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Happened Before is the Wrong Model for Potential Causality �Ashis Tarafdar Vijay K. GargDept. of Computer Sciences Dept. of Electrical and Computer Engg.University of Texas at Austin University of Texas at AustinAustin, TX 78712 Austin, TX 78712(ashis@cs.utexas.edu) (garg@ece.utexas.edu)July 15, 1998AbstractThe happened before model has been widely used to model distributed computations. Inparticular, it has been used to model the logical time and the potential causality aspects ofa distributed computation. Though it is a good model for logical time, we argue that it isnot a good model for potential causality. We introduce a better model for potential causalitythat extends happened before to allow independent local events to be partially ordered. Thispotential causality model has marked advantages over the happened before model in applicationsareas such as debugging and recovery.1 IntroductionThe happened before model [Lam78] has been used to model distributed computations, capturingthe notions of logical time and potential causality . As a result, these two notions have long beenconsidered the same. We argue that these two notions are di�erent and, in fact, starkly contra-dictory in nature. They arise in di�erent applications and require di�erent models. Althoughhappened before su�ces to model logical time, it is not good for modeling potential causality.The goal of this discussion is to introduce a new model of distributed computations and tomotivate its use in applications that involve potential causality. The new model captures potentialcausality by allowing independent (as opposed to concurrent) events within the same process to bepartially ordered. We demonstrate how the new model proves e�ective in many application areas.2 Historical PerspectiveThe history of modeling distributed computations may be divided into three stages. The �rststage started with Lamport's introduction of happened before to model logical time [Lam78]. Thesecond started withMattern's observation that happened before may also be used to model potentialcausality [Mat89]. The third stage consisted of the gradual discovery that using happened before tomodel potential causality leads to problems owing to inherent false causality [CS93, SBN+97, TG98].�supported in part by the NSF ECS-9414780, CCR-9520540, a General Motors Fellowship, Texas Education BoardARP-320 and an IBM grant 1



Stage 1: Happened Before and Logical TimeMany applications, such as mutual exclusion and deterministic replay, need to know the order inwhich events 1 happen in time. In a distributed system, events on di�erent processes do not share acommon clock. This makes it impossible to determine their order in real time using time-stampingmechanisms. Lamport [Lam78] introduced logical time to order distributed events in a mannerthat approximates their real time order.To model logical time, Lamport de�ned the happened before relation, denoted by !, as thesmallest relation satisfying the following: (1) If a and b are events in the same process, and a comesbefore b according to the total ordering speci�ed by the local clock on that process, then a!b. (2)If a is the send event of a message and b is the receipt of the same message by another process,then a!b. (3) If a!b and b!c, then a!c. Further, two events a and b are concurrent , denoted byakb, if and only if they are incomparable using the happened before relation (i.e. (a 6!b) ^ (b 6!a)).Lamport went on to de�ne a logical clock mechanism which constructed a total order of eventsthat is a linearization of the happened before relation. This total order may be viewed as a possibleordering of events in real time and is su�cient for applications that need a notion of logical time.Stage 2: Happened Before and Potential CausalityIf an event happens before another event, it has the potential for causing that event. Manyapplications, such as recovery and debugging, require the tracking of such causal dependencies.Mattern [Mat89] realized that such applications would bene�t by a mechanism to quickly determinethe happened before relation between events.The totally ordered logical clock mechanism that proved useful for applications requiring anotion of logical time is not good for applications requiring the notion of potential causality. InMattern's own words: \For some applications (like mutual exclusion as described by Lamporthimself in [Lam78]) this defect is not noticeable. For other purposes (e.g., distributed debugging),however, this is an important defect." Mattern, therefore, proposed a vector clock mechanism thatallows the happened before relation between events to be deduced.Stage 3: False Causality ProblemsAn event that happens before another event need not necessarily cause it. This is implicit whenwe say that happened before tracks potential causality. Therefore, an inherent problem in usinghappened before in applications that require causality tracking is that sometimes events that areindependent are believed to have a causal dependency. This phenomenon