
Self-Stabilizing Spanning Tree Algorithm With a New Design
Methodology

Vijay K. Garg∗

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712-1084, USA
garg@ece.utexas.edu

Anurag Agarwal
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-0233, USA
anurag@cs.utexas.edu

Abstract

Maintaining spanning trees in a distributed fashion is
central to many networking applications. In this paper,
we propose a self-stabilizing algorithm for maintaining
a spanning tree in a distributed fashion for a completely
connected topology. Our algorithm requires a node to
processO(1) messages on average in one cycle as com-
pared to previous algorithms which need to process mes-
sages from every neighbor, resulting inO(n) work in a
completely connected topology. Our algorithm also sta-
bilizes faster than the previous approaches. Our approach
demonstrates a new methodology which uses the idea of
core andnon-corestates for developing self-stabilizing
algorithms. The algorithm is also useful in security re-
lated applications due to its unique design.

Keywords: Fault Tolerance, Self-Stabilization, Span-
ning Tree

1 Introduction

Fault tolerance is a major concern in distributed systems.
The self-stabilization paradigm, introduced by Dijkstra
[Dij74], is an elegant and a powerful mechanism for fault
tolerance. Self-stabilizing systems tolerate transientdata
faults that can corrupt the state of the system. They en-
sure that a system starting from any state would converge
to a legal state provided the faults cease to occur.

Self-stabilizing algorithms for spanning tree construc-
tion have been extensively studied. Spanning trees have

∗supported in part by the NSF Grants ECS-9907213, CCR-
9988225, Texas Education Board Grant ARP-320, an Engineering
Foundation Fellowship, and an IBM grant.

many uses in computer networks. Once a spanning tree is
established in a network, it may be used in broadcast of a
message, convergecast,β synchronizer, and many other
algorithms. As a result, it is desirable to have an effi-
cient self-stabilizing algorithm for spanning trees. The
first algorithm in this area was given in [DIM89, DIM90]
which deals with building BFS tree for a graph. Other
algorithms were also proposed for self-stabilizing BFS
trees which dealt with different system models and as-
sumptions [AKY91],[AG94], [HC92]. Algorithms have
also been proposed for other types of trees — such as
DFS tree [CD94] and minimum spanning tree [AS97].
There have been other papers which try to optimize on
the memory used and stabilization time [Joh97], [AK93].

In this paper, we demonstrate a new technique for con-
structing self-stabilizing algorithms by using it for main-
taining spanning trees. It is well known that one can de-
sign self-stabilizing algorithms withdetectionandreset
strategy [AG94]. In this strategy, the nodes periodically
test if the system is in legal state and on detection of a
fault, carry out the reset strategy. Many self-stabilizing
algorithms havelocal detection, i.e., the detection by
each node corresponds to evaluation of a boolean pred-
icate only on its and its neighbors’ variables. The reset
procedure may be complicated depending upon the ap-
plication.

Our method is an extension of the above strategy. We
view the set ofglobal states as cross-product ofcore
states andnon-corestates. The core states satisfy the
property: There exists a legal state for everycore state.
Thenon-corecomponent of a global state is maintained
only for performance reason. Given thecorecomponent,
one could always recreate thenon-corecomponent. In
our algorithm for maintaining a spanning tree, we will

1

use Neville’s code [Nev53] of the tree as thecorecom-
ponent andparentstructure as thenon-corecomponent.
Given any Neville’s code, there exists a unique labeled
spanning tree in a completely connected graph. Now as-
sume that our program suffers from a data fault. The
data fault could be in the core component or the non-core
component. However, every bit pattern in the core com-
ponent results in a valid code. Therefore, in either case,
we will assume that it is the non-core component that has
changed. Upon detecting that the non-core component
does not correspond to the core component, we simply
reset the non-core component to a value corresponding
to the core component. The challenge lies in efficient
detection and reset of the state when information is dis-
tributed across the network. Similarly, for maintaining
a link list of nodes in a network, theinversion vectorof
the permutation corresponding to the linked list can be
the core component and then some auxiliary data struc-
tures can be maintained to make the fault detection and
correction efficient.

We assume our system to be a completely connected
graph with n nodes having ids 1. . .n. Our algorithm
is designed for asynchronous message-passing systems,
and unlike many other self-stabilizing algorithms, it does
not require a central daemon [Dij74] for scheduling de-
cisions. Although some of our assumptions are stronger
than the previous work, our algorithm has some signif-
icant advantages. All the self-stabilizing algorithms in-
variably consist of a “loop” that is executed infinitely of-
ten. We would refer to the steps performed in one it-
eration of the loop to be acycle. Previous algorithms
require examining every neighbor’s variables during cor-
rection, needingO(n) steps in one cycle for a completely
connected topology. On the other hand, in our algorithm
each process executesO(1) steps on average in one cy-
cle.

Traditionally, the notion of time used in self-
stabilizing asynchronous algorithms is the number of
asynchronous rounds[DIM91] the algorithm executes.
Informally, an asynchronous round is a sequence of steps
executed by the processes during the execution of the al-
gorithm such that every process takes at least one step
in that sequence. Our algorithm does not fit in well
with model of asynchronous rounds due to presence of
asynchronous receives. We use a model similar to syn-
chronous model for evaluating the time complexity of
our algorithm. In this model, the stabilization time of
the previous algorithms remains the same as that in asyn-

chronous rounds model. In the new model, the stabiliza-
tion time of our algorithm isO(d), whered is an up-
per bound on the number of times a node appears in the
Neville’s code. It turns out thatd is O((logn)/ loglogn)
with very high probability for a randomly chosen code.
This gives a very small stabilization time.

As a result of using the idea ofcore and non-core
states, we also provide the individual nodes with the abil-
ity to systematically change the structure of the tree. This
renders the algorithm useful in settings not traditionally
associated with self-stabilizing systems. As an example,
we consider an application where the participating nodes
would like to periodically change the structure of the tree
in a distributed fashion for security purposes. This can
be done using our algorithm by changing code value for
some node which would result in a different tree upon
stabilization. Another useful feature of our algorithm is
that it allows the root of the tree to change dynamically.
This is different from most of the previous approaches
where the root node executes a different algorithm from
the rest of the nodes, resulting in a fixed root. We also
discuss an application which requires this feature. In
summary, the main advantages of our algorithm are:

• Fast stabilization.

• Allows systematic change in tree structure.

