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Abstract many uses in computer networks. Once a spanning tree is

established in a network, it may be used in broadcast of a
Maintaining spanning trees in a distributed fashion iaessage, convergeca@tsynchronizer, and many other
central to many networking applications. In this papedlgorithms. As a result, it is desirable to have an effi-
we propose a self-stabilizing algorithm for maintainingient self-stabilizing algorithm for spanning trees. The
a spanning tree in a distributed fashion for a completefiyst algorithm in this area was given in [DIM89, DIM90]
connected topology. Our algorithm requires a node {hich deals with building BFS tree for a graph. Other
procesgO(1) messages on average in one cycle as cogalgorithms were also proposed for self-stabilizing BFS
pared to previous algorithms which need to process mages which dealt with different system models and as-
sages from every neighbor, resulting@fn) work in a sumptions [AKY91],[AG94], [HC92]. Algorithms have
completely connected topology. Our algorithm also stalso been proposed for other types of trees — such as
bilizes faster than the previous approaches. Our appro@#s tree [CD94] and minimum spanning tree [AS97].
demonstrates a new methodology which uses the idearbkre have been other papers which try to optimize on
core and non-corestates for developing self-stabilizinghe memory used and stabilization time [Joh97], [AK93].
algorithms. The algorithm is also useful in security re- |n this paper, we demonstrate a new technique for con-

lated applications due to its unique design. structing self-stabilizing algorithms by using it for main
_Keywords: Fault Tolerance, Self-Stabilization, Spafaining spanning trees. It is well known that one can de-
ning Tree sign self-stabilizing algorithms witletectionandreset

strategy [AG94]. In this strategy, the nodes periodically
) test if the system is in legal state and on detection of a
1 Introduction fault, carry out the reset strategy. Many self-stabilizing
algorithms havdocal detection i.e., the detection by
Fault tolerance is a major concern in distributed system&ch node Corresponds to evaluation of a boolean pred_
The self-stabilization paradigm, introduced by Dijkstrgeate only on its and its neighbors’ variables. The reset
[D|]74], is an 8|egant and a pOWGrfUl mechanism forfalﬁﬂ:rocedure may be Compncated depending upon the ap-
tolerance. Self-stabilizing systems tolerate transilea plication.
faultsthat can corrupt the state of the system. They en-or method is an extension of the above strategy. We
sure that a system starting from any state would convekggy the set ofglobal states as cross-product obre
to a legal state provided the faults cease to occur.  gtates anchon-corestates. The core states satisfy the
Self-stabilizing algorithms for spanning tree construgroperty: There exists a legal state for eveoye state.
tion have been extensively studied. Spanning trees hg¥ non-corecomponent of a global state is maintained
*supported in part by the NSF Grants ECS-9907213, cch-nly for performance reason. Given tberecomponent,

9988225, Texas Education Board Grant ARP-320, an EngmgerON€ COU"_JI always re(_:rea_te_ tmm)n-corecpmponent. |n_
Foundation Fellowship, and an IBM grant. our algorithm for maintaining a spanning tree, we will




use Neville’s code [Nev53] of the tree as tberecom- chronous rounds model. In the new model, the stabiliza-
ponent ancparentstructure as theaon-corecomponent. tion time of our algorithm isO(d), whered is an up-
Given any Neville’s code, there exists a unique labelgeér bound on the number of times a node appears in the
spanning tree in a completely connected graph. Now &eville’s code. It turns out that is O((logn)/loglogn)
sume that our program suffers from a data fault. Theth very high probability for a randomly chosen code.
data fault could be in the core component or the non-cadrhis gives a very small stabilization time.

component. However, every bit pattern in the core com-As a result of using the idea afore and non-core
ponent results in a valid code. Therefore, in either castates, we also provide the individual nodes with the abil-
we will assume that it is the non-core component that histo systematically change the structure of the tree. This
changed. Upon detecting that the non-core componegriders the algorithm useful in settings not traditionally
does not correspond to the core component, we simplgsociated with self-stabilizing systems. As an example,
reset the non-core component to a value corresponding consider an application where the participating nodes
to the core component. The challenge lies in efficiemuld like to periodically change the structure of the tree
detection and reset of the state when information is dis-a distributed fashion for security purposes. This can
tributed across the network. Similarly, for maintaininge done using our algorithm by changing code value for
a link list of nodes in a network, thiaversion vectoiof some node which would result in a different tree upon
the permutation corresponding to the linked list can Istabilization. Another useful feature of our algorithm is
the core component and then some auxiliary data strticat it allows the root of the tree to change dynamically.
tures can be maintained to make the fault detection ahhis is different from most of the previous approaches
correction efficient. where the root node executes a different algorithm from

Ehg rest of the nodes, resulting in a fixed root. We also
We assume our system to be a completely connecde o X . .

. L X iscuss an application which requires this feature. In
graph withn nodes having ids 1.n. Our algorithm : : :

] , . summary, the main advantages of our algorithm are:

is designed for asynchronous message-passing systems,

and unlike many other self-stabilizing algorithms, it does e Fast stabilization.

not require a central daemon [Dij74] for scheduling de-
cisions. Although some of our assumptions are stronge
_than the previous work, our algorith_m_ has some sighif— e Root node can change dynamically.

icant advantages. All the self-stabilizing algorithms in- . . . _
variably consist of a “loop” that is executed infinitely of- The paper is organized as follows. Section 2 describes
ten. We would refer to the steps performed in one i@ur System model in detail. Section 3 introduces the
eration of the loop to be aycle Previous algorithms Neville'’s code and the algorithms for mapping Neville's
require examining every neighbor's variables during cofode to a spanning tree and vice versa. In Section 4, we
rection, needin@(n) steps in one Cyc|e fora Comp|ete|y3xp|ain the data structures and the constraints on the data
connected topology. On the other hand, in our algorithfifuctures that are used to maintain the spanning tree.

each process execut@l) Steps on average in one CySeCtion 5 eXplainS the approach used for maintaining
cle. each of the constraints and our algorithm for maintaining
. ) ) ) the spanning tree. Section 6 presents some applications

Traditionally, the notion of time used in Selfyypich could use our algorithm in a fault-free scenario.

stabilizing asynchronous algorithms is the number of

asynchronous roundIM91] the algorithm executes.

