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Abstract

A system for specification and proof of distributed programs is presented. The method
is based directly on the partial order of local states (poset) and avoids the notions of
time and simultaneity. Programs are specified by documenting the relationship between
local states which are adjacent to each other in the poset. Program properties are defined
by stating properties of the poset. Many program properties can be expressed succinctly
and elegantly using this method because poset properties inherently account for varying
processor execution speeds. The system utilizes a proof technique which uses induction
on the complement of the causally precedes relation and is shown to be useful in proving
poset properties. We demonstrate the system on three example algorithms: vector clocks,
mutual exclusion, and direct dependency clocks.

Keywords: partial order, causality, program specification, program proof, vector
clocks, mutual exclusion.



1 Introduction

This paper presents a method for specifying and proving distributed programs. The
method is based on the partial order of local states generated during execution (causal
domain) and avoids the notions of time and simultaneity (time domain). The causal
domain refers to a world based on Lamport’s causally precedes relation, whereas the
time domain refers to a world based on physical time. The importance of the causal
domain was first emphasized by Lamport in [9] where he defined the causally precedes
relation and showed that execution of a distributed program can be modeled by a set of
local states partially ordered by this relation.

Program properties are often more simply stated in the causal domain than in the
time domain, which makes them easier to understand and manipulate. This simplicity
and elegance is gained because the causal domain inherently accounts for different execu-
tion schedules. For example, consider the concept of “global state”, which has different
meanings in each domain. In the causal domain, a global state is a set of local states
which are all concurrent with each other. In the time domain, a global state is a set
of local states which occur simultaneously. A global state in the time domain is also a
global state in the causal domain. However, the converse is not true. This results from
the fact that the causal definition takes into account variable process execution speeds.

Suppose we are debugging a distributed program and we want to halt the program if
mutual exclusion is violated by the current run or another otherwise identical run with
a different execution schedule. In the causal domain, this breakpoint would be specified
as follows: “there exists a global state in which two or more processes have access to
the critical section”. The time domain equivalent is more convoluted: “there exists a
set of local states in which two or more processes have access to the critical section and
which could coexist in this run or another otherwise identical run with different process
execution speeds.”

Consider another example which highlights the hidden dangers of the time domain.
The statement “there exists a global state in which more than two processes have access
to the critical section” cannot be verified in the time domain except in special cases.
This is because it is impossible to determine if a given global state occurs in the time
domain without access to perfectly synchronized local clocks, which do not exist in the
real world. In the causal domain however, it is possible to determine if a given global
state occurs [1, 6, 7, 3, 14].

Despite the advantages of the causal domain, it is common in the research community
to use the time domain to specify and prove properties of distributed programs [10, 12].
A classical example is distributed mutual exclusion in which the absence of violation of
mutual exclusion is specified as O-(C'S; A CSy). That is, there is no time at which C'Sy
and C'Sy are both true.

In our method, programs are specified by documenting the relationship between states
which are adjacent to each other in the partial order. Properties are stated using math-
ematical relations which are derived from the partial order (e.g., the causally precedes



relation). This paper also introduces a proof technique which uses induction on the com-
plement of the causally precedes relation and is useful in the causal domain. Examples of
using the causal domain to specify and prove distributed programs are given for several
distributed algorithms. The method presented in this paper for specifying verifying a
program in the causal domain is outlined below:

1. The program is specified by documenting how the process state is altered between
adjacent states. Any poset that satisfies the rules is a valid run of the program.

2. The desired properties of the program are specified using —, /4 and ||. It is im-
portant to note that the concept of global time and therefore the global state is
completely avoided in this approach. Any variable, z, has meaning only in the
context of a local state (i.e. s.x).

3. The desired properties are proven using properties derived from the program text.
This is done using induction on — and .