• Root node can change dynamically.

The paper is organized as follows. Section 2 describes
our system model in detail. Section 3 introduces the
Neville’s code and the algorithms for mapping Neville’s
code to a spanning tree and vice versa. In Section 4, we
explain the data structures and the constraints on the data
structures that are used to maintain the spanning tree.
Section 5 explains the approach used for maintaining
each of the constraints and our algorithm for maintaining
the spanning tree. Section 6 presents some applications
which could use our algorithm in a fault-free scenario.

2 System Model

We assume that the network is a completely connected
graph withn processeshaving ids from 1 ton and this
graph does not change during the operation of the algo-
rithm. The processes in the system would be referred to
asP1 . . .Pn. Our algorithm is designed for reliable asyn-
chronous message-passing systems. Eachprocessmain-
tains somelocal variables. The processes are connected

2

to each other through point to point channels and com-
municate by passing messages to each other. Thecon-
figuration cof the system is described by the values of
the local variablesfor the processes and themessages
present in the channels. Acomputation stepconsists of
internal computation and a single communication opera-
tion: a send or receive. Now on, we would use the term
stepto refer to a computation step. A stepa is said to be
applicable to a configurationc iff there exists a configu-
ration c′ such thatc′ can be reached fromc by a single
stepa. An executionE = (c1,a1,c2,a2, . . .) is an alter-
nating sequence of configurations and steps such thatci

is obtained fromci−1 by the execution of the stepai−1. A
fair execution is an execution in which every step that is
applicable infinitely often is executed infinitely often.

For measuring the time complexity of our algorithm,
we use a model similar to the synchronous message pass-
ing system. In every unit of time, each process would ex-
ecute exactly one step. Moreover, we assume that a mes-
sage is available to the destination for receive in the step
next to the one in which the message was sent and these
messages are delivered to the destination in the same or-
der in which they are received. The stabilization time of
the algorithm is then given in terms of the number of time
units required by the algorithm to stabilize. The reason
for choosing such a model is explained later in the sec-
tion.

Our algorithm has anasynchronous receivewhich re-
quires special treatment. An asynchronous receive is a
receive for which a process does not wait but on arrival
of a relevant message, the process is notified through
some interrupt. Asynchronous receives are handled by
the system in the following way: A process executes the
sequential steps (steps other than the asynchronous re-
ceive) of the algorithm whenever there are no outstand-
ing messages in its channels. In case there are messages
for asynchronous receives to be handled, the process al-
ternates between the sequential algorithm and the mes-
sage receives. We assume that the underlying provides
us with the functionality to selectively receive messages
based on the type and sender of the message. This re-
quirement stems from our need to distinguish between
messages intended for asynchronous receives and other
messages.

We have chosen a different model for evaluation of our
strategy as it allows a fair modeling of the asynchronous
receives. In the previous works, theasynchronous rounds
[DIM91] model was used. The first asynchronous round

(or round) in an executionE is the shortest prefixE′ of
E such that each processor executes at least one step in
E′. Let E′′ be the suffix ofE that followsE′, E = E′E′′.
The second round ofE is the first round ofE′′, and so
on. The stabilization time of an algorithm is the max-
imum number of rounds it executes before the system
reaches a legal state. In this model, a process waiting
for a message would receive the message in one round
whereas if the message receive is asynchronous, it fails
to provide any guarantees. In practice, running time of
both the algorithms depends upon the message delivery
time in a similar way and hence their time complexities
should be comparable. We try to achieve this by putting
a bound on the message delivery time. Moreover, all the
self-stabilizing algorithms are structured as a loop that is
executed periodically. We would refer to this loop as a
cycle. In practice, most of the applications would have a
sufficiently large gap between two cycles to allow all the
processes to complete one cycle and hence the cycles can
be considered as synchronized with each other. Comput-
ing the time complexity in our model would give a better
idea of the actual running time of the algorithm.

3 Neville’s Third Encoding

To maintain a spanning tree (in a non-stabilizing man-
ner), it is sufficient for each process to maintain thepar-
ent variable but this method is not self-stabilizing as a
fault in the parent pointer of some process may result in
an invalid structure.

For the purpose of this paper, all spanning trees rooted
at Pn constitute the set of legal structures. We repre-
sent a tree through an encoding for labeled trees called
the Neville’s third encoding[Nev53] (The reader can
find a discussion on other labeled tree encodings and
their properties in [DM01]). In this paper the term
“Neville’s code” refers to Neville’s third code. Each
labeled spanning tree has a one-to-one correspondence
with a Neville’s code. This code is a sequence ofn−2
numbers from the set{1. . .n}. Let Neville’s code of the
tree be denoted bycode[i] for i ∈ {1. . .n−2}. For com-
pleteness sake, derivation of Neville’s code from a la-
beled spanning tree is discussed. Given a labeled span-
ning tree withn nodes, the Neville’s code can be obtained
by deletingn−1 edges in the tree as shown in Figure 1.

The algorithm starts by deleting the least leaf node
(leaf with least label). At iterationi, a nodex[i] is deleted
and its neighbory[i] is recorded. The edge betweenx[i]

3

x[1] = least node with degree 1;
for (i = 1;i < n; i ++)

y[i] = neighbor of x[i];
delete edge between x[i] and y[i];
if (degree[y[i]] == 1)

x[i +1] = y[i];
else

x[i +1] = least node with degree 1;

Figure 1: Algorithm to compute Neville’s code of a la-
beled tree

andy[i] is deleted as well. Then, variablex[i + 1] is set
to y[i] if the degree ofy[i] is 1, otherwise it is set to the
least leaf node. The sequence{y[i]|1≤ i ≤ n−2}, thus
obtained, is called Neville’s code. Note that even though
there aren−1 iterations, we only considern−2 entries.
It can be easily verified that in the iterationn− 1, the
value ofy[i] is alwaysn. Although, the actual Neville’s
code has onlyn−2 entries, for all the algorithms in this
paper we consider then−1 length code which includes
n at the end.

