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Abstract

I present a general framework for observing and controlling a distributed computation and its applications
to distributed debugging. Algorithms for observation are useful in distributed debugging to stop a distributed
program under certain undesirable global conditions. I present the main ideas required for developing
efficient algorithms for observation. Algorithms for control are useful in debugging to restrict the behavior
of the distributed program to suspicious evecutions. It is also useful when a programmer wants to test a
distributed program under certain conditions. I present different models and their limitations for controlling
distributed computations.

1 Introduction

Many problems in distributed systems, especially in distributed debugging, can be viewed as special cases
of the problem of observing and controlling a distributed computation. For example, deadlock detection,
termination detection, and breakpoint detection are some specific instances of the observation problem
while problems of mutual exclusion, resource allocation, global synchronization and ordering of messages
are special cases of the control problem. In this paper, I present a general framework for observing and
controlling a distributed computation.

There are three fundamental defining characteristics of distributed systems - the lack of shared clock,
the lack of shared state, and the presence of multiple processes. The lack of shared clock implies that
the order of events in a distributed system can only be partial. The lack of shared state implies that
computation of global functions must incur overhead of message passing. Finally, due to presence of
multiple processes, there are exponential number of possible global states in a distributed computation
and therefore we frequently face the problem of combinatorial explosion in analysis of distributed systems.
These three characteristics make the design, analysis and debugging of distributed programs difficult.

What can we do to alleviate these problems ? For observation of distributed computation, three ideas
have been used in literature to effectively solve the above problems - causality, monotonicity and linearity.
Causality is used instead of real-time in defining global states. Monotonicity is used as a restriction on the
predicates so that at most one value is required to be communicated per external event of a process. Finally,
linearity is used to avoid exploring all possible global states. Based on these ideas, efficient algorithms can
be developed for observation.
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The objective of control in a distributed system is to maintain either an invariant on the global state or
to ensure a proper order of events. The problem of control can be formulated under four settings depending
upon whether it 1s online or offline, and whether the controller is allowed to change the order of events
or simply introduce delay between events. Since the controller delays or disables events it is important
that it does not introduce deadlocks in the system. When the control is online, the future computation
is not known and avoiding deadlocks is impossible unless some assumptions are made. For example, it is
impossible to maintain even a disjunctive predicate under online control. Similarly, any message ordering
based on the online control must include at least all computations that are synchronously ordered. When
the control is offline, determining a control strategy is possible but computationally intractable in general.
By making restrictions on the control specification, the problem can be solved efficiently for many useful
special cases. For example, there exists an efficient algorithm to maintain disjunctive invariants.

This paper 1s not a complete survey of algorithms on observation or control; rather it is a report on
work done in the Parallel and Distributed Systems Laboratory (PDSLAB) at the University of Texas at
Austin. T have sketched only the main ideas behind the algorithms. The reader is referred to [Gar96al
for a tutorial on distributed algorithms for observation and to [Gar96b] for a more detailed description of
some of these algorithms.

The paper is organized as follows. Section 2 describes our model of distributed computation and global
predicates. Section 3 discusses key problems and their solutions for observation of global properties.
Section 4 discusses various models of control and reports some of our work for control. Finally, Section 5
describes applications of observation and control to distributed debugging.

2 Our Model

We assume a loosely-coupled message-passing system without any shared memory or a global clock. A
distributed program consists of N processes denoted by {P;,Ps,...,Py} communicating via asynchronous
messages. In this paper, we will be concerned with a single run of a distributed program. We assume that
no messages are altered or spuriously introduced. We do not make any assumptions about FIFO nature
of the channels.

A local state is the value of all program variables and processor registers (including the program counter)
for a single process. The execution of a process can be viewed as a sequence of local states. We use a
causally precedes relation, ‘—,” between states similar to that of Lamport’s causally precedes relation
between events [Lam78]. The causally precedes relation between two states s and ¢ can be formally stated
as: s — t iff s occurs before ¢ in the same process, or the action following s is a send of a message and the
action preceding ¢ is a receive of that message, or there exists a state u such that s causally precedes u and
u causally precedes t. We define a distributed computation as the partially ordered set (poset) consisting
of the set of states together with the causally precedes relation.

