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AbstractA system for speci�cation and proof of distributed programs is presented. The methodis based directly on the partial order of local states (poset) and avoids the notions oftime and simultaneity. Programs are speci�ed by documenting the relationship betweenlocal states which are adjacent to each other in the poset. Program properties are de�nedby stating properties of the poset. Many program properties can be expressed succinctlyand elegantly using this method because poset properties inherently account for varyingprocessor execution speeds. The system utilizes a proof technique which uses inductionon the complement of the causally precedes relation and is shown to be useful in provingposet properties. We demonstrate the system on three example algorithms: vector clocks,mutual exclusion, and direct dependency clocks.
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1 IntroductionThis paper presents a method for specifying and proving distributed programs. Themethod is based on the partial order of local states generated during execution (causaldomain) and avoids the notions of time and simultaneity (time domain). The causaldomain refers to a world based on Lamport's causally precedes relation, whereas thetime domain refers to a world based on physical time. The importance of the causaldomain was �rst emphasized by Lamport in [9] where he de�ned the causally precedesrelation and showed that execution of a distributed program can be modeled by a set oflocal states partially ordered by this relation.Program properties are often more simply stated in the causal domain than in thetime domain, which makes them easier to understand and manipulate. This simplicityand elegance is gained because the causal domain inherently accounts for di�erent execu-tion schedules. For example, consider the concept of \global state", which has di�erentmeanings in each domain. In the causal domain, a global state is a set of local stateswhich are all concurrent with each other. In the time domain, a global state is a setof local states which occur simultaneously. A global state in the time domain is also aglobal state in the causal domain. However, the converse is not true. This results fromthe fact that the causal de�nition takes into account variable process execution speeds.Suppose we are debugging a distributed program and we want to halt the program ifmutual exclusion is violated by the current run or another otherwise identical run witha di�erent execution schedule. In the causal domain, this breakpoint would be speci�edas follows: \there exists a global state in which two or more processes have access tothe critical section". The time domain equivalent is more convoluted: \there exists aset of local states in which two or more processes have access to the critical section andwhich could coexist in this run or another otherwise identical run with di�erent processexecution speeds."Consider another example which highlights the hidden dangers of the time domain.The statement \there exists a global state in which more than two processes have accessto the critical section" cannot be veri�ed in the time domain except in special cases.This is because it is impossible to determine if a given global state occurs in the timedomain without access to perfectly synchronized local clocks, which do not exist in thereal world. In the causal domain however, it is possible to determine if a given globalstate occurs [1, 6, 7, 3, 14].Despite the advantages of the causal domain, it is common in the research communityto use the time domain to specify and prove properties of distributed programs [10, 12].A classical example is distributed mutual exclusion in which the absence of violation ofmutual exclusion is speci�ed as 2:(CS1 ^ CS2). That is, there is no time at which CS1and CS2 are both true.In our method, programs are speci�ed by documenting the relationship between stateswhich are adjacent to each other in the partial order. Properties are stated using math-ematical relations which are derived from the partial order (e.g., the causally precedes3



relation). This paper also introduces a proof technique which uses induction on the com-plement of the causally precedes relation and is useful in the causal domain. Examples ofusing the causal domain to specify and prove distributed programs are given for severaldistributed algorithms. The method presented in this paper for specifying verifying aprogram in the causal domain is outlined below:1. The program is speci�ed by documenting how the process state is altered betweenadjacent states. Any poset that satis�es the rules is a valid run of the program.2. The desired properties of the program are speci�ed using !, 6! and k. It is im-portant to note that the concept of global time and therefore the global state iscompletely avoided in this approach. Any variable, x, has meaning only in thecontext of a local state (i.e. s:x).3. The desired properties are proven using properties derived from the program text.This is done using induction on ! and 6!.This paper is organized as follows. Section 2 explains how this work di�ers fromprevious research. Section 3 presents our model for distributed computation and thenotations used in this paper. Section 4 provides a theoretical basis for the proof techniqueof induction on 6!. The next three sections give examples of using the causal domainto specify and prove distributed programs. The examples given are: the vector clockalgorithm (section 5.2), the direct dependency clock algorithm (section 6.2), and themutual exclusion algorithm (section 7.2). The conclusion appears in section 8.2 Related WorkThis paper contributes three main ideas which are useful for reasoning about distributedprograms. The �rst idea is that of induction on the 6! relation. Proving properties ofdistributed programs is very di�cult for all but the simplest of programs, and inductionon 6! provides a new option for such proofs. Any new tools for proving distributedprograms is a welcome addition due to the complexity of the task. We note here that thereasoning in the causal domain is not completely new. For example, Tel [15, 16] has usedthe notion of causality chains in the description of wave algorithms. Our contributionlies in using induction on 6! relation and applying it to prove correctness of vector clockalgorithms.The second idea is the \window" model of messages in a distributed program. Usually,messages are modeled as tuples of data values that are set by one local state and readby another. We propose a di�erent approach: a message is modeled as a window intothe local state in which the message originated. In the window model, a message is amechanism for granting the receiver read-only access to the local state from which themessage was sent. When a message is sent from state s and received in state t, statet can read components of state s directly. For example, the statement t:x := s:y sets4



