
Consistency Conditions for Multi-Object Distributed Operations

Neeraj Mittal and Vijay K. Garg

TR-PDS-1998-005 June 1998

Parallel & Distributed Systems group
Department of Electrical & Computer Engineering

University of Texas at Austin

Austin, Texas 78712

T
H
E
U
N
IV

ER
SITY

O
F
T
E
X
A
S

A
T
AUSTI

N

D
IS
C
I
P
L
I
N
A

P
R
AE
SIDIUM

C
I
V
I
T
A
T
I
S

Consisten
y Conditions for Multi-Obje
t Distributed OperationsNeeraj Mittal � Vijay K. Garg yneerajm�
s.utexas.edu garg�e
e.utexas.eduDept. of Computer S
ien
es Dept. of Ele
tri
al and Computer Engg.Parallel and Distributed Systems Laboratoryhttp://maple.e
e.utexas.eduThe University of Texas at Austin, Austin, TX 78712Abstra
tThe traditional Distributed Shared Memory (DSM) model provides atomi
ity at levels of read and write onsingle obje
ts. Therefore, multi-obje
t operations su
h as double
ompare and swap, and atomi
 m-registerassignment
annot be eÆ
iently expressed in this model. We extend the traditional DSM model to allowoperations to span multiple obje
ts. We show that memory
onsisten
y
onditions su
h as sequential
on-sisten
y and linearizability
an be extended to this general model. We also provide algorithms to implementthese
onsisten
y
onditions in a distributed system.1 Introdu
tionAppli
ations su
h as distributed �le systems, transa
tion systems and
a
he
oheren
e for multipro
essorsrequire
on
urrent a

esses to shared data. The underlying system must provide
ertain guarantees aboutthe values returned by data a

esses, possibly to distin
t
opies of a single logi
al data obje
t. A
onsisten
y
ondition spe
i�es what guarantees are provided by the system. The
onsisten
y
onditions should bestrong enough to enable easy programming. Sequential
onsisten
y and linearizability are two well-known
onsisten
y
onditions de�ned in the literature.Sequential
onsisten
y was proposed by Lamport [15℄ to formulate a
orre
tness
riterion for a multi-pro
essor shared-memory system. It requires that all data operations appear to have exe
uted atomi
ally,in some sequential order that is
onsistent with the order seen by individual pro
esses.Linearizability was introdu
ed by Herlihy and Wing [12℄ to exploit the semanti
s of abstra
t data types.It provides the illusion that ea
h operation applied by
on
urrent pro
esses takes e�e
t instantaneously atsome point between its invo
ation and response. Linearizability is stronger than sequential
onsisten
y andhas two advantages over it. First, it is more
onvenient to use be
ause it preserves real-time ordering ofoperations, and hen
e
orresponds more naturally to the intuitive notion of atomi
 exe
ution of operations.Consequently, it is easier to develop programs assuming a linearizable implementation of shared obje
ts.Se
ond, linearizability satis�es the lo
al property, that is the system as a whole is linearizable wheneverthe implementation of ea
h obje
t is linearizable.These and other
onsisten
y
onditions [16, 3, 8, 6, 14, 9℄ are based on the model in whi
h an opera-tion is invoked on a single obje
t. In fa
t, the traditional Distributed Shared Memory (DSM) provides�supported in part by the MCD Fellowshipysupported in part by the NSF Grants ECS-9414780, CCR-9520540, Texas Higher Edu
ation Board grant ARP-320, aGeneral Motors Fellowship, and an IBM grant

atomi
ity only at levels of read and write on single obje
ts. While this may be appropriate for models atthe level of hardware, they do not provide an expressive [11℄ and
onvenient abstra
tion for
on
urrentprogramming. Herlihy [12℄ extended the model to arbitrary operations on single obje
ts. That allows therepresentation of more powerful
on
urrent obje
ts, for example test and set, fet
h and add, FIFO queuesand sta
ks. However, the model assumes that all operations are unary, that is, they are invoked on a singleobje
t. There are many appli
ations in whi
h operations are more naturally expressed as en
ompassingmultiple obje
ts. For example, operations like double
ompare and swap (DCAS)1 [10℄
annot be eÆ
ientlyexpressed in that model. DCAS redu
es the allo
ation and
opy
ost thereby permitting a more eÆ
ientimplementation of
on
urrent obje
ts. As another appli
ation, if a transa
tion in a database is viewed asan atomi
 operation then it is
lear that it operates, in general, on multiple data items.In this paper, we develop a framework for
onsisten
y
onditions for distributed obje
ts with multi-obje
t operations or multi-methods. We introdu
e a formal model for exe
ution of operations that spanmultiple obje
ts, denoted bym-operations. In this model, ea
h pro
ess exe
utes multiplem-operations andea
h m-operation
onsists of multiple operations (possibly on di�erent obje
ts). We extend the de�nitionsof sequential
onsisten
y and linearizability to give m-sequential
onsisten
y and m-linearizability respe
-tively. With the in
reasing popularity of distributed obje
ts it is important to understand the
onditionsfor their
onsisten
y in presen
e of repli
ation and
a
hes. Independently, Raynal et al [22℄ also generalizedthe Herlihy's model to transa
tions on multiple obje
ts but they fo
ussed on weaker
onsisten
y
onditions,namely
ausal
onsisten
y and
ausal serializability.Besides pra
ti
al impli
ations, our model has ni
e theoreti
al
onsequen
es. It serves to unify resultsfrom two areas. By restri
ting the number of m-operations per pro
ess to one, the model redu
es to thatof database transa
tions. Similarly, if we restri
t ea
h m-operation to exe
ute operations on a single obje
tthen the model redu
es to that of distributed shared memory [1℄ on
on
urrent obje
ts [12℄. Thus withour model, one set of
onsisten
y
onditions, their implementation, and
omplexity results are appli
ableto both the areas.It has been shown that determining whether a given exe
ution is sequentially
onsistent is an NP-
ompleteproblem [23℄. We show that the problem of
he
king whether a given history is m-linearizable is alsoNP-
omplete. This is true even when the reads-from relation (de�ned later) is known. Note that whenthe reads-from relation is known, the linearizability
an be
he
ked in polynomial time [19℄.We show that exe
ution
onstraints proposed by Mizuno et al [20℄ to ensure eÆ
ient implementation forsequential
onsisten
y
an also be used for operations that span multiple obje
ts. Spe
i�
ally, under theseexe
ution
onstraints, it is ne
essary and suÆ
ient to ensure legality of reads to guarantee m-sequential
onsisten
y (and m-linearizability).Finally, we provide algorithms for ensuring proposed
onsisten
y
onditions in a distributed system.Several papers [2, 4, 18, 20℄ have proposed sequentially
onsistent implementations for read/write ob-je
ts. Attiya and Wel
h [4℄ provide sequentially
onsistent and linearizable implementations for read/writeobje
ts, FIFO queues and sta
ks. In addition, they also give an analysis of the response time of their im-plementations. But their implementation for linearizability assumes that
lo
ks are perfe
tly syn
hronizedand there is an upper bound on the delay of the message. Our algorithm for m-sequential
onsisten
yis an extension of the algorithm proposed by them. We show that their algorithm also works for multi-obje
t operations. More importantly, we provide an algorithm for implementation of m-linearizability inan asyn
hronous distributed system whi
h does not make any assumptions about
lo
k syn
hronization orthe message delay.It should be noted that there may be a temptation to model multi-methods by de�ning an aggregate1DCAS atomi
ally updates lo
ations addr1 and addr2 to values new1 and new2 respe
tively if addr1 holds value old1 andaddr2 holds old2 when the operation is invoked. 2

obje
t that represents the state of all obje
ts. However, this te
hnique has serious drawba
ks. For example,if there are n read-write registers and one multi-method sum that takes two registers as arguments, thete
hnique will for
e all registers to be treated as one obje
t. This results in loss of lo
ality and
on
urren
y.This paper is organized as follows. Se
tion 2 gives our model of a
on
urrent system with multi-obje
toperations and presents the
onsisten
y
onditions appropriate in this model. In Se
tion 3 we show theNP-
ompleteness of veri�
ation of m-linearizability. Se
tion 4 imposes additional
onstraints on exe
utionfor eÆ
ient implementation of distributed obje
ts. In Se
tion 5 we present algorithms for implementationof m-sequential
onsisten
y and m-linearizability in an asyn
hronous distributed systems.2 De�nitions2.1 System ModelA
on
urrent system
onsists of a �nite set of sequential threads of
ontrol
alled pro
esses, denoted byP1; P2; : : : ; Pn, that
ommuni
ate through a set of shared data stru
tures
alled obje
ts (or
on
urrentobje
ts) X . Ea
h obje
t
an be a

essed by read and write operations. A write into an obje
t de�nes anew value for the obje
t; a read allows to obtain the value of the obje
t. A write operation on an obje
t xis denoted by w(x)v, where v is the value written to x by this operation. A read operation on x is denotedby r(x)v, where v is the value of obje
t x returned by this operation.Pro
esses are sequential and manipulate obje
ts through m-operations. An m-operation is a sequen
eof operations possibly spanning several obje
ts. Intuitively, an m-operation is a \deterministi
 pro
edure"of read and write operations on shared obje
ts. Ea
h pro
ess applies a sequen
e of m-operations toobje
ts, alternately issuing an invo
ation and then re
eiving the asso
iated response. Let �(arg; res) bean m-operation issued at Pi; arg and res denote �'s input and output parameters respe
tively. Exe
utionof an m-operation takes
ertain time; this is modeled by two events, namely an invo
ation event and aresponse event. For an m-operation �, invo
ation and response events, inv(�(arg)) at Pi and resp(�(res))at Pi, will be abbreviated as inv(�) and resp(�) when parameters and pro
ess identity are not ne
essary.An event e o