Two states s and ¢ are concurrent if s does not causally precede ¢ and ¢ does not causally precede s.
A cut GG is a collection of local states such that exactly one state G[i] is included from each process F;.
A cut is called a consistent cut or a global state if all states are pairwise concurrent. Given two cuts, G
and H, we say that G < H ift G[{] < H[{] for all i. The set of all global states form a lattice under this
order[Mat89].

A local predicate is defined as any boolean-valued formula on a local state. For any process, P;, a local
predicate is written as [;. A process can obviously detect a local predicate on its own.

3 Observation of Global Properties
Dear Watson, you see but you do not observe...

Consider a distributed debugging system. Suppose that our task is to implement the most basic com-
mand of a debugging system: “stop the program when the predicate ¢ is true.” To stop the program, it is
necessary to detect the predicate ¢; a non-trivial task if ¢ requires access to the global state. Each of the
difficulties mentioned in the introduction needs to be addressed to develop algorithms for detecting ¢q. We
discuss each one of them next.



3.1 Lack of shared clock

Our first difficulty is defining the meaning of predicates in a global system. For a simple example,
consider the predicate ¢ = C'S; A CS; where CS; and CSs are predicates local on processes P, and Ps
respectively. One natural way of defining truthness of this predicate is that ¢ is true in a computation if and
only if there exists an instant of time in which both C'S; and C'S; are true. While this definition is adequate
for sequential systems, it presents many problems in distributed systems. Since clocks are impossible
to synchronize perfectly, it is impossible to ascertain whether two events happened simultaneously in a
distributed system. This problem is solved by substituting causality for time (and therefore concurrency
for simultaneity). Thus, we define ¢ to be true if there exist two states s and ¢ such that C'S; is true in s,
('S5 1s true in ¢t and s and ¢ are concurrent.

An advantage of the definition based on causality i1s that we can evaluate truthness of the predicate
using vector clocks [Fid89, Mat89]. Further, for many applications such as distributed debugging this
definition is more useful. For example, even if C'S; and C'S5 are not true simultaneously, but there exists
two concurrent states in which C'S; and CS; are true, then there is an error in the program. This is
because there exists a way of running the same program in which C'S; and C'S; are true simultaneously.

With the above observation in mind, the truthness of a general boolean predicate ¢ is defined with two
modalities. The predicate possibly: g is true if in the lattice of global states there is a path from the initial
global state to the final global state in which ¢ is true in some intermediate global state. The predicate
definitely: q 1s true if ¢ becomes true in all paths from the initial state to the final state in the lattice of
global states. Possibly: ¢ and definitely: q roughly correspond to weak and strong predicates in [GW92].
Possibly true predicates are useful for detecting bad conditions such as violation of mutual exclusion,
whereas definitely true predicates are useful to verify occurrence of good predicates such as commit point
on transaction systems. In this paper, we will discuss main ideas to develop efficient algorithms for
detecting predicates of the form possibly: q.

3.2 Lack of shared memory

Our second difficulty stems from the fact that there is no shared memory. Thus, there is an inherent
communication complexity for observing a global property of the system. For example, consider a global
predicate ¢(x1, £2) where x; and x5 are variablesin P; and P respectively. If evaluation of this predicate at
P requires communication of all values of z; from P, to Ps, and evaluation at P; requires communication
of all values of x4 from Ps to Py, the function is clearly impractical to evaluate in a distributed system. In
particular, if evaluation of a function requires communication of some value for every change in the value
of a variable, then that function is impractical. To capture a class of functions which requires at most one
value to be communicated per external event, we use the notion of monotonicity.

Informally, a predicate is monotone with respect to a variable z; if replacing the variable by a larger
value while keeping all other variables the same preserves the truthness of the predicate. Formally, assume
that z; takes its value from a set totally ordered with respect to a relation <. We say that ¢ is monotone
with respect to the first argument (z1) if it satisfies the following equation:

Va,b,xo: (a < b) = (q(a, x2) = q(b, x2)).