Informally, an asynchronous round is a sequence of stéps System Model

executed by the processes during the execution of the al-

gorithm such that every process takes at least one stgp assume that the network is a completely connected

in that sequence. Our algorithm does not fit in wefjraph withn processe$aving ids from 1 ton and this

with model of asynchronous rounds due to presencegrph does not change during the operation of the algo-

asynchronous receives. We use a model similar to syithm. The processes in the system would be referred to

chronous model for evaluating the time complexity &sP;...P,. Our algorithm is designed for reliable asyn-

our algorithm. In this model, the stabilization time o€hronous message-passing systems. Ppamtessnain-

the previous algorithms remains the same as that in astains someocal variables The processes are connected

# Allows systematic change in tree structure.



to each other through point to point channels and coifer round) in an executiok is the shortest prefig’ of
municate by passing messages to each other.cbhe E such that each processor executes at least one step in
figuration cof the system is described by the values &'. Let E” be the suffix ofE that followsE’, E = E’'E".
the local variablesfor the processes and tlmeessages The second round dt is the first round of£”, and so
present in the channels. @omputation stegonsists of on. The stabilization time of an algorithm is the max-
internal computation and a single communication opeliaaum number of rounds it executes before the system
tion: a send or receive. Now on, we would use the temaaches a legal state. In this model, a process waiting
stepto refer to a computation step. A stas said to be for a message would receive the message in one round
applicable to a configurationiff there exists a configu- whereas if the message receive is asynchronous, it fails
ration ¢’ such thatt’ can be reached fromby a single to provide any guarantees. In practice, running time of
stepa. An executionE = (cp,a1,C2,82,...) iS an alter- both the algorithms depends upon the message delivery
nating sequence of configurations and steps suchcthaime in a similar way and hence their time complexities
is obtained front;_; by the execution of the stegp_1. A should be comparable. We try to achieve this by putting
fair execution is an execution in which every step thatssbound on the message delivery time. Moreover, all the
applicable infinitely often is executed infinitely often. self-stabilizing algorithms are structured as a loop that i
For measuring the time complexity of our algorithm‘?xeCUted peripdically. We would refe_r to this loop as a
we use a model similar to the synchronous message p&¥§/e In practice, most of the applications would have a
ing system. In every unit of time, each process would e¥fficiently large gap between two cycles to allow all the
ecute exactly one step. Moreover, we assume that a nf¥@Cesses to complete one cycle and hence the cycles can
sage is available to the destination for receive in the stp considered as synchronized with each other. Comput-
next to the one in which the message was sent and thiggkthe time complexity in our model would give a better
messages are delivered to the destination in the samd@#@ Of the actual running time of the algorithm.
der in which they are received. The stabilization time of
the algorithm is then given in terms of the number of ti Sy . .
units required by the algorithm to stabilize. The reagzsl Neville’s Third EnCOdmg
for choosing such a model is explained later in the s

tion e1c6 maintain a spanning tree (in a non-stabilizing man-

) o ner), it is sufficient for each process to maintain pae-

Our algorithm has aasynchronous receiwshich re-  entvariable but this method is not self-stabilizing as a
quires special treatment. An asynchronous receive ig5@t in the parent pointer of some process may result in
receive for which a process does not wait but on arrivg}, invalid structure.
of a relevant message, the process is notified throughko the purpose of this paper, all spanning trees rooted
some interrupt. Asynchronous receives are handled Qyp  constitute the set of legal structures. We repre-
the system in the following way: A process executes tgnt 5 tree through an encoding for labeled trees called
sequential steps (steps other than the asynchronousyig-Neville’s third encodingNev53] (The reader can
ceive) of the algorithm whenever there are no outstanghy a discussion on other labeled tree encodings and
ing messages in its channels. In case there are messgggs properties in [DMO1]). In this paper the term
for asynchronous receives to be handled, the process:Rlsyille’s code” refers to Nevilles third code. Each
ternates between the sequential algorithm and the mggje|eq spanning tree has a one-to-one correspondence
sage receives. We assume that the underlying proviggs, 5 Neville’s code. This code is a sequencenof 2
us with the functionality to selectively receive messaggsimpers from the sl...n}. Let Neville's code of the
based on the type and sender of the message. Thisygs pe denoted byoddi] fori € {1...n— 2}. For com-
quirement stems from our need to distinguish betwegpteness sake, derivation of Neville’s code from a la-

messages intended for asynchronous receives and ofiggy spanning tree is discussed. Given a labeled span-
messages. ning tree withn nodes, the Neville’s code can be obtained
We have chosen a different model for evaluation of oby deletingn — 1 edges in the tree as shown in Figure 1.
strategy as it allows a fair modeling of the asynchronousThe algorithm starts by deleting the least leaf node
receives. In the previous works, tasynchronous rounds(leaf with least label). At iteration a node(i] is deleted
[DIM91] model was used. The first asynchronous rourahd its neighboy][i] is recorded. The edge betwexgln



X[1] = least node with degree 1;
for(i=1;i <nji++)
y[i] = neighbor of X[i];
delete edge between X[i] and Y[i];
if (degredy[i]] == 1)

elsex[i+1] =Vvli; @ @ @

X[i + 1] = least node with degree 1;

Figure 2: A spanning tree with Neville's code

_ ) _ (5,2,7,5,5,7)
Figure 1: Algorithm to compute Neville’s code of a la-

beled tree ] ) o
of each node is known, the procedure given in Figure 3

can be used to compute the code. In the given procedure
andyli] is deleted as well. Then, variabié + 1] is set n_ 1 edges are constructed.

to y[i] if the degree ofy[i] is 1, otherwise it is set to the
least leaf node. The sequenfgi]|1 <i < n-—2}, thus
obtained, is called Neville’s code. Note that even though
there aren — 1 iterations, we only consider— 2 entries.