urs-before event f , denoted by e < f , i� event e pre
edes event f in real time. We will usegreek symbols �, �,
, Æ, et
. to denote m-operations.If two m-operations � and � are issued by the same pro
ess, say Pi, and � is issued before �, then wesay � pre
edes � in Pi's pro
ess order and is written as �;Pi �. If pro
ess identity is not important thenpro
ess order is denoted by ;P . In Figure 1, �;P1 �.If a read operation r(x)v reads the value written by the write operation w(x)v, then r(x)v is said toread-from w(x)v. An m-operation � reads-from a distin
t m-operation � the value of obje
t x, written as� ;rf �, if there exists at least one read operation of � that reads from some write operation of � thevalue of obje
t x. In Figure 1, �;rf Æ and � ;rf Æ.We assume that an imaginarym-operation that writes to all obje
ts is performed to initialize the obje
tsbefore the �rst operation by any pro
ess is exe
uted. In all the examples
onsidered in this paper, unlessspe
i�ed otherwise, we assume that initial value of all obje
ts is 0.2.2 HistoriesInformally, an exe
ution of a
on
urrent system is modeled by a history, whi
h is a �nite sequen
e ofm-operation invo
ation and response events. Formally, a history H is denoted by a tuple hop(H);;Hi,where op(H) is the set of m-operations and ;H is some irre
exive transitive relation de�ned on the set ofm-operations whi
h in
ludes the partial order imposed by pro
ess orders and reads-from relation.3

P1

P
δ = r(y)2 r(z)3

2

P3
µ = r(v)1η

β = r(u)0 w(v)1= r(x)0 w(y)2 w(z)2α

process order reads-from

inv(η) resp(η)

= r(v)0 w(x)1 w(z)3

Figure 1: An exe
ution history H0A history S is sequential i� (1) its �rst event is an invo
ation event, (2) ea
h invo
ation event isimmediately followed by a mat
hing response event, and (3) ;S is a total order
onsistent with the orderof m-operation invo
ation events.A pro
ess subhistory or lo
al history of Pi of a historyH, denoted byHjPi, is the subsequen
e of all eventsin H asso
iated with the pro
ess Pi. A history is well-formed i� ea
h pro
ess subhistory is sequential. Allhistories
onsidered in this paper are assumed to be well-formed.Two histories H and G are equivalent i� for every pro
ess Pi, HjPi = GjPi and they have the samereads-from relation.Intuitively, a read operation is legal if it does not read from an overwritten write operation. Note thatif there exists a write operation w(x)v before a read operation r(x)u in an m-operation (su
h that w(x)vis the last write on x before r(x)u) then u must be equal to v. Similarly, if there exists a write operationw(x)v after a write operation w(x)u in an m-operation then no read operation of another m-operation
an read from w(x)u. In the rest of the paper, we ignore su
h read and write operations. Let op(op(x)v)denote the m-operation asso
iated with the operation op(x)v. A read operation r(x)v is legal i� thereexists a write operation w(x)v su
h that r(x)v reads from w(x)v and there does not exist another writeoperation w0(x)u su
h that op(w(x)v) ;H op(w0(x)u) ;H op(r(x)v). An m-operation is legal i� all itsread operations are legal. A history H is legal i� all its m-operations are legal.A history H is admissible with respe
t to ;H i� it is equivalent to some legal sequential history thatrespe
ts ;H. We will omit the phrase \with respe
t to ;H" if ;H is
lear from the
ontext.2.3 Consisten
y ConditionsA
onsisten
y poli
y makes the behavior of a
on
urrent system equivalent to that of a non-
on
urrentsystem. A
onsisten
y
ondition provides guarantees about the values returned by data a

esses in thepresen
e of interleaved and/or overlapping a

esses. Sequential
onsisten
y and linearizability are two wellknown
onsisten
y
onditions. We extend their de�nitions to in
lude m-operations to give m-sequential
onsisten
y and m-linearizability. Our de�nitions are based on the de�nition of admissibility with thepartial order ;H appropriately de�ned.Let pro
(�) and obje
ts(�) denote the pro
ess and the set of obje
ts respe
tively asso
iated with anm-operation �. In Figure 1, pro
(�) = P1 and obje
ts(�) = fx; y; zg. The m-operations � and � arerelated by real-time order, denoted by �;t �, i� the response of � is re
eived before the invo
ation of �,that is, resp(�) < inv(�). The m-operations � and � are related by obje
t order, denoted by �;X �, i�both the m-operations share an obje
t and the response of � is re
eived before the invo
ation of �, thatis, (obje
ts(�) \ obje
ts(�) 6= �) ^ (resp(�) < inv(�)). In Figure 1, �;t �, � ;t � and � ;X �.4

m-Sequential
onsisten
y requires that all m-operations appear to have exe
uted atomi
ally, in some se-quential order that is
onsistent with the order seen by individual pro
esses. A history ism-sequentially
onsistent i� it is admissible with respe
t to pro
ess orders and reads-from relation. Inother words, let H = hop(H);;Hi be an exe
ution history su
h that ;H
onsists of pro
ess orders andreads-from relation. Then H is m-sequentially
onsistent i� it is admissible with respe
t to ;H. Ifm-operations are restri
ted to a single read or write operation, then our de�nition redu
es to traditionalde�nition of sequential
onsisten
y.m-Linearizability requires that: (1) ea
h m-operation should appear to take e�e
t instantaneously some-where between its invo
ation and response, and (2) the order of non-overlapping m-operations should bepreserved. A history ism-linearizable i� it is admissible with respe
t to pro
ess orders, reads-from relationand real-time order. Formally, let H = hop(H);;Hi be an exe
ution history su
h that ;H
onsists ofpro
ess orders, reads-from relation and real-time order. Then H is m-linearizable i� it is admissible withrespe
t to ;H.Garg and Raynal [8℄ proposed another de�nition of
onsisten
y, namely normality, whi
h is based onobje
t order rather than real-time order. We also extend their de�nition of normality to give m-normality.A history is m-normal i� it is admissible with respe
t to pro
ess orders, reads-from relation and obje
torder. In other words, let H = hop(H);;Hi be an exe
ution history su
h that ;H
onsists of pro
essorders, reads-from relation and obje
t order. Then H is m-normal i� it is admissible with respe
t to;H. m-Normality is less restri
tive than m-linearizability sin
e it does not order two non-overlappingm-operations unless they a
t on a
ommon obje
t. The results of Se
tion 3 and Se
tion 4 also holdfor m-normality. Sin
e the proto
ol for m-linearizability also implements m-normality, we will fo
us onm-linearizability in the rest of the paper.3 NP-
ompleteness of Consisten
y ConditionsIt has been shown that as
ertaining whether a given exe
ution is sequentially
onsistent when the operationsare restri
ted to a single obje
t is an NP-
omplete problem [23℄. Sin
e our model is a generalization of thetraditional DSM model, determining whether a given exe
ution ism-sequentially
onsistent is NP-
ompletetoo. Misra proved that
he
king whether an exe
ution satis�es atomi

onsisten
y is solvable in polynomialtime when reads-from relation is known [19℄. It turns out that this is not the
ase when the operations
an en
ompass multiple obje
ts. In this se
tion we show that determining whether a given exe
ution ism-linearizable is an NP-
omplete problem even when reads-from relation is known. We will use the resultsin databases to prove the NP-
ompleteness of m-linearizability.Mu
h work on databases uses serializability [21, 5℄ as the basi

orre
tness
ondition for
on
ur-rent
omputations. Several notions of equivalen
e su
h as view equivalen
e, stri
t view equivalen
e, and
on
i
t equivalen
e are de�ned [21℄. If we restri
t ea
h pro
ess to
ontain a single operation (one for ea
htransa
tion) then the notion of
orre
tness in the database world
an be viewed as spe
ial
ase of the
onsisten
y
onditions in our model. For instan
e, view equivalen
e
an be
onsidered as a spe
ial
aseof m-sequential
onsisten
y; stri
t view equivalen
e
an be viewed as a spe
ial
ase of m-linearizability,and
on
i
t equivalen
e
an be
onsidered as a spe
ial
ase of m-normality under OO-
onstraint (de�nedlater). Sin
e determining whether a s
hedule is stri
t view serializable is an NP-
omplete problem, hen
e
he
king whether a history is m-linearizable is also an NP-
omplete problem. It should be noted that
he
king for m-linearizability of history H is not same as
he
king for a
y
li
ity of ;H. In parti
ular,;Hmay be a
y
li
 but H may not be m-linearizable.Theorem 1 Let H be an exe
ution history. Then it is NP-
omplete to determine whether H ism-sequentially
onsistent. 5