For example, consider the predicate ¢ = (#1 > x2) where #; and x2 are integers. Then ¢ is monotone
with respect to x1, because if ¢(x1,z2) holds for a certain value of #1, then it would continue to do so
for any larger value of #1. The predicate ¢ is also monotone with respect to x5 because for z; we can
use the domain of integers with < defined as the greater than relation defined on natural numbers. As
another example, consider the conjunctive predicate 1 A 3 ... A z, where each z; is a boolean variable.
By viewing the boolean domain as a totally ordered set with false to be defined as smaller than true, it can
be easily seen that the conjunctive predicate is also monotone with respect to all variables. An example
of a predicate that is not monotone with respect to either x; or xs is (x1 = z2).

Monotonicity of a predicate allows us to restrict our attention to state intervals rather than states. A
state interval is a sequence of states between two external events where an external event is the sending
or receiving of a message, the beginning of the process and the termination of the process. For each state



interval it is sufficient to record and communicate the extremal value of the variable rather than all values
taken by the variable in that interval. Since the number of state intervals is equal to the number of external
events for a process, it is usually a much smaller number than the total number of events in the system.
For example, if we are detecting (#1 > #2) and 1 takes values 2,9,4 and 7 between two external events,
then it is sufficient to communicate the value 9. From now on we will use the term state and state interval
interchangeably.

We note here that functions other than boolean can also be evaluated efficiently when they satisfy
monotonicity. For example, [TG97b] describes an algorithm to compute maz(z; + #2) in a distributed
system.

3.3 Combinatorial Explosion

Now assume that we have overcome limitations due to lack of shared clock and shared memory, for
example, by using causality and monotonicity. This implies that we have the poset corresponding to the
computation available at one process. So now, the problem is not even of distributed computing because
all the required data is at one process. The problem we may face at this point 1s that of computation
complexity. Since there are n processes, the total number of global states possible is m” where m is
the number of state intervals at any process. Consider a boolean predicate ¢. Even when ¢ i1s a boolean
expression, and processes do not communicate, the problem of detecting possibly: ¢ is NP-complete [CG95].

Even though the problem is NP-complete for general boolean expressions, there exist efficient algorithms
for several classes of ¢ which occur in practice. One useful class is that of linear predicates which is based
on the notion of forbidden state. Given a computation S, a predicate ¢, and a cut G in S, a state G[i] is
called forbidden if its inclusion in any cut H, where G < H, implies that ¢ is false for H. That is,

forbidden(G, i) ' VH : G < H : (G[i] = H[i]) = —q(H)

Based on the concept of a forbidden state, we define a predicate ¢ to be linear with respect to poset

S if for any cut G in the poset, the fact that ¢ is false in G implies that G contains a forbidden state.
Formally, a boolean predicate ¢ 1s linear with respect to a poset S iff:

VG —q(G) = i - forbidden(G, 1)

Observe that the linearity of a boolean predicate also depends on the poset S. We are typically interested
in predicates which are linear for all posets consistent with a program. Observe that if ¢; and ¢, are linear,
then so 1s g1 A ¢2. Similarly, if ¢ is defined using variables of a single process, then ¢ 1s linear. It follows
that a predicate ¢ of the form I3 Aly A ...[,, where each [; is a local predicate is a linear predicate. If ¢ is
false in any cut, then one of the local predicates is false in some state s. The state s is forbidden because
g cannot be true in any global state containing s.

There are other interesting examples of linear predicates, for example some channel predicates. We
define a channel to be a uni-directional connection between two processes — one process performs all send
events and the other all receive events. Channels have no memory. Hence, the state of a channel is the
difference between the set of messages sent and the set of messages received. A channel predicate is any
boolean function of the state of a channel. A channel predicate is linear by above definition if given any
channel state in which the predicate is false, then either sending more messages is guaranteed to leave the
predicate false, or receiving more messages is guaranteed to leave the predicate false. An example of a
linear predicate is “channel Cj; is empty”. If this predicate is false, that is, the channel is not empty, then
sending more messages is guaranteed to leave the predicate false.