As an example, consider the labeled tree given in Fig-
ure 2. To compute the Neville’s code for the tree, we start
by deleting the least leaf node, 1. Since the parent of 1 is
5, at this point the code is(5). Now 5 is still not a leaf,
so we again choose the least leaf node in the remaining
tree, 3. We proceed by deleting 3 and adding its parent
2 to the code. Now 2 has become the leaf node in the
tree. So 2 would be deleted and 7 would be added to the
code. At this point code is(5,2,7). Since 7 is not a leaf
node, so the least leaf node, 4, would be deleted next and
its parent 5 would be added to the code. Similarly, in the
next iteration, 6 would be deleted and 5 would be added
to the code. Now, 5 becomes a leaf node and it would be
deleted. Its parent 7 would be added to the code. Since
we have completedn−1= 6 iterations of the algorithm,
we stop at this point and the code(5,2,7,5,5,7) is ob-
tained.

Given Neville’s code, the labeled spanning tree can
also be computed easily. We first calculate the degree
of each nodev in the labeled spanning tree as follows:
degree(v) = 1 + number of timesv appears in the code.
Note that for the root noden, this gives a value which is
one higher than the actual degree of the root but this is re-
quired for the correctness of the algorithm. Once degree

7

5

1

2

4 6 3

Figure 2: A spanning tree with Neville’s code
(5,2,7,5,5,7)

of each node is known, the procedure given in Figure 3
can be used to compute the code. In the given procedure
n−1 edges are constructed.

j = least node with degree 1;
for (i = 1;i < n; i ++)

parent[j] = code[i];
degree[j]−−;
degree[code[i]]−−;
if (degree[code[i]] == 1) then

j = code[i];
else

j = least degree node with degree 1;

Figure 3: Algorithm to compute labeled tree from
Neville’s code

We requirePi to maintaincode[i] as the core data struc-
ture. If efficiency were not an issue, this would be suf-
ficient for a self-stabilizing algorithm. Periodically, all
nodes would send theircodeto Pn. Pn would calculate
parent[i] for each nodePi and send it back.Pi would reset
parent[i] to the value received fromPn. Even if parent[i]
was corrupted, it would be reset to agree with the span-
ning tree given by Neville’s code. If the variablecode[i]
gets changed, it would still result in a valid spanning tree.
Theparentpointers would then be reset to agree with the
new code.

This method would be wasteful when there are no er-
rors. The transmission of code to the root node and the
transmission of the parent pointer to various nodes will
not change anything. In a large network, it is desirable
to have local detection of error and only on an error, the
correction algorithm should be invoked.

4

4 Non-Core Data Structures for
Spanning Trees

Our strategy would be to introduce new data structures
in the system so that by imposing a set of constraints on
these data structures, we can efficiently detect and correct
data faults. For this purpose, the following data struc-
tures are added:

• parent: The variableparent[i] gives the parent of
nodePi in the spanning tree.

• f : The variablef [i] gives us the iteration in which
the nodePi is deleted in the algorithm for obtaining
Neville’s code of a tree. Therefore,code[f [i]] gives
us theparent[i]. SincePn is not deleted in firstn−1
iterations, we assume thatf [n] = n.

• z: The variablez[i] gives the largest value ofj such
thatcode[j] = i. If there is no suchj, thenz[i] = 0.

Based on the properties of Neville’s code, it can be
verified that the variables —code, parent, f andz —
satisfy the following constraints:

(R1) ∀i : code[f [i]] = parent[i]
Follows from the property of thef relating it to the
parent.

(R2) (∀i : 1≤ i ≤ n−2⇒ 1≤ code[i] ≤ n)
∧(code[n−1] = n)∧ (code[n] = 0)
This constraint is the definition of code extended to
all the nodes.

(R3) (i) ∀i : 1≤ i < n⇒ 1≤ f [i] ≤ n−1
This constraint puts restriction on the range of val-
ues that a node other than the root is allowed to take.

(ii) f is a permutation on[1. . .n]
The definition of f along with the topology of the
algorithm in Figure 1 imply that thef values are
distinct and range from 1. . .n.

(R4) ∀ j : z[j] = max{i|code[i] = j}∪{0}
This is the definition ofz.

(R5) ∀i : z[i] 6= 0⇒ (f [i] = z[i]+1)
If a nodei, which at the starting of the algorithm
was not a leaf node, becomes a leaf node during the
iteration j of the algorithm, then it is deleted in the
iteration j + 1. This constraint enforces this condi-
tion.

(R6) ∀i, j : (z[i] = 0)∧(z[j] = 0)∧(i < j)⇒ (f [i] < f [j])
This constraint says that the nodes withz= 0 should
finish in increasing order of their labels.

These constraints are strong enough to characterize a
spanning tree, i.e., given a set of data structurescode,
parent, f and z which satisfy these constraints, the
parent structure results in a valid spanning tree regard-
less of the definitions of these data structures. From now
on, when we consider the data structurescode, parent,
f andz, we would just think of them as obeying a cer-
tain set of constraints and not necessarily corresponding
to the original definitions that were given for them.

We would be dealing with three sets of con-
straints — R = {R1,R2,R3(i),R4,R5} and C =
{R1,R2,R3,R4,R5}andE = {R1,R2,R3,R4,R5,R6}. It
is evident that any algorithm which satisfies the con-
straint setC would also satisfy the constraint setR and
similarly, any algorithm which satisfies the constraint set
C would also satisfy the constraint setE . The trees re-
sulting from obeying these constraint sets possess differ-
ent guarantees. The theorems that follow provide a char-
acterization of those guarantees.

Theorem 1 If code, parent, f and z satisfy constraint
setR then parent forms a valid spanning tree rooted at
Pn.

Proof: Let the directed graph formed by theparent re-
lation satisfying constraintsR be Tparent. The edges of
Tparent are directed from the child to the parent.
We first show thatTparent is acyclic. Leti = parent[j] in
Tparent for some nodesi and j. Then,

code[f [j]] = i (Using (R1))
⇒ (z[i] 6= 0)∧ (f [j] ≤ z[i]) (Using (R4))
⇒ f [j] < f [i] (Using (R5) for j)

Applying this argument repeatedly shows that ancestor of
a node has higherf value than thef value for the node
itself. This implies that no node is ancestor of itself and
henceTparent is acyclic.

We now show that every node exceptPn has outdegree
1 andPn has outdegree 0. Consider a nodei 6= n. Then,

f [i] 6= n (Using (R3)(i))
⇒ 1≤ code[f [i]] ≤ n (Using (R2))
⇒ 1≤ parent[i]≤ n (Using (R1))

This implies that inTparent, every node exceptPn has out-
degree 1. ForPn, consider the following:

5

code[n−1] = n∧code[n] = 0 (Using (R2))
⇒ z[n] = n−1 (Using (R4))
⇒ f [n] = z[n]+1 (Using (R5))
⇒ f [n] = n
⇒ code[f [n]] = 0 (Using (R2))
⇒ parent[n] = 0 (Using (R1))

Therefore,Pn does not have a parent. Since all other
nodes have a parent within the range 1. . .n and there are
no cycles inTparent, Tparent forms a spanning tree rooted
at Pn.