It can be easily verified that in the iteration- 1, the

j = least node with degree 1,
for(i=1;i <nji++)
parent j] = coddil;

value ofy(i] is alwaysn. Although, the actual Neville’s degre¢j] ——; .
. . Lo degreécoddi]] — —;
code has only— 2 entries, for all the algorithms in this it (degreécoddi]] —— 1) then
paper we consider the— 1 length code which includes _gﬁ coddil: T
n at the end. else 1= '

As an example, consider the labeled tree given in Fig-
ure 2. To compute the Neville’s code for the tree, we start
by deleting the least leaf node, 1. Since the parent of 1 is
5, at this point the code i5). Now 5 is still not a leaf,
so we again choose the least leaf node in the remainjfigure 3: Algorithm to compute labeled tree from
tree, 3. We proceed by deleting 3 and adding its paregéville’s code
2 to the code. Now 2 has become the leaf node in the
tree. So 2 would be deleted and 7 would be added to thepe requireP to maintaincodsdi] as the core data struc-
code. At this point code i65,2,7). Since 7 is not a leaf ture. If efficiency were not an issue, this would be suf-
node, so the least leaf node, 4, would be deleted next giagtent for a self-stabilizing algorithm. Periodically,l al
its parent 5 would be added to the code. Similarly, in thfdes would send theaodeto P,. P, would calculate
next iteration, 6 would be deleted and 5 would be addp@rem{i] for each nod® and send it back? would reset
to the code. Now, 5 becomes a leaf node and it would barem{i] to the value received from,. Even if parenti]
deleted. Its parent 7 would be added to the code. Sing&s corrupted, it would be reset to agree with the span-
we have completed — 1 = 6 iterations of the algorithm, ning tree given by Neville’s code. If the variabteddi]
we stop at this point and the cod®,2,7,5,5,7) is ob- gets changed, it would still result in a valid spanning tree.
tained. The parentpointers would then be reset to agree with the

Given Neville’s code, the labeled spanning tree caxew code.
also be computed easily. We first calculate the degre€lhis method would be wasteful when there are no er-
of each node in the labeled spanning tree as follows: rors. The transmission of code to the root node and the
degreeg) = 1 + number of times appears in the code. transmission of the parent pointer to various nodes will
Note that for the root nodsm, this gives a value which is not change anything. In a large network, it is desirable
one higher than the actual degree of the root but this is te-have local detection of error and only on an error, the
quired for the correctness of the algorithm. Once degreerrection algorithm should be invoked.

| = least degree node with degree 1,




4 Non-Core Data Structures for (ré) vi,j:(zi]=0)A(Zj]=0)A(i < )= (f[i] < f[i])
; This constraint says that the nodes with 0 should
Spannlng Trees finish in increasing order of their labels.

Our strategy would be to introduce new data structures
in the system so that by imposing a set of constraints onThese constraints are strong enough to characterize a
these data structures, we can efficiently detect and corig@@nning tree, i.e., given a set of data structwede
data faults. For this purpose, the following data struparent f and z which satisfy these constraints, the
tures are added: parent structure results in a valid spanning tree regard-
less of the definitions of these data structures. From now
e parent The variableparenti] gives the parent of g when we consider the data structucesle parent
nodeR in the spanning tree. f andz, we would just think of them as obeying a cer-
tain set of constraints and not necessarily corresponding

e f: The variablef[i] gives us the iteration in Whicht the original definitions that iven for th
the nodeR is deleted in the algorithm for obtaining0 € onginal aeninitions that were given tor them.

Neville’s code of a tree. Thereforepd€f]i]] gives ~We would be dealing with three sets of con-
us theparent]i]. SinceP, is not deleted in firsh—1 Straints — ® = {RL,R2,R3(i),R4,R5} and C =
is evident that any algorithm which satisfies the con-
¢ z The variablez]i] gives the largest value gfsuch straint setC would also satisfy the constraint st and
thatcod€j] = i. If there is no suclj, thenZ[i] = 0. similarly, any algorithm which satisfies the constraint set

Based th i f Neville’ de. it bC would also satisfy the constraint st The trees re-
ased on he properties of Nevilie's code, 1t can s%lting from obeying these constraint sets possess differ-
verified that the variables —eode parent f andz —

tisfv the followi traints: ent guarantees. The theorems that follow provide a char-
satisfy the following constraints: acterization of those guarantees.
(R1) Vi : coddf]i]] = parenti]

Follows from the property of thé relating it to the

parent. Theorem 1 If code, parent, f and z satisfy constraint

setR then parent forms a valid spanning tree rooted at
(R2) (Vi:1<i<n—-2=-1<coddi] <n) Pn.

A(codgn—1] = n) A (codén] = 0)