As another example, consider the predicate x + y > k where x and y are variables on processes P; and
Py, and k 1s some constant. In general, this predicate is not linear. However, assume that = is known to
be decreasing in the computation. In this case, z 4+ y > k is linear. Given any cut, if « + y < k, then
we throw away the state with y variable. This is because that state combined with any future state for x
variable can only have a smaller value for z + y.

Note that any global predicate, ¢, defines a (possibly empty) set of global states in which ¢ is true. Tt
is shown in [CG95] that ¢ is linear with respect to a computation iff the set of global states in which ¢ is



Characteristic Problem Idea Bonus

No shared clock ordering events causality avoid data race errors

No shared memory | message/state change monotonicity compute extremal functions
multiple processes | combinatorial explosion linearity get the first global state

Figure 1. Problems and their solutions for observation

true i1s an inf-semilattice. An implication of this result is that the first cut satisfying ¢ is well defined iff ¢
is linear.

3.4 Algorithmsfor Observation

In this section we show that above ideas can be used to derive a a centralized algorithm to detect
predicates of the form possibly:q where ¢ 1s a conjunction of local predicates and linear channel predicates.
We call such a predicate a General Conjunctive Predicate (GCP) [GCKM95].

The work of detection of the global predicate is divided among checker and non-checker processes. The
non-checker processes are used in the computation and have local predicates and channels with predicates.
The checker process is the process that determines if these predicates are true in the same global state.

The non-checker processes monitor local predicates. These processes also maintain information about
the send and receive channel history for all channels incident to them. The non-checker processes send a
message to the checker process whenever the local predicate becomes true for the first time since the last
program message was sent or received. Since we use causality to define the semantics of truthness of ¢, we
use vector clock instead of real-time clock to identify the instant the local predicate becomes true. Further,
due to monotonicity of the predicate it is sufficient to send at most one message to the checker process
per message sent or received. This message is called a local snapshot and is of the form: (vector, incsend,
increcv) where vector is the current vector timestamp while incsend and increcv are the list of messages
sent to and received from other non-checker processes since the last message for predicate detection was
sent.

The checker process is responsible for searching for a consistent cut that satisfies the GCP. Its pursuit
of this cut can be most easily described as considering a sequence of candidate cuts. If the candidate cut
either is not a consistent cut, or does not satisfy some term of the GCP (local predicate or a channel
predicate), the checker can efficiently eliminate one of the states along the cut. This is due to linearity of
a GCP predicate. The eliminated state can never be part of a consistent cut that satisfies the GCP. The
checker can then advance the cut by considering the successor to one of the eliminated states on the cut.
If the checker finds a cut for which no state can be eliminated, then that cut satisfies the GCP and the
detection algorithm halts. This cut is the first cut for which GCP is true.

The above algorithm can be decentralized using techniques described in [GCKM94, GC95, HMRS95].
Other algorithms for predicate detection include stable predicates [CL85], relational predicates [TG97b],
atomic sequences [HPR93], linked predicates [MC88], dynamic properties [BRI5], general possibly and
definitely predicates [CM91], regular patterns [FRGT94], general control flow patterns [GTFR95], con-
junction of global predicates [SS95, GM96], event normal form predicates [CK94], recursive poset logic
predicates [TG95] and strong conjunctive predicates [GW96].

We note here that the observation problem can either be solved in an on-line or in off-line setting. In
an off-line algorithm you assume that the entire computation is given to you whereas the online algorithm
is given ony the past and must make observations while the computation is unfolding.

3.5 Open problemsin observation

In this section, I present some useful problems in observation of distributed programs which are open
to the best of my knowledge.

1. Detecting exactly-k predicate: Consider the predicate &1 + z5... 4+, = k where each z; is a boolean
variable on process P;. Is there an efficient algorithm to detect this predicate 7 Observe that efficient



algorithms for @1 + @s... + @, > k and #; + @5... + 2, < k are known [Gar96b]. Also, if #; can take
any value then the problem is NP-complete since the set partition problem can be reduced to this
problem.

