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The objective of control in a distributed system is to maintain either an invariant on the global state orto ensure a proper order of events. The problem of control can be formulated under four settings dependingupon whether it is online or o�ine, and whether the controller is allowed to change the order of eventsor simply introduce delay between events. Since the controller delays or disables events it is importantthat it does not introduce deadlocks in the system. When the control is online, the future computationis not known and avoiding deadlocks is impossible unless some assumptions are made. For example, it isimpossible to maintain even a disjunctive predicate under online control. Similarly, any message orderingbased on the online control must include at least all computations that are synchronously ordered. Whenthe control is o�ine, determining a control strategy is possible but computationally intractable in general.By making restrictions on the control speci�cation, the problem can be solved e�ciently for many usefulspecial cases. For example, there exists an e�cient algorithm to maintain disjunctive invariants.This paper is not a complete survey of algorithms on observation or control; rather it is a report onwork done in the Parallel and Distributed Systems Laboratory (PDSLAB) at the University of Texas atAustin. I have sketched only the main ideas behind the algorithms. The reader is referred to [Gar96a]for a tutorial on distributed algorithms for observation and to [Gar96b] for a more detailed description ofsome of these algorithms.The paper is organized as follows. Section 2 describes our model of distributed computation and globalpredicates. Section 3 discusses key problems and their solutions for observation of global properties.Section 4 discusses various models of control and reports some of our work for control. Finally, Section 5describes applications of observation and control to distributed debugging.2 Our ModelWe assume a loosely-coupled message-passing system without any shared memory or a global clock. Adistributed program consists of N processes denoted by fP1,P2,...,PNg communicating via asynchronousmessages. In this paper, we will be concerned with a single run of a distributed program. We assume thatno messages are altered or spuriously introduced. We do not make any assumptions about FIFO natureof the channels.A local state is the value of all program variables and processor registers (including the program counter)for a single process. The execution of a process can be viewed as a sequence of local states. We use acausally precedes relation, `!,' between states similar to that of Lamport's causally precedes relationbetween events [Lam78]. The causally precedes relation between two states s and t can be formally statedas: s! t i� s occurs before t in the same process, or the action following s is a send of a message and theaction preceding t is a receive of that message, or there exists a state u such that s causally precedes u andu causally precedes t. We de�ne a distributed computation as the partially ordered set (poset) consistingof the set of states together with the causally precedes relation.Two states s and t are concurrent if s does not causally precede t and t does not causally precede s.A cut G is a collection of local states such that exactly one state G[i] is included from each process Pi.A cut is called a consistent cut or a global state if all states are pairwise concurrent. Given two cuts, Gand H, we say that G � H i� G[i] � H[i] for all i. The set of all global states form a lattice under thisorder[Mat89].A local predicate is de�ned as any boolean-valued formula on a local state. For any process, Pi, a localpredicate is written as li. A process can obviously detect a local predicate on its own.3 Observation of Global PropertiesDear Watson, you see but you do not observe...Consider a distributed debugging system. Suppose that our task is to implement the most basic com-mand of a debugging system: \stop the program when the predicate q is true." To stop the program, it isnecessary to detect the predicate q; a non-trivial task if q requires access to the global state. Each of thedi�culties mentioned in the introduction needs to be addressed to develop algorithms for detecting q. Wediscuss each one of them next.



3.1 Lack of shared clockOur �rst di�culty is de�ning the meaning of predicates in a global system. For a simple example,consider the predicate q = CS1 ^ CS2 where CS1 and CS2 are predicates local on processes P1 and P2respectively. One natural way of de�ning truthness of this predicate is that q is true in a computation if andonly if there exists an instant of time in which both CS1 and CS2 are true. While this de�nition is adequatefor sequential systems, it presents many problems in distributed systems. Since clocks are impossibleto synchronize perfectly, it is impossible to ascertain whether two events happened simultaneously in adistributed system. This problem is solved by substituting causality for time (and therefore concurrencyfor simultaneity). Thus, we de�ne q to be true if there exist two states s and t such that CS1 is true in s,CS2 is true in t and s and t are concurrent.An advantage of the de�nition based on causality is that we can evaluate truthness of the predicateusing vector clocks [Fid89, Mat89]. Further, for many applications such as distributed debugging thisde�nition is more useful. For example, even if CS1 and CS2 are not true simultaneously, but there existstwo concurrent states in which CS1 and CS2 are true, then there is an error in the program. This isbecause there exists a way of running the same program in which CS1 and CS2 are true simultaneously.With the above observation in mind, the truthness of a general boolean predicate q is de�ned with twomodalities. The predicate possibly: q is true if in the lattice of global states there is a path from the initialglobal state to the �nal global state in which q is true in some intermediate global state. The predicatede�nitely: q is true if q becomes true in all paths from the initial state to the �nal state in the lattice ofglobal states. Possibly: q and de�nitely: q roughly correspond to weak and strong predicates in [GW92].Possibly true predicates are useful for detecting bad conditions such as violation of mutual exclusion,whereas de�nitely true predicates are useful to verify occurrence of good predicates such as commit pointon transaction systems. In this paper, we will discuss main ideas to develop e�cient algorithms fordetecting predicates of the form possibly: q.