The above theorem just ensures that theparent forms
a spanning tree. It does not enforce any relationship be-
tween the structure of the tree formed byparentand tree
corresponding tocode. The next theorem establishes this
relationship.

Theorem 2 If code, parent, f and z satisfy constraint set
C , then parent forms a rooted spanning tree isomorphic
to the tree generated by code.

Proof: Sincecode, parent, f andzsatisfy the constraint
setC , they also satisfy the constraint setR . Hence, by
Theorem 1,parent forms a spanning tree rooted atPn.

Consider the following two trees:

(1) Tparent: The tree formed byparentwhich satisfiesC
and

(2) Tcode: The tree generated usingcodeby the algo-
rithm given in Figure 3.

We define data structuresparent′, f ′ and z′ for Tcode.
Variable parent′[i] represents the parent of nodei in
Tcode, f ′[i] gives the iteration in which the nodei is
assigned its parent during the execution of algorithm
for building Tcode from code and z′[i] gives the last
occurrence ofi in code. Note that since the constraint
(R4) is the same as definition forz′, ∀i : z[i] = z′[i].
We would be usingz instead ofz′ for the rest of the
proof. Both f and f ′ are permutations on 1. . .n. This
implies that∀i(∃ j : f [i] = f ′[j]) and moreover, thisj
is unique. This allows us to define an isomorphism
function,M : [n] → [n] as:

M(i) = j such thatf [i] = f ′[j]

Now, Tparent andTcodeare isomorphiciff

∀i, j : (i = parent[j]) ⇒ M(i) = parent′[M(j)]

We prove the above condition by showing that∀i, j :
(i = parent[j]) ⇒ M(i) = i followed by proving that
∀i, j : (i = parent[j]) ⇒ i = parent′[M(j)]. The data
structuresparent′, f ′ and z obey the constraint setC .
Consider a nodei = parent[j] for some nodesi and j.
Then,

i = parent[j]
⇒ z[i] 6= 0 (Using (R1) and (R4))
⇒ f ′[i] = z[i]+1 (Using (R5) forf ′)
⇒ f [i] = f ′[i] (Using (R5) for f)
⇒ M(i) = i (Definition ofM) — (1)

Nodei also satisfies the following property:
i = code[f [j]] (Using (R1) for f)
⇒ i = code[f ′[M(j)]] (Definition ofM)
⇒ i = parent′[M(j)] (Using (R1) for f ′) — (2)

Conditions (1) and (2) together prove the required iso-
morphism condition and hence the two treesTparent and
Tcodeare isomorphic.

In the next theorem, we show that by maintaining the
constraint setE , it is possible to maintain a tree which is
exactly same as the spanning tree generated bycode.

Theorem 3 If code, parent, f and z satisfy constraints
setE , then the rooted spanning tree formed by parent is
same as the tree generated by code.

Proof: Since C ≺ E , therefore the two treesTparent

and Tcode as defined in Theorem 2 are isomorphic. In
fact, we showed an even stronger property - The inter-
nal nodes of the treeTparent are mapped to themselves in
treeTcode. So for proving that the treesTparent andTcode

are the same, we just need to show that the leaf nodes
in Tparent map to themselves inTcode or in other words
∀i : z[i] = 0⇒ M(i) = i. LetL = [n]/{i : z[i] 6= 0}. Since
M is a bijection and∀i : z[i] 6= 0⇒M(i) = i, soM is a bi-
jection onL as well. When constructing the Neville’s
code for a tree, we always choose theleast leaf node
whenever we need to pick a leaf node. This ensures that
∀i, j : (z[i] = 0)∧ (z[j] = 0)∧ (i < j) ⇒ (f ′[i] < f ′[j]),
which is the condition equivalent to (R6) with respect to
f ′ instead off . This implies that the order of finishing for
the leaves in the two trees is the same which combined
with the condition ofM being a bijection onL, proves
the required condition.

6

i 1 2 3 4 5 6 7
parent 2 7 5 5 7 5 0
code 5 2 7 5 5 7 0

f 2 3 1 4 6 5 7
z 0 2 0 0 5 0 6

Table 1: Example of structuresparent, code, f and z
satisfying the constraints (R1)-(R5)

7

5

3

2

4 6 1

Figure 4: Tree corresponding toparentgiven in table 1

The above theorem suggests that there is a possibility
that the tree formed byparent is not the same as the tree
generated by thecode. For example, consider the value
of the variables given in Table 1. It can be easily verified
that these values satisfy the constraint setC . The tree
corresponding to thecodeis the one we considered ear-
lier in Figure 2. The tree generated byparent is shown
in Figure 4. The two trees are not the same but they are
isomorphic.

5 Maintaining Constraints

Each nodei maintainsparent[i], code[i], f [i] andz[i] and
cooperate to ensure that the required constraints are satis-
fied, resulting in a valid rooted spanning tree. We present
a strategy for efficient detection and correction of the
faults for each of the constraints (R1)-(R5). We will con-
sider the constraint (R6) later in the paper.

5.1 Constraints (R1) and (R2)

The constraint (R1) is trivial to check locally. Each node
i inquires nodej = f [i] for code[j]. If this value does
not matchparent[i], then the constraint(R1) is violated.
On violation, (R1) can be ensured by settingparent[i] to

code[j]. The constraint (R2) is also trivial to check and
correct locally.