This constraint is the definition of code extended

all the nodes. tl9roof: Let the directed graph formed by tharentre-

lation satisfying constraint® be Tparent. The edges of
(R3) ()Vi:1<i<n=1<flij<n-1 Tparent are directed from the child to the parent.
This constraint puts restriction on the range of vaWe first show thailparent is acyclic. Leti = parentj] in
ues that a node other than the root is allowed to takearent for some nodesandj. Then,
. . codef[j]] =i (Using (R1))
(ii) f is a permutation ofil...n] = (Zi] £0)A(f[j] < Zi]) (Using (R4))
The definition off along with the topology of the _, f[j] < ]i] (Using (R5) forj)
algorithm in Figure 1 imply that the values are ppplying this argument repeatedly shows that ancestor of
distinct and range from 1.n. a node has highef value than thef value for the node
(R4) Vj : 2[j] = max{i|codi] = j} U{0} itself. This implies that no node is ancestor of itself and
This is the definition of henceTparentis acyclic.
We now show that every node excépthas outdegree
(R5) Vi:Zi] £0= (f]i| =17]i]+1) 1 andP, has outdegree 0. Consider a nadgén. Then,
If a nodei, which at the starting of the algorithm f[i] #n (Using (R3)(i))
was not a leaf node, becomes a leaf node during the 1 < coddf[i]] <n (Using (R2))
iteration j of the algorithm, then it is deleted in the = 1 < parenfi]<n  (Using (R1))
iteration j + 1. This constraint enforces this condiThis implies that irlparent, €very node excef, has out-
tion. degree 1. FoP,, consider the following:



codédn—1]=nAcodgn] =0
=2zn=n-1

= f[n)=2n+1

= f[nj=n

= coddgf[n]]=0

= parenfn] =0

(Using (R2))
(Using (R4))
(Using (R5))

(Using (R2))
(Using (R1))

Now, Tparent andTeoge are isomorphidff
Vi, j: (i = parentj]) = M(i) = parent[M(j)]

We prove the above condition by showing that] :
(i = parenfj]) = M(i) =i followed by proving that
Vi,j : (i = parentj]) = i = parent[M(j)]. The data

Therefore,P, does not have a parent. Since all othéfructuresparent, f’ andz obey the constraint sef.
nodes have a parent within the range.h and there are Consider a node = parentj] for some node$ and j.
no cycles inTparent, Tparent fOrms a spanning tree rootedT_heny

atP,.
[ ]

The above theorem just ensures that plagentforms

a spanning tree. It does not enforce any relationship

tween the structure of the tree formed parentand tree

corresponding teaode The next theorem establishes this ™ .

relationship.

Theorem 2 If code, parent, f and z satisfy constraints

i = parentj]

=7[i]#0 (Using (R1) and (R4))
= f'lil=27i]+1 (Using (R5) forf’)

= f[i] = f'[i] (Using (R5) forf)

= M(i) =i (Definition of M) — (1)

lB\éqdei also satisfies the following property:

= coddfj]
= i = codd?'[M(})]

(Using (R1) forf)

(Definition of M)
=i=parent[M(j)] (Using (R1) forf’) — (2)

Conditions (1) and (2) together prove the required iso-

éporphism condition and hence the two tré@grent and

C, then parent forms a rooted spanning tree isomorphleode &€ isomorphic.

to the tree generated by code.

Proof: Sincecode parent, f andz satisfy the constraint

setC, they also satisfy the constraint st Hence, by
Theorem 1 parentforms a spanning tree rootedR{
Consider the following two trees:

(1) Tparent The tree formed byarentwhich satisfieg”
and

(2) Teoge The tree generated usirapdeby the algo-
rithm given in Figure 3.

We define data structurgsarent, ' andZ for Teoge
Variable parent]i] represents the parent of noden
Teode f'[i] gives the iteration in which the nodeis

In the next theorem, we show that by maintaining the
constraint sef, it is possible to maintain a tree which is
exactly same as the spanning tree generatarbby

Theorem 3 If code, parent, f and z satisfy constraints
setE, then the rooted spanning tree formed by parent is
same as the tree generated by code.

Proof: Since C < E, therefore the two treeSparent

and Teoqe @s defined in Theorem 2 are isomorphic. In
fact, we showed an even stronger property - The inter-
nal nodes of the treyarent are mapped to themselves in
treeTeode SO for proving that the tre€Byarent and Teode

are the same, we just need to show that the leaf nodes

assigned its parent during the execution of algorithim Tparent map to themselves ificoge O in other words
for building Teoge from code and Z|[i] gives the last Vi:Z[i] =0= M(i) =i. Let L = [n]/{i : Z[i] # 0}. Since
occurrence of in code Note that since the constraini is a bijection and/i : Z]i] £ 0=-M(i) =i, soM is a bi-
(R4) is the same as definition faf, Vi : Z[i] = Z[i]. jection onL as well. When constructing the Neville’s

We would be using instead ofZ for the rest of the
proof. Bothf and f’ are permutations on.1.n. This
implies thatVi(3j : f[i] = f'[j]) and moreover, thig

is unique.
function,M : [n] — [n] as:

M(i) = j such thatf[i] = f'[]]

code for a tree, we always choose tleastleaf node
whenever we need to pick a leaf node. This ensures that
Vi, j (il =0)A (2] =0) A (i < ) = (H]i] < F[j]),

This allows us to define an isomorphismhich is the condition equivalent to (R6) with respect to

f’ instead off. This implies that the order of finishing for
the leaves in the two trees is the same which combined
with the condition ofM being a bijection ornz, proves

the required condition.



i 1/2|3]4|5]|6]7 coddj]. The constraint (R2) is also trivial to check and
parent| 2 | 7[5|5|7[5]|0 correct locally.
code |5|2|7|5|5|7]|0
f 2|/3(1/4|6|5|7 ;
2 nstraint (R
z 0[{2|0|0|5|0|6 ° Constraint (R3)

Constraint (R3)(i) is a local constraint which can be
checked easily. Violation of this constraint can be fixed
Table 1: Example of structurgsarent code f andz py gimply settingf to a random number between 1 and
satisfying the constraints (R1)-(RS) n— 1. Constraint (R3)(ii) require$ to be a permutation
on 1...n. This can, in turn, be modeled in terms of the
following constraints:

(Cl) Vi:1< f[i]<n
(C2) Vi, j: f[i] # f[j]

