(P 4.1) interfere(H, a, 8,7) = conflict(a, B) A conflict(B3,v) A conflict(ry, a)\

(robjects(alpha) A wobjects(B) A wobjects(y) # ¢)
The reads-from relation can be formally stated as follows,

(D 4.3) By def (Jx::x € rfobjects(H, o, B))

The well-formedness of a history H can be represented as,

(P 4.2) B~ a = resp(B) < inv(a)

A history G extends history H iff G is equivalent to # and ~»g respects ~»4. Note that if G extends H
then G and ‘H have identical set of interfering m-operations and “extends” is transitive. Formally,

(D 4.4) extends(G,H) S (Vi:1<i<n:H|P,=G|P)A (H=rof) A (o o)
(P 4.3) extends(G,H) = (V o, 8,7 € op(G)(= op(H)) ::

interfere(G, a, B,7v) = interfere(H, a, 3,7))
(P 4.4) extends(F,G) A extends(G,H) = extends(F,H)

The sequentiality, legality, and admissibility of a history can be defined using the above definitions as
follows,

(D 4.5) sequential (H) “J oy is a total order
(D 4.6) legal(H) < (vVa,B,7 € op(H) : interfere(H, a,6,7) : ~(B~u 1) V (7~ a))
(D 4.7) admissible(H) deJ (3 S : extends(S,H) A sequential(S) : legal(S))

Intuitively, the constraints impose additional ordering on the m-operations such that it is efficiently
possible to sequentialize a history to a legal one. In this paper, we focus on OO-and W W -constraints.
These constraints are enforced by the underlying system by synchronizing certain m-operations across
processes. In W W -constraint all update m-operations must be globally synchronized. If OO-constraint is
used, m-operations need to be synchronized only at each object level. However, m-operations that only
read an object must also be synchronized with other update m-operations on that object. An alternate
approach is to impose constraints on the program execution (data race free (DRF') and concurrent write
free (CWPF)) [3]. The system can then provide weaker guarantees and have better performance. The
onus of enforcing these constraints then lies with the programmer which makes application building more
difficult.

A history H satisfies WW -constraint iff any pair of m-operations performing write operations are ordered
under ~»y. A history H satisfies OO-constraint iff any pair of conflicting m-operations are ordered under
~+9;. We define another another constraint, namely W O-constraint, which is the intersection of OO- and

W W -constraints. We use it to prove the results that are common to both OO- and W W -constraints. A
history H satisfies W O-constraint iff any pair of m-operations performing write operations on a common
object are ordered under ~+4;. Formally,

def

(D 4.8) OO(H) = (Va,B € op(H) : conflict(a, B) : (a~y B) V (B~ @))

(D 4.9) WW(H) S (v a,8 € op(H) : (o # B) A (wobjects(a) # @) A (wobjects(8) #) :
(a~opy B)V (B~ a))

(D 4.10) WO(H) wf (Va,B €op(H) : (a # B) A (wobjects(a) N wobjects(B) # ¢) :

(g B) V (B~ @))

P . a = r\(x)OW(y)Z/,/ ‘;\ B =r(y)2
5 '\‘Q y = w1 5 = w(y)3

- > B —

—I= processorder - - reads-from

--- WW-constraint

Figure 2: An execution history #; under W W -constraint

a = r(x)0 w(y)2 y = w1 o =w(y)3 B =r(y)2

[4 L] L mm—

Figure 3: An extension of history #; to a nonlegal history &;

A history under W W -constraint permits the m-operations, one of which only reads from an object and
the other writes on the same object, to execute concurrently. Simply extending the partial order ~»y
to a total order may give sequential histories that are not legal. In Figure 2, the history #; is under
W W -constraint. One of the possible extensions of ~»;, gives us the sequential history &, as in Figure 3,
which is not legal. Therefore we define a logical read-write precedence, denoted by ~+,.. ., between two such
m-operations which are not ordered under ~»4. Let H be an execution history and let «, 8 and ~ be
m-operations that interfere in H. Then 8~ v = a ~»,,, 7. Formally,

(D 4.11) a~1," 3B interfere(H, o, 8,7) : f~x)

The intuition is that in any legal sequential history equivalent to H, v has to occur after a. We define
an extended relation, denoted by '\»7"_;, as,

(D 4.12) M;: ("\/)H U~)+

rw

The natural question now is whether the extended relation, M;, is still an irreflexive partial order.
Lemma 3 and Lemma 4 prove that legality is a sufficient condition for '\”’it to be irreflexive if the history
is under OO- or W W -constraint.

Lemma 3 Let ‘H be a legal execution history under OO-constraint. Then Mit 1s an irreflexive transitive
relation.

Proof: We first show that ~»,.,C~»3. Consider m-operations «, v € op(H) such that a ~»,,, 7. Then, by
the definition of ~», , there exists an m-operation 3 such that o, 3 and ~ interfere in H, and 3 ~ 7.

Then,
Qg Y
= (a~op V)N (B~ny) ; D 4.11 (definition of ~»,,)
= conflict(a,y) A\ (B ~x 7) ; P41
= ((a~uy)V(y~u o) AB~uny) ; given H is under OO-constraint, D 4.8
= ((a~uy)ANB~uy)V((y~y o) N(B~yy)) ; distributivity of A over V
= (a~ou) V(B y) Ay ~y) ; commutativity of A, predicate calculus
= (a~y)V -legal(H) ; D 4.6 (definition of legality)
= a~oy Y ; given H is legal
Then, from D 4.12 we can conclude that fv);'f[= ~»y, and therefore M;'_'t is an irreflexive and transitive
relation. [

Lemma 4 Let H be a legal execution history under WW -constraint. Then M;'_'t s an irreflexive transitive
relation.

Proof: We first prove that ~3 U ~»_ is acyclic. The proof is by induction on the number of pair of
m-operations, n, ordered by ~»,,, in a cycle. Note that since ~+4 is an irreflexive transitive relation, any
cycle consists of at least one pair of m-operations ordered by ~ ., .

Base case (n = 1): Any cycle is of the form a~»,, 7~ a. By definition of ~», , there exists an
m-operation § such that a, # and ~ interfere in . Then,

rw?

(@~ V) A (7~ Q)

= (Brouy) N (y~y @) ; D 4.11 (definition of ~»,,)
= (=B~)V o(y~y) ; double negation, de morgan’s law
= -legal(H) ; D 4.6 (definition of legality)

Hence H is not legal - a contradiction.