5.2 Constraint (R3)

Constraint (R3)(i) is a local constraint which can be
checked easily. Violation of this constraint can be fixed
by simply settingf to a random number between 1 and
n−1. Constraint (R3)(ii) requiresf to be a permutation
on 1. . .n. This can, in turn, be modeled in terms of the
following constraints:

(C1) ∀i : 1≤ f [i] ≤ n

(C2) ∀i, j : f [i] 6= f [j]

The violation of (C1) is easy to detect. Every node
i checks the valuef [i] periodically. If it is not between
1 andn, then a fault has occurred. The constraint (C2)
is more interesting. At first glance it seems counter-
intuitive that we can detect violation of (C2) inO(1)
messages. However, by adding auxiliary variables, the
above task can indeed be accomplished. We maintain
g[i] at each processPi such that, in a legal global state
f [i] = j ≡ g[j] = i. Thus,g represents the inverse of the
array f . Note that the inverse of a function exists iff it
is one-one and onto which is true in this case. If each
processPi maintainsf [i] andg[i], then it is sufficient for
a node to check periodically the following constraints:

(D1) ∀i : 1≤ f [i] ≤ n

(D2) ∀i : 1≤ g[i] ≤ n

(D3) g[f [i]] = i

It is easy to show that (C2) is implied by (D1)-(D3). If
for some distincti and j, f [i] is equal tof [j], theng[f [i]]
andg[f [j]] are also equal. This means that(g[f [i]] = i)
and (g[f [j]] = j) cannot be true simultaneously. (D3)
can be checked byPi by sending a message toPf [i] pe-
riodically, promptingPf [i] to check whetherg[f [i]] = i is
true. Note that by introducing additional variables we
have also introduced additional sources of data faults. It
may happen that requirements (C1)-(C2) are met, but due
to faults ing, constraints (D1)-(D3) are not met. We be-
lieve that the advantage of local detection of a fault out-
weighs this disadvantage.

The above scheme has an additional attractive prop-
erty: If we assume that there is a single fault inf or g,
then it can also be automatically corrected as shown next.

7

The functiong being inverse off also implies thatf is
inverse ofg. This implies that the following constraint
(D4) is also met for a fault-free data structure:

(D4) f [g[i]] = i

Pi ::
var

f ,g: array[1..n] of integer;

Periodically do
if (g[f [i]] 6= i)∧ f [g[f [i]]] 6= f [i]

g[f [i]] = i
if (f [g[i]] 6= i)∧g[f [g[i]]] 6= g[i]

f [g[i]] = i

Figure 5: Implementation of Permutation with local cor-
rection of 1 fault

Now assume that a nodei discovers thatg[f [i]] 6= i.
This means that eitherf [i] or g[f [i]] got corrupted. To
detect which of the case has happened, it is sufficient to
check whether

f [g[f [i]]] = f [i]

If the above equation does not hold, theng[f [i]] is cor-
rupted and is set back toi. If the above equation holds,
but g[f [i]] 6= i then f [i] is corrupted and it needs to be
reset. What value shouldf [i] be set to? We need to set
it to k such thatg[k] equalsi. This correction would be
done by nodek because nodek will find that f [g[k]] 6= k.
Hence, by the similar reasoning as above nodek will de-
duce thatf [g[k]] is corrupted and will reset it tok. The
program forPi is shown in Figure 5. For simplicity, we
let processPi simply read and write variables of other
processes. In practice, this may be translated into mes-
sages. Note that in our scheme a permutation may un-
detectably change into another permutation (when there
are multiple faults) but iff is not a valid permutation, the
violation will be detected.

5.3 Constraint (R4)

This constraint can be modeled in terms of the following
constraints:

(E1) ∀i : (z[i] 6= 0) ⇒ (code[z[i]] = i)

(E2) ∀i, j : (code[j] = i) ⇒ (z[i] ≥ j)

For checking (E1), nodei prompts the nodez[i] to verify
thatcode[z[i]] = i. If the check fails, thenz[i] can be set to
0, which may not be the correct value forz[i]. If z[i] is set
incorrectly to 0, then constraint (E2) would also be vio-
lated. As a result, while checking for (E2),z[i] would be
set appropriately. For checking (E2), every nodej sends
a message to nodecode[j] to verify thatz[code[j]] ≥ j.
If (E2) is found to be violated upon receiving a message
from nodej, thenz[code[j]] is set to j.

5.4 Constraint (R5)

The constraint (R5)

∀i : z[i] 6= 0⇒ (f [i] = z[i]+1)

can be checked locally and on detection of a fault,f [i]
can be set toz[i]+1.

5.5 Complete Algorithm

Depending upon the set of constraints (R or C) that a
process obeys, we have two versions of the algorithm.
They differ in the guarantees about the resulting tree and
the time complexity of the algorithm.

5.5.1 MaintainingR

As we proved in Theorem 1, the set of constraintsR is
sufficient to maintain a spanning tree. The complete al-
gorithm for processi to maintain the constraint setR is
given in the Figure 7. We will refer to this algorithm
asSSR. In the algorithm, instead of denoting variables
like code[i], we have usedPi .codeto emphasize that the
variables are local to the processes and are not shared.
The algorithm checks the constraints one by one and
on the violation of a constraint, it takes corrective ac-
tion. For checking constraints which involve obtaining
the value of another process’s variable, we have used a
primitive get. This involves the sender sending a request
for the required variable and the receiver then replying
with the appropriate value. So agetoperation would in-
volve two messages being exchanged. Most of the al-
gorithm follows directly from the checks required for a
constraint. The interesting thing to note is the presence of
an asynchronous receive for the messages of type “Check
z”. These asynchronous receives are crucial for the effi-
ciency of the algorithm and they require special attention
during the analysis of the algorithm in the following sec-
tion.

8

R5R2 R4 R1

R3(i)

Figure 6: Stabilization order of the constraints

5.5.2 Analysis ofSSR

In this section, we give the proof of correctness of the
algorithm and its stabilization time in terms of the num-
ber of time units for stabilization. The following lemma
is based on the structure of the algorithmSSRgiven in
Figure 7.

Lemma 1 Each process performs all the actions in one
cycle in every O(1) time units.

Proof: In each iteration of the loop there are 2 “get” op-
erations (one of which may not be executed by all the
processes) and 1 “send” operation (which again may not
be performed by all the processes), along with the asyn-
chronous receive operations. As discussed earlier, each
“get” operation consists of 2 communication steps. This
results in a total of 5 communication steps. Since the
asynchronous receives may alternate with these 5 steps,
we are guaranteed that within 10 steps every process will
complete one iteration of the main loop. Hence, the re-
sult follows.