3.2 Lack of shared memoryOur second di�culty stems from the fact that there is no shared memory. Thus, there is an inherentcommunication complexity for observing a global property of the system. For example, consider a globalpredicate q(x1; x2) where x1 and x2 are variables in P1 and P2 respectively. If evaluation of this predicate atP2 requires communication of all values of x1 from P1 to P2, and evaluation at P1 requires communicationof all values of x2 from P2 to P1, the function is clearly impractical to evaluate in a distributed system. Inparticular, if evaluation of a function requires communication of some value for every change in the valueof a variable, then that function is impractical. To capture a class of functions which requires at most onevalue to be communicated per external event, we use the notion of monotonicity.Informally, a predicate is monotone with respect to a variable x1 if replacing the variable by a largervalue while keeping all other variables the same preserves the truthness of the predicate. Formally, assumethat x1 takes its value from a set totally ordered with respect to a relation <. We say that q is monotonewith respect to the �rst argument (x1) if it satis�es the following equation:8a; b; x2 : (a < b)) (q(a; x2)) q(b; x2)):For example, consider the predicate q = (x1 > x2) where x1 and x2 are integers. Then q is monotonewith respect to x1, because if q(x1; x2) holds for a certain value of x1, then it would continue to do sofor any larger value of x1. The predicate q is also monotone with respect to x2 because for x2 we canuse the domain of integers with < de�ned as the greater than relation de�ned on natural numbers. Asanother example, consider the conjunctive predicate x1 ^ x2 : : :^ xn where each xi is a boolean variable.By viewing the boolean domain as a totally ordered set with false to be de�ned as smaller than true, it canbe easily seen that the conjunctive predicate is also monotone with respect to all variables. An exampleof a predicate that is not monotone with respect to either x1 or x2 is (x1 = x2).Monotonicity of a predicate allows us to restrict our attention to state intervals rather than states. Astate interval is a sequence of states between two external events where an external event is the sendingor receiving of a message, the beginning of the process and the termination of the process. For each state



interval it is su�cient to record and communicate the extremal value of the variable rather than all valuestaken by the variable in that interval. Since the number of state intervals is equal to the number of externalevents for a process, it is usually a much smaller number than the total number of events in the system.For example, if we are detecting (x1 > x2) and x1 takes values 2; 9; 4 and 7 between two external events,then it is su�cient to communicate the value 9. From now on we will use the term state and state intervalinterchangeably.We note here that functions other than boolean can also be evaluated e�ciently when they satisfymonotonicity. For example, [TG97b] describes an algorithm to compute max(x1 + x2) in a distributedsystem.