variable x in state t to the value that y had in state s (clearly this statement is onlyallowed if a message from s to t exists). The advantage of the window model is thatthe causal relationship between sender and receiver is explicit, which usually results insimpler proofs. Another advantage is that there is less mathematical machinery to workaround when designing proofs. The only disadvantage is that it is one step removed fromimplementation, which is minor in comparison to the bene�ts gained.The third contribution is that our system for reasoning about distributed programsis static. Most program logics are dynamic because the truth value of a formula isdetermined by the current location of the program. The vast majority of distributedprogram logics (see chapters 14, 15, 16 in [17]) are descendants of either Hoare Logic [8]or Temporal Logic [13] and as such, de�ne the current location to be a global state. Thus,a formula is interpreted in the context of a current global state.In our system, local states are given names so that their variables can be referenced.This allows us to abandon the notion of a current location and to de�ne a static programlogic. For example, the property that a variable x is monotonic would be stated as followsin our system: s! t ) s:x � t:xwhere s and t are local states, s:x is the value of variable x in local state s, and ! isLamport's happens-before relation. The above formula is static. It need not be inter-preted with respect to the current location of the program. In fact, in our system, thecurrent location of a program is not even de�ned.Our system is based strictly on the partial order of local states; global states are notgiven any special signi�cance. This contrasts virtually all other program logics which aredynamic and de�ne the current location to be the current global state.3 Model and NotationA distributed program can be modeled by a set of runs, and a run can be modeled by apartially ordered set (poset) of local states. Hence, a program can be modeled by a setof posets. Each poset is a set of local states ordered with the causally precedes relation.Program properties are speci�ed by stating properties of the posets (or runs) generatedby the program. Thus a program satis�es a property if and only if all posets which canbe generated by the program satisfy the property.In this paper we use the following notation for quanti�ed expressions:( op free var list : range of free vars : expr )For example, (8i : 0 � i � 10 : i2 � 100) means that for all i such that 0 � i � 10, weknow that i2 � 100. The operator \op" need not be restricted to universal or existentialquanti�cation. Other possibilities are addition, union and Boolean conjunction. Forexample, if Si is a �nite set, then (+u : u 2 Si : 1) equals the cardinality of Si.5



A distributed program consists of a set of n processes, fP1; P2; :::; Png, which com-municate solely via asynchronous messages and do not share memory or a global clock.No assumptions are made regarding the ordering or reliability of messages, however, theexample algorithm (mutual exclusion) does assume FIFO channels.During one run of a program, each process Pi generates a sequence of states Si. Alocal state corresponds to the values of all variables in the process (including the programcounter). The set of all local states is S = [iSi. For a state s 2 S, s:p denotes the processin which s occurs. That is, s:p = i if and only if s 2 Si.Locally precedes is a binary relation on S de�ned as follows: s �im t if and only ifs immediately precedes t in some sequence Si. The relation � denotes the irre
exivetransitive closure of �im, and � denotes the re
exive transitive closure of �im. Forconvenience, s:next = t and t:prev = s whenever s �im t.States s; t 2 S are de�ned to be related by ; if and only if a message is sent fromstate s and that same message is received in state t. The causally precedes relation isde�ned as the irre
exive transitive closure of union of �im and ; relations, That is,s! t 4= (s �im t) _ (s; t) _ (9u :: (s! u) ^ (u! t))The concurrency relation is de�ned as:skt 4= :(s! t) ^ :(t! s)Initial and �nal states can be identi�ed by the structure of the poset as shown by thefollowing predicates: Init(s) 4= :(9u :: u �im s)Final(s) 4= :(9u :: s �im u)For our purposes, some restrictions on the poset of local states are required. Theyrestrict how the program is represented, but not the programs which can be modeled(dummy states can be inserted where necessary to satisfy the restrictions).1. Init(s) ) :(9u :: u; s)2. Final(s)) :(9u :: s; u)3. s �im t ) j fu j s; u _ u; tg j � 1The �rst restriction ensures that no state causally precedes an initial state. The secondrestriction ensures that a �nal state does not causally precede any state. The thirdrestriction means that at most one message is sent or received in between consecutivestates in a process.For every pair of consecutive states, s �im t, exactly one event occurs between sand t. There are three types of events denoted by int, snd, and rcv. Which event6



occurs between two states can be determined from the deposet structure as shown in thefollowing de�nitions.(s; snd(u); t) 4= s �im t ^ s; u(s; rcv(u); t) 4= s �im t ^ u; t(s; snd; t) 4= (9u :: (s; snd(u); t))(s; rcv; t) 4= (9u :: (s; rcv(u); t))(s; int; t) 4= s �im t ^ :(s; snd; t) ^ :(s; rcv; t)The above relations model the events that occur between consecutive local states: (s; snd; t)models a message send, (s; rcv; t) models a message receive, and (s; int; t) models an in-ternal event.A chain in (S;!) is a sequence of states c0; c1; : : : cn such that ci �im ci+1 or ci ; ci+1.For any chain c = c0; c1; : : : cn, we de�ne first(c) = c0, last(c) = cn, and length(c) = n.The inductive proof technique can be used on (S;!) because every decreasing chain in(S;!) is �nite. That is, for any state t and chain c such that last(c) = t, c has �nitelength. For any pair of states s; t we de�ne the maximum length function, ml(s; t) asfollows:ml(s; t) = ( (max c : first(c) = s ^ last(c) = t : length(c)) if s! t _ s = t�1 otherwiseThemax expression is well de�ned since there are a �nite number of states which causallyprecede t. This implies that ml has a well de�ned value for every pair of states s and t.If s ! t, then ml(s; t) equals the length of the longest chain between s and t. Ifs = t, then ml(s; t) = 0. We use ml(Init; t) to denote (maxu : Init(u) : ml(u; t)).Thus ml(Init; t) is length of the longest chain from some initial state to t. The followingstatement is true by de�nition of ml and is used in some of our proofs. We refer to it asthe chain lemma.ml(s; t) > 0 , (9u :: ml(s; u) = ml(s; t)� 1 ^ ml(u; t) = 1)A summary of some of the notation used in this paper appears below:s,t,u,w local states (i.e., elements of S)s:p unique identity of the process to which s belongs (i.e., s:p = i, s 2 Si)s �im t s immediately precedes t and are in the same processs; t a message was sent in state s and received in state ts! t s causally precedes ts 6! t s does not causally precede t (i.e., complement of !)7