Theorem 2 Let H be an exe
ution history. Then it is NP-
omplete to determine whether H ism-linearizable.Proof: To prove that determining whether a history H is m-linearizable is NP-hard we redu
e stri
t viewserializability2 tom-linearizability. Let S = (trans(S);;S) be a s
hedule of transa
tions in a database
on-sisting of �nite set of entities E = fx1; x2; : : :g, where trans(S) denote the set of transa
tions T1; T2; : : : ; Tn,and ;S represents the order of a
tions in the s
hedule. We
onstru
t a distributed system
onsisting ofsequential pro
esses P0; P1; P2; : : : Pn; P1, one for ea
h transa
tion in the augmented s
hedule3, and sharedobje
ts E. For ea
h a
tion in the s
hedule there is a
orresponding operation. An operation ai reads fromoperation aj if the
orresponding a
tion ai reads-from the
orresponding a
tion aj in the s
hedule S. Ea
hpro
ess Pi exe
utes a single m-operation �i whose operations
orrespond to the a
tions of the transa
tionTi exe
uted in the same order. The �rst and last a
tions of a transa
tion de�ne the invo
ation and re-sponse events respe
tively of the
orresponding m-operation. It is easy to see that two transa
tions arenon-overlapping in the s
hedule S if and only if the
orresponding m-operations are non-overlapping in H.The history H of the system is the history hop(H);;Hi where op(H) is the set of transa
tions and ;H
onsists of reads-from relation and real-time order.It
an be easily proved that s
hedule S is stri
t view serializable if and only if the history H ism-linearizable. Moreover, it
an be easily veri�ed that the problem is indeed in NP sin
e, given a se-quential history, we
an easily
he
k that it is legal and equivalent to H.4 Consisten
y Conditions with ConstraintsDue to Theorem 1 and Theorem 2 it is unlikely that there exists an eÆ
ient algorithm that realizesm-sequential
onsisten
y (m-linearizability), that is, allows all m-sequentially
onsistent (m-linearizable)histories and only these. Thus, as in
on
urren
y
ontrol proto
ols [13℄, a
tual implementations need toenfor
e
onstraints on exe
utions. Mizuno et al [20℄ identi�ed two su
h
onstraints, namely WW -andOO-
onstraints, for sequential
onsisten
y. We extend their work in two ways: we show that (1) theirresults extend to the
ase when the operations
an span multiple obje
ts, and (2) similar results also holdfor m-linearizability. In the rest of the paper, we label the de�nitions by pre�x \D" and the properties bypre�x \P". Before pro
eeding further, we give some de�nitions we use in this se
tion.Let robje
ts(�) and wobje
ts(�) denote the obje
ts read and written by � respe
tively. Note that afterexe
ution, the system knows the set of obje
ts read and written by ea
h m-operation. An m-operation issaid to be an update m-operation i� it writes to some obje
t. An m-operation is a query m-operation i� itis not an update m-operation. Two distin
t operations are said to be
on
i
ting i� both a
t on the sameobje
t and at least one of them is a write operation. Two distin
tm-operations are said to be
on
i
ting i�one of them
ontains an operation that
on
i
ts with some operation of the other. Let rfobje
ts(H; �; �)denote the set of obje
ts that � reads from � in history H. The distin
t m-operations �, � and
 aresaid to interfere in history H i�
 writes to some obje
t that � reads from �. Note that if �, beta and
interfere in H then they pairwise
on
i
t. In Figure 1, �
on
i
ts with �, and m-operations Æ, � and �interfere. Formally,2A s
hedule S is stri
t view serializable if it is view equivalent to a serial s
hedule in whi
h transa
tions that do not overlapin S are in the same order as in S.3a s
hedule augmented with an initial transa
tion, T0, writing values to ea
h entity and a �nal transa
tion, T1, readingvalues from ea
h entity. 6

(D 4.1)
onfli
t(�; �) def= (� 6= �)^((obje
ts(�) \ wobje
ts(�)) [(obje
ts(�) \ wobje
ts(�)) 6= �)(D 4.2) interfere(H; �; �;
) def= (�; � and
 are distin
t operations)^(rfobje
ts(H; �; �) \ wobje
ts(
) 6= �)(P 4.1) interfere(H; �; �;
))
onfli
t(�; �) ^
onfli
t(�;
) ^
onfli
t(
; �)^(robje
ts(alpha) ^ wobje
ts(�) ^ wobje
ts(
) 6= �)The reads-from relation
an be formally stated as follows,(D 4.3) � ;rf � def= h9 x : : x 2 rfobje
ts(H; �; �)iThe well-formedness of a history H
an be represented as,(P 4.2) � ;p �) resp(�) < inv(�)A history G extends history H i� G is equivalent to H and ;G respe
ts ;H. Note that if G extends Hthen G and H have identi
al set of interfering m-operations and \extends" is transitive. Formally,(D 4.4) extends(G;H) def= h8 i : 1 � i � n : HjPi = GjPii ^ (;Hrf=;Grf) ^ (;H�;G)(P 4.3) extends(G;H)) h8 �; �;
 2 op(G)(= op(H)) : :interfere(G; �; �;
) = interfere(H; �; �;
)i(P 4.4) extends(F ;G) ^ extends(G;H)) extends(F ;H)The sequentiality, legality, and admissibility of a history
an be de�ned using the above de�nitions asfollows,(D 4.5) sequential(H) def=;H is a total order(D 4.6) legal(H) def= h8 �; �;
 2 op(H) : interfere(H; �; �;
) : :(� ;H
) _ :(
 ;H �)i(D 4.7) admissible(H) def= h9 S : extends(S;H) ^ sequential(S) : legal(S)iIntuitively, the
onstraints impose additional ordering on the m-operations su
h that it is eÆ
ientlypossible to sequentialize a history to a legal one. In this paper, we fo
us on OO-and WW -
onstraints.These
onstraints are enfor
ed by the underlying system by syn
hronizing
ertain m-operations a
rosspro
esses. In WW -
onstraint all update m-operations must be globally syn
hronized. If OO-
onstraint isused, m-operations need to be syn
hronized only at ea
h obje
t level. However, m-operations that onlyread an obje
t must also be syn
hronized with other update m-operations on that obje
t. An alternateapproa
h is to impose
onstraints on the program exe
ution (data ra
e free (DRF) and
on
urrent writefree (CWF)) [3℄. The system
an then provide weaker guarantees and have better performan
e. Theonus of enfor
ing these
onstraints then lies with the programmer whi
h makes appli
ation building morediÆ
ult.A historyH satis�esWW -
onstraint i� any pair ofm-operations performing write operations are orderedunder ;H. A history H satis�es OO-
onstraint i� any pair of
on
i
ting m-operations are ordered under;H. We de�ne another another
onstraint, namely WO-
onstraint, whi
h is the interse
tion of OO- and7

WW -
onstraints. We use it to prove the results that are
ommon to both OO- and WW -
onstraints. Ahistory H satis�es WO-
onstraint i� any pair of m-operations performing write operations on a
ommonobje
t are ordered under ;H. Formally,(D 4.8) OO(H) def= h8 �; � 2 op(H) :
onfli
t(�; �) : (�;H �) _ (� ;H �)i(D 4.9) WW (H) def= h8 �; � 2 op(H) : (� 6= �) ^ (wobje
ts(�) 6= �) ^ (wobje
ts(�) 6= �) :(�;H �) _ (� ;H �)i(D 4.10) WO(H) def= h8 �; � 2 op(H) : (� 6= �) ^ (wobje
ts(�) \ wobje
ts(�) 6= �) :(�;H �) _ (� ;H �)i
P2

γ = w(x)1 = w(y)3δ

= r(x)0 w(y)2α
P1

β = r(y)2

process order reads-from

WW-constraintFigure 2: An exe
ution history H1 under WW -
onstraint
α = r(x)0 w(y)2 γ = w(x)1 = w(y)3δ β = r(y)2Figure 3: An extension of history H1 to a nonlegal history S1A history under WW -
onstraint permits the m-operations, one of whi
h only reads from an obje
t andthe other writes on the same obje
t, to exe
ute
on
urrently. Simply extending the partial order ;Hto a total order may give sequential histories that are not legal. In Figure 2, the history H1 is underWW -
onstraint. One of the possible extensions of ;H1 gives us the sequential history S1, as in Figure 3,whi
h is not legal. Therefore we de�ne a logi
al read-write pre
eden
e, denoted by;rw, between two su
hm-operations whi
h are not ordered under ;H. Let H be an exe
ution history and let �, � and
 bem-operations that interfere in H. Then � ;H
) �;rw
. Formally,(D 4.11) �;
rwdef= h9 � : interfere(H; �; �;
) : � ;H
iThe intuition is that in any legal sequential history equivalent to H,
 has to o

ur after �. We de�nean extended relation, denoted by ;+H, as,(D 4.12) ;+H= (;H [;rw)+The natural question now is whether the extended relation, ;+H, is still an irre
exive partial order.Lemma 3 and Lemma 4 prove that legality is a suÆ
ient
ondition for ;+H to be irre
exive if the historyis under OO- or WW -
onstraint. 8

Lemma 3 Let H be a legal exe
ution history under OO-
onstraint. Then ;+H is an irre
exive transitiverelation.Proof: We �rst show that ;rw�;H. Consider m-operations �,
 2 op(H) su
h that �;rw
. Then, bythe de�nition of ;rw, there exists an m-operation � su
h that �, � and
 interfere in H, and � ;H
.Then, �;rw
) (�;rw
) ^ (� ;H
) ; D 4.11 (de�nition of ;rw))
onfli
t(�;
) ^ (� ;H
) ; P 4.1) ((�;H
) _ (
 ;H �)) ^ (� ;H
) ; given H is under OO-
onstraint, D 4.8� ((�;H
) ^ (� ;H
)) _ ((
 ;H �) ^ (� ;H
)) ; distributivity of ^ over _) (�;H
) _ ((� ;H
) ^ (
 ;H �)) ;
ommutativity of ^, predi
ate
al
ulus) (�;H
) _ :legal(H) ; D 4.6 (de�nition of legality)) �;H
 ; given H is legalThen, from D 4.12 we
an
on
lude that ;+H =;H, and therefore ;+H is an irre
exive and transitiverelation.Lemma 4 Let H be a legal exe
ution history under WW -
onstraint. Then ;+H is an irre
exive transitiverelation.Proof: We �rst prove that ;H [;rw is a
y
li
. The proof is by indu
tion on the number of pair ofm-operations, n, ordered by ;rw in a
y
le. Note that sin
e ;H is an irre
exive transitive relation, any
y
le
onsists of at least one pair of m-operations ordered by ;rw.Base
ase (n = 1): Any
y
le is of the form �;rw
 ;H �. By de�nition of ;rw, there exists anm-operation � su
h that �, � and
 interfere in H. Then,(�;rw
) ^ (
 ;H �)) (� ;H
) ^ (
 ;H �) ; D 4.11 (de�nition of ;rw)� :(:(� ;H
) _ :(
 ;H �)) ; double negation, de morgan's law) :legal(H) ; D 4.6 (de�nition of legality)Hen
e H is not legal - a
ontradi
tion.Indu
tion Step (n > 1): Let path(�; �) denote the fa
t that there is a path from � to �
onsisting of a pairofm-operations ordered by;H or;rw. Let the
y
le be denoted by �;rw � ; � � �;
 ;rw Æ ; � � �; �,where ; represents either ;H or ;rw. Then, 9