Induction Step (n > 1): Let path(a, 3) denote the fact that there is a path from « to 3 consisting of a pair
of m-operations ordered by ~+4 or ~»,., . Let the cycle be denoted by ac ~»,.,, B~ -+~ y~s,, 0~ -~ q
where ~» represents either ~+4, or ~+,,,. Then,

(o~ B) A path(B,v) A (v~ 6) A path(d,)
= (@~ B) APath(B,7) A (¥ ~py, 6) A path(8,a) A (wobjects(8) # @) A (wobjects(3) # ¢)
; D 4.11 (definition of ~,,), P 4.1
= (a oy B) Apath(B,7) A (Y ~py 8) A path(é,a) A (B ~3 8) V (8 ~3)
; given H is under WW -constraint, D 4.9
= (@~ B) A (B~ 8) A path(8,a)) V (path(B,7) A (7 ~yy 8) A (6~ B))
; predicate calculus

= =legal(H) ; induction hypothesis

Hence H is not legal - a contradiction.
Thus, by induction we can conclude that ~3 U ~
irreflexive transitive relation. |

is acyclic. Therefore ~} = (~y U ~,,)" is an
We now show that M,"; can be extended to any total order to obtain a legal sequential history equivalent

to the history .

Lemma 5 Let H be a legal execution history under WO-constraint. If M,"; ts an irreflexive transitive
relation then H is admissible.

Proof: Let H* denote the history (op(#),~4,). We first prove a stronger result that any extension of H*
is legal if M; is an irreflexive transitive relation and H is under W O-constraint. Formally,

(P 4.5) (~4, is an irreflexive transitive relation) A extends(G, HT) A WO(H) = legal(G)

The proof is as follows. Consider m-operations «, (3, v € op(H) that interfere in H. Then,

wobjects() N wobjects(y) # ¢ ;P41
= (B~uy)V(y~uB) ; given H is under W O-constraint, D 4.10
= (a~p 7))V (Y~ B) ; D 4.11 (definition of ~,,)
= (a~g7y)V(y~gB) ;g2 (g Ungy)
= a(y~ga)Va(B~gy) ; ~¢g is an irreflexive transitive relation

Thus, from D 4.6 we can conclude that G is legal. We now prove the lemma. Let us extend M;'_'t to any
total order, say ~+s, and denote the resulting history by S. Then,

extends(S,H) A sequential(S)

= extends(S,HT) A sequential(S) A legal(S) ; given H is under WO-constraint, P 4.5
= extends(S,H) N sequential(S) A legal(S) ; extends(HT,H), P 4.4

= (385 : extends(S,H) N sequential(S) : legal(S)) ; predicate calculus

= admissible(H) ; D 4.7 (definition of admissibility)

10

Hence H is admissible. n

Lemma 3, Lemma 4 and Lemma 5 establish that legality is a sufficient condition for a history under
OO- or WW -constraint to be admissible. Lemma 6 show that legality is also necessary for admissibility.

Lemma 6 Let ‘H be an execution history. If H is admissible then it is legal.
Proof: We first prove a stronger result that if any extension of # is legal then # is legal. Formally,
(P 4.6) extends(G,H) A legal(G) = legal(H)
The proof is as follows. Consider m-operations «, (3, v € op(G) that interfere in G. Then,
(B ~gy)V a(y ~g @) ; given G is legal, D 4.6
= (Bou)V oy oy) ;g oy

Hence, using P 4.3 we can infer that # is legal. We now prove the lemma.

admissible(H) ; given M is admissible
= (IS :extends(S,H) A sequential(S) : legal(S)) ; D 4.7 (definition of admissibility)
= legal(H) ; P 4.6
Hence H is legal. |

The next theorem combines the results of Lemma 3-6.

Theorem 7 Let H be an execution history under OO- or WW -constraint. Then H is admissible if and
only if it is legal.

Proof: From Lemma 3 and Lemma 5, we can infer that legality is sufficient for a history under OO-
constraint to be admissible. From Lemma 4 and Lemma 5, we can conclude that legality is also sufficient
for a history under W W -constraint to be admissible. Lemma 6 implies that legality is necessary for a
admissibility. Thus, legality is both necessary and sufficient for a history under OO - or W W -constraint
to be admissible.

The next section illustrates how W W-constraint can be used effectively to implement m-sequential
consistency and m-linearizability in an asynchronous distributed system.

5 Implementation of Consistency Conditions

Our protocols for implementing consistency conditions introduced in Section 2.3 are based on
W W -constraint. The protocols assume that processes and channels are reliable and a message sent is
eventually received. However, the messages can get reordered. As discussed in Section 4, to ensure that
the execution follows W W -constraint the system need to synchronize all update m-operations. We use
atomic broadcast to achieve our objective. In general, the system may not know beforehand the set of
objects an m-operation will access during execution. In fact, the set of objects read and written by an

11

m-operation may actually depend on the values read during its execution. We take a conservative approach
and treat an m-operation as an update m-operation if it can potentially write to some object.

In our protocols, each process keeps a local copy of every shared object. On receiving an atomic
broadcast, the process applies the m-operation to its local copy. The legality of the read operations of
an update m-operation is maintained since atomic broadcast ensures that all processes apply all update
m-operations in the same order. The algorithm for maintaining the legality of read operations of a query
m-operation depends on the consistency condition in consideration.

Before describing the protocols, we present the properties that the protocols should satisfy to be correct.
Let H = (op(H),~#) be an execution history and ~+7, be an irreflexive relation defined on op(#), where
~+3 is the irreflexive transitive closure of ~»,,, such that ~», satisfies the properties,

(P 5.1) (8~+3, @) A (wobjects(8) = ¢) A (wobjects(a) = ¢) = B~ a

(P 5.2) (wobjects(B) # ¢) A (wobjects(a) #) = (a~ry B) V (B~y)

We associate a timestamp with every m-operation. The timestamp is a vector of integers with one entry
for every object. Intuitively, it represents the version of an object. Two timestamps are equal iff their
corresponding entries are identical. We order timestamps lexicographically. A timestamp ts is less than or
equal to timestamp ts’, denoted by ts < ts', iff every entry of ts is less than or equal to the corresponding
entry of ts’. A timestamp ts is less than timestamp ts’, denoted by ts < ts’, iff ts is less than or equal to
ts' and they are not equal.