3.3 Combinatorial ExplosionNow assume that we have overcome limitations due to lack of shared clock and shared memory, forexample, by using causality and monotonicity. This implies that we have the poset corresponding to thecomputation available at one process. So now, the problem is not even of distributed computing becauseall the required data is at one process. The problem we may face at this point is that of computationcomplexity. Since there are n processes, the total number of global states possible is mn where m isthe number of state intervals at any process. Consider a boolean predicate q. Even when q is a booleanexpression, and processes do not communicate, the problem of detecting possibly: q is NP-complete [CG95].Even though the problem is NP-complete for general boolean expressions, there exist e�cient algorithmsfor several classes of q which occur in practice. One useful class is that of linear predicates which is basedon the notion of forbidden state. Given a computation S, a predicate q, and a cut G in S, a state G[i] iscalled forbidden if its inclusion in any cut H, where G � H, implies that q is false for H. That is,forbidden(G; i) def= 8H : G � H : (G[i] = H[i])) :q(H)Based on the concept of a forbidden state, we de�ne a predicate q to be linear with respect to posetS if for any cut G in the poset, the fact that q is false in G implies that G contains a forbidden state.Formally, a boolean predicate q is linear with respect to a poset S i�:8G : :q(G)) 9i : forbidden(G; i)Observe that the linearity of a boolean predicate also depends on the poset S. We are typically interestedin predicates which are linear for all posets consistent with a program. Observe that if q1 and q2 are linear,then so is q1 ^ q2. Similarly, if q is de�ned using variables of a single process, then q is linear. It followsthat a predicate q of the form l1 ^ l2 ^ :::ln where each li is a local predicate is a linear predicate. If q isfalse in any cut, then one of the local predicates is false in some state s. The state s is forbidden becauseq cannot be true in any global state containing s.There are other interesting examples of linear predicates, for example some channel predicates. Wede�ne a channel to be a uni-directional connection between two processes | one process performs all sendevents and the other all receive events. Channels have no memory. Hence, the state of a channel is thedi�erence between the set of messages sent and the set of messages received. A channel predicate is anyboolean function of the state of a channel. A channel predicate is linear by above de�nition if given anychannel state in which the predicate is false, then either sending more messages is guaranteed to leave thepredicate false, or receiving more messages is guaranteed to leave the predicate false. An example of alinear predicate is \channel Cij is empty". If this predicate is false, that is, the channel is not empty, thensending more messages is guaranteed to leave the predicate false.As another example, consider the predicate x+ y � k where x and y are variables on processes P1 andP2, and k is some constant. In general, this predicate is not linear. However, assume that x is known tobe decreasing in the computation. In this case, x + y � k is linear. Given any cut, if x + y < k, thenwe throw away the state with y variable. This is because that state combined with any future state for xvariable can only have a smaller value for x+ y.Note that any global predicate, q, de�nes a (possibly empty) set of global states in which q is true. Itis shown in [CG95] that q is linear with respect to a computation i� the set of global states in which q is



Characteristic Problem Idea BonusNo shared clock ordering events causality avoid data race errorsNo shared memory message/state change monotonicity compute extremal functionsmultiple processes combinatorial explosion linearity get the �rst global state
Figure 1. Problems and their solutions for observationtrue is an inf-semilattice. An implication of this result is that the �rst cut satisfying q is well de�ned i� qis linear.

3.4 Algorithms for ObservationIn this section we show that above ideas can be used to derive a a centralized algorithm to detectpredicates of the form possibly:q where q is a conjunction of local predicates and linear channel predicates.We call such a predicate a General Conjunctive Predicate (GCP) [GCKM95].The work of detection of the global predicate is divided among checker and non-checker processes. Thenon-checker processes are used in the computation and have local predicates and channels with predicates.The checker process is the process that determines if these predicates are true in the same global state.The non-checker processes monitor local predicates. These processes also maintain information aboutthe send and receive channel history for all channels incident to them. The non-checker processes send amessage to the checker process whenever the local predicate becomes true for the �rst time since the lastprogram message was sent or received. Since we use causality to de�ne the semantics of truthness of q, weuse vector clock instead of real-time clock to identify the instant the local predicate becomes true. Further,due to monotonicity of the predicate it is su�cient to send at most one message to the checker processper message sent or received. This message is called a local snapshot and is of the form: (vector, incsend,increcv) where vector is the current vector timestamp while incsend and increcv are the list of messagessent to and received from other non-checker processes since the last message for predicate detection wassent.The checker process is responsible for searching for a consistent cut that satis�es the GCP. Its pursuitof this cut can be most easily described as considering a sequence of candidate cuts. If the candidate cuteither is not a consistent cut, or does not satisfy some term of the GCP (local predicate or a channelpredicate), the checker can e�ciently eliminate one of the states along the cut. This is due to linearity ofa GCP predicate. The eliminated state can never be part of a consistent cut that satis�es the GCP. Thechecker can then advance the cut by considering the successor to one of the eliminated states on the cut.If the checker �nds a cut for which no state can be eliminated, then that cut satis�es the GCP and thedetection algorithm halts. This cut is the �rst cut for which GCP is true.The above algorithm can be decentralized using techniques described in [GCKM94, GC95, HMRS95].Other algorithms for predicate detection include stable predicates [CL85], relational predicates [TG97b],atomic sequences [HPR93], linked predicates [MC88], dynamic properties [BR95], general possibly andde�nitely predicates [CM91], regular patterns [FRGT94], general control 
ow patterns [GTFR95], con-junction of global predicates [SS95, GM96], event normal form predicates [CK94], recursive poset logicpredicates [TG95] and strong conjunctive predicates [GW96].We note here that the observation problem can either be solved in an on-line or in o�-line setting. Inan o�-line algorithm you assume that the entire computation is given to you whereas the online algorithmis given ony the past and must make observations while the computation is unfolding.