For the purpose of the proof we define the following
terms:
Definition: A variablev is said to bestabilizedby an
algorithm if the value ofv does not change after some
finite number of rounds of the algorithm irrespective of
the initial state of the algorithm.
Definition: A constraintR is said to bestabilizedby an
algorithm ifRnever becomes false after some finite num-
ber of rounds of the algorithm irrespective of the initial
state of the algorithm
The proof of correctness is given by the lemmas and the
theorems that follow. The lemmas should be considered
in the order given as a lemma assumes the results of the
previous lemmas. The order of the lemmas corresponds
to the order in which we stabilize the constraints. This
order is also given in Figure 6

Lemma 2 The algorithm SSR stabilizes “code” and
(R2) for all the processes by O(1) rounds.

Proof: From the algorithm, it is clear that thecodevari-
able is only changed while checking the constraint (R2)
and after one such change,codealways satisfies the con-
straint (R2). So after one execution of the check for (R2),
thecodevariable is never changed. From Lemma 1, each
process executes all the actions in one cycle inO(1) time
units and thus thecodevariable would be set correctly in
O(1) time units. Hence,SSRstabilizescodeand (R2) in
O(1) time units.

Lemma 3 The algorithm SSR stabilizes z and (R4) in
O(d) time units, where d is the upper bound on the num-
ber of times a node appears in the code.

Proof: Consider the execution of the algorithm once
(R2) has stabilized. Constraint (R4) can be violated
in two ways : (1)∃i : (z[i] = k)∧ (code[k] 6= i) or (2)
∃i : (z[i] = k)∧(code[k] = i)∧(∃ j > k : code[j] = i). Note
that in this case, the check is dependent only upon the
value ofcode. Consider the first check for (R4) given in
the algorithm. If the violation is of the first kind, thenPi

would be able to check thatcode[z[i]] 6= i and would reset
z[i] = 0. From Lemma 1, every process would be able to
perform this step inO(1) time units after stabilization of
(R2), still requiringO(1) time units in all. We say that at
this point (R4) haspartially stabilized.

Let zc[i] be the correct value ofz[i] according to con-
straint (R4). After partial stabilization of (R4), we are
guaranteed that∀i : z[i] ≤ zc[i]. Now consider the mes-
sages of the type “Check z” sent by the processes. A
processPj sends a message “Check z” to nodePi iff
code[j] = i. Therefore, the number of distinct processes
sending a message of type “Check z” to a processPi is
bounded byd. By Lemma 1, every process completes all
actions in one cycle withink time units, for some con-
stantk. Therefore,Pi would be able to receive messages
from all processes withinkd time units after (R4) has par-
tially stabilized. Ifzc[i] = 0, then no process would send
a message of type “Check z” toPi as the code has stabi-
lized and no nodePj hascode[j] = i. So,z[i] would be
set correctly to 0. Ifzc[i] 6= 0, then by the algorithm,z is
set to the highest node to send the “Check z” message to
Pi. This is indeed the correct value ofz[i] and this value
would not change in future. Hence,SSRstabilizesz and
(R4) in O(d) time units.

9

Lemma 4 The algorithm SSR stabilizes the variable f
and also the constraints (R5) and (R3)(i) within O(d)
time units.

Proof: Consider the execution of the algorithm once
(R4) has stabilized. If constraint (R3)(i) is violated for
some process, it would be rectified through the local
check given for it in the algorithm. But this may not
necessarily ensure that the value off would be stabi-
lized as f can be changed by the check on (R5). How-
ever, the check for (R5) sets the value off [i] to z[i]+1 if
z[i] > 0. Since we know thatz[i] has stabilized and will
not change, so the check for (R5) would always set it to
the same value. From the definition ofz and the fact that
code[n−1] = n, it follows that∀i 6= n : z[i] ≤ n−2. This
in turn implies that by changingf to follow the constraint
(R5)(ii), we will not violate the constraint (R3)(i). So for
both the cases, whenz[i] = 0 andz[i] 6= 0, after one cycle
f stabilizes to a value which satisfies the constraints (R5)
and (R3)(i). Since one cycle requiresO(1) time units, the
constraints (R5) and (R3)(i) would also stabilize within
O(d) time.

Lemma 5 The algorithm SSR stabilizes (R1) within
O(d) time units.

Proof: Consider the execution of the algorithm oncef
and codehave stabilized. Then from the algorithm it
is clear that the check for (R1) would stabilize through
the check for (R1) in one cycle. Since, one cycle re-
quiresO(1) time units, the constraint (R1) would stabi-
lize within O(d) time.

Theorem 4 The algorithm SSR converges to a spanning
tree in a finite number of moves irrespective of the initial
state of the system and the order in which the processes
execute the steps.

Proof: For proving the theorem, it is sufficient to show
that the data structures in the algorithm would satisfy the
constraint setR after a finite number of steps and this
follows from the previous lemmas.

Theorem 5 The algorithm SSR stabilizes in O(d) time,
where d is the upper bound on the number of times a node
appears in the code.

Proof: By the previous lemmas, all the constraints in
constraint setR are satisfied withinO(d) time units.
Hence the algorithmSSRstabilizes inO(d) time units.

We further note that the value ofd would not be very
large for a randomly chosen code. The problem of choos-
ing the firstn−2 numbers ofcodeat random can be con-
sidered as the problem of randomly assigningn−2 balls
to n bins. The following theorem is a standard result in
probability theory [MR95][Theorem 3.1]:

Theorem 6 If n balls are thrown randomly in n bins,
then with the probability at least1− 1

n, no bin has more

than elogn
loglogn balls.

For a randomly chosen code, this theorem provides an
upper bound ford and hence an upper bound on the sta-
bilization time with high probability. This results in a
very good stabilization time for our algorithm.

5.5.3 Maintaining C

MaintainingC requires ensuringR3(ii) in addition toR .
We introduce the variableg and enforce the constraints
(D1)-(D3) listed in section 5.2. As discussed in the Sec-
tion 5.2, one error in the data structuresf andg can be
corrected using the algorithm given in Figure 5. Includ-
ing this module in the algorithmSSRgives us anO(1) al-
gorithm (Figure 8) which is capable of correcting many
errors in the data structures. Unfortunately, this algo-
rithm is not able to handle more than one correlated er-
rors in f andg. When an error cannot be corrected by
theO(1) correction algorithm, the second check for the
consistency off andg fails for some node. This node
sends out a message to every other node informing them
to start the main correction algorithm.