2. Detecting conjunction of 2-local predicates: Consider the predicate (Pl.z < P2.y)A(P3.x < P4.y)A..
Each of the conjunct in this predicate depends on at most two processes. If each conjunct can refer to
any process, then the problem is known to be NP-complete [SS95]. However, if each process appears
in the predicate at most once, then the reduction for [SS95] does not work. Is there a a polynomial
algorithm to detect a predicate of this form?

3. Detecting 2-SAT predicates: Consider a boolean predicate ¢ in CNF form. If each clause has up to
3 literals, detecting g 18 NP-complete. If each clause has exactly one literal, then ¢ can be detected
efficiently using [GW94]. What is the complexity of detecting 2-SAT predicates?

4 Control of Distributed Predicates

Who controls the past controls the future, who controls the present controls the past...
George Orwell, Nineteen Eighty-Four.

We now go to the next natural step after observation - control. We propose the notion of a supervisory
process. A supervisory process not only observes the underlying user process but also controls it by delaying
(or disabling) some events or changing the order of messages in the user process. There any many reasons
why we need the ability to control a distributed computation via supervisory processes.

Firstly, a supervisory process is essential for fault-tolerance. The current programming methodology
views programming task as a simple execution of instructions. This execution may result in a fault which
could have been avoided if critical events were verified for their suitability before execution. This is in
contrast to human beings, who mix introspection with actual execution of a task. For example, if a human
i1s using a recipe to cook some item, and comes across an instruction asking him to put his hand on
fire, his common sense will dictate to him that he must not do so. Thus, a human being rarely follows an
instruction blindly. He observes and controls the instruction he executes. In other words, every process has
associated with it a meta-process which observes and controls the underlying process. Thus, a supervisor
can be viewed as the meta-process which deals with events executed by the process itself. It may check
integrity of data structures before or during any execution of critical events.

A supervisory process can also be viewed as an auxiliary process that monitors and adapts a program to
varying external behavior. Supervisors have long been used for this purpose in control theory. A feedback
supervisor can be used for tuning the parameters of the plant that may affect its behavior, or even switch
from one policy to the other. For example, assume that procedure A and procedure B achieve the same
result, but procedure A performs better than procedure B if the network is highly loaded, and vice-versa
if 1t 1s lightly loaded. The underlying process may non-deterministically call both procedures, and the
supervisor may enable the procedure which i1s more suitable for conditions at that point in time.

Last but not the least, the notion of supervision is also important in debugging and testing of a dis-
tributed program. Debugging or testing a distributed program is in essence search for anomalous behavior
and identification of its cause. For this, the programmer needs to observe the program under some con-
trolled environment. Why controlled environment ? The programmer may suspect that the bug arises
when the execution satisfies certain constraint (for example, when message my is delivered before message
mz). Thus, the programmer is interested only in those executions which satisfy these constraints.

4.1 Different Modesfor Control

How does a supervisor exercise the control? Four possibilities are outlined in this section.

1. Offline vs Online control: We say that a supervisor exercises online control if it does not know about
the future of the computation. Not knowing the future, the controller has only limited ability to meet
the desired specifications. For example, we later show that it is impossible for an on-line controller to



meet disjunctive specifications without avoiding deadlocks. In the offline control model, we assume
that the supervisor knows about the future. At first this model seems unrealistic, but this model has
many applications. Consider distributed debugging. Assume that a computation was run in which
the final results were unexpected. The programmer may want to run the same computation but now
under the supervisor so that the computation goes through some controlled execution.

2. Delaying events vs Changing order: Here we address the issue of the power of the supervisor. A
milder form of the supervision exists when the supervisor is allowed only to introduce the delay
between events. Thus, the only difference between an uncontrolled and controlled computation is
that there are fewer executions possible under control. The crucial problem here is introduction
of deadlocks. The controller must ensure that no new deadlocks are introduced in the system by
delaying of events.