3.5 Open problems in observationIn this section, I present some useful problems in observation of distributed programs which are opento the best of my knowledge.1. Detecting exactly-k predicate: Consider the predicate x1+ x2:::+xn = k where each xi is a booleanvariable on process Pi. Is there an e�cient algorithm to detect this predicate ? Observe that e�cient



algorithms for x1 + x2:::+ xn � k and x1 + x2:::+ xn � k are known [Gar96b]. Also, if xi can takeany value then the problem is NP-complete since the set partition problem can be reduced to thisproblem.2. Detecting conjunction of 2-local predicates: Consider the predicate (P1:x < P2:y)^(P3:x < P4:y)^::Each of the conjunct in this predicate depends on at most two processes. If each conjunct can refer toany process, then the problem is known to be NP-complete [SS95]. However, if each process appearsin the predicate at most once, then the reduction for [SS95] does not work. Is there a a polynomialalgorithm to detect a predicate of this form?3. Detecting 2-SAT predicates: Consider a boolean predicate q in CNF form. If each clause has up to3 literals, detecting q is NP-complete. If each clause has exactly one literal, then q can be detectede�ciently using [GW94]. What is the complexity of detecting 2-SAT predicates?4 Control of Distributed PredicatesWho controls the past controls the future, who controls the present controls the past...George Orwell, Nineteen Eighty-Four.We now go to the next natural step after observation - control. We propose the notion of a supervisoryprocess. A supervisory process not only observes the underlying user process but also controls it by delaying(or disabling) some events or changing the order of messages in the user process. There any many reasonswhy we need the ability to control a distributed computation via supervisory processes.Firstly, a supervisory process is essential for fault-tolerance. The current programming methodologyviews programming task as a simple execution of instructions. This execution may result in a fault whichcould have been avoided if critical events were veri�ed for their suitability before execution. This is incontrast to human beings, who mix introspection with actual execution of a task. For example, if a humanis using a recipe to cook some item, and comes across an instruction asking him to put his hand on�re, his common sense will dictate to him that he must not do so. Thus, a human being rarely follows aninstruction blindly. He observes and controls the instruction he executes. In other words, every process hasassociated with it a meta-process which observes and controls the underlying process. Thus, a supervisorcan be viewed as the meta-process which deals with events executed by the process itself. It may checkintegrity of data structures before or during any execution of critical events.A supervisory process can also be viewed as an auxiliary process that monitors and adapts a program tovarying external behavior. Supervisors have long been used for this purpose in control theory. A feedbacksupervisor can be used for tuning the parameters of the plant that may a�ect its behavior, or even switchfrom one policy to the other. For example, assume that procedure A and procedure B achieve the sameresult, but procedure A performs better than procedure B if the network is highly loaded, and vice-versaif it is lightly loaded. The underlying process may non-deterministically call both procedures, and thesupervisor may enable the procedure which is more suitable for conditions at that point in time.Last but not the least, the notion of supervision is also important in debugging and testing of a dis-tributed program. Debugging or testing a distributed program is in essence search for anomalous behaviorand identi�cation of its cause. For this, the programmer needs to observe the program under some con-trolled environment. Why controlled environment ? The programmer may suspect that the bug ariseswhen the execution satis�es certain constraint (for example, when message m1 is delivered before messagem2). Thus, the programmer is interested only in those executions which satisfy these constraints.