(�;rw �) ^ path(�;
) ^ (
 ;rw Æ) ^ path(Æ; �)) (�;rw �) ^ path(�;
) ^ (
 ;rw Æ) ^ path(Æ; �) ^ (wobje
ts(�) 6= �) ^ (wobje
ts(Æ) 6= �); D 4.11 (de�nition of ;rw), P 4.1) (�;rw �) ^ path(�;
) ^ (
 ;rw Æ) ^ path(Æ; �) ^ (� ;H Æ) _ (Æ ;H �); given H is under WW -
onstraint, D 4.9) ((�;rw �) ^ (� ;H Æ) ^ path(Æ; �)) _ (path(�;
) ^ (
 ;rw Æ) ^ (Æ ;H �)); predi
ate
al
ulus) :legal(H) ; indu
tion hypothesisHen
e H is not legal - a
ontradi
tion.Thus, by indu
tion we
an
on
lude that ;H [;rw is a
y
li
. Therefore ;+H= (;H [;rw)+ is anirre
exive transitive relation.We now show that;+H
an be extended to any total order to obtain a legal sequential history equivalentto the history H.Lemma 5 Let H be a legal exe
ution history under WO-
onstraint. If ;+H is an irre
exive transitiverelation then H is admissible.Proof: Let H+ denote the history hop(H);;+Hi. We �rst prove a stronger result that any extension of H+is legal if ;+H is an irre
exive transitive relation and H is under WO-
onstraint. Formally,(P 4.5) (;+H is an irre
exive transitive relation) ^ extends(G;H+) ^WO(H)) legal(G)The proof is as follows. Consider m-operations �, �,
 2 op(H) that interfere in H. Then,wobje
ts(�) \ wobje
ts(
) 6= � ; P 4.1) (� ;H
) _ (
 ;H �) ; given H is under WO-
onstraint, D 4.10) (�;rw
) _ (
 ;H �) ; D 4.11 (de�nition of ;rw)) (�;G
) _ (
 ;G �) ; ;G� (;H [;rw)) :(
 ;G �) _ :(� ;G
) ; ;G is an irre
exive transitive relationThus, from D 4.6 we
an
on
lude that G is legal. We now prove the lemma. Let us extend ;+H to anytotal order, say ;S , and denote the resulting history by S. Then,extends(S;H+) ^ sequential(S)) extends(S;H+) ^ sequential(S) ^ legal(S) ; given H is under WO-
onstraint, P 4.5) extends(S;H) ^ sequential(S) ^ legal(S) ; extends(H+;H), P 4.4) h9 S : extends(S;H) ^ sequential(S) : legal(S)i ; predi
ate
al
ulus� admissible(H) ; D 4.7 (de�nition of admissibility)10

Hen
e H is admissible.Lemma 3, Lemma 4 and Lemma 5 establish that legality is a suÆ
ient
ondition for a history underOO- or WW -
onstraint to be admissible. Lemma 6 show that legality is also ne
essary for admissibility.Lemma 6 Let H be an exe
ution history. If H is admissible then it is legal.Proof: We �rst prove a stronger result that if any extension of H is legal then H is legal. Formally,(P 4.6) extends(G;H) ^ legal(G)) legal(H)The proof is as follows. Consider m-operations �, �,
 2 op(G) that interfere in G. Then,:(� ;G
) _ :(
 ;G �) ; given G is legal, D 4.6) :(� ;H
) _ :(
 ;H �) ; ;G�;HHen
e, using P 4.3 we
an infer that H is legal. We now prove the lemma.admissible(H) ; given H is admissible� h9 S : extends(S;H) ^ sequential(S) : legal(S)i ; D 4.7 (de�nition of admissibility)) legal(H) ; P 4.6Hen
e H is legal.The next theorem
ombines the results of Lemma 3-6.Theorem 7 Let H be an exe
ution history under OO- or WW -
onstraint. Then H is admissible if andonly if it is legal.Proof: From Lemma 3 and Lemma 5, we
an infer that legality is suÆ
ient for a history under OO-
onstraint to be admissible. From Lemma 4 and Lemma 5, we
an
on
lude that legality is also suÆ
ientfor a history under WW -
onstraint to be admissible. Lemma 6 implies that legality is ne
essary for aadmissibility. Thus, legality is both ne
essary and suÆ
ient for a history under OO - or WW -
onstraintto be admissible.The next se
tion illustrates how WW -
onstraint
an be used e�e
tively to implement m-sequential
onsisten
y and m-linearizability in an asyn
hronous distributed system.5 Implementation of Consisten
y ConditionsOur proto
ols for implementing
onsisten
y
onditions introdu
ed in Se
tion 2.3 are based onWW -
onstraint. The proto
ols assume that pro
esses and
hannels are reliable and a message sent iseventually re
eived. However, the messages
an get reordered. As dis
ussed in Se
tion 4, to ensure thatthe exe
ution follows WW -
onstraint the system need to syn
hronize all update m-operations. We useatomi
 broad
ast to a
hieve our obje
tive. In general, the system may not know beforehand the set ofobje
ts an m-operation will a

ess during exe
ution. In fa
t, the set of obje
ts read and written by an11

m-operation may a
tually depend on the values read during its exe
ution. We take a
onservative approa
hand treat an m-operation as an update m-operation if it
an potentially write to some obje
t.In our proto
ols, ea
h pro
ess keeps a lo
al
opy of every shared obje
t. On re
eiving an atomi
broad
ast, the pro
ess applies the m-operation to its lo
al
opy. The legality of the read operations ofan update m-operation is maintained sin
e atomi
 broad
ast ensures that all pro
esses apply all updatem-operations in the same order. The algorithm for maintaining the legality of read operations of a querym-operation depends on the
onsisten
y
ondition in
onsideration.Before des
ribing the proto
ols, we present the properties that the proto
ols should satisfy to be
orre
t.Let H = hop(H);;Hi be an exe
ution history and ;�H be an irre
exive relation de�ned on op(H), where;H is the irre
exive transitive
losure of ;�H, su
h that ;�H satis�es the properties,(P 5.1) (� ;�H �) ^ (wobje
ts(�) = �) ^ (wobje
ts(�) = �)) � ;t �(P 5.2) (wobje
ts(�) 6= �) ^ (wobje
ts(�) 6= �)) (�;�H �) _ (� ;�H �)We asso
iate a timestamp with every m-operation. The timestamp is a ve
tor of integers with one entryfor every obje
t. Intuitively, it represents the version of an obje
t. Two timestamps are equal i� their
orresponding entries are identi
al. We order timestamps lexi
ographi
ally. A timestamp ts is less than orequal to timestamp ts0, denoted by ts � ts0, i� every entry of ts is less than or equal to the
orrespondingentry of ts0. A timestamp ts is less than timestamp ts0, denoted by ts � ts0, i� ts is less than or equal tots0 and they are not equal.Let ts(�) denote the timestamp asso
iated with an m-operation �. Lemma 8 gives the properties of;�H and ts that ensure that the exe
ution is under WW -
onstraint. The property P 5.3 states thatts is monotoni
 with respe
t to ;�H. The properties P 5.4 and P 5.2 imply that every write to anobje
t establishes a new version for that obje
t. From property P 5.1 we
an infer that ;�H ordersquery m-operations only when ne
essary. Lemma 9 states the additional properties needed to ensure thelegality of all m-operations. The properties P 5.7 and P 5.8 ensure that only a write
an
reate newversions.Lemma 8 If ;�H and ts satisfy the properties,(P 5.3) � ;�H �) ts(�) � ts(�)(P 5.4) (� ;�H �) ^ (x 2 wobje
ts(�))) ts(�)[x℄ < ts(�)[x℄then H is under WW -
onstraint.Proof: It is easy to prove that properties P 5.3 and P 5.4 also hold for ;H. Formally,(P 5.5) � ;H �) ts(�) � ts(�)(P 5.6) (� ;H �) ^ (x 2 wobje
ts(�))) ts(�)[x℄ < ts(�)[x℄We �rst show that ;�H is a
y
li
. Assume, on the
ontrary, that ;�H
ontains a
y
le, say C. Let op(C)denote the set of m-operations involved in C. Note that any
y
le
ontains at least two m-operationssin
e ;�H is irre
exive. Assume that �, � 2 op(C). There are two
ases to
onsider: op(C)
ontains an12