is called false causality .While any approximation of causality must have false causality, the happened before model wasfound to fall particularly short in this respect. We cite three examples of application domains wherethis has happened.Firstly, happened before has been used as the basis of causally and totally ordered communica-tion support. Cheriton and Skeen [CS93] observed that when two send events have a false causaldependency between them, the resulting e�ect is to make the receipt of one message unnecessarilywait for the receipt of the other. This overhead was mentioned as one of the limitations of causallyand totally ordered communication support.1What exactly an event is would depend on the application. For example, it could be the execution of a machineinstruction or the execution of a procedure. However, we do place one restriction on the level of granularity of anevent { we assume that events are chosen so that any ordering under consideration is irreexive.2
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Figure 1: Spectrum of modelsSecondly, happened before has been used in tools to detect data races in multi-threaded pro-grams. Savage, et al [SBN+97] pointed out that false causality between events causes some dataraces to go undetected. This is because if one event happens before another, it may falsely bebelieved to cause that event and thus a potential data race between the independent events maybe missed.The third application domain is in predicate detection. In a previous study [TG98], we notedthat using the happened before model would miss the detection of certain predicates. The rea-sons for this are similar to those in race detection. Since predicate detection has applications indistributed debugging, this translates to certain bugs being missed.3 Logical Time is not Potential CausalityWe have seen that happened before has come to be used to model both logical time and potentialcausality in distributed computations. This has led to a wide-spread belief that the two conceptsare the same. We now argue that the concepts are not only di�erent but opposite in nature.The applications that motivated Lamport to model logical time were notably di�erent from thosethat motivated Mattern to model potential causality. The �rst kind of applications, represented bymutual exclusion, require as close an approximation to real time order as possible. Happened beforeis, in fact, the best possible approximation of real time order that one can make in a message-passingdistributed system without external channels.The kind of applications that require potential causality, represented by distributed recovery,require as close an approximation as possible to the true causality between events. This truecausality is captured by the following true causes relation between events:De�nition 1An event a truly causes an event b (denoted by a,!b) if and only if: (1) a and b conict (i.e. thecomputational e�ect of their execution depends on the order in which they are executed), and (2)a occurs before b in real time. Further, two events a and b are independent (denoted by ajb) if andonly if they are incomparable by the truly causes relation (i.e. (a 6,!b) ^ (b 6,!a)).Thus, a send event truly causes the receive event of the same message. However, an event thatprecedes another event according to the local clock of a process does not necessarily truly cause thatevent. (We will elaborate on this key idea in the next section.) This is at the root of all falsecausality inherent in the happened before model.As illustrated in Figure 1, real time and true causality fall at opposite ends of a spectrum ofpartial orders based on their strictness. While logical time tries to approximate the real time totalorder that lies on one end of the spectrum, potential causality tries to approximate true causality atthe other end. Happened before was initially introduced to model logical time and therefore closely3



Real Time Logical Time Potential Causality True CausalityOccurred Before Happened Before Potentially Causes Truly Causes( ! ) ( p,! ) ( ,! )is Simultaneous with is Concurrent with is Potentially Independent of is Independent of( k ) ( jp ) ( j )Table 1: A Summary of Modelsapproximates real time. By a historical accident, it was also used to model potential causality. Infact, in attempting to approach real time, the happened before model creates more false causalitythan necessary. A better model for potential causality would be a less strict partial order thatapproaches true causality in the spectrum indicated in Figure 1.4 The Potential Causality ModelIn order to model potential causality, we must track causal dependencies. In a message-passingsystem without external channels, causality between processes may only be through messages.Within the same process, however, we must assume the existence of a local causality trackingmechanism (just as happened before assumed a local time tracking mechanism). We require thatthe local causality tracking mechanism be pessimistic: it must order local events stricter than