4.1 Different Models for ControlHow does a supervisor exercise the control? Four possibilities are outlined in this section.1. O�ine vs Online control: We say that a supervisor exercises online control if it does not know aboutthe future of the computation. Not knowing the future, the controller has only limited ability to meetthe desired speci�cations. For example, we later show that it is impossible for an on-line controller to



meet disjunctive speci�cations without avoiding deadlocks. In the o�ine control model, we assumethat the supervisor knows about the future. At �rst this model seems unrealistic, but this model hasmany applications. Consider distributed debugging. Assume that a computation was run in whichthe �nal results were unexpected. The programmer may want to run the same computation but nowunder the supervisor so that the computation goes through some controlled execution.2. Delaying events vs Changing order: Here we address the issue of the power of the supervisor. Amilder form of the supervision exists when the supervisor is allowed only to introduce the delaybetween events. Thus, the only di�erence between an uncontrolled and controlled computation isthat there are fewer executions possible under control. The crucial problem here is introductionof deadlocks. The controller must ensure that no new deadlocks are introduced in the system bydelaying of events.A more powerful controller can decide to change the order of events. For example, the controller maychange the order of messages received to meet the desired speci�cation. Observe that both o�ineand online scenarios are possible. Under o�ine control, the controller may know that in the last runthe message m1 was received before m2. Therefore, in the next run it may deliver m2 before m1possibly by delaying the receive of m1. This change of message ordering may be used for generatinga di�erent test case or during recovery from a software fault. Under online control, the controllermay not know the future; but still be able to exercise some control. The simplest example of suchcontrol is imposition of the �rst in �rst out ordering on messages. By including sequence numbers,it is easy to control the message ordering so that the FIFO order is maintained.We next discuss control under all four possibilities.
4.2 Delaying events: Offline controlThe problem of o�ine control by delaying events can be posed as follows. We are given a poset Srepresenting the computation. We are also given a boolean predicate q. The goal of the controller isto determine if there exists a way of delaying events in the poset S such that q is always true in thecontrolled execution. The task of delaying events can also be viewed as imposing an additional precedencerelationship C; between events. Of course, the new relation should not interfere with existing causalityrelationship. In other words, on adding edges from the C; relation to the graph corresponding to thecomputation, the graph should remain acyclic. It can be shown that even if the computation is free fromcommunication, and the boolean predicate is simply a boolean expression of local predicates, the problemof determining whether a control strategy exists is NP-complete [TG97a]. Considering that the problemof predicate detection for boolean expression is also NP-complete this is not surprising. The importantissue here is whether there exists a useful class of predicates which can be controlled e�ciently.One such class of predicates is disjunctive predicates. A disjunctive predicate can be written as l1_ l2_:::_ ln where each li is a local predicate. This can be viewed as avoiding a bad combination of states. Oneexample is avoidance of deadlock in the classical dining philosophers problem. We can avoid deadlock byensuring that at least one of the philosophers does not have any fork at all times. As another exampleconsider availability of servers for critical tasks. We may impose a requirement on the system that at leastone server is available at all times for critical tasks. One use of control in these applications would berollback of the system under a fault and then its reexecution under control.The algorithm for determining the strategy for disjunctive predicate control is based on the idea ofoverlapping intervals. Let I1 and I2 be two sequences of contiguous states such that local predicates l1 andl2 are false in I1 and I2 respectively. We say that I1 and I2 overlap if the lower end point of I1 causallyprecedes the higher endpoint of I2 and vice-versa. An important result is that a control strategy does notexist i� there exist intervals in which local predicates are false such that any pair of these intervals overlap.The proof of this result can be found in [TG97a]. In [TG97a], we also describe an e�cient algorithm toadd C; relation which does not interfere with the existing causal relationship and guarantees that the givendisjunctive predicate is always true in the existing computation.



4.3 Delaying events - Online controlThe problem of delaying events to guarantee a predicate is similar to the o�ine control except that theentire poset is not given to us. That is we assume that nothing about the future is known. For manyapplications this is the only realistic assumption. In this scenario, under the assumption that the processesare allowed to block for messages at any time it is impossible to control the system to maintain even adisjunctive predicate [TG97a]. The problem is that the deadlock is impossible to avoid while keepingan invariant if the future is not known. Given a choice of which process to delay to avoid falsifying theinvariant the controller cannot make the right choice without knowing the future. For example, if thecontroller chooses to delay P1 and not P2, it may turn out that P2 waits for P1 to send a message. At thatpoint the progress cannot be made without violating the invariant. However, if the controller had chosenP2, there may be a valid computation which maintains the invariant. Thus, the controller can always beforced to make the wrong choice regarding which processes to delay for maintaining an invariant.Therefore, we now assume that a process cannot block for a message while its local predicate is false.For example, in a 2-process mutual exclusion this would mean that a process cannot block in its criticalsection. Under this scenario, maintaining a disjunctive predicate requires that at least one process keepsits local predicate true at all times. If we call the section of the code in which the local predicate is falsethe critical section, then maintaining a disjunctive predicate de�ned on n processes is equivalent to n� 1critical section problem. That is, at most n � 1 processes can be in the critical section at any time. Asimple solution based on the concept of token can be used [TG97a]. The process which has the token isnot allowed to enter its critical section. By our assumption any process that enters the critical sectionwill eventually get out of it and is now a candidate for receiving the token. The details can be found in[TG97a].In [TG94], we discuss maintaining global assertions which are in the sum of product form. Someexamples of such assertions are x1 + x2 + :::+ xn � k, and x1:x2 + x3:x4 � k where xi's are in di�erentprocesses.