Let ts(a) denote the timestamp associated with an m-operation a. Lemma 8 gives the properties of
~+5, and ts that ensure that the execution is under WW-constraint. The property P 5.3 states that
ts is monotonic with respect to ~»;,. The properties P 5.4 and P 5.2 imply that every write to an
object establishes a new version for that object. From property P 5.1 we can infer that ~»; orders
query m-operations only when necessary. Lemma 9 states the additional properties needed to ensure the
legality of all m-operations. The properties P 5.7 and P 5.8 ensure that only a write can create new
versions.

Lemma 8 If ~5, and ts satisfy the properties,
(P 5.3) B~y a = ts(B) 2 ts(a)
(P 5.4) (B~sq) A (z € wobjects(a)) = ts(B)[x] < ts(a)[x]
then H is under WW -constraint.
Proof: 1t is easy to prove that properties P 5.3 and P 5.4 also hold for ~+3;. Formally,
(P 5.5) Bron a=ts(B) 2 ts(a)
(P 5.6) (B~) A (z € wobjects(ar)) = ts(B)[z] < ts(a)[z]
We first show that ~»,, is acyclic. Assume, on the contrary, that ~»;, contains a cycle, say C. Let op(C)

denote the set of m-operations involved in C. Note that any cycle contains at least two m-operations
since ~»,, is irreflexive. Assume that «, 8 € op(C). There are two cases to consider: op(C) contains an

12

update m-operation ((3y € op(C) :: wobjects(y) # ¢)) or there are no update m-operations in op(C)
((Vv € 0p(C) :: wobjects(y) = ¢)).

Case 1 [(Ty € op(C) : : wobjects(y) # ¢)]: Without loss of generality, let 5 be the m-operation with
wobjects(3) # ¢. Then,

o~y B~y @) A (wobjects(B) # @) ; assumption
a~oy Broga) Az € wobjects(B)) :
ts(a) < ts(8) < ts(@) A B :: ts(a)[z] < ts(8)[z]) ; P 5.5, P 5.6
ts(a) < ts(B) = ts(a) ;

(
=
=
=

= false ; contradiction
Case 2 [(Vy € op(C) :: wobjects(y) = ¢)]: Since the cycle C does not contain any update m-operation,
from P 5.1 we can conclude that the cycle will have all the pair of m-operations ordered by ~+,. Furthermore,
since ~»; is a transitive relation therefore a ~», a. Thus resp(a) < inv(a) - a contradiction.

Therefore ~»7, is acyclic and hence ~+3 is an irreflexive transitive relation. Thus, H is indeed a valid
execution history. Furthermore, using P 5.2 we can infer that # is under W W -constraint.]

Lemma 9 If ts satisfies P 5.5, P 5.6 and the properties,
(P 5.7) (z € rfobjects(H, o, B)) A (z & wobjects(a)) = ts(B)[z] = ts(a)[x]
(P 5.8) (z € rfobjects(H, a, B)) A (z € wobjects(a)) = ts(B)[z] = ts(a)[x] — 1
then H is legal.

Proof: Consider m-operations «, 3, v € op(#H) and let x denote a shared object. We first prove that if «,
B, v interfere in H on an object x then - cannot be ordered between # and «. Formally,

(P 5.9) (z € rfobjects(H, a, B)) A (z € wobjects(y)) A (B~ ¥~y @) = false
There are two cases to consider: a does not write to z (z € wobjects(a)) or a writes to « (z € wobjects(a)).
Case 1 [z & wobjects(a)]:
(x € rfobjects(H,a, B)) A (x € wobjects(y)) N (x & wobjects(a)) A (B~ ¥~y @)

= (ts(B)[z] = ts(a)[z]) A (ts(B)[x] < ts(y)[z] < ts(a)[z]); P 5.7, P 5.5, P 5.6
= ts(B)[z] <ts(B)[z] ;

= false ; contradiction

Case 2 [z € wobjects(a))]:

13

(z € rfobjects(H,a, B)) A (x € wobjects(y)) A (x € wobjects(a)) A (B~ ¥~y @)
= (ts(B)[x] = ts(a)[x] — 1) A (ts(B)[z] < ts(7)[x] < ts(a)[z])
P58 P55 P56
= ts(B)[z] <ts(y)[z] <ts(B)[x] +1 ;
= ts(B)[z] < ts(B)[z] ;

= false ; contradiction

Therefore,
(Fx:: (x erfobjects(H,a,3)) N (x € wobjects(y))) A (B ~>y 7~) = false
; conjunction of P 5.9 over all
= interfere(H,a,3,7) A (B~ v~y &) = false ;D 4.2
= interfere(H,a,3,7) = —(B~uy) V (7 ~y @) ; predicate calculus
Hence we can conclude from D 4.6 that H is legal. |

We combine the results of Lemma 8 and Lemma 9 in Theorem 10
Theorem 10 If ~», and ts satisfy the properties P 5.1-5.4 and P 5.7-5.8 then H is admaissible.

Proof: Since ~+, and ts satisfy the properties P 5.1-5.4 therefore from Lemma 8 we can infer that # is
under W W -constraint. Furthermore, since ~»;, and ts also satisfy the properties P 5.7 and P 5.8 therefore
from Lemma 9 we can conclude that H is legal. Finally, using Theorem 7 we can conclude that H is
admissible. |

5.1 Implementation of m-Sequential Consistency

Our protocol for m-sequential consistency is an extension of Welch and Attiya’s protocol [4]. It consists
of three actions, each of which is performed locally and atomically. When a process issues an update
m-operation, it atomically broadcasts it to all processes (Al). On receiving atomic broadcast of an
m-operation, the process applies it to its local copy of the shared objects (A2). On the other hand, a
query m-operation simply reads from the local copy of its issuing process (A3). The protocol is formally
described in Figure 4. The statements in curly braces are not part of the protocol but are merely used to
establish its correctness. Before proving the correctness of the protocol we give some definitions.