theirtrue causal ordering. Thus, if one local event truly causes another, it must also potentially causethe other.De�nition 2The potentially causes relation, denoted by p,!, is the smallest relation satisfying the following: (1)If a and b are events in the same process, and a can be determined to potentially cause b by a localcausality tracking mechanism, then a p,!b. (2) If a is the send event of a message and b is the receiptof the same message by another process, then a p,!b. (3) If a p,!b and b p,!c, then a p,!c. Further, twoevents a and b are potentially independent, denoted by ajpb, if and only if they are incomparableby the potentially causes relation (i.e. (a 6 p,!b) ^ (b 6 p,!a)).Table 1 summarizes the di�erent models of distributed computations. Note that the orderingof events becomes less strict from left to right. In particular, for any two events a and b:a ! b ( a p,! b ( a ,! ba k b ) a jp b ) a j bLocal Causality TrackingThe crucial di�erence between the potential causality model and the happened before model isin the local ordering of events in a process. While happened before totally orders local eventsin real time, potential causality partially orders local events as indicated by a causality trackingmechanism.As long as local causality tracking is a valid approximation of true causality as de�ned above,we allow any partial order of local events to be a valid local ordering of events. The choice of alocal causality tracking mechanism would depend on the intended application domain. The reason4



for this is two-fold. Firstly, the de�nition of true causality has di�erent implications in di�erentapplication domains. Secondly, the application domain would determine the ease of implementation,and consequently, the closeness of approximation to true causality that is possible. We now discussthese issues.First, we return to the key observation that we made in the previous section to distinguishbetween logical time and potential causality: an event that precedes another event according to thelocal clock of a process does not necessarily truly cause that event. This is clear in the followingapplication domains:� A single shared communication subsystem can receive calls from many independent applica-tions. Events across calls from independent applications would be independent but would still betotally ordered by a local clock.� Database systems use a model in which only the order of conicting operations is important.All other operations are, in fact, independent. This allows exibility for better concurrency andrecoverability. In such a model, the local clock ordering of events is important only for those oper-ations that conict.� During recovery in distributed systems, so long as the �nal state recovered is the same, theexact order in which events are replayed is unimportant. Events which could happen in either orderwith the same e�ect are independent regardless of their local clock ordering.� Applications consisting of multiple processes or multiple threads have independent eventsacross processes and threads which are ordered in an arbitrary way by the local clock. This is anexample where local concurrency is a form of independence. It has often been modeled by extend-ing the happened before model to have a separate (happened before) process for each (operatingsystem) process or thread. Note that this is not in-line with the original intent of happened before,that of tracking real time order, and is more in-line with our causality tracking approach.These example applications su�ce to demonstrate that a local clock ordering does not cor-respond to true causality in a number of application domains. They also demonstrate how thede�nition of true causality would apply to various application domains.The issue of implementing a local causality tracking mechanism would also be applicationspeci�c. Each application must determine whether a given pair of events are potentially independentor not. A discussion of such implementation techniques, though important, is beyond the scope ofthis discussion.5 ApplicationsWe have mentioned that there are a number of applications that require causality to be tracked.We now present some representative applications and demonstrate how they bene�t from the useof the potential causality model. Each of the applications has been researched extensively inthe literature using happened before. In each case, we show that potential causality is the moreappropriate model.5.1 Race DetectionThe main reason that parallel programs are di�cult to debug and test is that message races causenon-determinism. A large body of research has been devoted to detecting such races. We focus onone such work [NBDK96].The authors use the happened before model and local events are totally ordered. A race isde�ned to occur when the following conditions exist: a receive operation r is pending, two or more5