A more powerful controller can decide to change the order of events. For example, the controller may
change the order of messages received to meet the desired specification. Observe that both offline
and online scenarios are possible. Under offline control, the controller may know that in the last run
the message my was received before my. Therefore, in the next run it may deliver my before my
possibly by delaying the receive of my. This change of message ordering may be used for generating
a different test case or during recovery from a software fault. Under online control, the controller
may not know the future; but still be able to exercise some control. The simplest example of such
control is imposition of the first in first out ordering on messages. By including sequence numbers,
it is easy to control the message ordering so that the FIFO order is maintained.

We next discuss control under all four possibilities.
4.2 Deaying events. Offline control

The problem of offline control by delaying events can be posed as follows. We are given a poset S
representing the computation. We are also given a boolean predicate gq. The goal of the controller is
to determine if there exists a way of delaying events in the poset S such that ¢ is always true in the
controlled execution. The task of delaying events can also be viewed as imposing an additional precedence

relationship < between events. Of course, the new relation should not interfere with existing causality

relationship. In other words, on adding edges from the < relation to the graph corresponding to the
computation, the graph should remain acyclic. It can be shown that even if the computation is free from
communication, and the boolean predicate is simply a boolean expression of local predicates, the problem
of determining whether a control strategy exists is NP-complete [TG97a]. Considering that the problem
of predicate detection for boolean expression is also NP-complete this is not surprising. The important
issue here is whether there exists a useful class of predicates which can be controlled efficiently.

One such class of predicates is disjunctive predicates. A disjunctive predicate can be written as l; VIy V
...V I, where each I; is a local predicate. This can be viewed as avoiding a bad combination of states. One
example is avoidance of deadlock in the classical dining philosophers problem. We can avoid deadlock by
ensuring that at least one of the philosophers does not have any fork at all times. As another example
consider availability of servers for critical tasks. We may impose a requirement on the system that at least
one server is available at all times for critical tasks. One use of control in these applications would be
rollback of the system under a fault and then its reexecution under control.

The algorithm for determining the strategy for disjunctive predicate control is based on the idea of
overlapping intervals. Let /1 and I be two sequences of contiguous states such that local predicates [; and
ly are false in I; and I» respectively. We say that I; and I, overlap if the lower end point of I; causally
precedes the higher endpoint of I and vice-versa. An important result is that a control strategy does not
exist 1ff there exist intervals in which local predicates are false such that any pair of these intervals overlap.
The proof of this result can be found in [TG97a]. In [TG97a], we also describe an efficient algorithm to

add < relation which does not interfere with the existing causal relationship and guarantees that the given
disjunctive predicate is always true in the existing computation.



4.3 Deaying events - Online control

The problem of delaying events to guarantee a predicate is similar to the offline control except that the
entire poset is not given to us. That is we assume that nothing about the future is known. For many
applications this i1s the only realistic assumption. In this scenario, under the assumption that the processes
are allowed to block for messages at any time it is impossible to control the system to maintain even a
disjunctive predicate [TG97a]. The problem is that the deadlock is impossible to avoid while keeping
an invariant if the future 1s not known. Given a choice of which process to delay to avoid falsifying the
invariant the controller cannot make the right choice without knowing the future. For example, if the
controller chooses to delay P, and not P», it may turn out that P, waits for P; to send a message. At that
point the progress cannot be made without violating the invariant. However, if the controller had chosen
P5, there may be a valid computation which maintains the invariant. Thus, the controller can always be
forced to make the wrong choice regarding which processes to delay for maintaining an invariant.

Therefore, we now assume that a process cannot block for a message while its local predicate is false.
For example, in a 2-process mutual exclusion this would mean that a process cannot block in its critical
section. Under this scenario, maintaining a disjunctive predicate requires that at least one process keeps
its local predicate true at all times. If we call the section of the code in which the local predicate is false
the critical section, then maintaining a disjunctive predicate defined on n processes is equivalent to n — 1
critical section problem. That is, at most n — 1 processes can be in the critical section at any time. A
simple solution based on the concept of token can be used [TG97a]. The process which has the token is
not allowed to enter its critical section. By our assumption any process that enters the critical section
will eventually get out of it and is now a candidate for receiving the token. The details can be found in
[TGIT4a].

