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Abstract

With the popularity of portable computers and the improvements of wireless networking, there is a
great deal of interest in developing applications for mobile computing systems. Causally ordered message
delivery is required in several distributed applications particularly those that involve human interactions
(such as teleconferencing and collaborative work). In this paper, we present an efficient protocol for
causal ordering in mobile computing systems. This protocol requires minimal resources on mobile hosts
and wireless links. Our message overhead in wired network is low. The proposed protocol is scalable
and can easily handle host connections and disconnections. Qur protocol, when compared to previous
proposals, offers a low unnecessary delay, low message overhead and optimized handoff cost.

1 Introduction

The emergence of mobile computing devices, such as notebook computers and personal digital assistants
with communication capabilities, has had a significant impact on distributed computing. These devices
provide users the freedom to move anywhere under the service area while retaining network connection.
However, mobile computing devices have limited resources compared to stationary machines. For example,
mobile devices have small memory space, limited power supply, and less computing capability. Further-
more, the communication between mobile devices and wired network employs wireless channels which are
susceptible to errors and distortions. Also, the cost of using these wireless channels is relatively expen-
sive. Distributed algorithms that run on the system with mobile computing devices therefore require some
modifications to compensate for these factors.

In this paper, we consider causal message ordering required in many distributed applications such as
management of replicated data [8, 9], distributed monitoring [6], resource allocation [18], distributed
shared memory [3], multimedia systems [2], and collaborative work [19]. The protocols to implement
causal message ordering in systems with static hosts have been presented in [14, 9, 16, 18, 20, 21]. These
protocols can be executed by every mobile host with all the relevant data structures being stored on the
mobile hosts themselves. However, considering limited resources and bandwidth of wireless links available
to mobile hosts, it is not appropriate to apply these protocols directly to mobile systems. As introduced
in [5], the following four factors should be taken into account in designing protocols for mobile systems.
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Fellowship, and an IBM grant.



1. The amount of computation performed by a mobile host should be low.
2. The communication overhead in the wireless medium should be minimal.
3. Algorithms should be scalable with respect to the number of mobile hosts in the system.

4. Algorithms should be able to easily handle the effect of hosts connections and disconnections.

While ordering of messages in distributed systems with static hosts has received wide attention, there
has been little work on causal message ordering in mobile computing systems. Alagar and Venkatesan [5]
proposed three algorithms based on the algorithm by Raynal, Schiper and Toueg (RST') in [18]. The first
algorithm (AV'1) maintains causal ordering among all mobile hosts. The message overhead is proportional
to the square of the number of mobile hosts (ny). However, the data structures required in the algorithm
are stored in mobile support stations to reduce load on mobile hosts and wireless links. In the second
algorithm (AV'2), causal ordering is exclusively maintained among mobile support stations. The message
overhead reduces to the square of the number of mobile support stations (ns). However, the procedure for
handling host migration (handoff) is more complicated than the first algorithm. Since stronger ordering
is imposed, messages may experience unnecessarily delay even though they do not violate causal ordering
in the mobile hosts’ view. Their third algorithm (AV3) is aimed at reducing this unnecessary delay by
partitioning each physical mobile support station into k logical mobile support stations. As k increases, the
degree of unnecessary delay decreases, but the message overhead and the cost of handling host migration
increases. The message overhead in AV'2 and AV 3 does not depend on the number of participating mobile
hosts, they are therefore suitable for dynamic mobile systems.

Yen, Huang, and Hwang (YHH) [22] proposed another algorithm based on [18]. The message overhead
in their algorithm lies between that of AV'1 and AV 2. In particular, each mobile support station maintains
a matrix of size ng X np; this matrix is attached to each message sent. The unnecessary delay in their
algorithm is lower than AV2. Their handoff module is also more efficient than AV2. The message
overhead in their algorithm depends upon the number of participating hosts in the system. As a result,
their algorithm is not scalable and unsuited for dynamic mobile systems.

Prakash, Raynal, and Singhal (PSR) [17] presented an algorithm to implement causal message ordering
in which each message carries information only about its direct predecessors with respect to each destination
process. Message overhead in their algorithm is relatively low; however, in the worst case, it can be as large
as O(n,%) Furthermore, the structure of their message overhead depends on the number of participating
processes. This makes their algorithm unsuitable for dynamic systems.

In this paper we propose a new protocol suited to mobile systems in which message overhead is compara-
ble to those for static systems, and limited resources on mobile hosts are efficiently utilized. Our protocol
is also suitable for systems where the number of participating hosts is varied dynamically. Moreover, the
proposed protocol is scalable since our message overhead structure is independent of the number of hosts
in the system. Our contribution can be summarized as follows: (1) With our protocol, we are able to
decrease the unnecessary delivery delay while maintaining low message overhead. In the worst case, the
message overhead in the wired network is O(n2 + ny). (2) Our handoff module is more efficient than AV2
and AV 3 because we do not require the messages exchanged among mobile support stations to be causally
ordered. (3) We provide proof of correctness for both the static and the handoff modules. The correctness
proof becomes important in the light of the fact that we discovered a bug in YHH. In particular, their
protocol, as presented in [22], does not satisfy the liveness property. (4) Finally, we state and prove the
condition implemented by our static module. We also present conditions implemented by AV2 and YHH
(corrected) algorithms.
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Figure 1: A mobile computing system.

The rest of the paper is organized as follows. Section 2 presents the system model and the notation used
in the paper. Sufficient conditions for causal message ordering in mobile computing systems are presented
in Section 3. We present our protocol in Section 4.1 (static module) and Section 4.2 (handoff module). The
correctness proof is provided in Section 4.3. We compare our protocol with the previous work in Section 5.
The simulation results are presented in Section 6. Section 7 concludes the paper.

2 System Model and Definitions

A mobile computing system consists of two kinds of processing units: mobile hosts and mobile support
stations. A mobile host (MH) is a computer that can move while retaining its network connections. A
mobile support station (MSS) is a machine that can communicate directly with mobile hosts over wireless
channels. MSSs form the infrastructure of this system model. The geographical area which an MSS’s
wireless signal can cover is called a cell. Even though cells may physically overlap, we assume that an
MH is directly connected through a wireless channel to at most one MSS at any given time. An MH can
communicate with other MHs and MSSs only through the MSS to which it is directly connected. All MSSs
and communication paths between them form the wired network. Figure 1 illustrates a mobile computing
system. We assume that the wireless channels are FIFO, and both wired and wireless channels are reliable
and take an arbitrary but finite amount of time to deliver messages. A mobile host can disconnect itself
from the network and can reconnect at a later time.

Each process (MH or MSS) in a computation generates an execution trace, which is a finite sequence of
local states and events. A state corresponds to the values of all the variables and the program counter in
the process. An event on a process can be classified into three types: send event (corresponds to send of
a message by a process) , receive event (corresponds to arrival of a message at a process), and local event
(which is not a send or a receive event). A delivery event is a local event that represents the delivery of a
received message to the application or applications running on that process.

Let H = {h1, ha,...,hp, } represent the set of mobile hosts and S = {51, S2,..., Sy, } denote the set of
mobile support stations. In practice, ny > ngs. Also, let H; denote the set of MHs in the cell of MSS S;.
A mobile computation can be illustrated using a graphical representation referred to as concrete diagram.
Figure 2 illustrates such a diagram where the horizontal lines represent MH and MSS processes, with time



progressing from left to right. h; isin the cell of S;. he and hg are in the cell of S3. A solid arrow represents
a message exchanged between an MH and an MSS process. A dashed arrow represents a message sent from
an MSS process to another MSS process. Filled circles at the base and the head of an arrow represent send
and receive events of that message. A concrete diagram in which only MH processes are shown is referred

to as an abstract diagram.
h1 ® o
ml
d

h3 ®
di

3

Figure 2: A concrete diagram of a mobile computation.

We denote the sequence of MSSs that an MH h; visits by {Sllc}ogkgn(h,)y where n(h;) is the number of
times h; switches cell in a computation. Using this notation, S(l) and Srlz(h,) represent the initial and the
final MSSs for h;. Note that an MH can visit an MSS more than once. For a message m, let m.src and
m.dst denote the source and destination processes. Moreover, m.snd, m.rcv and m.dlv denote the send
event on the source process and the receive and the deliver events on the destination process respectively.
We assume that a message sent to itself is immediately received by the sending process.