update m-operation (h9
 2 op(C) : : wobje
ts(
) 6= �i) or there are no update m-operations in op(C)(h8
 2 op(C) : : wobje
ts(
) = �i).Case 1 [h9
 2 op(C) : : wobje
ts(
) 6= �i℄: Without loss of generality, let � be the m-operation withwobje
ts(�) 6= �. Then,(�;H � ;H �) ^ (wobje
ts(�) 6= �) ; assumption� (�;H � ;H �) ^ h9 x : : x 2 wobje
ts(�)i ;) (ts(�) � ts(�) � ts(�)) ^ h9 x : : ts(�)[x℄ < ts(�)[x℄i ; P 5.5, P 5.6) ts(�) � ts(�) � ts(�) ;� false ;
ontradi
tionCase 2 [h8
 2 op(C) : : wobje
ts(
) = �i℄: Sin
e the
y
le C does not
ontain any update m-operation,from P 5.1 we
an
on
lude that the
y
le will have all the pair ofm-operations ordered by;t. Furthermore,sin
e ;t is a transitive relation therefore �;t �. Thus resp(�) < inv(�) - a
ontradi
tion.Therefore ;�H is a
y
li
 and hen
e ;H is an irre
exive transitive relation. Thus, H is indeed a validexe
ution history. Furthermore, using P 5.2 we
an infer that H is under WW -
onstraint.Lemma 9 If ts satis�es P 5.5, P 5.6 and the properties,(P 5.7) (x 2 rfobje
ts(H; �; �)) ^ (x 62 wobje
ts(�))) ts(�)[x℄ = ts(�)[x℄(P 5.8) (x 2 rfobje
ts(H; �; �)) ^ (x 2 wobje
ts(�))) ts(�)[x℄ = ts(�)[x℄� 1then H is legal.Proof: Consider m-operations �, �,
 2 op(H) and let x denote a shared obje
t. We �rst prove that if �,�,
 interfere in H on an obje
t x then

annot be ordered between � and �. Formally,(P 5.9) (x 2 rfobje
ts(H; �; �)) ^ (x 2 wobje
ts(
)) ^ (� ;H
 ;H �)) falseThere are two
ases to
onsider: � does not write to x (x 62 wobje
ts(�)) or � writes to x (x 2 wobje
ts(�)).Case 1 [x 62 wobje
ts(�)℄:(x 2 rfobje
ts(H; �; �)) ^ (x 2 wobje
ts(
)) ^ (x 62 wobje
ts(�)) ^ (� ;H
 ;H �)) (ts(�)[x℄ = ts(�)[x℄) ^ (ts(�)[x℄ < ts(
)[x℄ � ts(�)[x℄); P 5.7, P 5.5, P 5.6) ts(�)[x℄ < ts(�)[x℄ ;� false ;
ontradi
tionCase 2 [x 2 wobje
ts(�))℄: 13

(x 2 rfobje
ts(H; �; �)) ^ (x 2 wobje
ts(
)) ^ (x 2 wobje
ts(�)) ^ (� ;H
 ;H �)) (ts(�)[x℄ = ts(�)[x℄� 1) ^ (ts(�)[x℄ < ts(
)[x℄ < ts(�)[x℄); P 5.8, P 5.5, P 5.6) ts(�)[x℄ < ts(
)[x℄ < ts(�)[x℄ + 1 ;) ts(�)[x℄ < ts(�)[x℄ ;� false ;
ontradi
tionTherefore, h9 x : : (x 2 rfobje
ts(H; �; �)) ^ (x 2 wobje
ts(
))i ^ (� ;H
 ;H �)) false;
onjun
tion of P 5.9 over all x� interfere(H; �; �;
) ^ (� ;H
 ;H �)) false ; D 4.2� interfere(H; �; �;
)) :(� ;H
) _ :(
 ;H �) ; predi
ate
al
ulusHen
e we
an
on
lude from D 4.6 that H is legal.We
ombine the results of Lemma 8 and Lemma 9 in Theorem 10Theorem 10 If ;�H and ts satisfy the properties P 5.1-5.4 and P 5.7-5.8 then H is admissible.Proof: Sin
e ;�H and ts satisfy the properties P 5.1-5.4 therefore from Lemma 8 we
an infer that H isunderWW -
onstraint. Furthermore, sin
e;�H and ts also satisfy the properties P 5.7 and P 5.8 thereforefrom Lemma 9 we
an
on
lude that H is legal. Finally, using Theorem 7 we
an
on
lude that H isadmissible.5.1 Implementation of m-Sequential Consisten
yOur proto
ol for m-sequential
onsisten
y is an extension of Wel
h and Attiya's proto
ol [4℄. It
onsistsof three a
tions, ea
h of whi
h is performed lo
ally and atomi
ally. When a pro
ess issues an updatem-operation, it atomi
ally broad
asts it to all pro
esses (A1). On re
eiving atomi
 broad
ast of anm-operation, the pro
ess applies it to its lo
al
opy of the shared obje
ts (A2). On the other hand, aquery m-operation simply reads from the lo
al
opy of its issuing pro
ess (A3). The proto
ol is formallydes
ribed in Figure 4. The statements in
urly bra
es are not part of the proto
ol but are merely used toestablish its
orre
tness. Before proving the
orre
tness of the proto
ol we give some de�nitions.Let H be an exe
ution generated by the proto
ol in Figure 4. Let e be an event of pro
ess Pk. We de�nethe timestamp, ts, asso
iated with an event as,ts(e) def= ts of Pk on o

uren
e of eLet e and f be the events on the same pro
ess. Sin
e ts of any pro
ess never de
reases,(P 5.10) e < f) ts(e) � ts(f) (monotoni
ity)14

Pi ::varX : array of shared obje
ts, initially ?fts : array[1..jX j℄ of integer, initially 0g(A1) On invo
ation of an m-operation � su
h that potentially wobje
ts(�) 6= �;atomi
ally broad
ast � to all pro
esses;(A2) On re
eiving atomi
 broad
ast of � from Pk;apply � to X;f8 x : x 2 wobje
ts(�) : ts[x℄ + +gif pro
(�) = Pi thengenerate response for �;endif;(A3) On invo
ation of an m-operation � su
h that wobje
ts(�) = �;apply � to X;generate response for �;Figure 4: Implementation of m-Sequential Consisten
yIn the dis
ussion that follows,
onsider distin
t m-operations �, � 2 op(H). Let Pi denote the pro
essthat issued � and Pk be any pro
ess. Let x denote a shared obje
t and ab
ast(�) denote the fa
t that �was atomi
ally broad
ast in the exe
ution. Furthermore, any property P (k) involving Pk a
tually impliesh8 k : 1 � k � n : P (k)i. In addition to inv(�) and resp(�) events, we de�ne start(k; �) and finish(k; �)events for an m-operation � and pro
ess Pk. If � is atomi
ally broad
ast then start(k; �) and finish(k; �)are de�ned for every pro
ess, otherwise they are only de�ned for the pro
ess that issued �.inv(�) def= � if ab
ast(�) then start event of a
tion (A1) at Pi for �else start event of a
tion (A3) at Pi for �resp(�) def= � if ab
ast(�) then �nish event of a
tion (A2) at Pi for �else �nish event of a
tion (A3) at Pi for �start(k; �) def= � if ab
ast(�) then start event of a
tion (A2) at Pk for �else if Pk = Pi then start event of a
tion (A3) at Pk for �finish(k; �) def= � if ab
ast(�) then �nish event of a
tion (A2) at Pk for �else if Pk = Pi then �nish event of a
tion (A3) at Pk for �Figure 5 illustrates the working of the proto
ol and labels the various events de�ned before. It
an beeasily veri�ed from the proto
ol that the following property is true.(P 5.11) inv(�) � start(i; �) < finish(i; �) � resp(�)Let ;ww denote the order in whi
h update m-operations are atomi
ally broad
ast. Then,15

4

3

0

0 3

1 4

3

w(x)4β =

α

α

(x,y) =

2P

β

γ)γ) γ) γ)

β)
β) β) β)β)

(x,y) =
0

0

1

3
w(x)1 w(y)3 r(x)1α = γ =P1

β)inv(

start(2,
finish(2, = resp(

= start(1,inv(finish(1, = resp(

start(1, finish(1,

β

atomic broadcastFigure 5: An example exe
ution of the proto
ol in Figure 4(P 5.12) wobje
ts(�) 6= �) ab
ast(�)(P 5.13) (wobje
ts(�) 6= �) ^ (wobje
ts(�) 6= �) � (� ;ww �) _ (�;ww �)(P 5.14) � ;ww �) start(k; �) < start(k; �)Note that ts of any pro
ess is updated only in a
tion (A2), and any two m-operations that are atomi
allybroad
ast are exe
uted in the same order by all pro
esses. Therefore the timestamps of \start" and \�nish"events, if � is atomi
ally broad
ast, are respe
tively identi
al for all pro
esses. Formally,(P 5.15) ab
ast(�)) (ts(start(i; �)) = ts(start(k; �))) ^ (ts(finish(i; �)) = ts(finish(k; �)))We
an use this property to abbreviate ts(start(k; �)) and ts(finish(k; �)) as ts(start(�)) andts(finish(�)) respe
tively when � is atomi
ally broad
ast. Furthermore, when � is not atomi
ally broad-
ast we use ts(start(�)) and ts(finish(�)) as a shorthand for ts(start(i; �)) and ts(finish(i; �)) respe
-tively.Intuitively, � reads from � the value of obje
t x if no other operation writes to x after � has writtento x and before � reads from x. In other words, � reads the version of x written by �. We
an use thetimestamp ts to
apture this notion. The value of ts at the \start" event of �
aptures the version of theobje
ts read by �. Moreover, if � writes to an obje
t the version of that obje
t in ts is in
remented by1. Thus, the value of ts at the \�nish" event gives the new version of the written obje
ts. Formally, thereads-from relation ;rf
an be de�ned using D 4.3 as follows,(D 5.1) x 2 rfobje
ts(H; �; �) def= (x 2 robje
ts(�)) ^ (x 2 wobje
ts(�))^(ts(finish(�))[x℄ = ts(start(�))[x℄)16