The violation of (C1) is easy to detect. Every node
@ @ @ i checks the valué[i] periodically. If it is not between
1 andn, then a fault has occurred. The constraint (C2)
is more interesting. At first glance it seems counter-
Figure 4: Tree corresponding fmrentgiven in table 1 intuitive that we can detect violation of (C2) i@(1)
messages. However, by adding auxiliary variables, the
above task can indeed be accomplished. We maintain
g[i] at each procesB such that, in a legal global state
The above theorem suggests that there is a possibilifif = j = g[j] =i. Thus,g represents the inverse of the
that the tree formed bparentis not the same as the trearray f. Note that the inverse of a function exists iff it
generated by theode For example, consider the valudés one-one and onto which is true in this case. If each
of the variables given in Table 1. It can be easily verifiggrocess?, maintainsf[i] andg|i], then it is sufficient for
that these values satisfy the constraint SetThe tree a node to check periodically the following constraints:
corresponding to theodeis the one we considered ear- i .
lier in Figure 2. The tree generated parentis shown (P1) Vi:1<fij <n
?n Figure 4 The two trees are not the same but they&;g) vi:l<glij<n
isomorphic.
(D3) g[fli]] =i

5 Maintaining Constraints Itis easy to show that (C2) is implied by (D1)-(D3). If
for some distinct andj, f[i] is equal tof[j], theng| f[i]]

Each node maintainsparenti], cod€i|, f[i] andZ[i] and andg|f[j]] are also equal. This means thagtf[i]] = i)

cooperate to ensure that the required constraints are sati® (g[f[j]] = j) cannot be true simultaneously. (D3)

fied, resulting in a valid rooted spanning tree. We preses#n be checked bl by sending a message Ry pe-

a strategy for efficient detection and correction of theéodically, promptingPy; to check whetheg|f[i]] =i is

faults for each of the constraints (R1)-(R5). We will cortrue. Note that by introducing additional variables we

sider the constraint (R6) later in the paper. have also introduced additional sources of data faults. It
may happen that requirements (C1)-(C2) are met, butdue

5.1 Constraints (R1) and (R2) t_o faults ing, constraints (D1)-(D3) are not met. We be-
lieve that the advantage of local detection of a fault out-

The constraint (R1) is trivial to check locally. Each nodeeighs this disadvantage.

i inquires nodej = f[i] for coddj]. If this value does The above scheme has an additional attractive prop-

not matchparent|i], then the constrainiR1) is violated. erty: If we assume that there is a single faultfiror g,

On violation, (R1) can be ensured by settipgrenti] to then it can also be automatically corrected as shown next.



The functiong being inverse off also implies thaff is For checking (E1), nodieprompts the nodeli] to verify

inverse ofg. This implies that the following constraintthatcod€z]i]] =i. If the check fails, thed[i] can be set to
(D4) is also met for a fault-free data structure: 0, which may not be the correct value @i]. If Z[i] is set

, ) incorrectly to 0, then constraint (E2) would also be vio-
(D4) fgli)] =i lated. As a result, while checking for (E2Ji] would be

set appropriately. For checking (E2), every ngdsends
a message to nodmddj] to verify thatz[codgj]] > j.

R If (E2) is found to be violated upon receiving a message
var f o : . from nodej, thenzjcoddj]] is set toj.
,O: array[1..n] of integer;
Periodically do 5.4 Constraint (R5)
it (gl [] Tfi[)']/]\ f[:q[f (1)) # £l The constraint (R5)
glf[i]] =i
if (f[gfi]] f#{ i{)ﬁ [Flglil]] # di] Vi Zi] £ 0= (f[i] = Zi] + 1)
glil] =i

can be checked locally and on detection of a fati]
can be set tafi] + 1.

Figure 5: Implementation of Permutation with local cor-
rection of 1 fault 5.5 Complete Algorithm

Now assume that a nodediscovers thag[f[i]] #i. Depending upon the set of constrain®® or C) that a
This means that eithef[i] or g[f[i]] got corrupted. To process obeys, we have two versions of the algorithm.
detect which of the case has happened, it is sufficientTtbey differ in the guarantees about the resulting tree and
check whether the time complexity of the algorithm.

Flglfi]]] = fi]
If the above equation does not hold, thgii[i]] is cor- °-2-1 Maintaining &

rupted and is set back o If the above equation holds,zg we proved in Theorem 1, the set of constraitss
but g[f[i]] # i then f[i] is corrupted and it needs to beyyfficient to maintain a spanning tree. The complete al-
reset. What value shoulf{i] be set to? We need to selqrithm for process to maintain the constraint s&t is
it to k such thaiglk] equalsi. This correction would be given in the Figure 7. We will refer to this algorithm
done by nodé because nodewill find that f[g[k]] # k. 35SSR In the algorithm, instead of denoting variables
Hence, by the similar reasoning as above nlodall de-  |ike coddi), we have use®.codeto emphasize that the
duce thatf [g[k]] is corrupted and will reset it te. The yariaples are local to the processes and are not shared.
program forP is shown in Figure 5. For simplicity, weThe algorithm checks the constraints one by one and
let processR simply read and write variables of othegy, the violation of a constraint, it takes corrective ac-
processes. In practice, this may be translated into mgsn  For checking constraints which involve obtaining
sages. Note that in our scheme a permutation may Wik value of another process’s variable, we have used a
detectably change into another permutation (when thejgmitive get This involves the sender sending a request
are multiple faults) but iff is not a valid permutation, thefor the required variable and the receiver then replying
violation will be detected. with the appropriate value. Sogetoperation would in-
volve two messages being exchanged. Most of the al-

5.3 Constraint (R4) gorithm follows directly from the checks required for a

) ) ) . constraint. The interesting thing to note is the presence of
This constraint can be modeled in terms of the following, asynchronous receive for the messages of type “Check

constraints:
(E1) Vi: (Z]i] # 0) = (coddZi]] =)
(E2) Vi, | : (codéj] =i) = (Z]i] = j)

Z". These asynchronous receives are crucial for the effi-
ciency of the algorithm and they require special attention
during the analysis of the algorithm in the following sec-
tion.