Let H be an execution generated by the protocol in Figure 4. Let e be an event of process Pj,. We define
the timestamp, ts, associated with an event as,

d
ts(e) I ts of Py, on occurence of e

Let e and f be the events on the same process. Since ts of any process never decreases,

(P 5.10) e < f=ts(e) Xts(f) (monotonicity)

14

P;
var

X:
{ts :

(A1) On invocation of an m-operation « such that potentially wobjects(a) # ¢;

(A2) On receiving atomic broadcast of a from Py;

(A3) On invocation of an m-operation « such that wobjects(a) = ¢;

array of shared objects, initially L
array[1..|X|] of integer, initially 0}

atomically broadcast « to all processes;

apply a to X;
{Vz:zecwobjects(a) : ts[z] + +}
if proc(a) = P; then

generate response for «;
endif;

apply a to X;
generate response for «;

Figure 4: Implementation of m-Sequential Consistency

In the discussion that follows, consider distinct m-operations «, 8 € op(H). Let P; denote the process
that issued o and Py be any process. Let x denote a shared object and abcast(a) denote the fact that «
was atomically broadcast in the execution. Furthermore, any property P(k) involving P} actually implies
(Vk:1<k<mn:P(k)). In addition to inv(a) and resp(c) events, we define start(k,) and finish(k, a)
events for an m-operation a and process Py. If a is atomically broadcast then start(k,) and finish(k, o)
are defined for every process, otherwise they are only defined for the process that issued a.

inv(a) def [if abcast(a) then start event of action (Al) at P; for «
ULE) = else start event of action (A3) at P; for o

9

(@) lef [if abcast(a) then finish event of action (A2) at P; for «
"eSPA®) =\ else finish event of action (A3) at P; for a

tart(k, a) def [if abcast(a) then start event of action (A2) at Py for «
SLarti, @) = else if P, = P; then start event of action (A3) at Py for a

inish(k, o) def [if abcast(a) then finish event of action (A2) at P for o
finish(k, o) =\ clse if Py, = P; then finish event of action (A3) at Py for o

Figure 5 illustrates the working of the protocol and labels the various events defined before. It can be
easily verified from the protocol that the following property is true.

(P 5.11)

Let ~

inv(a) < start(i, o) < finish(i,a) < resp(a)

denote the order in which update m-operations are atomically broadcast. Then,

15

_ 10
(X!y) - [0]

3
Pl o =w(x)1w(y)3 y=

l -
RN /' i
,,,,,,, N
A invy) < sart(Ly) insh(Ly)= resp(y)
—e atomic broadcast
Figure 5: An example execution of the protocol in Figure 4
(P 5.12) wobjects(a) # ¢ = abeast(c)
(P 5.13) (wobjects(a) # @) N (wobjects(B) # ¢) = (B~ @) V (@~ B)
(P 5.14) B~ @ = start(k, B) < start(k, a)

Note that ts of any process is updated only in action (A2), and any two m-operations that are atomically
broadcast are executed in the same order by all processes. Therefore the timestamps of “start” and “finish”
events, if « is atomically broadcast, are respectively identical for all processes. Formally,

(P 5.15) abcast(a) = (ts(start(i, o)) = ts(start(k,a))) A (ts(finish(i, o)) = ts(finish(k, a)))

We can use this property to abbreviate ts(start(k,«)) and ts(finish(k,a)) as ts(start(a)) and
ts(finish(a)) respectively when « is atomically broadcast. Furthermore, when « is not atomically broad-
cast we use ts(start(a)) and ts(finish(a)) as a shorthand for ts(start(i,a)) and ts(finish(i,a)) respec-
tively.

Intuitively, a reads from [the value of object z if no other operation writes to = after 8 has written
to and before o reads from z. In other words, o reads the version of x written by 8. We can use the
timestamp ts to capture this notion. The value of ts at the “start” event of o captures the version of the
objects read by a. Moreover, if a writes to an object the version of that object in ts is incremented by
1. Thus, the value of ts at the “finish” event gives the new version of the written objects. Formally, the
reads-from relation ~ ¢ can be defined using D 4.3 as follows,

(D 5.1) z € rfobjects(H, a, B) def (x € robjects(a)) A (x € wobjects(3))A
(ts(finish(B))[x] = ts(start(a))[z])

16

Since after application of « in action (A2) the components of ts for which a performs a write are
incremented by one, therefore,

(P 5.16) x ¢ wobjects(a) = ts(start(a))[z] = ts(finish(a))|x]
(P 5.17) z € wobjects(a) = ts(start(a))[z] = ts(finish(a))[z] — 1
We define the timestamp, ts, associated with an m-operation « as follows,

(D 5.2) ts(a) “ ts(finish(a))
We define ~», as,

(D 5.3) ,\/,,;tdéf,\,,P U ’\/)rf U ~w

w

Now we prove that the protocol in Figure 4 implements m-sequential consistency. Let H be an
execution history generated by the protocol. For the proofs that follow consider distinct m-operations
a, B € op(H) . Let proc(a) = P; and x be a shared object.

Lemma 11 If 8~ o then finish(i,3) is defined. Furthermore, finish(i,3) < start(i,a).

Proof: Intuitively, the lemma says that if 3 is ordered before « then 3 is applied to P;’s local copy before
. There are three cases to consider: S ~>p o or §~r 0 Or oy, .

Case 1 [~p a]: finish(i,3) is defined since proc(a) = proc(fB) = P;.

B~pa
= resp(B) < inv(a) ; P 4.2 (well-formedness of history)
= finish(i, B) < start(i,a) ; P 5.11, proc(B) = P;

Case 2 [8 o a]: Using D 4.3 and D 5.1, we can infer that wobjects(3) # ¢. From P 5.12, we
can conclude that 3 is atomically broadcast and hence finish(i, 3) is defined. Without loss of generality,
assume z € rfobjects(H, a, 3). Therefore x € wobjects(().

start(i,) < finish(i, 3) ; assumption
= start(i,a) < start(i, B) < finish(i, 3) ; atomicity of actions
= ts(start(a)) < ts(start(B)) =< ts(finish(B)) ; P 5.10 (montonicity of ts)

= (ts(start(a)) < ts(start(B)) < ts(finish(B))) A (ts(start(B))[z] < ts(finish(B))[z])
; P 5.17 (B writes to z)

= ts(start(i)a)[z] < ts(finish(i)F)[x]) ; simplification

= (ts(start(a))[z] < ts(finish(B))) A (ts(finish(B))[z] = ts(start(a))[z])

17

; D 5.1 (a reads the value of z from 3)

= false ; contradiction
Thus, we can conclude that finish(i, 3) < start(i, a).