4.4 Controlling Order - Offline ControlAssume that the programmer has run the computation once in which the �nal results are not correct.The programmer suspects that there is a bug in the program due to race of messages. That is, if aparticular process receives and acts on message m1 before another independent 1 message m2, then theresults are faulty, otherwise not. In this case, she may want to reexecute the program under control so thatm2 is delivered before m1. In distributed debugging, if messages themselves are saved then one processcan be fed those messages in any desired order. If message ordering is saved, then the entire computationcan be run again but that process is delivered messages under the control of debugger. Kilgore and Chase[KC97] describe a Last-First Reordering algorithm that reexecutes a computation so that greatest numberof message pairs are reversed in a single reexecution. Alternatively, the programmer may specify an orderexpression which tells the possible sequences of events that are allowed. For example, she may use regularexpression, its generalizations such as concurrent regular expressions[GR92], path expressions[CH74], ordag expressions[GTFR95] to specify these sequences.It is important to note here that once ordering of events has been changed, there is no guarantee thatthe rest of the computation will be the same as the last time.
4.5 Controlling Order - Online ControlWe now assume that no information about the future of the computation is available. It is still possibleto exercise some control. For example, if process P1 sends k messages to P2, then these messages can bereceived in k! ways each resulting in a di�erent poset. Putting a FIFO order can be viewed as controllingthe system so that some of these posets are not possible.In this section we will focus only on external events; similar techniques can be applied to controlordering of other events. With each message we associate four events - invocation of the message, send of1By independent message we mean that the sending of messagem2 is causally unrelated to the sending of message m1.



the message, receive of the message and the delivery of the message. The invocation of the message takesplace when user requests a message to be sent. The send of the message takes place when the controllerinforms the user that the message has been sent. Thus, the supervisor has the ability to delay the sendof the message. The receive of the message takes place when the message reaches the destination process.The delivery of the message takes place when the message is actually delivered. Again, the delivery ofthe message can be delayed by the supervisor. By delaying the sends and the delivery of messages, thesupervisor can change the order in which messages are sent and received. Observe that the send anddelivery events can be delayed by the supervisor but invocation and receive events are uncontrollable. Wewill impose one more condition called liveness on our protocols. If the only events possible in a computationat certain points are send and delivery, then the protocol must enable at least one of the events. Thisrestriction follows from our assumption of online control. Since the future is not known, the controllermust always enable one of the current events for progress.The following result in [MG97b] shows the limitations of the controllers based on above model. We call acomputation synchronously ordered if all messages can be drawn vertically in its process-time diagram. We�rst argue that any computation that is synchronously ordered must be allowed by the protocol. Since thecomputation is synchronously ordered all the messages can be topologically sorted in the computation. Nowwe can run the computation in such a manner that exactly one event is enabled at every point before thecompletion of the run. That is, we invoke the �rst message. Since invocation is uncontrollable, this event ispossible. Now since there is only one event enabled, namely the send event, the protocol must eventuallyexecute the send event. This implies that the receive event is now possible due to uncontrollabilitycondition. Finally, the delivery event would be enabled due to liveness condition. We now repeat thissequence with the second message. Thus, due to liveness condition and the fact that all messages can besorted, we get that the synchronous computation is possible under the protocol.One way for the programmer to specify desired message ordering is by using forbidden predicates[MG97b]. A message ordering is acceptable only if it does not satisfy the given forbidden predicate. Aforbidden predicate is a conjunction of causality relationships between sends and receives of messages. Forexample, the following forbidden predicate speci�es violation of causal ordering:9x; y : (x:s! y:s) ^ (y:r ! x:r)where x:s denotes send of the message x and x:r denotes receive of the message x. By associating colorsand processes with messages, we can de�ne most useful message orderings. One example where color isused is in the local forward 