4 Proofs by Induction on k! and k6!The causally-precedes relation, !, and its complement, 6!, is quite useful in designing,analyzing and debugging asynchronous distributed programs. In this section, we de�nevariants of these relations so that properties based on them can be proven by induction.While the technique for using induction on ! is almost obvious, it is not obvious howto perform induction on 6!. In this section we formalize both techniques.The relations which enable straightforward induction on ! and 6! are !k and 6!kand are de�ned as follows:for k > 0: s!k t 4= ml(s; t) = kfor k � 0: s 6!k t 4= s 6! t ^ ml(Init; t) = kThus s !k t if and only if s ! t and the longest chain from s to t has length k, ands 6!k t if and only if s 6! t and the longest chain from some initial state to t has lengthk. Figure 1 shows examples of these relations.Lemmas 1, 2 and 3 justify using induction on !. For example, suppose we wish toprove the claim s ! t ) P (s; t) where P (s; t) is some predicate on the local variablesin s and t. From lemma 1 we note that it is su�cient to prove s !k t ) P (s; t) forall k > 0. The proof can proceed by induction on k, using lemma 2 for the base caseand lemma 3 for the induction case. The base case, s!1 t, implies that either states sand t are consecutive states in a process, or a message was sent in s and received in t.Generally the base case can be easily proven from the program text since it involves onlyone state transition or one message.Lemma 1 s! t, (9k : k > 0 : s!k t)Proof: s! t, f by defn of a chain, and since ! is the transitive closure of ; [ �im g(9c :: first(c) = s ^ last(c) = t), f defn of ml g(9k : k > 0 : ml(s; t) = k), f defn of !k g(9k : k > 0 : s!k t)Lemma 2 s!1 t ) s �im t _ s; tProof: 8



s!1 t) f defn of !k gml(s; t) = 1) f defn of ml g(9c :: first(c) = s ^ last(c) = t ^ len(c) = 1)) f defn of a chain gs �im t _ s; tThe converse of lemma 2 is not true. For example, in �gure 1, s1; t4 holds but nots1!1 t4 does not. The reason is that there is a chain of length four from s1 to t4, thuss1!4 t4.Lemma 3 s!k t ^ (k > 1)) (9u :: s!k�1 u ^ u!1 t)Proof: s!k t ^ (k > 1)) f defn of !k gml(s; t) = k ^ k > 1) f chain lemma g(9u :: ml(s; u) = k � 1 ^ ml(u; t) = 1)) f defn of !k g(9u :: s!k�1 u ^ u!1 t)Lemmas 4, 5 and 6 are used in inductive proofs for properties stated with the 6!krelation. The method is similar to the one described above for !k. Suppose s 6!t ) R(s; t). Lemma 4 tells us that it is su�cient to prove s 6!k t ) R(s; t) for all k � 0,which can be proven by induction on k. To prove the base case, s 6!0 t, we need to showthat R(s; t) holds when t is an initial state. The inductive case (k > 0) uses lemma 6.Lemma 4 s 6! t, (9k : k � 0 : s 6!k t)Proof:s 6! t, f by defn of ml(Init; t) gs 6! t ^ ml(Init; t)� 0, f defn of !k g(9k : k � 0 : s 6!k t)Lemma 5 s 6!0 t, Init(t) 9



Proof:s 6!0 t, f defn of 6!0 gml(Init; t) = 0 ^ s 6! t, f defn of ml(Init; t) g:(9u :: u! t) ^ s 6! t, f left conjunct implies right conjunct g:(9u :: u! t), f defn of Init(t) gInit(t)It is not immediately obvious that lemma 6 will always apply in the inductive case,but consider the following. The assumption in the inductive case is k > 0 ^ s 6!k t.This implies that t is not an initial state (see lemma 5), which in turn implies that thereexists some state u such that u! t. Thus the left hand side of lemma 6 will always betrue if k > 0.Lemma 6 k > 0 ^ s 6!k t ^ u! t) (9j : 0 � j < k : s 6!j u)Proof:k > 0 ^ s 6!k t ^ u! t) f otherwise s! t gk > 0 ^ s 6!k t ^ u! t ^ s 6! u) f defn of 6!k gk > 0 ^ s 6! u ^ ml(Init; t) = k ^ u! t) f otherwise ml(Init; t) > k gk > 0 ^ s 6! u ^ ml(Init; u) < k) f defn of 6!j g(9j : 0 � j < k : s 6!j u)
s1 s2 s3

t1 t2 t3

s4

t4Figure 1: Example relations: s3!1 t3, t1!2 t3, s1 !4 t4, s2 6!0 t1, s4 6!3 t3.5 Vector ClockIn this section we present a vector clock algorithm, state the desired properties of thealgorithm and prove that it satis�es the properties. Vector clocks are widely used in10