This paper is organized as follows. Section 2 explains how this work differs from
previous research. Section 3 presents our model for distributed computation and the
notations used in this paper. Section 4 provides a theoretical basis for the proof technique
of induction on 4. The next three sections give examples of using the causal domain
to specify and prove distributed programs. The examples given are: the vector clock
algorithm (section 5.2), the direct dependency clock algorithm (section 6.2), and the
mutual exclusion algorithm (section 7.2). The conclusion appears in section 8.

2 Related Work

This paper contributes three main ideas which are useful for reasoning about distributed
programs. The first idea is that of induction on the /4 relation. Proving properties of
distributed programs is very difficult for all but the simplest of programs, and induction
on - provides a new option for such proofs. Any new tools for proving distributed
programs is a welcome addition due to the complexity of the task. We note here that the
reasoning in the causal domain is not completely new. For example, Tel [15, 16] has used
the notion of causality chains in the description of wave algorithms. Our contribution
lies in using induction on 4 relation and applying it to prove correctness of vector clock
algorithms.

The second idea is the “window” model of messages in a distributed program. Usually,
messages are modeled as tuples of data values that are set by one local state and read
by another. We propose a different approach: a message is modeled as a window into
the local state in which the message originated. In the window model, a message is a
mechanism for granting the receiver read-only access to the local state from which the
message was sent. When a message is sent from state s and received in state ¢, state
t can read components of state s directly. For example, the statement t.x := s.y sets
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variable @ in state ¢ to the value that y had in state s (clearly this statement is only
allowed if a message from s to t exists). The advantage of the window model is that
the causal relationship between sender and receiver is explicit, which usually results in
simpler proofs. Another advantage is that there is less mathematical machinery to work
around when designing proofs. The only disadvantage is that it is one step removed from
implementation, which is minor in comparison to the benefits gained.

The third contribution is that our system for reasoning about distributed programs
is static. Most program logics are dynamic because the truth value of a formula is
determined by the current location of the program. The vast majority of distributed
program logics (see chapters 14, 15, 16 in [17]) are descendants of either Hoare Logic [§]
or Temporal Logic [13] and as such, define the current location to be a global state. Thus,
a formula is interpreted in the context of a current global state.

In our system, local states are given names so that their variables can be referenced.
This allows us to abandon the notion of a current location and to define a static program
logic. For example, the property that a variable x is monotonic would be stated as follows
in our system:

s —=1=sx<tx

where s and t are local states, s.x is the value of variable = in local state s, and — is
Lamport’s happens-before relation. The above formula is static. It need not be inter-
preted with respect to the current location of the program. In fact, in our system, the
current location of a program is not even defined.

Our system is based strictly on the partial order of local states; global states are not
given any special significance. This contrasts virtually all other program logics which are
dynamic and define the current location to be the current global state.

3 Model and Notation

A distributed program can be modeled by a set of runs, and a run can be modeled by a
partially ordered set (poset) of local states. Hence, a program can be modeled by a set
of posets. Each poset is a set of local states ordered with the causally precedes relation.
Program properties are specified by stating properties of the posets (or runs) generated
by the program. Thus a program satisfies a property if and only if all posets which can
be generated by the program satisfy the property.

In this paper we use the following notation for quantified expressions:

( op free_var_list : range_of_free_vars : expr )

For example, (Vi : 0 <4 < 10 : > < 100) means that for all 7 such that 0 <7 < 10, we
know that i? < 100. The operator “op” need not be restricted to universal or existential
quantification. Other possibilities are addition, union and Boolean conjunction. For
example, if 5; is a finite set, then (+u : u € 5; : 1) equals the cardinality of ;.



A distributed program consists of a set of n processes, {P;, P, ..., P,}, which com-
municate solely via asynchronous messages and do not share memory or a global clock.
No assumptions are made regarding the ordering or reliability of messages, however, the
example algorithm (mutual exclusion) does assume FIFO channels.