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(c) race detected in strong causalityFigure 2: Race Detectionmessages are simultaneously in transit, and the messages are sent on channels over which r listens.In Figure 2(a) a race is detected because the two messages m1 and m3 may be simultaneously intransit on channels over which pending receive r1 is listening. On the other hand, in Figure 2(b)no race is detected because m1 and m3 cannot be simultaneously in transit. This is because thereceive event r1 of message m1 happened before the send event s3 for m3. Therefore, the messagem1 is believed to cause message m3.However, the aw in this reasoning is that r1 happened before s3 merely implies that m1 mayhave caused m3. If r2 and s3 are independent, then m1 and m3 may be in transit simultaneously,and we have a race. This is clear from the potential causality representation shown in Figure 2(c).To summarize: the potential causality model allows the detection of races that would be missedin the happened before model owing to false causality.5.2 Predicate DetectionThe predicate detection problem involves detecting a condition that is de�ned on the combinedstate of multiple processes. It is a fundamental problem that has applications in many areas, suchas in distributed debugging. Predicate detection has been widely studied and we select one work[GW94].The authors de�ne the predicate detection problem in the context of the happened before modelwith totally ordered local events. As an example, consider a two process system in which we wouldlike to detect if mutual exclusion is violated. The predicate to be detected is: cs1 ^ cs2 where cs1and cs2 are local predicates that are true within a critical section. The authors give an e�cientalgorithm for detecting such a predicate.In the computation shown in Figure 3(a), for example, the predicate would be detected because
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(a) recovery in happened before (b) recovery in strong causalityFigure 4: Recoveryboth critical sections may be entered simultaneously. However, in Figure 3(b), the predicate is notdetected because the message makes the critical section for cs1 happen before the critical sectionfor cs2.However, the message may have been fortuitous and may have had nothing to do with themutual exclusion protocol. The message induced false causality which led us to miss a bug in theexecution. If we had used the potential causality model instead, the predicate could be detected asshown in Figure 3(c). This is a more accurate representation of the causal dependencies betweenevents in the execution. In one of our recent studies [TG98], we presented algorithms for solvingpredicate detection in the potential causality model.To summarize: the potential causality model allows the detection of predicates (bugs) thatwould be missed in the happened before model owing to false causality.5.3 RecoveryWe choose [EJW96] as a recent survey of rollback-recovery protocols in message-passing systems.The authors classify rollback-recovery into two categories: checkpoint-based rollback-recovery andlog-based rollback-recovery. To simplify our presentation, we limit our focus to log-based rollback-recovery. Our arguments can be extended to cover checkpoint-based rollback-recovery as well.In Figure 4(a), process P1 has failed and has recovered to state a (using checkpoints and messagelogs). In order to maintain consistency, any events that causally depend on the events on P1 thathave been rolled back must also be rolled back. The most recent consistent global state to whichthe whole system can roll back is termed the maximum recoverable state, (G in the �gure).As expected of the happened before model, some events may be unnecessarily rolled backbecause of false causality. If the receive and send events on process P2 were independent as inFigure 4(b), then the maximum recoverable state can be advanced (to H) to avoid unnecessaryrollbacks. In this case, process P2 only needs to roll back its receive event and process P3 doesn'tneed to roll back at all.To summarize: the potential causality model requires less rollback during recovery than thehappened before model, and thus results in less wasted work.As an aside, we note that log-based recovery schemes are classi�ed into pessimistic, optimistic,and causal schemes. Reducing the extent of roll-back has an impact on optimistic schemes. Usingpotential causality also has bene�ts for causal log-based recovery [EZ92, AHM93]. These schemesexplicitly track causality using happened before. The potential causality model would identify falsecausality, and thus reduce the number of piggy-backed messages and message logs.7