Sin
e after appli
ation of � in a
tion (A2) the
omponents of ts for whi
h � performs a write arein
remented by one, therefore,(P 5.16) x 62 wobje
ts(�)) ts(start(�))[x℄ = ts(finish(�))[x℄(P 5.17) x 2 wobje
ts(�)) ts(start(�))[x℄ = ts(finish(�))[x℄� 1We de�ne the timestamp, ts, asso
iated with an m-operation � as follows,(D 5.2) ts(�) def= ts(finish(�))We de�ne ;�H as,(D 5.3) ;�Hdef=;P [;rf [;wwNow we prove that the proto
ol in Figure 4 implements m-sequential
onsisten
y. Let H be anexe
ution history generated by the proto
ol. For the proofs that follow
onsider distin
t m-operations�, � 2 op(H) . Let pro
(�) = Pi and x be a shared obje
t.Lemma 11 If � ;�H � then finish(i; �) is de�ned. Furthermore, finish(i; �) < start(i; �).Proof: Intuitively, the lemma says that if � is ordered before � then � is applied to Pi's lo
al
opy before�. There are three
ases to
onsider: � ;P � or � ;rf � or � ;ww �.Case 1 [� ;P �℄: finish(i; �) is de�ned sin
e pro
(�) = pro
(�) = Pi.� ;P �) resp(�) < inv(�) ; P 4.2 (well-formedness of history)) finish(i; �) < start(i; �) ; P 5.11, pro
(�) = PiCase 2 [� ;rf �℄: Using D 4.3 and D 5.1, we
an infer that wobje
ts(�) 6= �. From P 5.12, we
an
on
lude that � is atomi
ally broad
ast and hen
e finish(i; �) is de�ned. Without loss of generality,assume x 2 rfobje
ts(H; �; �). Therefore x 2 wobje
ts(�).start(i; �) < finish(i; �) ; assumption) start(i; �) < start(i; �) < finish(i; �) ; atomi
ity of a
tions) ts(start(�)) � ts(start(�)) � ts(finish(�)) ; P 5.10 (montoni
ity of ts)) (ts(start(�)) � ts(start(�)) � ts(finish(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); P 5.17 (� writes to x)) ts(start(i)�)[x℄ < ts(finish(i)�)[x℄) ; simpli�
ation) (ts(start(�))[x℄ < ts(finish(�))) ^ (ts(finish(�))[x℄ = ts(start(�))[x℄)17

; D 5.1 (� reads the value of x from �)� false ;
ontradi
tionThus, we
an
on
lude that finish(i; �) < start(i; �).Case 3 [� ;ww �℄: From P 5.13, we
an infer that wobje
ts(�) 6= �. Therefore as dis
ussed in previous
ase finish(i; �) is de�ned.� ;ww �) start(i; �) < start(i; �) ; P 5.14 (� is re
eived before � at Pi)) finish(i; �) < start(i; �) ; atomi
ity of a
tionsHen
e if � ;�H � then finish(i; �) is de�ned and finish(i; �) < start(i; �).Lemma 12 The proto
ol in Figure 4 satis�es P 5.1 and P 5.2.Proof: The proof of property P 5.1 is as follows,(� ;�H �) ^ (wobje
ts(�) = �) ^ (wobje
ts(�) = �)) ((� ;P �) _ (� ;rf �) _ (� ;ww �)) ^ (wobje
ts(�) = �); D 5.3 (de�nition of ;�H)) ((� ;P �) _ (wobje
ts(�) 6= �) _ (wobje
ts(�) 6= �)) ^ (wobje
ts(�) = �); D 5.1, de�nition of ;ww) � ;P � ; distribution of ^ over _,
ontradi
tion) � ;t � ; P 4.2 (well-formedness of history)The property P 5.2
an be proved as follows,(wobje
ts(�) 6= �) ^ (wobje
ts(�) 6= �)� (�;ww �) _ (� ;ww �) ; P 5.13) (�;�H �) _ (� ;�H �) ; D 5.3 (;�H
ontains ;ww)Hen
e P 5.1 and P 5.2 are satis�ed by the proto
ol in Figure 4.Lemma 13 The proto
ol in Figure 4 satis�es P 5.3 and P 5.4.Proof: The property P 5.3
an be proved as follows,18

� ;�H �) finish(i; �) < start(i; �) ; Lemma 11 (� is applied before � at Pi)) finish(i; �) < start(i; �) < finish(i; �) ;) ts(finish(�)) � ts(finish(�)) ; P 5.10 (montoni
ity of ts)� ts(�) � ts(�) ; D 5.2The proof of property P 5.4 is as follows,(� ;�H �) ^ (x 2 wobje
ts(�))) (finish(i; �) < start(i; �)) ^ (x 2 wobje
ts(�)) ; Lemma 11 (� is applied before � at Pi)) (ts(finish(�)) � ts(start(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); P 5.10 (montoni
ity of ts), P 5.17) ts(finish(�))[x℄ � ts(start(�))[x℄ < ts(finish(�))[x℄) ; simpli�
ation� ts(�)[x℄ < ts(�)[x℄ ; D 5.2Hen
e P 5.3 and P 5.4 are satis�ed by the proto
ol in Figure 4.Lemma 14 The proto
ol in Figure 4 satis�es P 5.7 and P 5.8.Proof: The proof of property P 5.7 is as follows,(x 2 rfobje
ts(H; �; �)) ^ (x 62 wobje
ts(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 62 wobje
ts(�)); D 5.1 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄); P 5.16 (� does not write to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄ ; simpli�
ation� ts(�)[x℄ = ts(�)[x℄ ; D 5.2The property P 5.8
an be proved as follows,(x 2 rfobje
ts(H; �; �)) ^ (x 2 wobje
ts(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 2 wobje
ts(�)); D 5.1 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄ � 1)19

; P 5.17 (� writes to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄� 1 ; simpli�
ation� ts(�)[x℄ = ts(�)[x℄� 1 ; D 5.2Hen
e P 5.7 and P 5.8 are satis�ed by the proto
ol in Figure 4.Theorem 15 All the exe
utions generated by the proto
ol in Figure 4 are m-sequentially
onsistent.Proof: From Lemma 12-14, we
an
on
lude that the proto
ol in Figure 4 satisfy properties P 5.1-5.4 andP 5.7-5.8. Therefore, from Theorem 10, we
an infer that all the exe
utions generated by the proto
ol inFigure 4 are m-sequentially
onsistent.5.2 Implementation of m-LinearizabilityOur proto
ol for m-linearizability
onsists of six a
tions, ea
h of whi
h is performed lo
ally and atomi
ally.The a
tions on invo
ation of an updatem-operations are identi
al to those in the proto
ol for m-sequential
onsisten
y (A1 and A2). But to ensure that a query m-operation does not read a stale value, thepro
ess sends a \query" message to all pro
esses asking them for their
opy of the shared obje
ts andthe asso
iated timestamps (A3). On re
eiving a \query" message the pro
ess sends its lo
al
opy alongwith the timestamps to the requesting pro
ess (A4). The requesting pro
ess then
onstru
ts a
opy ofthe shared obje
ts from the information re
eived sele
ting the most re
ent version for all obje
ts (A5).Finally, when responses from all pro
esses have been re
eived the query m-operation reads from the
opy
onstru
ted (A6). The proto
ol is formally des
ribed in Figure 6. Again as in Se
tion 5.1, before provingthe
orre
tness of the proto
ol we give some de�nitions.Let H be an exe
ution generated by the proto
ol in Figure 6. Let e be an event of pro
ess Pk. We de�nethe timestamps, myts and othts, asso
iated with an event as,myts(e) def= myts of Pk on o

uren
e of eothts(e) def= othts of Pk on o

uren
e of eLet e and f be the events on the same pro
ess. Sin
e myts of any pro
ess never de
reases,(P 5.18) e < f) myts(e) � myts(f) (monotoni
ity)In the dis
ussion that follows,
onsider distin
t m-operations �, � 2 op(H). Let Pi denote the pro
essthat issued � and Pk be any pro
ess. Let x denote a shared obje
t and ab
ast(�) denote the fa
t that� was atomi
ally broad
ast in the exe
ution. Moreover, any property P (k) involving Pk a
tually impliesh8 k : 1 � k � n : P (k)i. In addition to inv(�) and resp(�) events, we de�ne start(k; �) and finish(k; �)events for an m-operation � and pro
ess Pk as in Se
tion 5.1. If � is atomi
ally broad
ast then start(k; �)and finish(k; �) are de�ned for every pro
ess, otherwise they are only de�ned for the pro
ess that issued�. 20

Pi ::varmyX, othX : array of shared obje
ts, initially ?;myts, othts : array[1..jX j℄ of integer, initially 0;(A1) On invo
ation of an m-operation � su
h that potentially wobje
ts(�) 6= �;atomi
ally broad
ast � to all pro
esses;(A2) On re
eiving atomi
 broad
ast of � from Pk;apply � to myX;8 x : x 2 wobje
ts(�) : myts[x℄ + +;if pro
(�) = Pi thengenerate response for �;endif;(A3) On invo
ation of an m-operation � su
h that wobje
ts(�) = �;othts := 0;send \query" to all pro
esses;(A4) On re
eiving a \query" for � from Pk;send hmyX;mytsi to Pk;(A5) On re
eiving \query response", hX; tsi, from Pk;if (othts � ts) then hothX; othtsi := hX; tsi;(A6) If all the responses for the \query" of � have been re
eived thenapply � to othX;generate response for �;Figure 6: Implementation of m-Linearizabilityinv(�) def= � if ab
ast(�) then start event of a
tion (A1) at Pi for �else start event of a
tion (A3) at Pi for �resp(�) def= � if ab
ast(�) then �nish event of a
tion (A2) at Pi for �else �nish event of a
tion (A6) at Pi for �start(k; �) def= � if ab
ast(�) then start event of a
tion (A2) at Pk for �else if Pk = Pi then start event of a
tion (A6) at Pk for �finish(k; �) def= � if ab
ast(�) then �nish event of a
tion (A2) at Pk for �else if Pk = Pi then �nish event of a
tion (A6) at Pk for �In addition, we also de�ne a query(k; �) for every pro
ess when � is not atomi
ally broad
ast as follows,query(k; �) def= if :ab
ast(�) then start event of a
tion (A4) at Pk for �It
an be easily veri�ed from the proto
ol that the following property is true.21