In [TG94], we discuss maintaining global assertions which are in the sum of product form. Some
examples of such assertions are 1 + @9 + ... + x, < k, and 1.2 + x3.24 > k where x;’s are in different
processes.

4.4 Controlling Order - Offline Controal

Assume that the programmer has run the computation once in which the final results are not correct.
The programmer suspects that there is a bug in the program due to race of messages. That is, if a
particular process receives and acts on message m; before another independent ' message msy, then the
results are faulty, otherwise not. In this case, she may want to reexecute the program under control so that
ms 18 delivered before my. In distributed debugging, if messages themselves are saved then one process
can be fed those messages in any desired order. If message ordering is saved, then the entire computation
can be run again but that process is delivered messages under the control of debugger. Kilgore and Chase
[KC97] describe a Last-First Reordering algorithm that reexecutes a computation so that greatest number
of message pairs are reversed in a single reexecution. Alternatively, the programmer may specify an order
expression which tells the possible sequences of events that are allowed. For example, she may use regular
expression, its generalizations such as concurrent regular expressions[GR92], path expressions[CH74], or
dag expressions| GTFRI5] to specify these sequences.

It is important to note here that once ordering of events has been changed, there is no guarantee that
the rest of the computation will be the same as the last time.

45 Controlling Order - Online Control

We now assume that no information about the future of the computation is available. It 1s still possible
to exercise some control. For example, if process P, sends k messages to Ps, then these messages can be
received in k! ways each resulting in a different poset. Putting a FIFO order can be viewed as controlling
the system so that some of these posets are not possible.

In this section we will focus only on external events; similar techniques can be applied to control
ordering of other events. With each message we associate four events - invocation of the message, send of

1By independent message we mean that the sending of message mo is causally unrelated to the sending of message my.



the message, receive of the message and the delivery of the message. The invocation of the message takes
place when user requests a message to be sent. The send of the message takes place when the controller
informs the user that the message has been sent. Thus, the supervisor has the ability to delay the send
of the message. The receive of the message takes place when the message reaches the destination process.
The delivery of the message takes place when the message is actually delivered. Again, the delivery of
the message can be delayed by the supervisor. By delaying the sends and the delivery of messages, the
supervisor can change the order in which messages are sent and received. Observe that the send and
delivery events can be delayed by the supervisor but invocation and receive events are uncontrollable. We
will impose one more condition called liveness on our protocols. If the only events possible in a computation
at certain points are send and delivery, then the protocol must enable at least one of the events. This
restriction follows from our assumption of online control. Since the future is not known, the controller
must always enable one of the current events for progress.

The following result in [MG97b] shows the limitations of the controllers based on above model. We call a
computation synchronously ordered if all messages can be drawn vertically in its process-time diagram. We
first argue that any computation that is synchronously ordered must be allowed by the protocol. Since the
computation is synchronously ordered all the messages can be topologically sorted in the computation. Now
we can run the computation in such a manner that exactly one event is enabled at every point before the
completion of the run. That is, we invoke the first message. Since invocation is uncontrollable, this event is
possible. Now since there is only one event enabled, namely the send event, the protocol must eventually
execute the send event. This implies that the receive event is now possible due to uncontrollability
condition. Finally, the delivery event would be enabled due to liveness condition. We now repeat this
sequence with the second message. Thus, due to liveness condition and the fact that all messages can be
sorted, we get that the synchronous computation is possible under the protocol.