An application message is a message sent by an MH intended for another MH. Since MHs do not
communicate with each other directly, an MH, say h;, first sends an application message m to its MSS,
say Si, which then forwards m to the MSS, S;, of the destination host, hy. Using our notation, m.src
and m.dst denote the source and the destination hosts respectively of m. In other words, m.src = hs and
m.dst = hg. Furthermore, m.snd denotes the send event of m on hs. Also, m.rcv and m.dlv denote the
receive and delivery events respectively of m on hg.

Let 7 denote the message which S; sends to S; (containing the application message m along with
additional information for ensuring causality), requesting it to deliver m to hg. Again using our notation,
m.src denotes the MSS of hy; when m was sent (in this case S;). Similarly, m.dst denotes the MSS to which
S; forwards m (in this case Sj). As before, /.snd denotes the send event of /m on the support station S;.
Similarly, 7.rcv and 7.dlv (when m becomes deliverable at S;) denote the receive and delivery events
respectively of /i on S;. Figure 3 illustrates our notation.

An event e locally occurred before an event f in mobile host’s view, denoted by e <, f, iff e occurred
before f in real-time on some mobile host. Similarly, an event e locally occurred before an event f in mobile
support station’s view, denoted by e < f, iff e occurred before f in real-time on some mobile support
station. Let —p and —; denote the Lamport’s happened before relation [15] in abstract (on events on
MHs) and concrete diagram (on events on MSSs) respectively. A mobile computation is causally ordered
iff the following property is satisfied for any pair of application messages, m; and m;, in the system,

(CO) mi.snd —p mj.snd = —(mj.dlv <p m;.dlv)

4
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Figure 3: A figure illustrating the notation used in the paper.

. def
For convenience, m; —y m; = mj.snd —p mj.snd.

3 Sufficient Conditions

We next give the sufficient conditions for causally ordered message delivery in a mobile computation with
static hosts.

Theorem 1 : A mobile computation is causally ordered if
(C1) all wireless channels are FIFO,
(C2) messages in the wired network are causally ordered, and

(Cs3) each MSS sends out messages in the order they are received.

Proof: The condition Cs can be formally expressed as,
(co" mi.snd —g mj.snd = —(mj.dlv <s m;.dlv)

We first prove that m;.snd —, mj.snd = m;.snd —, mj.snd. Let ~», and ~» relate the send and
delivery events of the same message in abstract and concrete views respectively. Observe that due to C}
and C3, m;.snd < mj.snd = m;.snd <s Mmj.snd. Moreover, since MHs communicate through MSSs
therefore m;.snd ~p m;.dlv = Mm;.snd ~s m;.dlv, and m;.dlv <p mj.snd = Mm;.dlv <, mj.snd. Using
induction on the definition of —, it can be easily proved that m;.snd —y mj.snd = m;.snd —; m;.snd
(any causal chain from m;.snd to m;.snd is a combination of the three cases). Informally, if there is a
causal path from m; to m; in the abstract diagram then there is a causal path from m; to m; in the
concrete diagram.

Again, due to Ci, we have m;.dlv <, m;.dlv = m;.dlv <, m;.dlv. Using contrapositive, we get
(myj.dlv <5 my.dlv) = —(mj.dlv <p m;.dlv). Thus, m;.snd —p mj.snd = m;.snd —,; mj.snd =
=(my.dlv <5 mi.dlv) = —(mj.dlv <, m;.dlv). In other words, assuming C; and C3, CO' = CO. n

Sufficient conditions given in Theorem 1 were implicitly used in [5]. For systems with static hosts,
Theorem 1 gives a lightweight protocol for causal message ordering. In the extreme case when the entire



computation is in a single cell, causal ordering can be provided by simply using FIFO channels between
MHs and their MSSs.

We now show that C7, C2, and C5 are not necessary by a counter-example. In Figure 4, s; —3 s3 and
di <p d3. Therefore the computation in Figure 4 is causally ordered, although Cy and C5 do not hold.

sl ) sl
h1 X h1 2
Sl Tea \
< v N

. N/ -
\ d2 3 \ h2 \ d2 \
h3 h3
d1 d3 di d3
(a) Concrete diagram (b) Abstract diagram

Figure 4: An example to show that C1, Cs, and C3 are not necessary for CO.

The algorithms presented by Alagar and Venkatesan (AV2 and AV3) [5] enforce CO’ in order to achieve
CO. Their algorithms delay messages that violate CO’ even though they do not violate C'O. This can be
illustrated in a computation in Figure 5. In this example, message m; does not causally precede mj3 in
the abstract view, but it does in the concrete view. Under CO’, mg3 is unnecessarily delayed until m; is

deliverable. Our goal is to reduce this unnecessary delay, while maintaining the message overhead in the
wired network close to O(n?).
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Figure 5: Unnecessary delay in AV2.

4 Algorithm

AV2 uses a single matrix for all MHs in a cell. This can create false causal dependencies between messages.
In order to reduce these false causal dependencies and hence the unnecessary delay, we propose to use a



separate matrix for each MH in a cell. The next two subsections describe the static and the handoff
modules of our protocol. The static module is executed when an MH is in a particular cell. The handoff
module is executed when an MH moves from one cell to another. We prove the correctness of both the
modules in Section 4.3. Section 4.4 presents the condition characterizing the static module.

4.1 Static Module

For convenience, we first describe the static module assuming static hosts. In the next subsection, we
describe the handoff module and the modifications that need to be made to the static module to incorporate
mobile hosts.

Our static module is based on the algorithm proposed by Raynal et al [18]. For simple exposition of the
protocol, we assume that the channels among the MSSs are FIFO. This assumption can be easily relaxed by
implementing FIFO among MSSs using sequence numbers. We also assume that every MSS knows about
the location of the MHs. For each MH h;, we maintain an ns X ns matrix M;. M;[i,j] denotes the total
number of messages h; knows to have been sent by S; to Sj. Assume that h; is in the cell of S;. In order
to reduce the communication and computation overhead of h;, the matrix M; is stored at S;. In addition,
each S; also maintains two arrays lastsent; and lastrcvd; of size n,. The jt entry of lastsent;, lastsent;[j],
denotes the number of messages sent by S; to S;. Similarly, the jt entry of lastrcvd;, lastrcvd;[j], denotes
the number of messages sent by S; that have been received at S;.

Initially, all the entries in the matrices M, and arrays lastsent; and lastrcvd; are set to 0. To send a
message m to another MH hg, h; first sends the message to its MSS S;. Assume that hg4 is in the cell of
Sj. S; increments lastsent;[j| by one and then sends (m, Mj,lastsent;[j]), denoted by m, to Sj. After
that, S; sets M;|i, j]| to lastsent;[j].

Sj on receiving (m, M, seqno) from S; meant for hy first checks whether m is deliverable. m is deliverable
if S; has received all the messages on which m causally depends (lastrcvd;[k] > Mlk, j] for all k), and
there is no message destined for hy; on which m causally depends which is yet to be delivered to hyq
(A (m/, M' seqno’) destined for hg sent by Sy yet to be delivered such that seqno’ < Mk, j]). If so,
S; transmits m to hg. If m is not currently deliverable, it is kept in rcv@Q; until it becomes deliverable.
Like YHH, we do not update M, immediately after delivering m to hg, but we store m in ack@g. When
hq receives m, it sends back an acknowledge message, denoted by ack(m), to S;. On receiving ack(m),
Sj sets Mgy[i, j] to the maximum of its original value and segno (piggybacked on m). Then it sets each
element in My to the maximum of its original value and the value of the corresponding element in M (also
piggybacked on m). This prevents any outgoing message from hy to become causally dependent on m that
is sent before m is received by hg. Figure 6 gives a more detailed description of the static module.

4.2 Handoff Module

In order to ensure causally ordered message delivery, some steps have to taken during handoff after an MH
moves from one cell to another. We now describe the handoff module. Each MH h; maintains a mobility
number, mbl;, which is initially set to 0. It is incremented every time a mobile host moves. Intuitively, mbl;
denotes the number of times h; has changed cell. In addition, every MSS maintains an array of 2-tuples,
denoted by cell, with an entry for each MH. The I** entry of cell;, cell;[l], is a 2-tuple (mbl, mss), where
the value of cell;[l].mss represents S;’s knowledge of the location of h; and the value of cell;[l].mbl indicates
how “current” the knowledge is.