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delayed deliveryFigure 5: Causal Ordering5.4 Causal OrderingWhile there has been a lot of research in causal ordering, we focus on one paper that criticizes causalordering [CS93] in the happened before model. As stated in the paper, causal ordering \ensuresthat messages are delivered in an order that is consistent with the potential causal dependenciesbetween messages".One of the main criticisms that the authors level against causal ordering in the happenedbefore model is that \false causality reduces performance by unnecessarily delaying messages untilthe earlier supposedly `causally related' messages are received and delivered". This situation isshown in Figure 5(a) in which message m2 must be delayed until the message m1 is received anddelivered.However, it is possible that messages m1 and m2 were independent (i.e. had independent sendevents), in which case, this delay was unnecessary. If we remodel the computation in the potentialcausality model as shown in Figure 5(b), the independence of the two messages becomes apparentand the delay may be avoided.To summarize: the potential causality model leads to more e�cient implementations of causalordering than the happened before model by avoiding unnecessary delaying of messages owing tofalse causality.6 Discussions and ConclusionsA computation, in the sense that we have used it, is something that has actually happened. Itmay, therefore, seem peculiar that a single potential causality model may capture multiple possibleinterleavings of local events (or, multiple possible happened before computations). The same factmay be noticed in the happened before model as compared to the real time ordering model. Thehappened before model allows multiple possible real time orderings. In both cases, the explanationfor this seeming paradox is that what actually happened lies in the eyes of the beholder . If theobserver is interested in applications that require logical time, he would pay attention to theordering of local events based on real time. However, if the observer were interested in applicationsthat require potential causality, he would only pay attention to the causal ordering of local events.The crucial deciding factor in choosing the happened before or the potential causality model isthe type of application being considered. A litmus test for making this decision would be to askthe following question: Would a global clock help? A \yes" would indicate happened before, whilea \no" would indicate potential causality. For example, in mutual exclusion, a global clock wouldallow the timestamping of critical section requests in real time and lead to a fair granting order.8



In fact, even without a global clock, if there were multiple threads in a process, we would preferto treat local events as being totally ordered using the local process clock. In an application likerace detection, for example, a global clock would have no advantage because any more orderingwould merely induce more false causality and reduce our chances of detecting a race (as shown inSection 5).Sometimes the happened before model has been interpreted in a manner that allows a separateprocess to model each local (operating system) process or each local thread. This is a model thattries to approximate true causality but falls short of tracking any independences beyond those thatstand out as being parallel. However, such an interpretation should be distinguished from theoriginal intent of happened before, which was to model logical time. Thus, mutual exclusion wouldnot use such an interpretation while race detection would.We have drawn attention to the false causality problem which limits the e�ectiveness of thehappened before model in modeling potential causality. The potential causality model was intro-duced to correct this problem. We have demonstrated its applicability in a number of applicationareas.References[AHM93] L. Alvisi, B. Hoppe, and K. Marzullo. Nonblocking and orphan-free message loggingprotocols. In Proc. of the 23rd IEEE Symposium on Fault-Tolerant Computing Systems,pages 145 { 154, Toulouse, France, June 1993.[CS93] D. R. Cheriton and D. Skeen. Understanding the limitations of causally and totallyordered communication. In Proc. of the 11th ACM Symposium on Operating SystemPrinciples, pages 44 { 57, Austin, USA, 1993.[EJW96] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of rollback-recovery pro-tocols in message-passing systems. Technical Report CMU-CS-96-181, Dept. of Com-puter Science, Carnegie Mellon University, Pittsburgh, USA, 1996. (also available atftp://ftp.cs.cmu.edu/user/mootaz/papers/S.ps).[EZ92] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-recovery with lowoverhead, limited rollback and fast output commit. IEEE Transactions on Computers,41(5):526 { 531, May 1992.[GW94] V. K. Garg and B. Waldecker. Detection of weak unstable predicates in distributedprograms. IEEE Transactions on Parallel and Distributed Systems, 5(3):299 { 307,March 1994.[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-nications of the ACM, 21(7):558 { 565, July 1978.[Mat89] F. Mattern. Virtual time and global states of distributed systems. In Parallel andDistributed Algorithms: Proc. of the International Workshop on Parallel and DistributedAlgorithms, pages 215 { 226. Elsevier Science Publishers B. V. (North Holland), 1989.[NBDK96] R.H.B. Netzer, T.W. Brennan, and S. K. Damodaran-Kamal. Debugging race conditionsin message-passing programs. In SIGMETRICS Symposium on Parallel and DistributedTools, Philadelphia, USA, May 1996.9
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