R2 R4 R5 R1 Lemma 2 The algorithm SSR stabilizes “code” and

/ (R2) for all the processes by(0) rounds.

Proof: From the algorithm, it is clear that tlewdevari-
able is only changed while checking the constraint (R2)
and after one such changmdealways satisfies the con-
straint (R2). So after one execution of the check for (R2),
thecodevariable is never changed. From Lemma 1, each
process executes all the actions in one cycl@(ih) time

R3()

Figure 6: Stabilization order of the constraints

5.5.2 Analysis ofSSR units and thus theodevariable would be set correctly in
] ) ) 0O(1) time units. HenceSSRstabilizescodeand (R2) in
In this section, we give the proof of correctness of tr@(l) time units.
algorithm and its stabilization time in terms of the num-
ber of time units for stabilization. The following lemma ]
is based on the structure of the algoritl88Rgiven in
Figure 7. Lemma 3 The algorithm SSR stabilizes z and (R4) in

O(d) time units, where d is the upper bound on the num-

Lemma 1 Each process performs all the actions in oner of times a node appears in the code.

cycle in ever time units. . . .
y y Q) Proof: Consider the execution of the algorithm once

Proof: In each iteration of the loop there are 2 “get” op_(Rz) has stabilized.  Constraint (R4) can be violated

erations (one of which may not be executed by all t _tWO_ vzalz/s : (13[3ik:£z_[i] :Elk') AIE(_:Odgk].ii.) Olr\l(?
processes) and 1 “send” operation (which again may (Zli]=k)A(codek] =i)A(3] > k: codgj] =i). Note

t . .
be performed by all the processes), along with the as;} at in this case, the check is dependent only upon the
chronous receive operations. As discussed earlier, e

gﬁje ofcode Consider the first check for (R4) given in
“get” operation consists of 2 communication steps. Thﬁ e algorithm. If the violation is of the first kind, thé®
results in a total of 5 communication steps. Since t

ould be able to check thabdgz]i]] # i and would reset
asynchronous receives may alternate with these 5 st

= 0. From Lemma 1, every process would be able to
we are guaranteed that within 10 steps every process rform this step ifD(1) time units after stabilization of

complete one iteration of the main loop. Hence, the r -.2)’ S.ti" requiringO(]:) time un.if[s in all. We say that at
sult follows. this pomF (R4) hapartially stab|llzgd _
Let z[i] be the correct value dfji] according to con-
m Straint (R4). After partial stabilization of (R4), we are
guaranteed thati : z[i] < z[i]. Now consider the mes-
For the purpose of the proof we define the followingages of the type “Check z” sent by the processes. A
terms: processP; sends a message “Check z” to noieiff
Definition: A variablev is said to bestabilizedby an codédj] =i. Therefore, the number of distinct processes
algorithm if the value ofv does not change after somesending a message of type “Check z” to a prod@ss
finite number of rounds of the algorithm irrespective dfiounded byd. By Lemma 1, every process completes all
the initial state of the algorithm. actions in one cycle withikk time units, for some con-
Definition: A constraintR is said to bestabilizedby an stantk. Therefore R would be able to receive messages
algorithm ifRnever becomes false after some finite nunfrom all processes withikd time units after (R4) has par-
ber of rounds of the algorithm irrespective of the initidially stabilized. Ifz[i] = 0, then no process would send
state of the algorithm a message of type “Check z” ® as the code has stabi-
The proof of correctness is given by the lemmas and tlised and no nod®; hascoddj] =i. So,Z]i] would be
theorems that follow. The lemmas should be considersek correctly to 0. I[i] # 0, then by the algorithng is
in the order given as a lemma assumes the results of sie¢ to the highest node to send the “Check z” message to
previous lemmas. The order of the lemmas corresporels This is indeed the correct value gf] and this value
to the order in which we stabilize the constraints. Thigould not change in future. Henc8SRstabilizesz and
order is also given in Figure 6 (R4) inO(d) time units.



m Theorem 5 The algorithm SSR stabilizes in(@ time,
where d is the upper bound on the number of times a node
Lemma 4 The algorithm SSR stabilizes the variable &ppears in the code.
and also the constraints (R5) and (R3)(i) withifd)
time units. Proof: By the previous lemmas, all the constraints in
constraint set® are satisfied withinO(d) time units.
Proof: Consider the execution of the algorithm oncEence the algorithr8SRstabilizes inO(d) time units.
(R4) has stabilized. If constraint (R3)(i) is violated for
some process, it would be rectified through the local u
check given for it in the algorithm. But this may not
necessarily ensure that the value fofvould be stabi-
lized asf can be changed by the check on (R5). Ho
ever, the check for (R5) sets the valuefdif to z[i] + 1 if
Z[i] > 0. Since we know thati] has stabilized and will
not change, so the check for (R5) would always set it
the same value. From the definitionoénd the fact that

codgn—1] =n, it follows thatvi # n: Z[i] <n—2. This Thegrem 6 If n balls are thrown randomly in n bins,
in turn implies that by changingto follow the constraint {han with the probability at least— £, no bin has more
n!

(R5)(ii), we will not violate the constraint (R3)(i). So forthan elogn il
both the cases, whefi] = 0 andzi] £ 0, after one cycle loglogn :

f stabilizes to a value which satisfies the constraints (Rﬁ)r a random'y chosen Code' this theorem provides an
and (R3)(i). Since one cycle requir®$1) time units, the ypper bound fod and hence an upper bound on the sta-
constraints (R5) and (R3)(i) would also stabilize withigjlization time with high probability. This results in a
O(d) time. very good stabilization time for our algorithm.