γ)query(2,
γ)query(1, γ)start(1,

β)start(1,
β)finish(1,

γ) γ)finish(1, = resp(

atomic broadcast ‘‘query’’ response‘‘query’’

0

0 3

1 4

3

w(x)4β =

β
α

α

(x,y) =

2P

β
β)

β)
β)

w(x)1 w(y)3 r(x)?α = γ =P1

β)inv(

start(2,
finish(2, = resp(

γ)inv(

r(x)4

(x,y) =
0

0

1

3

4

3

Figure 7: An example exe
ution of the proto
ol in Figure 6(P 5.19) inv(�) � start(i; �) < finish(i; �) � resp(�)A \query" for an m-operation is sent only after its invo
ation and the issuing pro
ess generates theresponse event only after it has re
eived response for its \query" from all the pro
esses. Therefore,(P 5.20) :ab
ast(�)) inv(�) < query(k; �) < resp(�)Similarly, sin
e an m-operation is atomi
ally broad
ast only after its invo
ation therefore,(P 5.21) ab
ast(�)) inv(�) < start(k; �)Let ;ww denote the order in whi
h update m-operations are atomi
ally broad
ast. Then,(P 5.22) wobje
ts(�) 6= �) ab
ast(�)(P 5.23) (wobje
ts(�) 6= �) ^ (wobje
ts(�) 6= �) � (� ;ww �) _ (�;ww �)(P 5.24) � ;ww �) start(k; �) < start(k; �)Note that myts of any pro
ess is updated only in a
tion (A2), and any two m-operations that areatomi
ally broad
ast are exe
uted in the same order by all pro
esses. Therefore the timestamps, myts,of \start" and \�nish" events, if � is atomi
ally broad
ast, are respe
tively identi
al for all pro
esses.Formally, 22

(P 5.25) ab
ast(�)) (myts(start(i; �)) = myts(start(k; �)))^(myts(finish(i; �)) = myts(finish(k; �)))We
an use this property to abbreviate myts(start(k; �)) and myts(finish(k; �)) as myts(start(�))and myts(finish(�)) respe
tively when � is atomi
ally broad
ast. Furthermore, when � is not atom-i
ally broad
ast we use othts(start(�)) and othts(finish(�)) as a shorthand for othts(start(i; �)) andothts(finish(i; �)) respe
tively. Note that a
tion (A6) for � is exe
uted only after responses for its \query"from all the pro
esses have been re
eived and as soon as a response is re
eived othts is assigned the maxi-mum of othts and the timestamp in the \query" response (a
tion (A5)). Therefore,(P 5.26) :ab
ast(�)) (othts(start(�)) = othts(finish(�)) = max1�k�nfmyts(query(k; �))g)Intuitively, if � is not atomi
ally broad
ast then the value of othts at the \start" event of � gives theversion of the obje
ts read by �. Similarly, if � is atomi
ally broad
ast then the value of myts at the\start" event of �
aptures the version of obje
ts read by � and its value at the \�nish" event gives thenew version of the written obje
ts. Thus, we de�ne the timestamp ts asso
iated with the \start" and\�nish" events of an m-operation � as follows,(D 5.4) ts(start(�)) def= � if ab
ast(�) then myts(start(�))else othts(start(�))(D 5.5) ts(finish(�)) def= � if ab
ast(�) then myts(finish(�))else othts(finish(�))The reads-from relation ;rf
an be de�ned identi
ally to D 5.1 as follows,(D 5.6) x 2 rfobje
ts(H; �; �) def= (x 2 robje
ts(�)) ^ (x 2 wobje
ts(�))^(ts(finish(�))[x℄ = ts(start(�))[x℄)Sin
e after appli
ation of � in a
tion (A2) the
omponents of myts for whi
h � performs a write arein
remented by one and othts is not modei�ed in (A6), therefore,(P 5.27) x 62 wobje
ts(�)) ts(start(�))[x℄ = ts(finish(�))[x℄(P 5.28) x 2 wobje
ts(�)) ts(start(�))[x℄ = ts(finish(�))[x℄� 1We de�ne the timestamp asso
iated with an m-operation � as follows,(D 5.7) ts(�) def= ts(finish(�))Sin
e ;P �;t, we de�ne ;�H as,(D 5.8) ;�Hdef=;rf [;t [;wwNow we prove that the proto
ol in Figure 6 implements m-linearizability. Let H be an exe
ution historygenerated by the proto
ol. For the proofs that follow
onsider distin
t m-operations �, � 2 op(H) . Letpro
(�) = Pi and pro
(�) = Pj , and let x denote a shared obje
t.Lemma 16 If � ;�H � then ts(finish(�)) � ts(start(�)).23

Proof: This lemma is weaker than Lemma 16 in Se
tion 5.1 for m-sequential
onsisten
y. Again, thereare three
ases to
onsider: � ;rf � or � ;t � or � ;ww �.Case 1 [� ;rf �℄: Using D 4.3 and D 5.6, we
an infer that wobje
ts(�) 6= �. From P 5.22, we
an
on
lude that � is atomi
ally broad
ast. Without loss of generality, assume x 2 rfobje
ts(H; �; �).Therefore x 2 wobje
ts(�). There are two sub
ases to
onsider depending on whether � is atomi
allybroad
ast.Case 1.1 [:ab
ast(�)℄:h8 k :: query(k; �) < start(k; �) < finish(k; �)i ; assumption) h8 k :: myts(query(k; �)) � myts(start(�)) � myts(finish(�))i; P 5.18 (monotoni
ity of myts)) max1�k�nfmyts(query(k; �))g � myts(start(�)) � myts(finish(�))) othts(start(�)) � myts(start(�)) � myts(finish(�)) ; P 5.26, P 5.18 (montoni
ity of myts)) (ts(start(�)) � ts(start(�)) � ts(finish(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); D 5.4, D 5.5, P 5.28 (� writes to x)) (ts(start(�))[x℄ < ts(finish(�))[x℄) ^ (ts(finish(�))[x℄ = ts(start(�))[x℄); D 5.6 (� reads from � the value of x)� false ;
ontradi
tionTherefore,h9 k :: start(k; �) < finish(k; �) < query(k; �)i ; atomi
ity of a
tions) h9 k :: myts(finish(�)) � myts(query(k; �))i ; P 5.18 (monotoni
ity of myts)) myts(finish(�)) � max1�k�nfmyts(query(k; �))g = othts(start(�)); P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 1.2 [ab
ast(�)℄:start(i; �) < finish(i; �) ; assumption) start(i; �) < start(i; �) < finish(i; �) ; atomi
ity of a
tions) myts(start(�)) � myts(start(�)) � myts(finish(�)) ; P 5.18 (monotoni
ity of myts)) (ts(start(�)) � ts(start(�)) � ts(finish(�))) ^ (ts(start(�))[x℄ < ts(finish�)[x℄); D 5.4, D 5.5, P 5.28 (� writes to x)24

) (ts(start(�))[x℄ < ts(finish(beta))[x℄) ^ (ts(finish(�))[x℄ = ts(start(�))[x℄); D 5.6 (� reads the value of x from �)� false ;
ontradi
tionTherefore,finish(i; �) < start(i; �)) myts(finish(�)) � myts(start(�)) ; P 5.18 (monotoni
ity of myts)� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 2 [� ;t �℄: From the de�nition of ;t, we
an infer that resp(�) < inv(�). There are foursub
ases to
onsider depending on whether � and � are atomi
ally broad
ast.Case 2.1 [:ab
ast(�) ^ :ab
ast(�)℄:resp(�) < inv(�)) h8 k :: query(k; �) < query(k; �)i ; P 5.20) h8 k :: myts(query(k; �)) � myts(query(k; �))i ; P 5.18 (monotoni
ity of myts)) max1�k�nfmyts(query(k; �))g � max1�k�nfmyts(query(k; �))g) othts(finish(�)) � othts(start(�)) ; P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 2.2 [ab
ast(�) ^ :ab
ast(�)℄:resp(�) < inv(�)) finish(j; �) < query(j; �) ; P 5.19, P 5.20) myts(finish(�)) � myts(query(j; �)) ; P 5.18 (monotoni
ity of myts)) myts(finish(�)) � max1�k�nfmyts(query(k; �))g = othts(start(�)); P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 2.3 [:ab
ast(�) ^ ab
ast(�)℄:resp(�) < inv(�)) h8 k :: query(k; �) < start(k; �)i ; P 5.20, P 5.2125