Case 3 [~,,, @]: From P 5.13, we can infer that wobjects(3) # ¢. Therefore as discussed in previous
case finish(i,3) is defined.

/[3 /\/)ww &
= start(i, B) < start(i, «) ; P 5.14 (B is received before o at P;)
= finish(i, B) < start(i,a) ; atomicity of actions
Hence if § ~»7, o then finish(i, 3) is defined and finish(i, 3) < start(i, «). [

Lemma 12 The protocol in Figure 4 satisfies P 5.1 and P 5.2.

Proof: The proof of property P 5.1 is as follows,

(8~7, @) A (wobjects(a) = @) A (wobjects(8) = @)
= (Brrp @)V (Brory @)V (B~ @) A (wobjects(8) = 9)
; D 5.3 (definition of ~»7)
= ((B~p @)V (wobjects(8) # §) V (wobjects(B) # ¢)) A (wobjects(B) =)
; D 5.1, definition of ~,,
= B~pa ; distribution of A over V, contradiction

= B~y ; P 4.2 (well-formedness of history)

The property P 5.2 can be proved as follows,

(wobjects(a) # ¢) N (wobjects(B) # @)

= (a~pw B) V(B~pw @) ; P 5.13
= (a~y B)V (B~ a) ; D 5.3 (~»7, contains ~+,,,,)
Hence P 5.1 and P 5.2 are satisfied by the protocol in Figure 4. |

Lemma 13 The protocol in Figure 4 satisfies P 5.3 and P 5.4.

Proof: The property P 5.3 can be proved as follows,

18

B~y a

= finish(i, B) < start(i,a) ; Lemma 11 (8 is applied before o at P;)
= finish(i, B) < start(i,a) < finish(i,) ;

= ts(finish(B)) < ts(finish(a)) ; P 5.10 (montonicity of ts)

= ts(B) 2 ts(a) ;D 5.2

The proof of property P 5.4 is as follows,

(8 ~>5 @) A (& € wobjects(a))
(finish(i, B) < start(i,a)) A (x € wobjects(a)) ; Lemma 11 (8 is applied before a at F;)
(ts(finish(B)) = ts(start(a))) A (ts(start(a))[z] < ts(finish(a))[z])

; P 5.10 (montonicity of ts), P 5.17

=
=

= ts(finish(B))[z] < ts(start(a))[z] < ts(finish(a))[z]); simplification
= ts(f)[x] < ts(a)[z] ; D 5.2

Hence P 5.3 and P 5.4 are satisfied by the protocol in Figure 4. |

Lemma 14 The protocol in Figure 4 satisfies P 5.7 and P 5.8.

Proof: The proof of property P 5.7 is as follows,

(xz € rfobjects(H,a, B)) N (x & wobjects(ar))
= (ts(finish(pB))[z] = ts(start(a))[z])) A (z & wobjects(a))
; D 5.1 (a reads the value of x from f3)
= (ts(finish(pB))[z] = ts(start(a))[z]) A (ts(start(a))[z] = ts(finish(a))[z])
; P 5.16 (a does not write to z)
= ts(finish(B))[z] = ts(finish(a))[x] ; simplification
= ts(B)[x] = ts(a)[z] ; D 5.2

The property P 5.8 can be proved as follows,

(xz € rfobjects(H, e, B)) N (x € wobjects(ar))
= (ts(finish(B))[x] = ts(start(a))[z])) A (z € wobjects(a))
; D 5.1 (a reads the value of z from)
= (ts(finish(pB))[z] = ts(start(a))[z]) A (ts(start(a))[z] = ts(finish(a))[z] — 1)

19

; P 5.17 (o writes to x)

= ts(finish(B))[z] = ts(finish(a))[z] — 1 ; simplification
= ts(f)[z] =ts(a)z] — 1 ;D 5.2
Hence P 5.7 and P 5.8 are satisfied by the protocol in Figure 4. |

Theorem 15 All the executions generated by the protocol in Figure 4 are m-sequentially consistent.

Proof: From Lemma 12-14, we can conclude that the protocol in Figure 4 satisfy properties P 5.1-5.4 and
P 5.7-5.8. Therefore, from Theorem 10, we can infer that all the executions generated by the protocol in
Figure 4 are m-sequentially consistent. |

5.2 Implementation of m-Linearizability

Our protocol for m-linearizability consists of six actions, each of which is performed locally and atomically.
The actions on invocation of an update m-operations are identical to those in the protocol for m-sequential
consistency (Al and A2). But to ensure that a query m-operation does not read a stale value, the
process sends a “query” message to all processes asking them for their copy of the shared objects and
the associated timestamps (A3). On receiving a “query” message the process sends its local copy along
with the timestamps to the requesting process (A4). The requesting process then constructs a copy of
the shared objects from the information received selecting the most recent version for all objects (A5).
Finally, when responses from all processes have been received the query m-operation reads from the copy
constructed (A6). The protocol is formally described in Figure 6. Again as in Section 5.1, before proving
the correctness of the protocol we give some definitions.

Let H be an execution generated by the protocol in Figure 6. Let e be an event of process P,. We define
the timestamps, myts and othts, associated with an event as,

d
myts(e) 2] myts of Py, on occurence of e

othts(e) ©I othts of Py, on occurence of e

Let e and f be the events on the same process. Since myts of any process never decreases,
(P 5.18) e < f = myts(e) < myts(f) (monotonicity)

In the discussion that follows, consider distinct m-operations «, 8 € op(H). Let P; denote the process
that issued o and Py be any process. Let x denote a shared object and abcast(a) denote the fact that
a was atomically broadcast in the execution. Moreover, any property P(k) involving Py actually implies
(Vk:1<k<mn:P(k)). In addition to inv(a) and resp(c) events, we define start(k,) and finish(k, a)
events for an m-operation a and process Py as in Section 5.1. If ar is atomically broadcast then start(k, o)
and finish(k,a) are defined for every process, otherwise they are only defined for the process that issued
Q.