During one run of a program, each process P; generates a sequence of states 5;. A
local state corresponds to the values of all variables in the process (including the program
counter). The set of all local states is S = U;5;. For a state s € S, s.p denotes the process
in which s occurs. That is, s.p = ¢ if and only if s € 5;.

Locally precedes is a binary relation on S defined as follows: s <, t if and only if
s immediately precedes ¢ in some sequence 5;. The relation < denotes the irreflexive
transitive closure of <;,,, and < denotes the reflexive transitive closure of <;,. For
convenience, s.next =t and t.prev = s whenever s <;,, t.

States s, € S are defined to be related by ~+ if and only if a message is sent from
state s and that same message is received in state t. The causally precedes relation is
defined as the irreflexive transitive closure of union of <;,, and ~» relations, That is,

s—t =2 (s <imt) V (s~ 1) V (Fui(s—u)A(u—t))
The concurrency relation is defined as:
st 2 ~(s— 1) A ot — s)

Initial and final states can be identified by the structure of the poset as shown by the
following predicates:

Init(s)
Final(s)

S(Fu s u <, )

>

S(Ju s <im u)

For our purposes, some restrictions on the poset of local states are required. They
restrict how the program is represented, but not the programs which can be modeled
(dummy states can be inserted where necessary to satisfy the restrictions).

L. Init(s) = =(Ju u~> s)
2. Final(s) = =(Ju s~ u)
3.8 <imt= [{u|ls~uVu~wit}|<1

The first restriction ensures that no state causally precedes an initial state. The second
restriction ensures that a final state does not causally precede any state. The third
restriction means that at most one message is sent or received in between consecutive
states in a process.

For every pair of consecutive states, s <;,, t, exactly one event occurs between s
and t. There are three types of events denoted by int, snd, and rcv. Which event



occurs between two states can be determined from the deposet structure as shown in the
following definitions.

(s,snd(u),t) 2 $=<imlt AN s~ u
(s,rev(u),t) 2 <im b N u~—t
(s,snd,t) 2 (Fu (s, snd(u),t))
(s,rcv,t) 2 (Fu = (s, rev(u),t))
(s,int,t) 2 <im t N 2(s,snd,t) N (s, rev,t)

The above relations model the events that occur between consecutive local states: (s, snd, 1)
models a message send, (s,rcv,t) models a message receive, and (s,int,t) models an in-
ternal event.

A chain in (5, —) is a sequence of states g, ¢1, . .. ¢, such that ¢; <, ¢iy1 or ¢; ~ ¢i41.
For any chain ¢ = ¢, ¢1,...¢,, we define first(c) = co, last(c) = ¢, and length(c) =
The inductive proof technique can be used on (5, —) because every decreasing chain in
(S, —) is finite. That is, for any state ¢ and chain ¢ such that last(¢) = ¢, ¢ has finite
length. For any pair of states s,t we define the maximum length function, mli(s,t) as
follows:

{ (maxe: first(c) =s A last(c) =1t :length(c)) ifs—t VvV s=1t

[(s,t) = .

—1 otherwise

The max expression is well defined since there are a finite number of states which causally

precede t. This implies that ml has a well defined value for every pair of states s and t.
If s — ¢, then ml(s,t) equals the length of the longest chain between s and ¢. If

s = t, then mi(s,t) = 0. We use ml(Init,t) to denote (maxwu : Init(u) : mi(u,t)).

Thus ml(Init,t) is length of the longest chain from some initial state to ¢. The following

statement is true by definition of ml and is used in some of our proofs. We refer to it as

the chain lemma.

ml(s,t) >0 < (Juazml(s,u)=ml(s,t)—1 A ml(u,t)=1)

A summary of some of the notation used in this paper appears below:

s,t,u,w  local states (i.e., elements of S)

s.p unique identity of the process to which s belongs (i.e., s.p =1 & s € 5;)
s <im t s immediately precedes t and are in the same process

s~ 1  amessage was sent in state s and received in state ¢

s — 1 s causally precedes t

s4t s does not causally precede t (i.e., complement of —)



k
4 Proofs by Induction on % and Sy

The causally-precedes relation, —, and its complement, /., is quite useful in designing,
analyzing and debugging asynchronous distributed programs. In this section, we define
variants of these relations so that properties based on them can be proven by induction.
While the technique for using induction on — is almost obvious, it is not obvious how
to perform induction on 4. In this section we formalize both techniques.