Consider a scenario when an MH h; moves from the cell of S; to the cell of S;. After switching cell, h;
increments mbl; and sends register(mbl;, S;) message to S; to inform S; of its presence. Also, h; retransmits
the messages to S; for which it did not receive the acknowledge message from its previous MSS S;. On



var
rcv@ : queue of messages, initially ¢;
cell : array [1..ny] of 2-tuples (mbl, mss), initially [(0, S§)]1<k<n,;
lastsent, lastrcud : array[l..ng] of integers, initially O;
M : set of matrices (ns x ng), ({My | hy € H;}), each initially 0;
ack@ : set of FIFO queues of messages, ({ackQy, | by € H;}), each initially ¢;
snd@ : set of FIFO queues of messages, ({sndQy | hr € #H;}), each initially ¢;
canSend : set of boolean variables, ({canSendy, | hy, € H;}), each initially true;
canDeliver : set of boolean variables, ({canDelivery, | hy € H;}), each initially true;

(A1) On receiving a data message m from hg;
send an acknowledgement to hy;
put m in sndQs;
call process_sndQ(hs);

(A2) On calling process_sndQ(hs);
if (canSends) then
while (sndQ # ¢) do
remove m from the head of snd@;
let m be destined for hq and S; be cell[d].mss;
lastsent[j] + +;
send (m, M;, lastsent[j]) to S;;
M[i, §] := lastsent[j];
endwhile;
endif;

(A3) On receiving (m, M, segno) from S;;
lastrcud[j] := seqno;
put (m, M, seqno) in rcv@;
call process_rcvQ();

(A4) On calling process_rcv@;
repeat
forall (m, M, seqno) € rcv@ do
let m be destined for hg;
if (canDeliverg A (Vk :: lastrcvd[k] > Mk, ]) A
(A (m',M',seqno’) € rcv@ :: (S sent m' for hq) A (seqno’ < M|k, ])) ) then
remove (m, M, seqno) from rcv@;
call deliver({m, M, seqno});
endif;
endforall;
until (rcv@ = ¢) V (no more messages can be delivered);

(A5) On calling deliver({m, M, seqno));
let m be destined for hy;
put (m, M, seqno) in ackQg;
send m to hg;

(A6) On receiving an acknowledgement from hg;
remove (m, M, seqgno) from the head of ackQq and let S; sent m;
Md[j7 Z] = ma‘x{Md[jv 7’]7 86(]77,0};
Mg := max{Mg4, M };

Figure 6: The static module for a mobile support station S;




receiving this message h;, S; updates cell;[l] (its local knowledge about the location of h;) and sends
handoff-begin(h;, mbl;) message to S;. The MSS S;, on receiving handoff-begin(h;, mbl;) message, updates
cell;[l] and sends enable(h;, M;, ackQy,) message to Sj. It then broadcasts notify(hi, mbl;, Sj) message to
all MSSs (except S; and S;), and waits for last(h;) message from all the MSSs to which it sent notify
message. Meanwhile, if any message received by S; for h; becomes deliverable, S; marks it as “old” and
forwards it to ;.

On receiving enable(h;, M;, ackQ;) message from S;, S; first delivers all the messages in ackQ;. It also
updates M; assuming all the messages in ackQ; have been received at h;. Then S; starts sending the
application messages on behalf of h;. S; also delivers all the messages for h; that are marked “old” in the
order in which the messages arrived. However, messages destined for h; that are not marked “old” are
queued in rcv@;.

An MSS Sg, on receiving notify(hy, mbl;, S;) message, updates celly[l] and then sends last(h;) message
to S;. Observe that since the channels among all the MSSs are assumed to be FIFO, after S; receives
last(h;) message from Sy, there are no messages in transition destined for h; that are sent by Si to S;. On
receiving last(h;) message from all the MSSs (to which notify message was sent), S; sends handoff-over(h;)
message to S;. The handoff terminates at S; after S; receives handoff_over(h;) message. S; can now start
delivering messages to h;. Meanwhile, if S; receives handoff_-begin(h;) message from some other MSS before
the current handoff terminates, S; responds to the message only after the handoff terminates.

Since we do not assume that the messages in the wired network are causally ordered, it is possible that a
message m destined for h; is sent to S; (the old MSS of h;), whereas its causally preceding message m', also
destined for hy, is sent to S; (the new MSS of h;). In order to prevent this, an MSS piggybacks additional
information on all the message that contain application messages: messages destined for an MH (may
or may not be marked as “old”) and enable messages. On these messages, an MSS piggybacks its local
knowledge of the location of all the mobile hosts that have changed their cells since it last communicated
with the other MSS. On receiving this information, the other MSS updates its knowledge of the location
of the MHs (its cell) based on their mobility number. In the worst case, this extra overhead could be as
large as O(np). In practice, we expect it to be much smaller. Let ¢s,; denote the mean inter-message
generation time and t,,,, be the mean inter-switch time for an MH. Then, the average extra overhead for
uniform communication pattern (every MH has equal probability of sending a message to every other MH)
is =~ O(f:n—"ofjn?)

Our handoff module is more efficient than the handoff module in AV2 and AV 3 since we do not require
the messages exchanged among the MSSs to be causally ordered. Figure 7 and Figure 8 give a more detailed
description of the handoff module. Figure 9 gives the modifications in the static module to incorporate
mobile hosts.

Although we do not mention here but the mobility number has several usages. For instance, the messages
exchanged between an MH and its MSS can also be tagged with the mobility number of the MH. It can
then be used by an MSS to ignore messages received from an MH after it has sent enable message for that
MH to the new MSS. It can also be used to correctly serialize the handoff procedures for an MH.

4.3 Proof of Correctness

We assume that a message sent to itself is immediately received by the sending process. Also, enable,
notify, last and handoff over messages are delivered as soon as they are received. The register and
handoff_begin messages are delivered once the corresponding “if” condition is satisfied in (A13). Since the
MSS does all the processing therefore for an application message m, m.rcv = m.dlv.

Note that since MHs are mobile and can change their cell, an application message m can be delivered
to an MH by an MSS other than 7.dst (either when m is received as on “old” message or m is in the



S; o

var
noO f Last : set of integers, ({noO fLasty, | hy, € H;}), each initially 0;
handoff Over : set of boolean variables, ({handoff Overy, | hi, € H;}), each initially true;
handoff @ : set of priority queue of messages, ({handoff Qy, | hi, € H}), each initially ¢;

(A7) On receiving (register,mbl, S;) from hy;
put (register,mbl, S;) in handoff @; using mbl as the key;
call process_handoff Q(h;);

(A8) On receiving (handoff-begin, hj, mbl) from Sj;
put (handoff-begin, mbl, S;) in handoff @; using mbl as the key;
call process_handoff Q(h;);

(A9) On receiving (notify, by, mbl, S,,) from S;;
if (cell[l].mbl < mbl) then cell[l] := (mbl, Sp);
send (last, h;) to Sj;
call process_handoff Q(h;);

(A10) On receiving (enable, hy, M', ackQ', up_cell);
forall (hy,mbl, Sy) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, Sp);
endforall;
M; .= M';
while (ack@' # ¢) do
remove (m, M, seqno) from the head of ack@' and let S; sent m to Si;
put (m, M, seqno) in ackQ;
send m to hy;
M;[j, k] := max{M;[j, k], seqno};
M, := max{M;, M };
endwhile;
canSend; := true;
call process_sndQ(h;);

(A11) On receiving (last, h;);

noO f Last; + +;

if (noO fLast; = ngs — 2) then
canDeliver; := false;
send (handoff-over, h;) to cell[l].mss;
remove h; from H;;
call process_handoff Q(h;);

endif;

(A12) On receiving (handoff-over, h;);
canDeliver; := true;
handoff Over; := true;
process_handoff Q(h;);
process_rcv@Q();