We further note that the value dfwould not be very
arge for a randomly chosen code. The problem of choos-
Ing the firstn — 2 numbers otodeat random can be con-
sidered as the problem of randomly assigning?2 balls

Eg n bins. The following theorem is a standard result in
probability theory [MR95][Theorem 3.1]:

5.5.3 Maintaining C

Lemma 5 The algorithm SSR stabilizes (R1) withifyaintainingc requires ensuring3(ii) in addition toR.
O(d) time units. We introduce the variablg and enforce the constraints

Proof: Consider th .  the alaorith & (D1)-(D3) listed in section 5.2. As discussed in the Sec-
rool: Consider the execution of the algorithm on € tion 5.2, one error in the data structuregindg can be

and code have stabilized. Then from the algorithm i : ; : -
. o orrected using the algorithm given in Figure 5. Includ-
is clear that the check for (R1) would stabilize throug%%g this module in the algorithi8SRyives us arO(1) al-

the_ check fqr (Rl)_|n one cycle. _Smce, one cycle r_%'orithm (Figure 8) which is capable of correcting many
quwes_o_(l) t|me_un|ts, the constraint (R1) would Stablérrors in the data structures. Unfortunately, this algo-
lize within O(d) time. rithm is not able to handle more than one correlated er-
rors in f andg. When an error cannot be corrected by
the O(1) correction algorithm, the second check for the
nsistency off andg fails for some node. This node
nds out a message to every other node informing them
Start the main correction algorithm.
Upon starting the main correction algorithm, every
node sends out itsvalue to nodé>,. NodeP, collects re-

Proof: For proving the theorem, it is sufficient to showpPONSes from every node and then establishes a mapping
that the data structures in the algorithm would satisfy tRgtween the nodes which haze= 0 and thef values

constraint sef_ after a finite number of steps and thighat have not been allocated. By allocatedalues, we
follows from the previous lemmas. mean thef values which can be obtained as- 1, for

somez # 0. The nodes which have# 0 are assigned
m f =1z+1. These results are communicated back to the

Theorem 4 The algorithm SSR converges to a spannir?
tree in a finite number of moves irrespective of the initiq
state of the system and the order in which the procesé%
execute the steps.
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nodes. In this case, the noégwould have to dd(n)
work. After finishing theO(n) correction algorithm, the

nodes switch back to the normal correction algorithm|.B::
We will refer to this complete algorithm &SC var

Clearly, there is a trade-off involved in choosing be-
tween the two algorithms. The algorithm for maintaining

code parent, f,z integer;

R_is more efficient but gives weaker guarantees over the Periodically do

resulting spanning tree than the algorithm for maintaint
ing C.

5.6 Changing the Root Node

The algorithmsSSRand SSCcan be easily modified to
allow the root node to change dynamically i.e. any node
(not necessarilyn) can become the root of the tree and
the root can be changed during the operation of the algo-
rithm. This can be achieved by changing the constraints
(R2) and (R3)(i) in the following way:

(R2) (Vi:1<i<n—-1=1<codgi]<n)

A(codgn] = 0)

(R3)()Vi:i#£codédn—1]= 1< f[ij<n
The modified constraints are also easy to check and
maintain. The algorithms which allow dynamic root can
then be obtained by changing the algorith®SRand
SSCto accommodate checking for these new constraints
instead of the old ones. In the next section we present an
application which utilizes this feature.

6 Applications

The algorithm for maintaining constraint s& ensures
that if the code is changed, then the spanning tree would
stabilize to reflect that change. This property of the alt
gorithm could be used by an application to purposefully
change the spanning tree from time to time. As discussed
earlier, every code of length— 1 represents a unique

tree. If we were maintaining a tree isomorphic to the
code tree (by maintaining the set of constraifi}sthen

a node wishing to change the tree could have changed jts
local code value. It can be proved that this would hav
resulted in the spanning tree being changed. But if w|
are just maintaining the set of constraifts then a code

D

D

/I Check (R2)
if ((i =n—1) A (code## n))
code=n
if ((i=n) A (code+#0))
code=0
if ((i #n) A ((code<0)V (code> n)))
code= random number between 1 and n

/I Check (R3)(i)
it (i £n) A((F <OV (f >n)))

f = random number between land n—1
/I First check for (R4)
if (£ 0)

get codefrom node P,

if P,.code#£ i

z=0

if (code# 0)

send (“Check Z', i) to node code

/I Check (R5)
if ((z£O)A(f#£2z+1))
f=2z+1
if ((z=0)A(f <2)
f = random number between 1and n—1

Il Check (R1)

get codefrom node Pt

if (Pr.code# pareny)
parent= P;.code

/I Second check for (R4)
Upon receiving (“Check ', })
if (z< J)
z=]j

can represent multiple trees and similarly a single tre

can be represented by a multiple codes. So changing the

code value at a node may not always result in a charfgigure 7: AlgorithmSSRfor maintaining the constraint
in the tree. To get around this problem, whenever a nosiet X

i wishes to change the tree, it would change the value of

codégfl[i]]. This changeparenti] = codégf|[i]] and hence

11



the spanning tree changes. Note that this change may re-
sult in some more changes in the spanning tree as the
parent of some other nodes may also get modified. Since

B
var
code parent, f,z integer;

Periodically do
/I Check (R2), (R3)(i), (R4) - Same as in Figure 7

/I Check (R5)

if (z£O)A(f #£2z+1))
f=2z+1

/I Check (R3)(ii)
get g1 = Ps.gfrom P and fy = Py.f from Py
get f from Py, and g from P,
(g1 # 1) A (Pyy.f # )

send (“Update @",i) to node Ps
if((f1 #1) A (P9 # 9))

send (“Update f",i) to node Py

/I Second Check fand g
get g1 = Pr.g from Ps and fy = Py.f from Py
it (gL #1) Vv (f1#1))

send (“Start Main”) to all nodes
/I Check (R1) - Same as in Figure 7

/I Asynchronous message handling
Upon receiving (“Check z', )
if (z< J)
z=|
Upon receiving (“Update @, j)
g=]
Upon receiving (“Update f”,])
f=]
Upon receiving (“Start Main”)
start main correction algorithm

Figure 8: AlgorithmSSCfor maintaining the constraint
setC
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the algorithm for maintaining the s& of constraints is
efficient, this results in an efficient way of changing the
tree. There could be many reasons for changing the span-
ning tree and we present three applications which require
such a property.

e Security: Consider a scenario in which a set of

nodes are contacting each other by using a tree for
routing messages. For the system’s security, this
tree must not be revealed to the adversary. In case
a security breach is suspected or after a regular in-
terval of time, the tree must be changed and any
node should be able to initiate this change without
requiring active participation from other nodes. Our
algorithm provides one such way. When a nade
wishes to change the structure of the tree, it could
just change the value aodéf[i]] and initiate the
correction algorithm. The ability to change the root
node is critical here;otherwise, the adversary could
always attack the fixed root node.