applications such as debugging, concurrency control in databases, recovery in fault tol-erant systems, and ordered broadcast algorithms. We use a variant of the traditionalalgorithm [2, 11] that uses less state space and is more di�cult to prove as explainedlater.Vectors of integers can be partially ordered by an appropriately de�ned comparisonrelation <. They are useful for characterizing the relationship between local states sincelocal states are partially ordered by !. The comparison relation is de�ned for vectors uand v of length N as follows:u < v 4= (8k : 1 � k � N : u[k] � v[k]) ^ (9j : 1 � j � N : u[j] < v[j])The traditional vector clock algorithm assigns a vector s:v to every local state s suchthat s:v < t:v if and only if s ! t. We use a slightly di�erent version in which thiscondition holds when s and t are on di�erent processes. We use this version because itis harder to prove (as discussed later) and also because it is practical. It conserves statespace since the vector components are incremented less frequently, and in general, one isinterested in causal relationships between states on di�erent processes. The version weuse maintains the following property:(8s; t : s:p 6= t:p : s:v < t:v, s! t)5.1 AlgorithmLet there be N processes uniquely identi�ed by an integer value between 1 and N in-clusive. Recall that for any state s, s:p indicates the identity of the process to whichit belongs. It is not required that message communication be ordered or reliable. Thealgorithm is described by the initial conditions and the actions taken for each event type.For any initial state s:(8i : i 6= s:p : s:v[i] = 0) ^ (s:v[s:p] = 1)Rule for a send event (s; snd; t):t:v := s:v;t:v[t:p] := t:v[t:p] + 1;Rule for a receive event (s; rcv(u); t):for i := 1 to Nt:v[i] := max(s:v[i]; u:v[i]);Rule for an internal event (s; int; t):t:v := s:v;The version presented above is harder to prove than the traditional algorithm becauseof the message receive action. In the traditional algorithm, when a message is receivedin state s, the local clock, s:p, is incremented. This ensures that (s; rcv(u); t) implies11



s:v < t:v and u:v < t:v. The action taken in this version, t:v := max(s:v; u:v), does notimply s:v < t:v nor does it imply u:v < t:v. This makes this version more di�cult toprove.We use the following properties of the algorithm in our proof. Their validity is clearfrom the algorithm text. Our proof is derived strictly from these properties; the algorithmitself is not used. Therefore the proof is valid for any algorithm which satis�es theseproperties. For example, in the send rule of the algorithm, t:v[t:p] could be increased byany positive amount and our proof would still be valid.Init rule: Init(s) ) (8i : i 6= s:p : s:v[i] = 0) ^ (s:v[s:p] = 1)Snd rule: (s; snd; t) ) (8i : i 6= t:p : t:v[i] = s:v[i]) ^ t:v[t:p] > s:v[t:p]Rcv rule: (s; rcv(u); t) ) (8i :: t:v[i] = max(s:v[i]; u:v[i]))Int rule: (s; int; t) ) t:v = s:v5.2 ProofIn this section we prove the property stated earlier: (8s; t : s:p 6= t:p : s:v < t:v, s! t).This is accomplished by proving the following claims:s:p 6= t:p ^ s! t ) s:v < t:v (1)s:p 6= t:p ^ s:v < t:v ) s! t (2)Lemma 7 states that if there is a chain of events from s to t then s:v � t:v. In thetraditional algorithm, proof of the property s! t) s:v < t:v (which does not hold here)is essentially the same as this proof. This is because, in the traditional algorithm, localclocks are incremented for every event type. Note also that the proof of lemma 7 doesnot use the initial conditions. Thus the lemma holds independent of the initial values ofthe vectors.Lemma 7 s! t ) s:v � t:vProof: It is su�cient to show that for all k > 0: s!k t ) s:v � t:v. We use inductionon k.Base (k = 1) :s!1 t) f lemma 2 gs �im t _ s; t) f expand s �im t and s; t g(s; int; t) _ (s; snd; t) _ (9u :: (s; rcv(u); t)) _ (9u :: (u; rcv(s); t))) f Snd, Rcv, and Int rules g(s:v = t:v) _ (s:v < t:v) _ (s:v � t:v) _ (s:v � t:v)) f simplify gs:v � t:v 12



Induction: (k > 1)s!k t ^ (k > 1)) f lemma 3 g(9u :: s!k�1 u ^ u!1 t)) f induction hypothesis g(9u :: s:v � u:v ^ u:v � t:v)) f simplify gs:v � t:vLemma 8 states that if two states s and t are on di�erent processes, and s does notcausally precede t, then t:v[s:p] < s:v[s:p]. Our formal proof of this lemma is nontrivial.This proof is by induction on k in the 6!k relation.Lemma 8 (8s; t : s:p 6= t:p : s 6! t ) t:v[s:p]< s:v[s:p])Proof: It is su�cient to show that for all k � 0: s 6!k t ^ s:p 6= t:p ) t:v[s:p] < s:v[s:p].We use induction on k.Base (k = 0) :s 6!0 t ^ s:p 6= t:p) f lemma 5 gInit(t) ^ s:p 6= t:p) f let u be initial state in s:p gInit(t) ^ s:p 6= t:p ^ (9u : Init(u) ^ u:p = s:p : u = s _ u! s)) f lemma 7 gInit(t) ^ s:p 6= t:p ^ (9u : Init(u) ^ u:p = s:p : u:v = s:v _ u:v � s:v)) f Init rule gt:v[s:p] = 0 ^ (9u : u:v[s:p] = 1 : u:v = s:v _ u:v � s:v)) f simplify gt:v[s:p] < s:v[s:p]Induction: (k > 0)s 6!k t ^ s:p 6= t:p ^ k > 0) f let u satisfy u �im t, u exists since :Init(t) gs 6!k t ^ s:p 6= t:p ^ u:p = t:p ^ u �im t) f lemma 6 gs 6!j u ^ 0 � j < k ^ u:p 6= s:p ^ u �im t) f inductive hypothesis gu:v[s:p] < s:v[s:p] ^ u �im t) f expand u �im t gu:v[s:p] < s:v[s:p] ^ ((u; int; t) _ (u; snd; t) _ (u; rcv(w); t))Consider each disjunct separately: 13