Figure 7: The handoff module for a mobile support station .S;

acknowledgement queue of an enable message). In fact, m can be received multiple times by its destination
MH. We consider m to be received (delivered) when the destination MH receives (delivers) it for the first
time. Moreover, an application message can be sent multiple times (due to retransmission by the mobile
host on failure to receive acknowledgement). We treat the retransmitted application message as a different
application message and ignore the application message sent by an MH that is lost when the MH switched

10



S; o

(A13) On calling process_handoff Q(h;);

let (type, mbl, S;) be at the head of handoff Q;;

if ((type = register) A (mbl = cell[l].mbl + 1) A (h; € H;)) then
remove the message from the head of handoff Q;;
add h; to H;;
cell[l] := (mbl, S;);
canSend; := false;
canDeliver; := false;
handoff Over, .= false;
send (handoff-begin, h;, mbl) to S;;

else if ((type = handoff -begin) A (mbl = cell[l].mbl + 1) A handoff Over;) then
remove the message from the head of handoff Q;;
cell[l] :== (mbl, S;);
let up_cell be {{hy, cell[k].mbl, cell[k].mss) | hi, has changed cell since up_cell was

last sent to S;};

send (enable, hy, M;, ackQq, up_cell) to Sj;
broadcast (notify, h;, mbl, S;) to S\ {5, S; };

endif;

(A14) On receiving (m, M, seqno, old, up_cell);
forall (hy, mbl, S,) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, Sp);
endforall;
call deliver({m, M, seqno));

Figure 8: The handoff module for a mobile support station S; (contd.)

its cell. Here we assume that an MH can detect duplicate application messages and discard them. In
our protocol, apart from the application message m, m also contains a matrix, denoted by .M, and
a sequence number, denoted by m.seqno. For convenience, m.M = m.M and m.seqno = m.seqno. A
matrix M; is less than or equal to Mj, denote by M; < Mj, iff (V k,1 :: M;[k,1] < M;[k,1]).

Let e be an event on an MSS S;. We use mbl(e) and lastrcvd(e) to denote the value of the vectors
cell[l : np).mbl and lastrcvd respectively at S; on occurrence of e. The k' entry of the vector v is denoted
by v.k. A vector v; is less than or equal to a vector v;, denoted by v; < v;, iff (V &k :: v;.k < v;.k). We use the
same operator < to compare the vectors and the matrices. Intuitively, the value cell[k].mss at S; represents
S;’s knowledge of the location of hy and cell[k].mbl indicates how “recent” the knowledge is. For a message
m sent by an MSS, mbl(m) = mbl(m.snd). For an application message m, mbl(m) = mbl(m). Since for
all k, cell[k].mbl is monotonically non-decreasing for every MSS therefore e < f = mbl(e) < mbl(f).

The following lemmas and theorems prove the correctness of both the static and the handoff modules.
The organization of the proof is as follows. We first prove Lemma 2-4 that are used in the proof of liveness
and safety properties. Theorem 9 establishes the liveness property of the protocol, namely a message sent
to a mobile host is eventually delivered. We prove the liveness property in two stages. We first prove that
a message 7, carrying the application message m, is eventually delivered at its destination MSS (when m
becomes deliverable at m.dst or deliver(r) is called at m.dst), r.dst (Lemma 8). Using it, we prove that
the application message m is eventually delivered at its destination MH, m.dst. Theorem 13 establishes
the safety property of the protocol, namely the modules implement causal ordering among mobile hosts.

In the lemmas that follow, let m; and m; be arbitrary application messages. Let m;.src = h, and
m;.dst = hg, and mj.src = hy and mj.dst = hg. Let my;.src = S, and m;.dst = S,, and m;.src = Sy
and my;.dst = S,s. For convenience, let mbl(m;).d = r and mbl(m;).d' = r'. Note that S¢ = 7;.dst = S,
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S; o

(A2") On calling process_sndQ@(hs);
if (canSends) then
while (sndQ # ¢) do
remove m from the head of sndQs;
let m be destined for hq and S; be cell[d]mss;
lastsent[j] + +;
let up_cell be {(hy, cell[k].mbl, cell[k].mss) | hi has changed cell since up_cell
was last sent to S;};
send (m, Mj, lastsent[j], up_cell) to S;;
M[i, §] := lastsent[j];
endwhile;
endif;

(A3’) On receiving (m, M, seqno, up_cell) from Sj;;
forall (hy,mbl, Sy) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, Sp.);
endforall;
lastrcvd[j] := seqno;
put (m, M, seqno) in rcv@;
call process_rcv@Q();

(A5") On calling deliver({m, M, seqno));
let m be destined for hy;
if (cell[d].mss = S;) then
put (m, M, seqno) in ackQg;
send m to hy;
else
let up_cell be {{hy, cell[k].mbl, cell[k].mss) | by, has changed cell since up_cell was
last sent to cell[d].mss};
send (m, M, seqno, old, up_cell) to cell[d].mss;
endif;

(A6') On receiving an acknowledgement from hg;
remove (m, M, seqgno) from the head of ackQq and let S; sent m to Si;
M|, k] := max{Mglj, k], seqno};

Mg := max{ Mgy, M };

Figure 9: The modification in static module in presence of host movement in mobile support station S;

and Sg,’ = rmj.dst = Sy. Although, both S, and S¢ represent identical MSS 7i;.dst), we use S¢ when we
want to assert that S, is the r + 1** MSS of hy and argue about the properties that hold during that time
period. This usage is not limited to m;.

4.3.1 Preliminary Lemmas

Let —, denote the Lamport’s happened before relation in the concrete view with respect to the messages
on which up_cell is piggybacked. Observe that -5 C —,. Let enable(S]lJ) denote the enable message sent

by S]l, to Szl, 1 on processing handoff_begin message from S]lJ 11 in the handoff module for Ay when h; moves
from the cell of SIl, to the cell of SII)H. Also, let enable(SIl,).M denote the matrix, M;, piggybacked on
the enable message. Since Szl, does not process the handoff -begin message from Szl, 41 until it receives the
handoff-over message from Szqul and the protocol piggybacks up_cell on an enable message therefore,
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(P 4.1) p<q = enable(SZl,).snd —g enable(Sf]).snd
Also, since M; is monotonically non-decreasing, we have
(P 4.2) p < q = enable(S}).M = enable(S}).M
Lemma 2 m;.snd =y, mj.snd = mj.seqno < m;.M[u,v]

Proof: The proof is by induction on the number of messages, n, involved in the smallest causal chain
(with respect to —3) from m;.snd to mj.snd. Let ri;.src = S5 and rhj.src = S, where a = mbl(m;).s
and o’ = mbl(m;).s'. Note that S, = S and S,y = S%.

Base Case (n = 0): In this case, m;.snd <j mj.snd. Observe that hy = hy and a' > a. There are two
cases to consider depending on whether hy switched its cell after sending m;.

Case 1 [a' = a]: It can be verified from the protocol that as soon as m; is sent, M is updated (A2’).
Using monotonicity of M, we have m;.seqno < mj.M]u,v].

Case 2 [a/ > a]: Since S2 does not send forward any message on behalf of hs to any MSS after sending
the enable message, therefore 1m;.snd <, enable(S;).snd. Also, S%, does not forward any message on behalf
of h, until it receives enable(S: ), therefore enable(SS, ;).dlv <, mj.snd. Using P 4.2, monotonicity of
Mg and o' — 1 > a, we get,

mj.seqno < enable(S;).M|u,v] < enable(Sy _,).M[u,v] < m;.M[u,v]
Thus, in any case, m;.seqno < m;.M|u,v].

Induction Step (n > 1): Let my, denote the last message in the smallest causal chain (with respect to
—,) from m;.snd to mj.snd. Then, by induction m;.seqno < my.M|u,v]. Let S,f' be the MSS which first
delivered my to hg. Observe that a’ > b. Let ack(my) denote the acknowledgement message sent by hy
on receiving my. There are two cases to consider depending on whether hy switched its cell after receiving
(or delivering) my.

Case 1 [a' = b]: Since my.dlv < m;.snd, therefore ack(my) is received at S;: before m;. More-
over, when ack(my) is received, my is at the head of ackQs (channel between an MH and its MSS
is reliable and FIFO). On receiving ack(my), S;: updates My to reflect the “delivery” of my at hg
which involves taking component-wise maximum of my.M and M. Using monotonicity of My, we have
my.M[u,v] < m;.M[u,v].