Reliability : Consider a scenario in which we wish
to relay messages through a spanning tree. Among
the set of participating nodes, some nodes may be
unreliable. It is advantageous to have the unreliable
nodes in the leaf position as it would ensure that
upon the failure of an unreliable node, the commu-
nication among other nodes is not disrupted. Such
a constraint could be easily maintained by incorpo-
rating an additional check in algorithm in Figure 7.
This check ensures thabdetakes values from the
set of reliable nodes. Since this check would be a lo-
cal check, the running time of the algorithm and the
messages exchanged during the algorithm remains
same.

Load Balancing: Consider a scenario where a set
of nodes are communicating through a spanning tree
for an application like convergecast. In this case, a
node has to do work proportional to size of its sub-
tree which consumes resources like power, CPU etc.
Since we are dealing with a completely connected
topology, all the nodes are equally well connected
and it is possible for a node to take up the job of an-
other node. When a node wishes to reduce its load,
it could its ask one of its child to change the value

of coddf|c]] and hence change its load.



7 Core and Non-core data struc- a complete graph. Our algorithm can also be modified
; ; for applications which require the parent of a node to be
tures for other appllcatlons its 1-hop neighbor. We just add a new constraint which
ar_equires a node to check if the parent assigned to itis a 1-
hop neighbor. By adding this, the detection still remains
O(1) but correction becomes inefficient.

In this section, we briefly mention two simple applic
tions for utilizing the idea ofcore and non-coredata
structures.

7.1 Maintaining Permutation 8.2 Exact Neville’s Code Tree

Given a set of nodes, we want to maintain the permuI_n the theorem 3, we proved that by maintaining the con-
tation of numbers from 1 to. We discussed a way forstraint setE, we can maintain the exact Neville’s code

checking the correctness of a permutation by using fige- Constraint (R6) can be checked by maintaining a

functionsf andg in section 5.2. Here we use the congircular doubly linked list with the nodes havia] = 0

cept ofinversion vectorlong with the above functions®S ItS elements. Let the set of all such elements or-
to maintain a permutation. The inversion vector of a pe‘itered according to the process numbers be denotéd by
mutation (ay, @, ..., an) can be defined ay,to, .. ,tn) Each element of the link list would havenaxtand prev

wherety = |j|a; > &, j < k|. The important property of pointer pointing to the next and the previous element, re-

an inversion vector is that any sequencenafiumbers spectively, in the list. The next element in the list would
ti,ty, ...ty satisfying the propertyi : t; < i corresponds be the node which occurs next to the nade L. Simi-

to a valid permutation. This opens the avenue for usitfj!¥: the previous node would be the one to occur before
the inversion vector as theore data structure for main- N0d€l in L. The only exceptions to the above rules are the

taining a permutation. A very simple way of using inpbrevpointer of first node in the list and thuax_tpointer
version vector is to combine it with andg. A coor- of the last node. To prevent a fragmented list to go un-

dinator node keeps an inversion vector correspondingdtected, we use the procégsas the sentinel node. So
the current permutation. The permutation itself is didl€ Prevpointer of the first node in the list and tinext
tributed acros: nodes with each node maintaining thB0!Nter of last node points #,. Similarly, P also main-
variablesf andg. The permutation is checked for errord2inS itsprevandnextpointers. Now for checking (R6),
through consistency checks érandg and in case a fault We can Just check for the cor_15|stency Qf frevandnext

is detected, the coordinator regenerates the permutaff@iters along with (Re) for just the neighbors. Note that
corresponding to its current inversion vector. Note thit this way we can detect faults in a link list in general
the inversion vector of the coordinator might have al§hich can be used for other applications as well.
changed due to data faults. This solution is not very ef-

ficient and it leaves open a research problem of findin@8a3 Maintain a Trivial Spanning Tree

true distributed solution of the problem. . o )
It is very reasonable for a reader to be thinking that if

all the spanning trees constitute legal state, then why

8 Discussion not maintain a trivial spanning tree like one in which
all nodesP; ...P,_1 haveP, as parent ? The answer to
8.1 General Graphs this question again lies in the kind of application we are

_ looking at. The applications considered in the section
So far we had assumed the underlying graph to be cogrequired an application to keep changing its spanning

pletely connected. Let us now consider general grapfige and in that case such an algorithm would be suitable.
Due to the nature of modern computer networks, the ma-

jor overhead involved in communication using message

passing is incurred at the OS level. So even if a procds Conclusion and Future Work

sends a message to another process that is more than one

hop away, the message overhead can be assumed to bimitkis paper we presented a new technique for main-
curred completely at the sender and receiver. In this wiajning spanning trees using labeled tree encoding. Our
any network topology with routing can be considered asethod require®(1) messages per node on average and
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also provides a method for changing the root of the trper9s]
dynamically. We also provide examples of using the self-
stabilizing algorithm for some applications not relategeys3;
to fault tolerance. This work also demonstrates the use

of the concept otoreandnon-corestates for designing
self-stabilizing algorithms. It would be interesting to-ex

tend this work for general topology. Another research
direction could be to develop similar algorithm without
requiring nodes to be labeled from 1o
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