One way for the programmer to specify desired message ordering is by using forbidden predicates
[MGI7b]. A message ordering is acceptable only if it does not satisfy the given forbidden predicate. A
forbidden predicate is a conjunction of causality relationships between sends and receives of messages. For
example, the following forbidden predicate specifies violation of causal ordering:

e,y (v.s —y.8) A(yr — ar)

where x.s denotes send of the message  and z.r denotes receive of the message . By associating colors
and processes with messages, we can define most useful message orderings. One example where color is
used is in the local forward flush channel [Ahu93] which requires that for any channel all messages sent
before a red message are received before that red message. The forbidden predicate for this specification
is

(process(x.s) = process(y.s)) A (process(x.r) = process(y.r) A(color(x) = red) A(x.s — y.s) A (y.r — x.r)

In [MG97b] we show how a controller can take specification as a forbidden predicate decide whether
that specification is implementable or not and if it is generate the protocol such that the predicate never
becomes true in the computation.

As in the off-line case, another possibility for controlling order of events is based on the concept of an
event expression. A primitive event is defined to be as execution reaching a predefined line number or a
function. A complex event could be defined as a regular expression of primitive events or its generalizations
as discussed before. The task of the controller i1s to ensure that the order of events generated belongs to
the specification.

5 Applications to Distributed Debugging

In this section we describe the concept of observation and control that can be used for distributed
debugging. We describe a distributed debugging system that is hypothetical; but all the functionality
described can be implemented efficiently by known algorithms. We propose just one additional command
to a distributed debugging system. The syntax of the command is quite simple:



do action when condition.

The action is taken whenever the specified condition becomes true. The detection of the condition, which
could be global, corresponds to observation and the action corresponds to the control of the computation
discussed in this paper. We first discuss various conditions and their meaning:

1. boolean predicate q¢ on the global state: This corresponds to detecting possibly:q. Since the detection
problem is NP-hard, we may require ¢ to be linear which can be efficiently detected. Linearity also
guarantees that the first global state satisfying ¢ is well defined.

2. reqgular expression r: This corresponds to detecting a pattern in the computation. The regular ex-
pression is built out of local predicates. A regular expression (and its generalization - dag expression)

can be efficiently detected by algorithms in [FRGT94, GTFR95].

The first type of condition is based on a single global state whereas the second type of condition is based
on sequences of local states. There are many ways to combine and extend above conditions; we have kept
our proposal simple.

Now we turn our attention to actions and their meaning. We propose the following types of actions.

1. stop pids: This command stops processes with given pids. The keyword all can be used to signify
that all processes need to be stopped.

2. print expr: This command prints expression whenever the specified condition becomes true. If expr
is null, then the intent is just to inform when the specified condition becomes true. Some information
such as vector clock or line numbers are also printed to indicate when that condition became true.

3. maintain bool: The first two commands exercise trivial control whenever the specified condition
becomes true. The maintain command is the first non-trivial example of control. The programmer
specifies a condition which she wants to be maintained throughout the execution. This control
could be exercised either in an on-line fashion or in an off-line fashion. Here we are assuming that
there are two commands available to the programmer - run and rerun. The first command runs a
new distributed computation whereas the latter runs the previous computation. It is assumed that
the debugger saves ordering of messages (and other sources of non-determinism) so that a run is
replayable. During the rerun command, the debugger has access to the future and can therefore
exercise offline control strategy.

4. maintain order-expression This command controls the ordering of events during the computation.
As in the previous command, this control could be online or offline. The order-expression could be
specified in multiple ways. For message ordering, a forbidden predicate could be specified. For other
events, expression such as a regular expression could be specified. The debugger could then enforce
that order on execution of events. For example, consider the case when the programmer wants to
enforce the ordering of two function calls f and g in different processes to be f followed by g. Then,
she could specify:
maintain (exit f).(enter g)
where . corresponds to concatenation of two events. Based on this command the debugger would
delay the process entering g until the execution of function f is finished.

6 Conclusions

Observation and control of a distributed computation is an useful abstraction for many fundamental
problems in distributed systems. In this paper, we have presented difficulties and some solutions for
observation and control. We have also shown some applications of this framework to distributed debugging.
We have assumed a failure-free environment in this paper. An algorithm for observation under a faulty
environment is given in [MG97a]. We have also kept our model for control simple. A more complex model
may include notion of control variables (variables that are read by the underlying program but written by
the controller) or notion of unobservable and uncontrollable events [RW89, KG95].
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