Upon starting the main correction algorithm, every
node sends out itszvalue to nodePn. NodePn collects re-
sponses from every node and then establishes a mapping
between the nodes which havez = 0 and thef values
that have not been allocated. By allocatedf values, we
mean thef values which can be obtained asz+ 1, for
somez 6= 0. The nodes which havez 6= 0 are assigned
f = z+ 1. These results are communicated back to the

10

nodes. In this case, the nodePn would have to doO(n)
work. After finishing theO(n) correction algorithm, the
nodes switch back to the normal correction algorithm.
We will refer to this complete algorithm asSSC.

Clearly, there is a trade-off involved in choosing be-
tween the two algorithms. The algorithm for maintaining
R is more efficient but gives weaker guarantees over the
resulting spanning tree than the algorithm for maintain-
ing C .

5.6 Changing the Root Node

The algorithmsSSRandSSCcan be easily modified to
allow the root node to change dynamically i.e. any node
(not necessarilyn) can become the root of the tree and
the root can be changed during the operation of the algo-
rithm. This can be achieved by changing the constraints
(R2) and (R3)(i) in the following way:
(R2) (∀i : 1≤ i ≤ n−1⇒ 1≤ code[i] ≤ n)

∧(code[n] = 0)
(R3)(i) ∀i : i 6= code[n−1]⇒ 1≤ f [i] < n
The modified constraints are also easy to check and
maintain. The algorithms which allow dynamic root can
then be obtained by changing the algorithmsSSRand
SSCto accommodate checking for these new constraints
instead of the old ones. In the next section we present an
application which utilizes this feature.

6 Applications

The algorithm for maintaining constraint setR ensures
that if the code is changed, then the spanning tree would
stabilize to reflect that change. This property of the al-
gorithm could be used by an application to purposefully
change the spanning tree from time to time. As discussed
earlier, every code of lengthn− 1 represents a unique
tree. If we were maintaining a tree isomorphic to the
code tree (by maintaining the set of constraintsC), then
a node wishing to change the tree could have changed its
local code value. It can be proved that this would have
resulted in the spanning tree being changed. But if we
are just maintaining the set of constraintsR , then a code
can represent multiple trees and similarly a single tree
can be represented by a multiple codes. So changing the
code value at a node may not always result in a change
in the tree. To get around this problem, whenever a node
i wishes to change the tree, it would change the value of
code[f [i]]. This changesparent[i] = code[f [i]] and hence

Pi ::
var

code, parent, f ,z: integer;

Periodically do
// Check (R2)
if ((i = n−1)∧ (code6= n))

code= n
if ((i = n)∧ (code6= 0))

code= 0
if ((i 6= n)∧ ((code≤ 0)∨ (code> n)))

code= random number between 1 and n

// Check (R3)(i)
if ((i 6= n)∧ ((f ≤ 0)∨ (f ≥ n)))

f = random number between 1 and n−1
// First check for (R4)
if (z 6= 0)

get codefrom node Pz

if Pz.code6= i
z= 0

if (code6= 0)
send (“Check z”, i) to node code

// Check (R5)
if ((z 6= 0)∧ (f 6= z+1))

f = z+1
if ((z= 0)∧ (f ≤ z))

f = random number between 1 and n−1

// Check (R1)
get codefrom node Pf

if (Pf .code6= parent)
parent= Pf .code

// Second check for (R4)
Upon receiving (“Check z”, j)

if (z< j)
z= j

Figure 7: AlgorithmSSRfor maintaining the constraint
setR

11

Pi ::
var

code, parent, f ,z: integer;

Periodically do
// Check (R2), (R3)(i), (R4) - Same as in Figure 7

// Check (R5)
if ((z 6= 0)∧ (f 6= z+1))

f = z+1

// Check (R3)(ii)
get g1 = Pf .g from Pf and f1 = Pg. f from Pg

get f from Pg1 and g from Pf1
if((g1 6= i)∧ (Pg1. f 6= f))

send (“Update g”,i) to node Pf

if((f1 6= i)∧ (Pf1.g 6= g))
send (“Update f ”,i) to node Pg

// Second Check f and g
get g1 = Pf .g from Pf and f1 = Pg. f from Pg

if ((g1 6= i)∨ (f1 6= i))
send (“Start Main”) to all nodes

// Check (R1) - Same as in Figure 7

// Asynchronous message handling
Upon receiving (“Check z”, j)

if (z< j)
z= j

Upon receiving (“Update g”, j)
g = j

Upon receiving (“Update f ”, j)
f = j

Upon receiving (“Start Main”)
start main correction algorithm

Figure 8: AlgorithmSSCfor maintaining the constraint
setC

the spanning tree changes. Note that this change may re-
sult in some more changes in the spanning tree as the
parent of some other nodes may also get modified. Since
the algorithm for maintaining the setR of constraints is
efficient, this results in an efficient way of changing the
tree. There could be many reasons for changing the span-
ning tree and we present three applications which require
such a property.

• Security: Consider a scenario in which a set of
nodes are contacting each other by using a tree for
routing messages. For the system’s security, this
tree must not be revealed to the adversary. In case
a security breach is suspected or after a regular in-
terval of time, the tree must be changed and any
node should be able to initiate this change without
requiring active participation from other nodes. Our
algorithm provides one such way. When a nodei
wishes to change the structure of the tree, it could
just change the value ofcode[f [i]] and initiate the
correction algorithm. The ability to change the root
node is critical here;otherwise, the adversary could
always attack the fixed root node.

• Reliability : Consider a scenario in which we wish
to relay messages through a spanning tree. Among
the set of participating nodes, some nodes may be
unreliable. It is advantageous to have the unreliable
nodes in the leaf position as it would ensure that
upon the failure of an unreliable node, the commu-
nication among other nodes is not disrupted. Such
a constraint could be easily maintained by incorpo-
rating an additional check in algorithm in Figure 7.
This check ensures thatcodetakes values from the
set of reliable nodes. Since this check would be a lo-
cal check, the running time of the algorithm and the
messages exchanged during the algorithm remains
same.

• Load Balancing: Consider a scenario where a set
of nodes are communicating through a spanning tree
for an application like convergecast. In this case, a
node has to do work proportional to size of its sub-
tree which consumes resources like power, CPU etc.
Since we are dealing with a completely connected
topology, all the nodes are equally well connected
and it is possible for a node to take up the job of an-
other node. When a node wishes to reduce its load,
it could its ask one of its childc to change the value
of code[f [c]] and hence change its load.

12

7 Core and Non-core data struc-
tures for other applications

In this section, we briefly mention two simple applica-
tions for utilizing the idea ofcore and non-coredata
structures.