20

P;

var
myX, othX : array of shared objects, initially L;
myts, othts : array[l..|X|] of integer, initially 0;

(A1) On invocation of an m-operation « such that potentially wobjects(a) # ¢;
atomically broadcast « to all processes;

(A2) On receiving atomic broadcast of « from Py;
apply a to myX;
YV :x € wobjects(a) : myts[z] + +;
if proc(a) = P; then
generate response for «;
endif;

(A3) On invocation of an m-operation « such that wobjects(a) = ¢;
othts :=0;
send “query” to all processes;

(A4) On receiving a “query” for a from Py;
send (myX, myts) to Py;

(A5) On receiving “query response”, (X, ts), from Py;
if (othts < ts) then (othX, othts) := (X, ts);

(A6) If all the responses for the “query” of v have been received then
apply a to othX;
generate response for a;

Figure 6: Implementation of m-Linearizability

dgf if abcast(a) then start event of action (Al) at P; for «
inv(e) = else start event of action (A3) at P; for o
dg f [if abcast(a) then finish event of action (A2) at P; for «
resp(@) = 4 else ﬁnlsh event of action (A6) at P; for o
tart(k, def [if abcast(a) then start event of action (A2) at Py for o
start(k, o) = else if P, = P then start event of action (A6) at Py, for o

nish(k, o) def [if abcast(a) then finish event of action (A2) at P for o
finish(k, &) =\ clse if Py, = P; then finish event of action (A6) at Py for o

In addition, we also define a query(k,) for every process when « is not atomically broadcast as follows,

query(k, a) it —abcast(a) then start event of action (A4) at Py, for «

It can be easily verified from the protocol that the following property is true.

21

st g

P, o =w(x)1 w(y)3 Y = r(x)? r(x?4

-

0 T\ A
(xy) = [] | ‘ AR
° - BN
P o s o
’ BNET / AR A
§ firish(2,B)= resp(B) | finish(Ly)= resp(y)
; B sat@Ba, f L N3N
7777777 R . e A R S R R
4 T TN ey Y s
inv(p) inv(y) query(g&y(zly) sart(1,p)
—e atomic broadcast —= “‘query”’ ->= ‘‘guery’ response
Figure 7: An example execution of the protocol in Figure 6
(P 5.19) inv(a) < start(i, o) < finish(i,a) < resp(a)

A “query” for an m-operation is sent only after its invocation and the issuing process generates the
response event only after it has received response for its “query” from all the processes. Therefore,

(P 5.20) —abcast(a) = inv(a) < query(k, o) < resp(a)
Similarly, since an m-operation is atomically broadcast only after its invocation therefore,
(P 5.21) abcast(a) = inv(a) < start(k, a)

Let ~+,,,, denote the order in which update m-operations are atomically broadcast. Then,

(P 5.22) wobjects(a) # ¢ = abcast(a)
(P 5.23) (wobjects(a) # @) A (wobjects(B) # @) = (B~ ypw @) V (@~ B)
(P 5.24) B~ @ = start(k, B) < start(k, «)

Note that myts of any process is updated only in action (A2), and any two m-operations that are
atomically broadcast are executed in the same order by all processes. Therefore the timestamps, myts,
of “start” and “finish” events, if « is atomically broadcast, are respectively identical for all processes.
Formally,

22

(P 5.25) abeast(a) = (myts(start(i, o)) = myts(start(k, a)))A
(myts(finish(i,) = myts(finish(k,)))

We can use this property to abbreviate myts(start(k,«)) and myts(finish(k,«)) as myts(start(a))
and myts(finish(a)) respectively when « is atomically broadcast. Furthermore, when « is not atom-
ically broadcast we use othts(start(c«)) and othts(finish(a)) as a shorthand for othts(start(i,«)) and
othts(finish(i,a)) respectively. Note that action (A6) for « is executed only after responses for its “query”
from all the processes have been received and as soon as a response is received othts is assigned the maxi-
mum of othts and the timestamp in the “query” response (action (A5)). Therefore,

(P 5.26) —abcast(a) = (othts(start(a)) = othts(finish(a)) = max;<p<n{myts(query(k,a))})

Intuitively, if « is not atomically broadcast then the value of othts at the “start” event of a gives the
version of the objects read by a. Similarly, if « is atomically broadcast then the value of myts at the
“start” event of o captures the version of objects read by « and its value at the “finish” event gives the
new version of the written objects. Thus, we define the timestamp ts associated with the “start” and
“finish” events of an m-operation «a as follows,

def [if abcast(a) then myts(start(a))
(D 5.4) ts(start(a)) = { else othts(start(a))

.. def if abcast(a) then myts(finish(a
(D 5.5) ts(finish(a)) = { ellse othts((fz)nis(;z(a))y (finish(e))

The reads-from relation ~pp Can be defined identically to D 5.1 as follows,

(D 5.6) x € rfobjects(H, o, B) def (x € objects(a)) A (x € wobjects(B))A
(ts(finish(B))[z] = ts(start(a))[z])

Since after application of « in action (A2) the components of myts for which o performs a write are
incremented by one and othts is not modeified in (A6), therefore,

(P 5.27) z & wobjects(a) = ts(start(a))[z] = ts(finish(a))[z]
(P 5.28) z € wobjects(a) = ts(start(a))[z] = ts(finish(a))[z] — 1
We define the timestamp associated with an m-operation «a as follows,
(D 5.7) ts(a) “ ts(finish(a))
Since ~»p C ~+;, we define ~7 as,
(D 5.8) M;tdéfvrf U~y Unoy
Now we prove that the protocol in Figure 6 implements m-linearizability. Let H be an execution history

generated by the protocol. For the proofs that follow consider distinct m-operations «, 8 € op(#H) . Let
proc(a) = P; and proc(f) = Pj, and let « denote a shared object.

Lemma 16 If 3~ o then ts(finish(B)) =X ts(start(a)).

23

Proof: This lemma is weaker than Lemma 16 in Section 5.1 for m-sequential consistency. Again, there
are three cases to consider: 8~ a or B~y avor froy, a.

Case 1 [~,; a]: Using D 4.3 and D 5.6, we can infer that wobjects(8) # ¢. From P 5.22, we
can conclude that 3 is atomically broadcast. Without loss of generality, assume x € rfobjects(H, «,).
Therefore © € wobjects(3). There are two subcases to consider depending on whether « is atomically
broadcast.