The relations which enable straightforward induction on — and /4 are —j and /4y
and are defined as follows:

for k>0: s—,t
for k>0: s bpt

ml(s,t) =k
shHt AN ml(Init,t) =k

e e

Thus s — t if and only if s — ¢ and the longest chain from s to ¢ has length k&, and
s+ t if and only if s 4 t and the longest chain from some initial state to ¢ has length
k. Figure 1 shows examples of these relations.

Lemmas 1, 2 and 3 justify using induction on —. For example, suppose we wish to
prove the claim s — t = P(s,t) where P(s,t) is some predicate on the local variables
in s and t. From lemma 1 we note that it is sufficient to prove s —; t = P(s,t) for
all £ > 0. The proof can proceed by induction on k, using lemma 2 for the base case
and lemma 3 for the induction case. The base case, s —1 ¢, implies that either states s
and t are consecutive states in a process, or a message was sent in s and received in t.
Generally the base case can be easily proven from the program text since it involves only
one state transition or one message.

Lemmal s —t& (3k:k>0:5 = 1)

Proof:

s — 1

< { by defn of a chain, and since — is the transitive closure of ~ U <;,, }
(Je:: first(c) = s A last(c) =1)

& { defn of ml }
(Fk:k>0:ml(s,t)=k)

& { defn of —4 }
(Fk:k>0:5—>1)

Lemma2 s -t =>s<,tV s~t

Proof:



s —1 t
= {defnof —; }

ml(s,t) =1
= { defn of ml }

(Je:: first(c) =s A last(c) =1t N len(c) =1)
= { defn of a chain }

S <imt V s~1
[

The converse of lemma 2 is not true. For example, in figure 1, s1 ~» ¢4 holds but not
s1 —4 t4 does not. The reason is that there is a chain of length four from sl to ¢4, thus
sl —4 t4.

Lemma3 s —;t A (k>1)= (Juis —pqu A u—qt)

Proof:
s—pt A (BE>1)
= {defnof —; }
ml(s,t)=k N k>1
= { chain lemma }
(Fuzml(s,u)=k—=1 A ml(u,t)=1)
= {defnof —; }
(Fu:is g1 u A u—qt)
[
Lemmas 4, 5 and 6 are used in inductive proofs for properties stated with the -/
relation. The method is similar to the one described above for —. Suppose s 4
t = R(s,t). Lemma 4 tells us that it is sufficient to prove s 4 t = R(s,t) for all k > 0,
which can be proven by induction on k. To prove the base case, s /¢ t, we need to show
that R(s,t) holds when ¢ is an initial state. The inductive case (k > 0) uses lemma 6.

Lemma4 s A t< (Fk:k>0:5 54 t)

Proof:
st
& { by defn of mi(Init,t) }
sAt AN ml(Init,t) >0
& { defn of —4 }
(Fk:k>0:s55hrt)

Lemma 5 s /¢ t < Init(t)



Proof:
S 7L>0 t
& { defn of 44 }
ml(Init,t)=0 A s/t
& { defn of mi(Init,t) }
S(Fuiu—t) A shHt
& { left conjunct implies right conjunct }
—(Ju s u—t)
& { defn of Init(t) }
Init(t)
[
It is not immediately obvious that lemma 6 will always apply in the inductive case,
but consider the following. The assumption in the inductive case is k > 0 A s 4 1.
This implies that ¢ is not an initial state (see lemma 5), which in turn implies that there
exists some state v such that v — ¢. Thus the left hand side of lemma 6 will always be
true if £ > 0.