ush channel [Ahu93] which requires that for any channel all messages sentbefore a red message are received before that red message. The forbidden predicate for this speci�cationis(process(x:s) = process(y:s))^ (process(x:r) = process(y:r)^ (color(x) = red)^ (x:s! y:s)^ (y:r ! x:r)In [MG97b] we show how a controller can take speci�cation as a forbidden predicate decide whetherthat speci�cation is implementable or not and if it is generate the protocol such that the predicate neverbecomes true in the computation.As in the o�-line case, another possibility for controlling order of events is based on the concept of anevent expression. A primitive event is de�ned to be as execution reaching a prede�ned line number or afunction. A complex event could be de�ned as a regular expression of primitive events or its generalizationsas discussed before. The task of the controller is to ensure that the order of events generated belongs tothe speci�cation.5 Applications to Distributed DebuggingIn this section we describe the concept of observation and control that can be used for distributeddebugging. We describe a distributed debugging system that is hypothetical; but all the functionalitydescribed can be implemented e�ciently by known algorithms. We propose just one additional commandto a distributed debugging system. The syntax of the command is quite simple:



do action when condition.The action is taken whenever the speci�ed condition becomes true. The detection of the condition, whichcould be global, corresponds to observation and the action corresponds to the control of the computationdiscussed in this paper. We �rst discuss various conditions and their meaning:1. boolean predicate q on the global state: This corresponds to detecting possibly:q. Since the detectionproblem is NP-hard, we may require q to be linear which can be e�ciently detected. Linearity alsoguarantees that the �rst global state satisfying q is well de�ned.2. regular expression r: This corresponds to detecting a pattern in the computation. The regular ex-pression is built out of local predicates. A regular expression (and its generalization - dag expression)can be e�ciently detected by algorithms in [FRGT94, GTFR95].The �rst type of condition is based on a single global state whereas the second type of condition is basedon sequences of local states. There are many ways to combine and extend above conditions; we have keptour proposal simple.Now we turn our attention to actions and their meaning. We propose the following types of actions.1. stop pids: This command stops processes with given pids. The keyword all can be used to signifythat all processes need to be stopped.2. print expr: This command prints expression whenever the speci�ed condition becomes true. If expris null, then the intent is just to inform when the speci�ed condition becomes true. Some informationsuch as vector clock or line numbers are also printed to indicate when that condition became true.3. maintain bool: The �rst two commands exercise trivial control whenever the speci�ed conditionbecomes true. The maintain command is the �rst non-trivial example of control. The programmerspeci�es a condition which she wants to be maintained throughout the execution. This controlcould be exercised either in an on-line fashion or in an o�-line fashion. Here we are assuming thatthere are two commands available to the programmer - run and rerun. The �rst command runs anew distributed computation whereas the latter runs the previous computation. It is assumed thatthe debugger saves ordering of messages (and other sources of non-determinism) so that a run isreplayable. During the rerun command, the debugger has access to the future and can thereforeexercise o�ine control strategy.4. maintain order-expression This command controls the ordering of events during the computation.As in the previous command, this control could be online or o�ine. The order-expression could bespeci�ed in multiple ways. For message ordering, a forbidden predicate could be speci�ed. For otherevents, expression such as a regular expression could be speci�ed. The debugger could then enforcethat order on execution of events. For example, consider the case when the programmer wants toenforce the ordering of two function calls f and g in di�erent processes to be f followed by g. Then,she could specify:maintain (exit f).(enter g)where : corresponds to concatenation of two events. Based on this command the debugger woulddelay the process entering g until the execution of function f is �nished.6 ConclusionsObservation and control of a distributed computation is an useful abstraction for many fundamentalproblems in distributed systems. In this paper, we have presented di�culties and some solutions forobservation and control. We have also shown some applications of this framework to distributed debugging.We have assumed a failure-free environment in this paper. An algorithm for observation under a faultyenvironment is given in [MG97a]. We have also kept our model for control simple. A more complex modelmay include notion of control variables (variables that are read by the underlying program but written bythe controller) or notion of unobservable and uncontrollable events [RW89, KG95].
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