Case 2 [a' > b]: Due to the movement of hy, it is possible that although hy received my and sent

ack(my,) to 5517 Sg’ did not receive ack(my,) before it sends the enable message. Therefore, on receiving the

enable message from S,f', If:rl updates My assuming that all the messages in ack@Qy have been received

at hg before proceeding further. Using P 4.2 and monotonicity of My, we have my.M[u,v] < m;.M[u,v].

Thus, in any case, m;.seqno < m;.M|u,v]. Therefore by induction the lemma holds. ]

Lemma 3 m;.seqno < m;.M[u,v] = m;.snd —», mj.snd
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Proof: Assume m;.seqno < m;.M[u,v]. The proofis by construction. We first prove the following property
satisfied by m; and m;,

mj.seqno < mj;.M[u,v] = (m;.snd -, mj.snd) V
(Imyg, :: (my.seqno < my.M[u,v]) A (my.snd —5 mj.snd))

Let 7nj.s7c = S% where o’ = mbl(mj).s'. Observe that m;.seqgno > 1 and My is initially 0. Since My
is monotonically non-decreasing, therefore there exists an MSS where My was updated which made the
inequality true. Let Slf' be the first such MSS in the sequence {Sf'}, and ey be the earliest event on it such
that the inequality holds just after e;. Note that a’ > b and M, is updated only either due to a message
sent by hy or due to a message destined for hy. Let my denote the message involved in ej. Observe that
my # mj. In the former case (the inequality became true due to a message sent by hy), mg.s7c = Sy
and my.dst = S,. Since lastsent on Slf' is monotonically non-decreasing and m;.seqno < myg.seqno,
therefore either m; = my, or m;.snd < my.snd. Moreover, if a' = b then my.snd <, mj.snd, otherwise
ihg.snd < enable(S,).snd and enable(S;:_l).dlv <s mj.snd. Using P 4.1, we have m;.snd — m;.snd.

In the latter case, as before, if o’ = b then e, <, mj.src, otherwise ey — 7j.snd (Mg is not updated
at Sg’ after it sends the enable message). Moreover, it can be verified from the protocol that mi; was in
ackQy when My was updated. Let my.dst = Sgl where ¢ = mbl(my).s’. Observe that miy, first enters
ackQ either at S5 on occurrence of rig.dlv or at SCS:H on being received as an “old” message. After that,
it gets transferred to the next MSS piggybacked on the enable message. Since the messages containing
application message, the messages tagged as “old” and the enable messages are piggybacked with up cell,
therefore my.snd —, ex. Thus, my.snd —, m;.snd. There are again two cases to consider. The inequality
became true either due to seqno of my or as a result of taking component-wise maximum of my.M and
M. In the first case, mg.src = Sy, my.dst = S, and m;.seqno < my.seqno. Therefore, either m; = my, or
m;.snd < my.snd. Combining with earlier result, we get r;.snd —», m;.snd. Finally, in the second case,
m;.seqno < my.Mu,v].

Thus, (m;.snd —, mj.snd) V (3 mg 2 (mi.seqno < myp.M[u,v]) A (7hg.snd —4 mm;.snd)) holds. We
can apply the same property to m; and my since m;.seqno < myg.M[u,v]. We claim that at most np,
applications of the property establishes m;.snd —; 7j.snd. The proof is by contradiction. Assume the
contrary. Then, there is a chain of messages, my,, myg,, ... mg,, m; such that my,.snd —; mj.snd (—, is
transitive) and [ > np. Using the pigeon-hole principle, we can infer that at least two messages in the
chain are sent by the same MH. Let the messages be my, and my,. Also, let e, and e, be the events
used in the proof of the property. Since both events involve update of the MH matrix, therefore either
€k, —s €k, OT €k, —>s €k, holds which contradicts the choice of ey, or e, . Thus, the lemma holds. [ ]

Lemma 4 7;.snd —, mj.snd = mbl(m;) < mbl(m;)
Proof: The lemma can be proved by induction on the number of messages, n, involved in smallest causal

chain (with respect to —;) from m;.snd to mj.snd. The proof is straightforward and is left to the
reader. |

4.3.2 Liveness Property

Lemma 5 Every handoff procedure for a mobile host terminates.
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Proof: Let handoff (I,p) denote the handoff procedure between Szl, and S;f) 41 for hy, when h; moves from
the cell of S]lJ to the cell of SIZJH. The lemma can be proved easily by induction on p, 0 < p < n(h;). [

Let handoﬁ_over(SIl,) denote the handoff over message sent by Szl, to Sllq 41 in the handoff module for hy,
when h; moves from the cell of SZI, to the cell of S]lJ 11~ Since S]la, does not process the handoff_begin message
from Szl, 1 until it receives the handoff over message from Szl,_l, therefore we have,

(P 4.3) p<q = handoﬁ_over(SIl)).snd —s handoﬂ_over(S,lI).snd

Let m;.ercvd denote the earliest event on S, such that m;. M1 : ngs,v] < lastrcvd(m;.ercvd). Observe
that (Ve : m;.ercod <5 e : m;.M[1 : ng,v] < lastrcvd(e)) is true. Intuitively, m;.ercvd represents the
earliest event on S, when all the messages sent to S, on which m; causally depends (potentially) have
been received at S,,.

Lemma 6 m;.ercod occurs eventually. Moreover, if S¢ is not the final mobile support station for hg, i.e.
r < n(hq), then m;.ercvd < handoff-over(S%).snd.

Proof: Consider a message my, destined for S, such that nig.seqno < m;.M[w,v], where S,, = my.src.
We claim that miy is eventually received, i.e. my.rcv occurs eventually. Furthermore, if r < n(hg) then
mp.rcv <s handoff over(S%).snd. Assume S¢ is the final MSS for hg. Since the channels among MSSs are
reliable, therefore miy, is received eventually. Otherwise, assume r < n(hg). We have three cases to consider
depending on the source MSS of my. Let S,, denote the MSS to whose cell hy moves after leaving the
cell of SZ. Let handoﬁ‘_begin(SﬁH) denote the handoff begin message sent by SﬁH to S¢ in the handoff
procedure when hy switches cell. Let notify(S?) represent the notify message broadcast by S¢ to the MSSs
in the handoff procedure and let last(S,,, S¢) denote the corresponding last message sent by S, to SZ.

Case 1 [Sy, = Sy]: In this case, my.snd <, handoﬁ_begin(SfH).dlv. Assume the contrary. After
processing the handoff_begin message, the value of cell[d].mlb at S, becomes r + 1. Thus, mbl(my).d > .
Using Lemma 3 and Lemma 4, we can infer that » < mbl(m;).d, a contradiction. Since the messages
sent to itself are received immediately and handoff begin(S% 11)-dlv <, handoff-over(S¢).snd, therefore
my.rcv <s handoff-over(S2).snd.

Case 2 [S, = Sp]: In this case, mg.snd <, handoﬂ_begin(SfH).snd. The proof is identical to the proof
in Case 1. Since the channels are reliable and FIFO, therefore r.rcv <5 handoff begin(S9 41)-rev. Also,
handoff begin(SZ,,).rcv <, handoff-over(S%).snd. Thus, fy.rcv <, handoff-over(S?).snd.

Case 3 [S, € S\ {Sy, Sn}]: Finally, in this case, my.snd <, notify(S%).dlv. Since the channels are
reliable and FIFO, and notify(S%).dlv <, last(Sy, S%).snd, therefore my.rcv < last(Sy, S3).rcv. Also,

last(Sy, S%).rcv <5 handoff-over(S%).snd. Thus, ry.rcv <5 handoff over(S2).snd.

In any case, 7g.rcv <, handoff-over(S%).snd.  Thus, for all mi; destined for S, such that
my.seqno < m;.M[w,v], where my.src = S, we have myg.rcv <, handoff-over(S%).snd. Since as soon
as a message is received lastrcvd is updated, therefore mi;.ercvd <, handoff-over(S%).snd. Therefore the
lemma holds. ]

Lemma 7 1h;.rcv occurs eventually. Moreover, if S¢ is not the final mobile support station for hy, i.e.
r < n(hq), then m;.rcv <4 handoff-over(S%).snd.
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Proof: The lemma can be proved by doing a case analysis identical to the one in Lemma 6. The proof is
left to the reader. -

Lemma 8 m; is eventually delivered (at its destination mobile support station S,). Moreover, if S¢ is not
the final mobile support station for hg, i.e. v < n(hg), then m;.dlv <4 handoff-over(S%).snd.