Case 1: (u; int; t)u:v[s:p] < s:v[s:p] ^ (u; int; t)) f Int rule gu:v[s:p] < s:v[s:p] ^ t:v = u:v) f simplify gt:v[s:p] < s:v[s:p]Case 2: (u; snd; t)u:v[s:p] < s:v[s:p] ^ (u; snd; t)) f Snd rule, s:p 6= t:p gu:v[s:p] < s:v[s:p] ^ t:v[s:p] = u:v[s:p]) f simplify gt:v[s:p] < s:v[s:p]Case 3: (u; rcv(w); t)u:v[s:p] < s:v[s:p] ^ (u; rcv(w); t)) f Rcv rule gu:v[s:p] < s:v[s:p] ^ (u; rcv(w); t) ^ (t:v[s:p] = u:v[s:p] _ t:v[s:p] = w:v[s:p])) f simplify gt:v[s:p] < s:v[s:p] _ ((u; rcv(w); t) ^ t:v[s:p] = w:v[s:p])For case 3, it su�ces to prove the following two cases.Case 3A: w:p = s:pt:v[s:p] = w:v[s:p] ^ (u; rcv(w); t) ^ w:p = s:p) f let x satisfy w �im x, x exists since w; t implies :Final(w) gt:v[s:p] = w:v[s:p] ^ (w; snd; x) ^ w:p = s:p) f otherwise s! t gt:v[s:p] = w:v[s:p] ^ (w; snd; x) ^ w:p = s:p ^ w! s) f since w �im x gt:v[s:p] = w:v[s:p] ^ (w; snd; x) ^ w:p = s:p ^ (x = s _ x! s)) f Snd rule gt:v[s:p] = w:v[s:p] ^ w:v[s:p] < x:v[s:p] ^ (x = s _ x! s)) f lemma 7 gt:v[s:p] = w:v[s:p] ^ w:v[s:p] < x:v[s:p] ^ x:v � s:v) f simplify gt:v[s:p] < s:v[s:p]Case 3B: w:p 6= s:p
14



t:v[s:p] = w:v[s:p] ^ (u; rcv(w); t) ^ w:p 6= s:p) f use s 6!k t, k > 0, and lemma 6 gt:v[s:p] = w:v[s:p] ^ w:p 6= s:p ^ s 6!j w ^ 0 � j < k) f inductive hypothesis gt:v[s:p] = w:v[s:p] ^ w:v[s:p] < s:v[s:p]) f simplify gt:v[s:p] < s:v[s:p]Lemma 9 is a re�nement of lemma 7 for the case when s:p 6= t:p. Note that theresult of lemma 8 is used in this proof, indicating that perhaps it is necessary to proveequation 2 in order to prove equation 1.Lemma 9 (8s; t : s:p 6= t:p : s! t ) s:v < t:v)Proof: It is su�cient to show that for all k > 0: s!k t ^ s:p 6= t:p ) t:v < s:v. Weuse induction on k.Base (k = 1) :s!1 t ^ s:p 6= t:p) f defn of !1 and lemma 2 gs; t ^ s:p 6= t:p) f let u satisfy u �im t gs:p 6= u:p ^ (u; rcv(s); t)) f otherwise t! s (since there is only one event between u and t) gu 6! s ^ s:p 6= u:p ^ (u; rcv(s); t)) f lemma 8 and rcv rule gs:v[u:p] < u:v[u:p] ^ (8i :: t:v[i] = max(u:v[i]; s:v[i]))) s:v < t:vInduction (k > 1) :s!k t ^ k > 0 ^ s:p 6= t:p) f lemma 3 g(9u :: s!k�1 u ^ u!1 t ^ s:p 6= t:p)) f u:p can not have two values g(9u :: s!k�1 u ^ u!1 t ^ (u:p 6= t:p _ u:p 6= s:p))) (9u :: (s!k�1 u ^ u!1 t ^ u:p 6= t:p) _ (s!k�1 u ^ u!1 t ^ u:p 6= s:p))) f inductive hypothesis g(9u :: (s!k�1 u ^ u:v < t:v) _ (s:v < u:v ^ u!1 t))) f lemma 7 g(9u :: (s:v � u:v ^ u:v < t:v) _ (s:v < u:v ^ u:v � t:v))) s:v < t:v 15