7.1 Maintaining Permutation

Given a set ofn nodes, we want to maintain the permu-
tation of numbers from 1 ton. We discussed a way for
checking the correctness of a permutation by using the
functions f andg in section 5.2. Here we use the con-
cept of inversion vectoralong with the above functions
to maintain a permutation. The inversion vector of a per-
mutation(a1,a2, . . . ,an) can be defined as(t1,t2, . . . ,tn)
wheretk = | j|a j > ak, j < k|. The important property of
an inversion vector is that any sequence ofn numbers
t1,t2, . . . ,tn satisfying the property∀i : ti ≤ i corresponds
to a valid permutation. This opens the avenue for using
the inversion vector as thecoredata structure for main-
taining a permutation. A very simple way of using in-
version vector is to combine it withf andg. A coor-
dinator node keeps an inversion vector corresponding to
the current permutation. The permutation itself is dis-
tributed acrossn nodes with each node maintaining the
variablesf andg. The permutation is checked for errors
through consistency checks onf andg and in case a fault
is detected, the coordinator regenerates the permutation
corresponding to its current inversion vector. Note that
the inversion vector of the coordinator might have also
changed due to data faults. This solution is not very ef-
ficient and it leaves open a research problem of finding a
true distributed solution of the problem.

8 Discussion

8.1 General Graphs

So far we had assumed the underlying graph to be com-
pletely connected. Let us now consider general graphs.
Due to the nature of modern computer networks, the ma-
jor overhead involved in communication using message
passing is incurred at the OS level. So even if a process
sends a message to another process that is more than one
hop away, the message overhead can be assumed to be in-
curred completely at the sender and receiver. In this way
any network topology with routing can be considered as

a complete graph. Our algorithm can also be modified
for applications which require the parent of a node to be
its 1-hop neighbor. We just add a new constraint which
requires a node to check if the parent assigned to it is a 1-
hop neighbor. By adding this, the detection still remains
O(1) but correction becomes inefficient.

8.2 Exact Neville’s Code Tree

In the theorem 3, we proved that by maintaining the con-
straint setE , we can maintain the exact Neville’s code
tree. Constraint (R6) can be checked by maintaining a
circular doubly linked list with the nodes havingz[i] = 0
as its elements. Let the set of all such elements or-
dered according to the process numbers be denoted byL.
Each element of the link list would have anextandprev
pointer pointing to the next and the previous element, re-
spectively, in the list. The next element in the list would
be the node which occurs next to the nodei in L. Simi-
larly, the previous node would be the one to occur before
nodei in L. The only exceptions to the above rules are the
prevpointer of first node in the list and thenextpointer
of the last node. To prevent a fragmented list to go un-
detected, we use the processP1 as the sentinel node. So
the prevpointer of the first node in the list and thenext
pointer of last node points toP1. Similarly,P1 also main-
tains itsprevandnextpointers. Now for checking (R6),
we can just check for the consistency of theprevandnext
pointers along with (R6) for just the neighbors. Note that
in this way we can detect faults in a link list in general
which can be used for other applications as well.

8.3 Maintain a Trivial Spanning Tree

It is very reasonable for a reader to be thinking that if
all the spanning trees constitute legal state, then why
not maintain a trivial spanning tree like one in which
all nodesP1 . . .Pn−1 havePn as parent ? The answer to
this question again lies in the kind of application we are
looking at. The applications considered in the section
6 required an application to keep changing its spanning
tree and in that case such an algorithm would be suitable.

9 Conclusion and Future Work

In this paper we presented a new technique for main-
taining spanning trees using labeled tree encoding. Our
method requiresO(1) messages per node on average and

13

also provides a method for changing the root of the tree
dynamically. We also provide examples of using the self-
stabilizing algorithm for some applications not related
to fault tolerance. This work also demonstrates the use
of the concept ofcoreandnon-corestates for designing
self-stabilizing algorithms. It would be interesting to ex-
tend this work for general topology. Another research
direction could be to develop similar algorithm without
requiring nodes to be labeled from 1 ton.

References
[AG94] A. Arora and M. Gouda. Distributed reset.IEEE Transac-

tions on Computers, 43(9):1026–1038, 1994.

[AK93] S. Aggarwal and S. Kutten. Time optimal self-stabilizing
spanning tree algorithm. InFSTTCS93 Proceedings of
the 13th Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, Springer-Verlag
LNCS:761, pages 400–410, 1993.

[AKY91] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self sta-
bilizing protocols for general networks. InProceedings of
the 4th International Workshop on Distributed algorithms,
pages 15–28. Springer-Verlag New York, Inc., 1991.

[AS97] G. Antonoiu and P.K. Srimani. Distributed self-stabilizing
algorithm for minimum spanning tree construction. InEu-
ropean Conference on Parallel Processing, pages 480–487,
1997.

[CD94] Z. Collin and S. Dolev. Self-stabilizing depth-firstsearch.
Information Processing Letters, 49(6):297–301, 1994.

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control.Communications of the ACM, 17:643–644,
1974.

[DIM89] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dy-
namic systems. InMCC Workshop on Self-Stabilizing Sys-
tems, 1989.

[DIM90] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dy-
namic systems assuming only read/write atomicity. InPro-
ceedings of the ninth annual ACM symposium on Princi-
ples of Distributed Computing, pages 103–117. ACM Press,
1990.

[DIM91] S. Dolev, A. Israeli, and S. Moran. Uniform self-stabilizing
leader election. InProceedings of the 5th Workshop on Dis-
tributed Algorithms, pages 167–180, 1991.

[DM01] N. Deo and P. Micikevicius. Prufer-like codes for labeled
trees.Congressus Numerantium, 151:65–73, 2001.

[HC92] S. Huang and N. Chen. A self stabilizing algorithm forcon-
structing breadth first trees.Information Processing Letters,
41:109–117, 1992.

[Joh97] C. Johnen. Memory efficient, self-stabilizing algorithm to
construct bfs spanning trees. InProceedings of the sixteenth
annual ACM symposium on Principles of Distributed Com-
puting, page 288. ACM Press, 1997.

[MR95] R. Motwani and P. Raghavan.Randomized Algorithms.
Cambridge University Press, 1995.

[Nev53] E. H. Neville. The codifying of tree-structure.Proceedings
of Cambridge Philosophical Society, 49:381–385, 1953.

14