Proof: Let M4 denote the set of messages which contain application messages (not tagged as “old”) sent
by a mobile support station to another mobile support station to be delivered to the destination mobile
hosts. Let M¢ be the set of messages on which up_cell is piggybacked. We first define a binary relation,
C, on M4 as follows,

m; T m; = (hg = ha') A (Sy = Syr) A (my;.seqno < mj;.M[u, v])

Observe that M4 C Mg and C C —», (Lemma 3). Also, (M¢, —»s) is a well-founded set. Thus, we
can infer that (My,C) is also a well-founded set. Let P.migx be “the lemma holds for mi”. Assume
(V my, : my C my; : P.nig). There are two cases to consider: r = n(hg) or r < n(hq).

Case 1 [r < n(hg)]: Using Lemma 7, we have r;.rcv <, handoff-over(S%).snd. If S is the initial
MSS of hg, i.e. (r = 0), then canDelivery is true initially. Otherwise, using Lemma 5 we can infer
that handoff-over(S¢ ,).dlv eventually occurs at SZ after which canDelivery is set to true. Moreover,
canDelivery remains true until S¢ sends the handoff-over message to S,‘L_l. Let canDeliver be the earliest
event on S¢ after which canDelivery is true. Then canDeliver <, handoff-over(S¢).snd. From Lemma 6,
we can conclude that m;.ercvd <, handoff-over(S%).snd. Consider niy, such that m C m1;. Using definition
of C, Lemma 3 and Lemma 4, we have my.dst = hg and mbl(my).d < mbl(m;).d = r. Therefore,
using induction hypothesis and P 4.3, we get my.dlv <, handoff over(S%).snd. Observe that after all
messages My, such that my C m; have been delivered, then the last expression in the conjunct of the “if”
condition in (A4) is never falsified. Let e be the latest of all the events in {r;.rcv, canDeliver, m; .ercvd}U
{mg.dlv | My, C m;}. Then e <, handoff -over(S%).snd. After e, the “if” condition in (A4) evaluates to
true for m;, and deliver(m;) is called. Thus, m;.dlv < handoﬂ_over(Sﬁl).snd. Therefore P.m; holds.

Case 2 [r = n(hg)]: In this case, we have to prove that 7;.dlv eventually occurs. The proof is quite
similar to but simpler than the proof for Case 1.

Hence by strong induction, the lemma holds. ]

Theorem 9 (liveness) m; is eventually delivered (at its destination mobile host, hg).

Proof: We first show that m; eventually enters ack@Qq. If S¢ is the final mobile support station for hy or
m;.dlv <5 handoff-begin(S%).dlv then m; enters acksy as soon as m;.dlv occurs. Otherwise, on occurrence
of m;.dlv, m; is sent to S,‘fH where it is inserted into ack@Qg on being received. Let S¢, r <t < n(hg) be
the MSS such that hg stays for sufficiently long time in the cell of Sgl after m; enters ackQg. Let Mg, be
the set of messages that entered ackQq at S¢ (including messages that were already in ackQq when ackQq
was transferred to S{) before m;. Note that the messages are sent to hg in the order in which they enter
ackQq ((A5’) and (A10)). Moreover, after receiving |M,gcr| acknowledgement messages from hg, m; will
be at the front in ack@g. Since the channel between an MH and its MSS is reliable and FIFO, therefore
Sf receives |Mack|th acknowledgement message from hg if hy does not switch cell for a sufficiently long
time. Thus, m; is delivered at hg. ]
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4.3.3 Safety Property

Lemma 10 If m; enters ackQgq before m; then m;.dlv <p mj.dlv.

Proof: Note that hg = hg. Let S¢ and S;f denote the MSSs that delivered m; and m; respectively to hg for
the first time (¢ and ¢’ exist due to Theorem 9). If t < ¢’ then it can be easily proved that m;.dlv <j, m;.dlv.
Therefore, assume ¢ > t'. Observe that in the protocol as soon as a message is inserted in ackQqg at Sg,
it is also dispatched to hq ((A5’) and (A10)). Thus, at S, m; is sent to kg before m;. Since the channel
between an MH and its MSS is FIFO, therefore h; receives m; before m;. Hence m;.dlv <, m;.dlv. [

Lemma 11 mbl(m;).d < mbl(m;).d = -—(mj.dlv <p m;.dlv)

Proof: If hg # hy then the consequent (and hence the lemma) is trivially true. Therefore assume hg = hyr.
We first prove that m; enters ack@Qq before m;. If m;.dlv < handoﬁ_begin(SfH).dlv then m; enters ackQyq
at S¢. Otherwise, on occurrence of m;.dlv, m; is sent to Sff '+, where it is inserted into ack@Qg as soon as
it is received. Using Lemma 8 and the fact that the channels among MSSs are FIFO, we can infer that
m; is received at S¢ ; before handoff-over(S%). Also, from the protocol we know that mi; cannot enter
ackQq before handoﬁ_over(Sg,il) is received. Thus, using P 4.3, we can conclude that in any case m;

enters ack(@)q before m;. Finally, using Lemma 10, we have m;.dlv <, m;.dlv. [

Lemma 12 (mbl(m;).d = mbl(m;).d) A (m;.snd —p mj.snd) = —(m;.dlv < m;.dlv)

Proof: If hg # hg then the consequent (and hence the lemma) is trivially true. Therefore assume
hg = hg. We first prove that 7;.dlv < 7hj.dlv. Note that S, = Sy». From Lemma 2, we can conclude that
m;i.seqno < m;.M[u,v]. Observe that m;.ercvd cannot occur before m;.rcv. Moreover, after m;.ercvd
occurs, m; cannot be delivered until m; is delivered. Thus, m;.dlv <, mj.dlv. If S,‘il is the final MSS for
hg then as soon as rh.dlv occurs it is inserted into ackQq. Therefore, m; is inserted into ackQq before m;.
Otherwise, there are three cases to consider:

Case 1 [m;.dlv <, mj.dlv <, handoff begin(S3,,).dlv]: On occurrence of my;.dlv (rhj.dlv), m,; (m;) is
inserted into ack@q. Hence m; enters ack(@)q before m;.

Case 2 [m;.dlv <, handoﬁ_begin(Sg_i_l).dlv <s mj.dlv]: On occurrence of 7;.dlv, m; is inserted into
ackQg. On processing handoff begin(SZ, ), ackQq is piggybacked on the enable(S?) message and sent to
Sd.,. Then, when mj.dlv occurs, m; is sent to S&,; where it enters ackQq. Since the channels among
MSSs are reliable and FIFO, therefore m; enters ackQq before m;.

Case 3 [handoff begin(S% ).dlv < th;.dlv <, mj.dlv]: On occurrence of ry.dlv (rhj.dlv), m,; (m; is

sent to S4,; tagged as on “old” message. On receiving m; (m;), S¢, inserts m; (m;) into ack@q. Since

the channels among MSSs are reliable and FIFO, therefore m; enters ack@q before m;.