Theorem 1 states the property which we set out to prove at the beginning of thissection.Theorem 1 (8s; t : s:p 6= t:p : s! t, s:v < t:v)Proof: Immediate from Lemmas 8 and 9.6 Direct Dependency ClockLamport's algorithm uses acknowledgments to implement a local clock which is equiv-alent to direct dependency clocks. In this section we de�ne a direct dependency clock(DDClock) so that we may use it at an abstract level in the mutual exclusion algorithm.Direct dependency clocks are a weaker version of vector clocks [11]. They requiresmaller message tags to implement (one integer vs. the number of processes, N), butthey provide a weaker form of causality information. For many applications such as thisone, the weaker version of the clock su�ces.6.1 AlgorithmThe algorithm for maintaining a DDClock is described by the initial conditions and theactions taken for each event type.For any initial state s:(8i : i 6= s:p : s:v[i] = 0) ^ (s:v[s:p] = 1)Rule for a send event or an internal event (i.e., (s �im t) ^ :(9u :: u; t)):t:v[t:p] = s:v[t:p] + 1Rule for a receive event (i.e., s �im t ^ u; t):t:v[t:p] = max(s:v[t:p]; u:v[u:p])+ 1t:v[u:p] = max(u:v[u:p]; s:v[u:p])6.2 ProofIt is easy to see from the implementation of DDClock that property DD1, shown below,holds: s �im t _ s; t) s:v[s:p] < t:v[t:p] ^ s:v[s:p]� t:v[s:p] (DD1)Property DD2 follows from DD1 since there must be a chain between s and t and eachlink in the chain must satisfy DD1.s! t ) s:v[s:p] < t:v[t:p] ^ s:v[s:p] � t:v[s:p] (DD2)16



Theorem 2 states the main DDClock property. It uses the relation 7! which is a subsetof !. Given states s and t, s 7! t is true if and only if s 6= t and there is a path (ie,chain) from s to t which includes at most one message.s 7! t � s � t _ (9u; v : s � u ^ u; v ^ v � t)Theorem 2 8s; t : s 6= t : (s 7! t), (s:v[s:p]� t:v[s:p])Proof:First prove s 6= t ^ s 7! t ) s:v[s:p] � t:v[s:p]:s 7! t) f defn of 7! gs! t) f property DD2 gs:v[s:p] � t:v[s:p]Then prove s 6= t ^ :(s 7! t) ) s:v[s:p] > t:v[s:p] by induction on the states at processt:p:Base case: Init(t)Init(t)) t:v[s:p] = 0. Also, s:v[s:p] � 1 for all s.Thus, s:v[s:p] > t:v[s:p].Induction case: Assume theorem holds for t, where t = t:prev.Case 1: (t; rcv(s0); t) ^ s0:p = s:pFrom the algorithm, t:v[s:p] = s0:v[s:p]. If :(s 7! t), then s0 ! s,which implies s0:v[s:p] < s:v[s:p] (since s0 is send state and thelocal clock is incremented). Thus, s:v[s:p] > t:v[s:p].Case 2: Negation of case 1.In this case, t:v[s:p] = t:v[s:p]. Also, s 6= t ^ :(s 7! t) is equivalentto s 6= t ^ :(s 7! t). Thus, by substitution into the theorem,s 6= t ^ :(s 7! t) ) s:v[s:p] > t:v[s:p].7 Mutual ExclusionLet a system consist of a �xed number of processes and a shared resource called thecritical section. It is required that no more than one process use the critical section atany time. The algorithm to coordinate access to the critical section must satisfy thefollowing properties which are stated informally in the time domain. They will be givenin the causality domain when formalized.Safety: Two processes should not have permission to use the critical section simultane-ously.Liveness: Every request for the critical section is eventually granted.17



Fairness: Di�erent requests must be granted in the order they are made.Now the problem is formalized in the causality domain. To start, Lamport's algorithmassumes that all channels are FIFO, which can be stated as follows:s � t ^ s; u ^ t; v ) :(v � u)For any state s, we de�ne req(s) to be true if and only if the process Ps:p has requestedthe critical section and has not yet released it, and cs(s) to be true if and only if theprocess Ps:p has permission to enter the critical section in the state s. Note that req(s)and cs(s) are predicates, not program variables. They are a function of process state andwill be de�ned formally in the algorithm.Both req and cs are false in an initial state. Now suppose t � u � v and that a requestfor the critical section was made in t, access was granted in u, and it was released in v.Then req(s) is true for all states s such that t � s � v, and cs(s) is true for u � s � v.It is assumed that a process which is granted access to the critical section eventuallyreleases it: cs(s)) (9t : s � t : :req(t)) (Cooperation)The task is to develop a distributed algorithm to ensure the required safety, livenessand fairness properties. The safety and liveness properties can be stated formally in thecausality domain as follows:skt) :(cs(s) ^ cs(t)) (Safety)req(s)) (9t :: s � t ^ cs(t)) (Liveness)Before presenting the causality based fairness property, a little ground work is needed.First, let next cs(s) = minftjs � t ^ cs(t)gwhere min is with respect to the order �. Informally, next cs(s) is the �rst local stateafter s in which the process Ps:p has access to the critical section. Also, de�ne a booleanfunction req start(s) as follows:req start(s) = req(s) ^ :req(s:prev)Thus, req start(s) is true if and only if Ps:p made a request for the critical section instate s. Then, the fairness property can be stated as:(req start(s) ^ req start(t) ^ s! t)) next cs(s)! next cs(t) (Fairness)Note that next cs(s) and next cs(t) exist due to liveness. Furthermore, next cs(s)and next cs(t) are not concurrent due to safety. Therefore,next cs(s)! next cs(t)is equivalent to :(next cs(t)! next cs(s))18