) h8 k :: myts(query(k; �)) < myts(start(�))i ; P 5.18 (monotoni
ity of myts)) max1�k�nfmyts(query(k; �))g �myts(start(�)) ;) othts(finish(�)) � myts(start(�)) ; P 5.26� ts(finish(�)) � ts(start(�)) ; D 5.4 , D 5.5Case 2.4 [ab
ast(�) ^ ab
ast(�)℄:resp(�) < inv(�)) finish(j; �) < start(j; �) ; P 5.19, P 5.21) myts(finish(�)) � myts(start(�)) ; P 5.18 (monotoni
ity of myts)� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Case 3 [� ;ww �℄: Using P 5.23 and P 5.22, we
an infer that both � and � are atomi
ally broad
ast.� ;ww �) start(i; �) < start(i; �) ; P 5.24 (� is re
eived before � at Pi)) finish(i; �) < start(i; �) ; atomi
ity of a
tions) myts(finish(�)) � myts(start(�)) ; P 5.18 (monotoni
ity of myts)� ts(finish(�)) � ts(start(�)) ; D 5.4, D 5.5Hen
e if � ;�H � then ts(finish(�)) < ts(start(�)).Lemma 17 The proto
ol in Figure 6 satis�es P 5.1 and P 5.2.Proof: The proof of property P 5.1 is as follows,(� ;�H �) ^ (wobje
ts(�) = �) ^ (wobje
ts(�) = �)) ((� ;rf �) _ (� ;t �) _ (� ;ww �)) ^ (wobje
ts(�) = �); D 5.8 (de�nition of ;�H)) ((wobje
ts(�) 6= �) _ (� ;t �) _ (wobje
ts(�) 6= �)) ^ (wobje
ts(�) = �); D 5.6, de�nition of ;ww) � ;t � ; distribution of ^ over _,
ontradi
tionThe property P 5.2
an be proved as follows, 26

(wobje
ts(�) 6= �) ^ (wobje
ts(�) 6= �)� (�;ww �) _ (� ;ww �) ; P 5.23) (�;�H �) _ (� ;�H �) ; D 5.8 (;�H
ontains ;ww)Hen
e P 5.1 and P 5.2 are satis�ed by the proto
ol in Figure 6.Lemma 18 The proto
ol in Figure 6 satis�es P 5.3 and P 5.4.Proof: The property P 5.3
an be proved as follows,� ;�H �) ts(finish(�)) � ts(start(�)) ; Lemma 16) ts(finish(�)) � ts(start(�)) � ts(finish(�)) ;
onjun
tion of P 5.27 and P 5.28) ts(finish(�)) � ts(finish(�)) ; simpli�
ation� ts(�) � ts(�) ; D 5.7The proof of property P 5.4 is as follows,(� ;�H �) ^ (x 2 wobje
ts(�))) (ts(finish(�)) � ts(start(�))) ^ (x 2 wobje
ts(�)) ; Lemma 16) (ts(finish(�)) � ts(start(�))) ^ (ts(start(�))[x℄ < ts(finish(�))[x℄); P 5.28 (� writes to x)) ts(finish(�))[x℄ � ts(start(�))[x℄ < ts(finish(�))[x℄) ; simpli�
ation� ts(�)[x℄ < ts(�)[x℄ ; D 5.7Hen
e P 5.3 and P 5.4 are satis�ed by the proto
ol in Figure 6.Lemma 19 The proto
ol in Figure 6 satis�es P 5.7 and P 5.8.Proof: The proof of property P 5.7 is as follows,(x 2 rfobje
ts(H; �; �)) ^ (x 62 wobje
ts(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 62 wobje
ts(�)); D 5.6 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄); P 5.27 (� does not write to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄ ; simpli�
ation� ts(�)[x℄ = ts(�)[x℄ ; D 5.727

The property P 5.8
an be proved as follows,(x 2 rfobje
ts(H; �; �)) ^ (x 2 wobje
ts(�))) (ts(finish(�))[x℄ = ts(start(�))[x℄)) ^ (x 2 wobje
ts(�)); D 5.6 (� reads the value of x from �)) (ts(finish(�))[x℄ = ts(start(�))[x℄) ^ (ts(start(�))[x℄ = ts(finish(�))[x℄ � 1); P 5.28 (� writes to x)) ts(finish(�))[x℄ = ts(finish(�))[x℄� 1 ; simpli�
ation� ts(�)[x℄ = ts(�)[x℄� 1 ; D 5.7Hen
e P 5.7 and P 5.8 are satis�ed by the proto
ol in Figure 6.Theorem 20 All the exe
utions generated by the proto
ol in Figure 6 are m-linearizable.Proof: From Lemma 17-19, we
an
on
lude that the proto
ol in Figure 6 satisfy properties P 5.1-5.4 andP 5.7-5.8. Therefore, from Theorem 10, we
an infer that all the exe
utions generated by the proto
ol inFigure 6 are m-linearizable.Although in this proto
ol a pro
ess sends the whole
opy of shared obje
ts along with their timestampsin response to the \query", but it is easy to verify that the proto
ol is still
orre
t if only the relevant
opies of the shared obje
ts (obje
ts(:)) and their timestamp is sent.6 Con
lusionWe extend the traditional model of
on
urrent obje
ts to allow operations that span multiple obje
ts.We give the
onsisten
y
onditions in this model, analyze their veri�
ation
omplexity and give eÆ
ientalgorithms for ensuring them in distributed systems.Referen
es[1℄ Sarita V. Adve and K. Ghara
horloo. \Shared Memory Consisten
y Models: A Tutorial". IEEEComputer, pages 66{76, De
ember 1996.[2℄ Y. Afek, G. Brown, and M. Merritt. \Lazy Ca
hing". ACM Transa
tions on Programming Languageand Systems, 15(1):182{205, January 1993.[3℄ Mustaque Ahamad, PhillipW. Hutto, and Ranjit John. \Causal memory: De�nitions, Implementationand Programming". Te
hni
al Report 93/55, College of Computing, Georgia Institute of Te
hnology,September 1993.[4℄ Hagit Attiya and Jennifer L. Wel
h. \Sequential Consisten
y versus Linearizability". ACM Transa
-tions on Computer Systems, 12(2):91{122, May 1994.28

[5℄ P. Bernstein, V. Hadzila
os, and N. Goodman. \Con
urren
y Control and Re
overy in DatabaseSystems". Addison-Wesley, Reading, MA, 1987.[6℄ Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H. Ran-dall. \Dag-Consistent Distributed Shared Memory". In Pro
eedings of the 10th International ParallelPro
essing Symposium (IPPS), pages 132{141, April 15-19, 1996.[7℄ C. J. Fidge. \Logi
al Time in Distributed Computing Systems". IEEE Computer, 24(8):28{33, 1991.[8℄ Vijay K. Garg and Mi
hel Raynal. \Normality: A Consisten
y Conditions for Con
urrent Obje
ts".Te
hni
al Report TR-PDS-1996-010, The University of Texas at Austin, May 1996. To appear inParallel Pro
essing Letters.[9℄ K. Ghara
horloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. \Memory Consis-ten
y and Event Ordering in S
alable Shared-Memory Multipro
essors". In Pro
eedings of the 17thAnnual International Symposium on Computer Ar
hite
ture, pages 15{26, May 1990.[10℄ Mi
hael Greenwald and David Cheriton. \The Synergy Between Non-blo
king Syn
hronization andOperating System Stru
ture". In Pro
eedings of the Se
ond Symposium on Operating System Designand Implementation, pages 123{136, USENIX, Seattle, O
tober 1996.[11℄ Mauri
e Herlihy. \Wait-Free Syn
hronization". ACM Transa
tions on Programming Language andSystems, 11(1):124{149, January 1991.[12℄ Mauri
e P. Herlihy and Jeannette M. Wing. \Linearizability: A
orre
tness
ondition for
on
urrentobje
ts". ACM Transa
tions on Programming Language and Systems, 12(3):463{492, July 1990.[13℄ T. Ibaraki, T. Kameda, and T. Minoura. \Serializability with Constraints". ACM Transa
tions onDatabase Systems, 12(3):429{452, 1987.[14℄ P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. \Treadmarks: Distributed Shared Mem-ory on Standard Workstations and operating systems". In Pro
eedings of the 1994 Winter UsenixConferen
e, pages 115{132, January 1994.[15℄ Leslie Lamport. \How to make a multipro
essor
omputer that
orre
tly exe
utes multipro
ess pro-grams". IEEE Transa
tions on Computers, C28(9):690{691, September 1979.[16℄ Ri
hard J. Lipton and Jonathan S. Sandberg. \PRAM: A s
alable shared memory". Te
hni
al Report180-88, Department of Computer S
ien
e, Prin
eton University, September 1988.[17℄ Friedemann Mattern. \Virtual time and global states of distributed systems". International Workshopon Parallel and Distributed Algorithms, pages 215{226, O
tober 1988.[18℄ Marios Mavroni
olas and Dan Roth. \Sequential Consisten
y and Linearizability: Read/Write ob-je
ts". In Pro
eedings of Twenty-Ninth Annual Allerton Conferen
e on Communi
ation, Control andComputing, pages 683{692, O
tober 1991.[19℄ Jayadev Misra. \Axioms for memory a

ess in asyn
hronous hardware systems". ACM Transa
tionson Programming Language and Systems, 8(1):142{153, January 1986.
29

[20℄ M. Mizuno, M. Raynal, and J.Z. Zhou. \Sequential Consisten
y in Distributed Systems". In K. Bir-man, F. Mattern, and A. S
hiper, editors, Pro
eedings of International Workshop on \Theory andPra
ti
e in Distributed Systems", Springer-Verlag LNCS 938, pages 227{241, Dagstuhl, Germany,1994.[21℄ C. H. Papadimitriou. \The Theory of Con
urren
y Control". Computer S
ien
e Press, May 1986.[22℄ M. Raynal, G. Thia-Kime, and M. Ahamad. \From Serializable to Causal Transa
tions for Collabo-rative Appli
ations". Te
hni
al Report 983, Irisa - Rennes, February 1996. 22 pages.[23℄ Ri
hard N. Taylor. \Complexity of Analyzing the Syn
hronization Stru
ture of Con
urrent Programs".A
ta Informati
a, 19:57{84, 1983.

30