In any case, m; enters ackQq before m;. Finally, using Lemma 10, we have m;.dlv <j m;.dlv. |

Theorem 13 The protocol implements causal ordering among mobile hosts. In other words,

mg.snd —p mj.snd = —(mj.dlv <p m;.dlv)
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Proof: The proof is a straightforward manipulation of the lemmas.

m;.snd —p mj.snd

= m;.seqno < mj.Mu, v] ; Lemma 2
= my.snd —»; mj.snd ; Lemma 3
= mbl(m;) = mbl(m;) ; Lemma 4
= mbl(m;).d < mbl(m;).d ; definition of <, instantiation

(mbl(m;).d < mbl(mj).d) V (mbl(m;).d = mbl(m;).d) ; definition of <
(mbl(m;).d < mbl(mj).d) V ((mbl(m;).d = mbl(m;j).d) A (m;.snd —p, mj.snd))

4

; use antecedent

= —(mj.dlv <p my.dlv) V =(mj.dlv < m;.dlv) ; Lemma 11, Lemma, 12
= ~(mj.dlv <p m;.dlv) ; idempotence of V
Thus, the theorem holds. u

4.4 Characterization of Static Module

In this section we state and prove the predicate that characterizes our static module. The static module
in Section 4.1 implements,

(CO") (Imy : y.dst = my.dst : (my.snd <5 My.snd)A (my.snd —p mj.snd)) =
—(mj.dlv <p mi.dlv) A —~(mj.dlv < ms.rev),

where e 5, f iff (e = f) V (e <5 f), under the assumption that the channels among MSSs are FIFO.
Moreover, if the channels among MSSs are not FIFO then it implements,

CO" A (my;.snd <5 mj.snd = =(mj.dlv <, m;.rev))

. di ~ “ N N .
For convenience, let FO" tef mi.snd <g mj.snd = —(mj.dlv < m;.rev). For the following proofs, we

define m;.P for an application message m; as follows,
m;.Plu,v] = max{{my | (Myg.src = Sy) A (my.dst = S,) A (mg.snd —p mj.snd)}},

where max{S} returns the message with the largest segno in the set S. Also, max{¢} = L, where
1.seqno =0 and L —4 m;.

Lemma 14 For an application message m;, m;.M[u,v] = m;.Pu,v].seqno for all u and v.
Proof: Using Lemma 2 and definition of m;.Plu,v], we can infer that m;.P[u,v].seqno < m;.M][u,v]
(the inequality trivially holds if m;.P[u,v] = L). Assume m;.M|u,v] > m;.P[u,v].seqgno. We will derive

a contradiction. Let m;.M[u,v] = n,n > 0. We first prove the following property for the application
message m;,
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mi. Mu,v] =n = (Imy = (((Mmg.sre = Sy) A (mg.dst = S,) A (mg.seqno = n)) V (mg.M[u,v] = n))
A(my.snd —p, m;i.snd))

Let m;.src = hs. Observe that n > 0 and Mj; is initially 0. Since M is monotonically non-decreasing,
therefore there exists an event on 7;.src when M was updated which made the equality, M;[u,v] = n,
true. Let e; be the earliest event on it such that the equality holds just after e;. Note that M is
updated only either due to a message sent by hg; or due to a message received by hs;. Let my denote
the application message involved in eg. Observe that e < 7h;.snd. In the former case (the inequality
became true due to a message sent by h), my.src = S, and my.dst = S,. Moreover, my.seqno = n and
my.snd <p mi.snd. In the latter case, there are again two cases to consider. The equality became true
either due to seqno of my or as a result of taking component-wise maximum of my.M and M. In the
first case, my.src = Sy, my.dst = S, and my.seqgno = n. In the second case my.M[u,v] = n. Moreover, in
both cases, my.snd —p m;.snd.

Thus, the property holds. If the second term of the “V” expression holds for my then we can apply the
same argument since in that case my.M[u,v] = n,n > 0. We claim that at most nj applications of the
property establishes (Imy, :: (thg.src = Sy) A (Thg.dst = Sy) A (mg.seqgno = n) A(my.snd —p, m;.snd)). The
proof is by contradiction. Assume the contrary. Then, there is a chain of messages, mg,, mg,, ... mg, m;
such that mg,.snd —, m;.snd (—y, is transitive) and [ > nj. Using the pigeon-hole principle, we can infer
that at least two messages in the chain are sent by the same mobile host. Let the messages be my, and
M, - Also, let ex, and eg, be the events used in the proof of the property. Then €k, —s €k, OT €k, —>s €k,
holds which contradicts the choice of ey, or ey, . Thus, there exists an application message my such that
mg.src = Sy, mg.dst = S, my.seqno = n and mg.snd —p mj.snd. Also, m;. M[u,v] = n = my.seqno >
m;.Plu, v].seqno which contradicts the definition of m;.P[u,v]|. Hence m;.M[u,v] = m;.P[u,v].seqno and
the lemma holds. |

Lemma 15 For any two application messages m; and m;j such that m;.src = Sy and m;.dst = S,, the
static module satisfies,

(Imy : my.dst = my.dst : (.snd g mg.snd) A (mg.snd =y, mj.snd)) = m;.seqno < mj.Mu,v]

Proof:
(=)

(A1) my.snd —p mj.snd = m;.seqno < m;.M[u,v]
We prove (A.1) by induction on the number of messages,n, in the causal chain (with respect to —p)
from m;.snd to m;.snd.

Base Case (n = 0): In this case, m;.snd <, mj.snd. On sending m;, S, sets the (u,v)! entry of
the host matrix to m;.seqno. Since the wireless channels are FIFO and the host matrix is monotonically
non-decreasing, therefore m;.seqno < m;.MIu,v].

Induction Step (n > 0): Let mj.src = hy. Let m; be the last message in the causal chain.
Using induction, we get m;.seqno < m;.M[u,v]. Observe that m; is delivered to hy before m;.snd occurs
(to create the causal dependency). Since wireless channels are FIFO and reliable therefore acknowledge
message for m;, ack(my), is received before m;. On receiving ack(my;), mj.src sets My to component-wise
maximum of m;.M and My . Hence, we have m;.M[u,v] < m;.M[u,v]. Thus, m;.seqno < m;.M[u,v].
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Thus, by induction, m;.snd —p mj.snd = m;.seqno < m;.M[u,v].

(A.2) (Imy : my.dst = Mmy.dst : (Thy.snd <; mg.snd) A (myg.snd —p mj.snd)) =
ms.seqno < mj.Mu, v]
Since m;.dst = my.dst and m;.snd <; Mmyg.snd therefore m;.seqno < my.seqno. Moreover, since
my.snd —p, mj.snd, using (A.1) we have my.seqno < m;.M[u,v]. Combining both the results, we have
mj.seqno < m;.M[u, v].

(=)

Assume m;.seqno < m;.M[u,v]. Using Lemma 14, we can infer that there exists a message m; such

that mj.seqno = m;.M[u,v] and m;.snd —y mj.snd. Moreover, my.src = Sy,m;.dst = S,. Since
mi.src = Sy = my.sre, mi.dst = S, = my.dst and m;.seqno < mj;.M[u,v] = mj.seqno, therefore
m;.snd <y my.snd. ]

Theorem 16 The static module implements CO" under the assumption that the channels among mobile
support stations are FIFO.

Proof: Let Xgpr and Xcoor be the set of executions accepted by the proposed static module and the

condition CO" respectively. To prove that the static module implements CO”, we need to show that

Xsy = Xcoon 1.e. the executions generated by the static module satisfy the condition CO” and vice versa.
. d N N N o

For convenience, let m; — m; ] (Imy : my.dst = my.dst : (m.snd <5 ty.snd) A (mg.snd —p mj.snd)).

Observe that m; — m; = m; —,; m;. Therefore — is acyclic.

(B.1) Xcor € Xspy: Consider an execution X that satisfies CO”. Let — denote the Lamport’s
“happened before” relation on the set of events (on MHs and MSSs) in the execution X. Since — is a
partial order, it can be extended to some total order. Let E denote the sequence of events with respect to
the total order and E, be the prefix of E containing the first n events. We prove that for all n, £, can be
generated by the proposed static module. The proof is by induction on n. For the purpose of the proof,
the events are either deliver or non-deliver events. Note that the static module controls only the deliver
events on mobile support stations.

Base Case (n = 1): Observe that the first event cannot be a deliver event. Therefore E; can be
generated by the static module.