7.1 AlgorithmAn informal description of Lamport's mutual exclusion algorithm [9] is given, followedby a formal description in the causality domain. In the informal description each processmaintains a logical clock (used for timestamps) and a queue (stores requests for thecritical section).� To request the critical section, a process sends a timestamped message to all otherprocesses and adds a timestamped request to the queue.� On receiving a request message, the request and its timestamp is stored in the queueand an acknowledgment is returned.� To release the critical section, a process sends a release message to all other processes.� On receiving a release message, the corresponding request is deleted from the queue.� A process determines that it can access the critical section if and only if: 1) it has arequest in the queue with timestamp t, and 2) t is less than all other requests in thequeue, and 3) it has received a message from every other process with timestampgreater than t (the request acknowledgments ensure this).The formal description is shown below. The DDClock is maintained as described insection 6.2. In local state s, variable s:v refers to the value of the DDClock. Thus, s:vis the timestamp of state s. The array s:q functions as the queue (an array su�ces sinceprocesses submit one request at a time).� Local variables in each state s:s:q[1::n] : integer, each element initially1s:v : DDClock� To request the critical section in t where s �im t:t:q[t:p] = s:v[t:p]for all j : j 6= t:p : send \request" to Pj� On receiving \request" in state t which was sent from state u (i.e., u; t):t:q[u:p] = u:q[u:p]send ack to u:p� To release the critical section in state t:t:q[t:p] =1for all j 6= t:p, send \release" to Pj� On receiving \release" in state t which was sent from state u:t:q[u:p] =1 19



State s has received a request from Pi if s:q[i] 6= 1, in which case the timestamp ofthe request is the value of s:q[i]. State s has permission to access the critical sectionwhen there is a request from Ps:p with timestamp less than all other requests and Ps:phas received a message from every other process with a timestamp greater than thetimestamp of its own request. We use the predicates req(s) and cs(s) to denote thata request has been made and access has been granted. In the de�nitions shown below,the < relation on tuples is a lexicographic ordering. In the rest of the paper, we writes:q[s:p] < s:v[j] instead of (s:q[s:p]; s:p)< (s:v[j]; j]) for notational simplicity.req(s) � s:q[s:p] 6=1cs(s) � (8j : j 6= s:p : (s:q[s:p]; s:p) < (s:v[j]; j) ^ (s:q[s:p]; s:p) < (s:q[j]; j) )7.2 ProofWe de�ne the predicatemsg(s; t) � (9u; t0 : u; t0 ^ u � s ^ t � t0)That is, there exists a message which was sent by Ps:p before s and received by Pt:p aftert. The mutual exclusion algorithm satis�es the property stated in lemma 10. Intuitively,the lemma states that if s 6! t and no message sent before s arrives after t, then t:q[s:p] =s:q[s:p].Lemma 10 Assume FIFO. 8s; t : s:p 6= t:p : s 6! t ^ :msg(s; t)) t:q[s:p] = s:q[s:p]:Proof: We will use induction on 6!k.Base Case: (k = 0) � Init(t)If Init(s), then the result follows from the initial assignment. Otherwise, let u bethe initial state in the process s:p. From the program text, any change in s:q[s:p] isfollowed by a message send to all processes. Given this and :msg(s; t) it follows thats:q[s:p] = u:q[s:p]. (This argument can be formalized using induction on the the numberof states that precede s in the process s:p.) From initial assignment, it again follows thatt:q[s:p] = s:q[s:p].Induction case: s 6!j t:prev; j < kLet u = t:prev: Let event(u) 6= receive, then :msg(s; t) implies :msg(s; u). Usingthe induction hypothesis, we get that u:q[s:p] = s:q[s:p] and by using program text,we conclude that t:q[s:p] = u:q[s:]. Now let event(u) = receive(w). If w:p 6= s:p, theprevious case applies.So, let w:p = s:p. Since s 6! t, it follows that w � s. Let w0 = w:next. From program,w0:q[s:p] = t:q[s:p]. We now claim that s:q[s:p] = w0:q[s:p] from which the result follows.If not, there exists y such that w0 � y � s and y:prev:q[s:p] 6= y:q[s:p]. From the program,20



u t

syw’wFigure 2: Proof for the induction case for lemma 10there exists a message from y to the process t:p received in the state z (assuming reliablemessages). The condition t � z violates :msg(s; t). The condition t = z is not possiblesince exactly one message is received before t which is w. And z � t violates FIFO sincew � y but z � t.The following lemma is crucial in proving the safety property. The remaining theoremsprove that the algorithm satis�es the required properties: safety, liveness, and fairness.Lemma 11 Assume message channels are FIFO: s:p 6= t:p ^ s 6! t ^ s:q[s:p] < t:v[s:p]) t:q[s:p] = s:q[s:p]Proof: Using lemma 10, we note that it is su�cient to show that the stated theassumptions and the antecedent imply :msg(s; t). Let u � s be such that u:v[s:p] =s:q[s:p]. That is, the request was made in state u. Let the message sent at u be receivedby process t:p in state w. From the event descriptions, it follows that there is neither arequest message nor a release message sent after u and before s. (1)Since u:v[u:p] < t:v[u:p], from the property of dependency clocks, we get that u 7! t.Therefore there exists a message sent at or after u and received before t. From FIFO,it follows that w � t. From FIFO, and the fact that the message sent at u is receivedbefore t, it follows that :msg(u; t). (2)From (1) and (2), it follows that :msg(s; t).Theorem 3 (Safety) s:p 6= t:p ^ skt ) :(cs(s) ^ cs(t)).Proof: We will show that (skt) ^ cs(s) ^ cs(t) implies false.Case 1: t:v[s:p]< s:q[s:p] ^ s:v[t:p] < t:q[t:p]We get the following cycle.s:q[s:p]< f cs(s) ^ s:p 6= t:p gs:v[t:p]< f this case gt:q[t:p]< f cs(t) ^ s:p 6= t:p gt:v[s:p]< f this case gs:q[s:p]. 21