Case 1.1 [-abcast(a)]:

(V ki query(k,a) < start(k,3) < finish(k, 3)) ; assumption
— (Y myts(query(k, a)) < myts(start(8)) < myts(finish(3)
. P 5.18 (monotonicity of myts)
= maspen{myts(query(k, a))} < myts(start(8)) < myts(finish(5))
o othts(start(a)) < myts(start(B)) < myts(finish(8)) ; P 5.26, P 5.18 (montonicity of myts)
= (ts(start(a)) < ts(start(B)) < ts(finish(B))) A (ts(start(B))[z] < ts(finish(B))[z])
. D 5.4, D 5.5, P 5.28 (3 writes to)
— (ts(start(a))[z] < ts(finish(B))[x]) A (¢s(finish(8))[z] = ts(start(a))[z])
. D 5.6 (a reads from 3 the value of z)

= false ; contradiction
Therefore,
(F k2 start(k, B) < finish(k, B) < query(k, a)) ; atomicity of actions
= (I k :: myts(finish(B)) < myts(query(k,))) ; P 5.18 (monotonicity of myts)

= myts(finish(B)) 2 max;<p<,{myts(query(k,a))} = othts(start(a))

. P 5.26
= ts(finish(B)) = ts(start(a)) ;D54 D55
Case 1.2 [abcast(a)]:
start(i, o) < finish(i, 3) ; assumption
= start(i,a) < start(i,3) < finish(i,3) ; atomicity of actions

= myts(start(a)) 2 myts(start(3)) < myts(finish(a)) ; P 5.18 (monotonicity of myts)
= (ts(start(a)) < ts(start(B)) < ts(finish(B))) A (ts(start(B))[x] < ts(finishB)[z])
; D 5.4, D 5.5, P 5.28 (3 writes to x)

24

= (ts(start(a))[z] < ts(finish(beta))[z]) A (ts(finish(B))[z] = ts(start(a))[z])
; D 5.6 (a reads the value of z from f3)

= false ; contradiction
Therefore,
finish(i, B) < start(i, «)

= myts(finish(B)) < myts(start(c)) ; P 5.18 (monotonicity of myts)
= ts(finish(B)) = ts(start(a)) ;D54 D55

Case 2 [§ ~, a]: From the definition of ~»,, we can infer that resp(3) < inv(a). There are four
subcases to consider depending on whether @ and (3 are atomically broadcast.

Case 2.1 [~abcast(B) A —abcast(a)]:

resp(f) < inv(«)

= (Vk:: query(k, B) < query(k, a)) ; P 5.20

= (V& :: myts(query(k, 3)) = myts(query(k, a))) ; P 5.18 (monotonicity of myts)
= maxi<gp<n{myts(query(k,)} = maxi<p<n{myts(query(k,a))}

= othts(finish(B)) =< othts(start(a)) ; P 5.26

= ts(finish(B)) = ts(start(a)) ;D54 D55

Case 2.2 [abcast(B) N —abcast(a)]:

resp(f8) < inv(a)
= finish(j,B) < query(j,) ; P 5.19, P 5.20

4

muyts(finish(B)) < myts(query(j, a)) ; P 5.18 (monotonicity of myts)
= myts(finish(B)) = max;<p<,{myts(query(k,a))} = othts(start(x))

; P 5.26
= ts(finish(B)) = ts(start(a)) ;D54 D55
Case 2.3 [—abcast(B) A abeast(a)]:
resp(f) < inv(a)
= (Yk:: query(k,) < start(k,a)) ; P 5.20, P 5.21

25

= (Y k :: myts(query(k, B)) < myts(start(a))) ; P 5.18 (monotonicity of myts)

= maxi<g<p{myts(query(k,))} < myts(start(a)) ;
= othts(finish(B)) < myts(start(a)) ; P 5.26
= ts(finish(B)) = ts(start(a)) ; D54, D55

Case 2.4 [abcast(B) N abcast(a)]:

resp(f) < inv(w)

= finish(j, B) < start(j, «) ; P 5.19, P 5.21
= myts(finish(B)) < myts(start(c)) ; P 5.18 (monotonicity of myts)
= ts(finish(B)) < ts(start(a)) ;D 5.4, D55

Case 3 [~ @]t Using P 5.23 and P 5.22, we can infer that both o and 3 are atomically broadcast.

B~ @
= start(i, f) < start(i, «) ; P 5.24 (B is received before o at P;)
= finish(i, B) < start(i, o) ; atomicity of actions
= myts(finish(B)) < myts(start(c)) ; P 5.18 (monotonicity of myts)
= ts(finish(B)) < ts(start(a)) ;D 5.4, D55
Hence if 8 ~»,, o then ts(finish(B)) < ts(start(a)). [

Lemma 17 The protocol in Figure 6 satisfies P 5.1 and P 5.2.

Proof: The proof of property P 5.1 is as follows,

(B~ @) A (wobjects(a) = ¢) A (wobjects(B) = @)
= (B @) V(Bropa) V(B @) A (wobjects(B) = ¢)
; D 5.8 (definition of ~+7)

= ((wobjects(B) # ¢) V (B~) V (wobjects(B) # ¢)) A (wobjects(8) = ¢)
; D 5.6, definition of ~»,,

= [~ a ; distribution of A over V, contradiction

The property P 5.2 can be proved as follows,

26

(wobjects(a) # ¢) N (wobjects(B) # @)
= (a~pw B) V(B ~pw @) ; P 5.23
= (a~gy B)V (B ~y @) ; D 5.8 (~+,, contains ~»,,,,)

Hence P 5.1 and P 5.2 are satisfied by the protocol in Figure 6.

Lemma 18 The protocol in Figure 6 satisfies P 5.3 and P 5.4.

Proof: The property P 5.3 can be proved as follows,

frora

= ts(finish(B)) < ts(start(a)) ; Lemma 16

= ts(finish(B)) = ts(start(a)) < ts(finish(a)) ; conjunction of P 5.27 and P 5.28
= ts(finish(B)) < ts(finish(a)) ; simplification

= ts(B) < ts(a) ; D 5.7

The proof of property P 5.4 is as follows,

(B~ @) A (z € wobjects(a))
= (ts(finish(B)) = ts(start(
= (ts(finish(B)) = ts(start(

) A (z € wobjects(a)) ; Lemma 16
)) A (ts(start(a))[z] < ts(finish(a))[z])
; P 5.28 (o writes to x)

a)
a)

= ts(finish(B))[z] < ts(start(a))[z] < ts(finish(a))[z]); simplification
= ts(f)[z] < ts(a)[z] ; D 5.7

Hence P 5.3 and P 5.4 are satisfied by the protocol in Figure 6.

Lemma 19 The protocol in Figure 6 satisfies P 5.7 and P 5.8.