Induction Step (n > 1): Using induction hypothesis, E,_1 can be generated by the static module.
Assume n'? event, say e,, is a deliver event on a mobile support station, say S,, and let m; be the
application message involved in the event. We need to prove that m; is deliverable according to our
static module. Let Mpg denote the set of messages destined for m;.dst that have been received but not
yet delivered at .S, just before e, occurs (Mg # ¢ since m; € Mp). Let chann(G,e;,) denote the set
of messages sent to S, in-transit (sent to S, but not yet received at S,) in the consistent cut G that
includes ey, and Mp be Mg U chann(G,e,). We first show that m; is minimal in Mp with respect to
— (— is acyclic). Assume the contrary. Let mj be the application message such that my — m;. Then
my € Mg or my € chann(G,e,). In either case, X does not satisfy CO", a contradiction. Now we
prove that m; is deliverable according to the proposed static module. We prove the contrapositive, that
is, if m; is not deliverable then it is not minimal in Mp. From the static module, it can be verified that
either (1) lastrcvd,[u] < m;.M|u,v] for some S, or (2) there exists an application message my in rcv@y,
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destined for m;.dst, such that my.seqno < m;.M|u,v], where mg.src = S,. In the first case, (1), using
Lemma 14 we can infer that there exists a message my such that my.src = 5, and mg.dst = S,. Also,
mg.seqno < m;.M[u,v] and my, € chann(G,e,). Using Lemma 15, we have my — m;. In the second case,
(2), mg € Mpg. Again using Lemma 15, we can conclude that my — m;. In either case m; is not minimal
in Mp, a contradiction. Thus, m; is deliverable according to the static module.

Therefore, using induction, we can infer that the execution X can be generated by the static module.

(B.2) Xsuy C Xcor: Consider an execution X' generated by the static module. We have to prove
that X satisfies CO". Let m; and m; be arbitrary application messages such that m; — m;. If m; and
my; are destined for different MSSs then CO" is trivially satisfied. Hence assume 7i;.dst = mj.dst. Let
mj.src = Sy and m;.dst = mj.dst = S,. Using Lemma 15, we can conclude that m;.seqno < mj;.M[u,v].
From the protocol it can be verified that when m;.dlv occurs then lastrcvd,[u] > mj.M[u,v]. Therefore
lastrcvd,[u] > m;.seqno i.e. my.rcv has already occurred. Thus, we have —(mj.dlv <, m;.rev). If m;
and m; are destined for different MHs then the first expression in the consequent of C'O" trivially holds.
Therefore assume m;.dst = mj.dst = hg. Again from the protocol it can be verified that when m;.dlv
occurs then m; is not in rcv@,. Since m; has been received (as argued before) therefore m;.dlv has already
occured at S, (when m;.dlv occurs). Moreover, the wireless channels are FIFO and reliable. Thus, we
have —(m;.dlv <4 m;.dlv). Hence X satisfies CO".

Thus, Xsyr = Xcor and the theorem holds. ]

Although we do not prove here but if we relax the FIFO assumption then it can be easily verified that
the static module Section 4.1 implements CO" A FO".

5 Comparison and Discussion

The proposed static module implements CO"” A FO" which is weaker than CO’ implemented by AV2
(CO" = CO" ANFO"). As a result, unnecessary delay in our protocol is lower than that imposed in AV2.
In the worst case, message overhead in our protocol is O(n? + ny) but we expect it to be closer to O(n?)
in practice. Our storage overhead in each MSS is O(k x n2), where k is the number of MHs currently in
the cell of the MSS. Even though this overhead is higher than that of AV'2, it can be easily accommodated
by MSSs due to their rich memory resources.

PSR [17] is not suitable for systems where the number of mobile hosts dynamically changes because the
structure of information carried by each message in their algorithm depends on the number of participating
processes. In our protocol, the structure of the information carried by each message in the wired network
does not vary with the number of MHs in the system. So, our protocol is more suitable for dynamic
systems. PSR, however, incurs no unnecessary delay in message delivery.

We first give a scenario (in Figure 10) where YHH does not satisfy liveness property. According to
YHH, message my will be delayed because my.M[1,2] > MH_DELIV,[1]. And since at the time when my
arrives at Sz, there are no messages in transit, my4 is delayed indefinitely. The problem can be corrected
by using sequence numbers. The static module in YHH (corrected) [22] satisfies h;.snd —5 mj.snd =
—(mj.dlv < m;.dlv). Their message overhead in the wired network is O(ng x ny). This overhead is higher
than ours but lower than AV'1. Their unnecessary delay is strictly lower than AV2. When comparing in
terms of unnecessary delay, their delay is lower than ours in the average case which is expected because
of their higher message overhead. However, there are cases where our protocol does not impose delivery
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Figure 10: A mobile computation illustrating the liveness problem in YHH.

delay but their protocol does. One can further reduce the unnecessary delay in YHH using the technique
introduced in this paper. By assigning a matrix of size ns; X nj to each host, the condition implemented
by their static module can be weakened to,

(Imy : midst = my.dst : (y.snd < g.snd) A (mg.snd =y, mj.snd)) = —(mj.dlv <, m;.dlv)

Table 1 summarizes the comparison between our protocol and the previous work.

Algorithm Message overhead Well—'sulted for
dynamic systems
AV2 O(n?) Yes
PSR O(n3) No
YHH O(ns x np) No
| Our Algorithm |  O(n2 + np) ‘ Yes
ny: the number of mobile hosts
ng: the number of mobile support stations

Table 1: Comparison between our algorithm and the previous work.

6 Performance Evaluation

6.1 Simulation Environment

Simulation experiments are conducted for different combinations of message size and communication pat-
terns. We use 512 bytes for the size of small messages, and 8 K — 10K bytes for large messages. Two
communication patterns are used in the simulation: wuniform, and nonuniform. Nonuniform pattern is
induced by having odd numbered hosts generate messages at three times the rate of even numbered hosts.
For each application message m, we define MH-to-MH Delay as the elapsed time between m.snd and m.dlv.
Similarly, MSS-to-MSS Delay is the elapsed time between m.snd and m.dlv.
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Figure 11: Delay under uniform communication pattern and small message size.

The time between generation of successive messages at a mobile host is exponentially distributed with
mean 100 ms. The destination host of each message is a uniformly distributed random variable. The
throughput of a wired channel is assumed to be 100 Mbps, and the propagation delay in a wired channel is
7 ms. These two parameters are also used in [5]. For a wireless channel, the throughput and propagation
delay are respectively assumed to be 20 Mbps and 0.5 ms. This throughput of wireless links is supported in
European High Performance Radio Local Area Network (HiperLAN). In each run, the ratio of the number
of mobile hosts and support stations is varied from 1 to 150.

6.2 Results

We plot the MH-to-MH and MSS-to-MSS delay from our static module against those from AV 2.

Figure 11(a) and Figure 11(b) present MH-to-MH and MSS-to-MSS delays respectively under uniform
communication pattern and small message size. The result shows that our static module can reduce the
MH-to-MH delay by as much as 18.4%, and 20.7% for MSS-to-MSS delay.

Figure 12(a) and Figure 12(b) present MH-to-MH and MSS-to-MSS delays respectively under uniform
communication pattern and large message size. The result shows that our static module can reduce the
MH-to-MH delay by as much as 11.02%, and 18.7% for MSS-to-MSS delay.

Figure 13(a) and Figure 13(b) present MH-to-MH and MSS-to-MSS delays respectively under nonuniform
communication pattern and small message size. The result shows that our static module can reduce the
MH-to-MH delay by as much as 18.9%, and 20.9% for MSS-to-MSS delay.

Figure 14(a) and Figure 14(b) present MH-to-MH and MSS-to-MSS delays respectively under nonuniform
communication pattern and large message size. The result shows that our static module can reduce the
MH-to-MH delay by as much as 12.11%, and 19% for MSS-to-MSS delay.

7 Conclusion

We have presented an efficient protocol for causal message ordering. This protocal maintains the low
message overhead while reducing unnecessary delivery delay imposed by Alagar and Venkatesan’s algorithm
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Figure 14: Delay under nonuniform communication pattern and large message size.

(AV'2). Unlike Prakash’s and Yen’s algorithms, our proposed algorithm is scalable and suitable for dynamic
systems because it is easy to adapt to the dynamic changes in the number of mobile hosts. Unlike AV2,
our handoff module does not require causal ordering among application messages and messages sent as
part of the protocol. This will further reduce the unnecessary delay in our protocol compared to AV2. In
addition to correctness proofs for static and handoff modules, we also present the condition implemented
by our static module. The conditions implemented by AV2 and Yen’s static modules are also provided.
Simulation results show that for small messages, our protocol can significantly reduce the end-to-end delay.
Finally, we provide a case where Yen’s algorithm does not satisfy liveness property, that is, it is possible
that a message is delayed indefinitely.
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