Case 2: s:q[s:p] < t:v[s:p] ^ t:q[t:p]< s:v[t:p]We get the following cycle.s:q[s:p]< f cs(s) ^ s:p 6= t:p gs:q[t:p]= f t:q[t:p] < s:v[t:p], t 6! s, Lemma 11 gt:q[t:p]< f cs(t) ^ s:p 6= t:p gt:q[s:p]= f s:q[s:p] < t:v[s:p], s 6! t, Lemma 11 gs:q[s:p].Case 3: s:q[s:p] < t:v[s:p] ^ s:v[t:p] < t:q[t:p]We get the following cycle.s:q[s:p]< f cs(s) ^ s:p 6= t:p gs:v[t:p]< f this case gt:q[t:p]< f cs(t) ^ s:p 6= t:p gt:q[s:p]= f s:q[s:p] < t:v[s:p], s 6! t, Lemma 11 gs:q[s:p].Case 4: t:v[s:p]< s:q[s:p] ^ t:q[t:p]< s:v[t:p]Similar to case 3.Theorem 4 (Liveness) req(s) ) 9t : s � t ^ cs(t)Proof: req(s) is equivalent to s:q[s:p] 6= 1. s:q[s:p] 6= 1 implies that there existss1 2 Ps:p such that s1:v[s:p] = s:q[s:p] ^ event(s1) = request.We show existence of the required t with the following two claims:Claim 1: 9t1 : 8j 6= s:p : t1:v[j] > s:q[s:p] ^ s:q[s:p] = t1:q[s:p]Claim 2: 9t2 : 8j 6= s:p : t2:q[j] > s:q[s:p] ^ s:q[s:p] = t2:q[s:p]By choosing t = max(t1; t2) and verifying that cs(t) holds we get the desired result.Claim 1 is true because the message sent at s1 will eventually be acknowledged. It isenough to note that 8j : j 6= s:p : 9wj 2 Pj : s1; wj. From the program, we get that onreceiving request, the message is acknowledged. Thus, 8j : j 6= s:p : 9uj 2 Pi : wj ; uj.By de�ning t1 = max j : j 6= s:p : uj, and observing that for any j, wj:v[j] > s:q[s:p], weget the claim 1. 22



To show claim 2, we use induction on the number of requests smaller than s:q[s:p] int1:q. We de�ne nreq(u) = j fk j u:q[k] < u:q[u:p]g j:If nreq(t1) = 0, then s:q[s:p] is minimum at t1:q and therefore cs(t1) holds. Assumefor induction that the claim holds for nreq(t1) = k; (k � 1): Now, let nreq(t1) = k + 1:Consider the process with the smallest request, that is assume that t1:q[j] is minimum forsome j. Let u be the state in Pj such that u:v[j] = t1:q[j]. We claim that nreq(u) = 0. Ifnot, let m be such that u:q[m]< u:q[u:p]. This implies that u:q[m] < u:q[u:p]< s:q[s:p].Since s:q[s:p] < t1:v[m], from FIFO it follows that t1:q[m] = u:q[m]. However, u:q[u:p] isthe smallest request message; a contradiction.Therefore, we know that process u:p will enter critical section and thus eventually setits q[u:p] to 1. This will reduce the number of requests at t1:p by 1.Theorem 5 (Fairness) (req start(s) ^ req start(t) ^ s ! t) ) (next cs(s) !next cs(t))Proof: Let s0 = next cs(s) be state in which critical section is acquired, and let s00 bestate which it is released. Let t0 = next cs(t).Let r be the state in Pt:p which received the request message sent from s.We know the following facts:1: r � t, due to FIFO channels.2: t:v[t:p] = t:q[t:p], due to request event at t.3: s:v[s:p] < t:v[t:p], since s! t (DD2).4: s:q[s:p] = s:v[s:p], due to request event at s.5: r:q[s:p] = s:q[s:p], due to receiving request at r.6: r:q[s:p] < t:q[t:p], from 2; 3; 4; 5.7: t:q[t:p] = t0:q[t:p], by defn of t0.8: t0:q[t:p]� t0:q[s:p], since cs(t0).9: r:q[s:p] < t0:q[t:p] � t0:q[s:p], from 6; 7; 8.This means that q[s:p] must be increased between r and t0. That can only happen whenPt:p receives the release message sent from s00. Thus s00 ! t0. And since s0 ! s00, weconclude s0 ! t0.8 ConclusionsWe introduced a system for specifying and proving distributed programs that is uniquein many respects. The system is built around the idea that the partial order of localstates generated by a distributed program is fundamental. A program is a speci�cationof the relationship between local states which are adjacent to each other in the poset. Aprogram property is a property of posets which holds for any poset generated by thatprogram. Poset properties are often succinct and elegant because they inherently accountfor varying processor execution speeds. 23



The system utilizes a new proof technique, induction on the complement of the causallyprecedes relation, which is useful in proving poset properties.Program messages are modeled with what we call the \window model". In this model,messages are viewed as windows into the local state from which the message was sentinstead of as tuples of data 
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