Proof: The proof of property P 5.7 is as follows,

(x € rfobjects(H, o, B)) N (x & wobjects(ar))
= (ts(finish(B))[z] = ts(start(a))[x])) A (z & wobjects(a))
; D 5.6 (a reads the value of z from 3)
= (ts(finish(pB))[z] = ts(start(a))[z]) A (ts(start(a))[z] = ts(finish(a))[z])
; P 5.27 (o does not write to x)
= ts(finish(B))[z] = ts(finish(a))[z] ; simplification
= ts(B)[z] = ts(a)[z] ; D 5.7

27

The property P 5.8 can be proved as follows,

(x € rfobjects(H,c, B)) N (x € wobjects(c))
= (ts(finish(pB))[z] = ts(start(a))[z])) A (z € wobjects(a))
; D 5.6 (a reads the value of from f3)
= (ts(finish(B))[z] = ts(start(a))[z]) A (ts(start(a))z] = ts(finish(a))[z] — 1)
; P 5.28 (o writes to)

= ts(finish(B))[z] = ts(finish(a))[z] — 1 ; simplification
= ts(B)[z] =ts(a)[z] — 1 ; D 5.7
Hence P 5.7 and P 5.8 are satisfied by the protocol in Figure 6. |

Theorem 20 All the executions generated by the protocol in Figure 6 are m-linearizable.

Proof: From Lemma 17-19, we can conclude that the protocol in Figure 6 satisfy properties P 5.1-5.4 and
P 5.7-5.8. Therefore, from Theorem 10, we can infer that all the executions generated by the protocol in
Figure 6 are m-linearizable. u

Although in this protocol a process sends the whole copy of shared objects along with their timestamps
in response to the “query”, but it is easy to verify that the protocol is still correct if only the relevant
copies of the shared objects (objects(.)) and their timestamp is sent.

6 Conclusion

We extend the traditional model of concurrent objects to allow operations that span multiple objects.
We give the consistency conditions in this model, analyze their verification complexity and give efficient
algorithms for ensuring them in distributed systems.

References

[1] Sarita V. Adve and K. Gharachorloo. “Shared Memory Consistency Models: A Tutorial”. IEEE
Computer, pages 66-76, December 1996.

[2] Y. Afek, G. Brown, and M. Merritt. “Lazy Caching”. ACM Transactions on Programming Language
and Systems, 15(1):182—205, January 1993.

[3] Mustaque Ahamad, Phillip W. Hutto, and Ranjit John. “Causal memory: Definitions, Implementation
and Programming”. Technical Report 93/55, College of Computing, Georgia Institute of Technology,
September 1993.

[4] Hagit Attiya and Jennifer L. Welch. “Sequential Consistency versus Linearizability”. ACM Transac-
tions on Computer Systems, 12(2):91-122, May 1994.

28

[5]

[6]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P. Bernstein, V. Hadzilacos, and N. Goodman. “Concurrency Control and Recovery in Database
Systems”. Addison-Wesley, Reading, MA, 1987.

Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H. Ran-
dall. “Dag-Consistent Distributed Shared Memory”. In Proceedings of the 10th International Parallel
Processing Symposium (IPPS), pages 132-141, April 15-19, 1996.

C. J. Fidge. “Logical Time in Distributed Computing Systems”. IEEE Computer, 24(8):28-33, 1991.

Vijay K. Garg and Michel Raynal. “Normality: A Consistency Conditions for Concurrent Objects”.
Technical Report TR-PDS-1996-010, The University of Texas at Austin, May 1996. To appear in
Parallel Processing Letters.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. “Memory Consis-
tency and Event Ordering in Scalable Shared-Memory Multiprocessors”. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 15-26, May 1990.

Michael Greenwald and David Cheriton. “The Synergy Between Non-blocking Synchronization and
Operating System Structure”. In Proceedings of the Second Symposium on Operating System Design
and Implementation, pages 123-136, USENIX, Seattle, October 1996.

Maurice Herlihy. “Wait-Free Synchronization”. ACM Transactions on Programming Language and
Systems, 11(1):124-149, January 1991.

Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: A correctness condition for concurrent
objects”. ACM Transactions on Programming Language and Systems, 12(3):463-492, July 1990.

T. Ibaraki, T. Kameda, and T. Minoura. “Serializability with Constraints”. ACM Transactions on
Database Systems, 12(3):429-452, 1987.

P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. “Treadmarks: Distributed Shared Mem-
ory on Standard Workstations and operating systems”. In Proceedings of the 1994 Winter Usenix
Conference, pages 115-132, January 1994.

Leslie Lamport. “How to make a multiprocessor computer that correctly executes multiprocess pro-
grams”. IEEE Transactions on Computers, C28(9):690-691, September 1979.

Richard J. Lipton and Jonathan S. Sandberg. “PRAM: A scalable shared memory”. Technical Report
180-88, Department of Computer Science, Princeton University, September 1988.

Friedemann Mattern. “Virtual time and global states of distributed systems”. International Workshop
on Parallel and Distributed Algorithms, pages 215-226, October 1988.

Marios Mavronicolas and Dan Roth. “Sequential Consistency and Linearizability: Read/Write ob-
jects”. In Proceedings of Twenty-Ninth Annual Allerton Conference on Communication, Control and
Computing, pages 683-692, October 1991.

Jayadev Misra. “Axioms for memory access in asynchronous hardware systems”. ACM Transactions
on Programming Language and Systems, 8(1):142-153, January 1986.

29

[20] M. Mizuno, M. Raynal, and J.Z. Zhou. “Sequential Counsistency in Distributed Systems”. In K. Bir-
man, F. Mattern, and A. Schiper, editors, Proceedings of International Workshop on “Theory and
Practice in Distributed Systems”, Springer-Verlag LNCS 938, pages 227-241, Dagstuhl, Germany,
1994.

[21] C. H. Papadimitriou. “The Theory of Concurrency Control”. Computer Science Press, May 1986.

[22] M. Raynal, G. Thia-Kime, and M. Ahamad. “From Serializable to Causal Transactions for Collabo-
rative Applications”. Technical Report 983, Irisa - Rennes, February 1996. 22 pages.

[23] Richard N. Taylor. “Complexity of Analyzing the Synchronization Structure of Concurrent Programs”.
Acta Informatica, 19:57-84, 1983.

30