Lemma6 k>0 A sArt Au—t=(3j:0<5j<k:s/h;u)

Proof:
E>0 AN shrt AN u—t

= { otherwise s — ¢ }
E>0 AN shArt Nu—1t AN shu

= { defn of 44 }
E>0 A s/Au A mi(Init,t)=k N u—t

= { otherwise ml(Init,t) > k }
E>0 A s/Au A mi(Init,u) <k

= { defnof /4, }
(F7:0<j<k:s4;u)

—Lah0

Figure 1: Example relations: s3 —4 3, t1 —5 13, s1 —4 14, s2 /o tl, s4 /5 13.

5 Vector Clock

In this section we present a vector clock algorithm, state the desired properties of the
algorithm and prove that it satisfies the properties. Vector clocks are widely used in
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applications such as debugging, concurrency control in databases, recovery in fault tol-
erant systems, and ordered broadcast algorithms. We use a variant of the traditional
algorithm [2, 11] that uses less state space and is more difficult to prove as explained
later.

Vectors of integers can be partially ordered by an appropriately defined comparison
relation <. They are useful for characterizing the relationship between local states since
local states are partially ordered by —. The comparison relation is defined for vectors u
and v of length N as follows:

u<v2 (Vh:1<k<N:ulk] <vlk]) A (3j:1<j<N:ulf] <ol

The traditional vector clock algorithm assigns a vector s.v to every local state s such
that s.v < t.w if and only if s — ¢. We use a slightly different version in which this
condition holds when s and ¢ are on different processes. We use this version because it
is harder to prove (as discussed later) and also because it is practical. It conserves state
space since the vector components are incremented less frequently, and in general, one is
interested in causal relationships between states on different processes. The version we
use maintains the following property:

(Vs,t:sp#itp:rsv<toss—t)

5.1 Algorithm

Let there be N processes uniquely identified by an integer value between 1 and N in-
clusive. Recall that for any state s, s.p indicates the identity of the process to which
it belongs. It is not required that message communication be ordered or reliable. The
algorithm is described by the initial conditions and the actions taken for each event type.

For any initial state s:
(Vi:i#£sprsofi]=0) A (sw[s.p]=1)
Rule for a send event (s, snd, t):
t.v = 5.0;
twt.p] == to[t.p]+ 1;
Rule for a receive event (s, rcv(u),t):
fori:=1to N
t.ofi] := max(s.v[i], u.v[7]);
Rule for an internal event (s,int,t):
t.v = 5.0;

The version presented above is harder to prove than the traditional algorithm because
of the message receive action. In the traditional algorithm, when a message is received
in state s, the local clock, s.p, is incremented. This ensures that (s,rcv(u),t) implies
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s.v < tw and u.v < t.w. The action taken in this version, t.v := max(s.v,u.v), does not
imply s.v < t.v nor does it imply u.v < t.v. This makes this version more difficult to
prove.

We use the following properties of the algorithm in our proof. Their validity is clear
from the algorithm text. Our proof is derived strictly from these properties; the algorithm
itself is not used. Therefore the proof is valid for any algorithm which satisfies these
properties. For example, in the send rule of the algorithm, ¢.v[t.p] could be increased by
any positive amount and our proof would still be valid.

Init rule:  Init(s) = (Vi1 # s.p:sofi]=0) A (s.w][s.p]=1)

Snd rule:  (s,snd,t) = (Vi1 # tp:tofi] =soll]) A toft.p] > s.vlt.p)
Rev rule: (s, rev(u),t) = (Vi tofi] = max(s.vi], w.v[i]))

Int rule:  (s,int,t) = t.v = s.0

5.2 Proof

In this section we prove the property stated earlier: (Vs,t:s.p#t.p:sv <twv & s —t).
This is accomplished by proving the following claims:

spEitp A s— 1= sv<two (1)
spFELp AN sv<tv=s—t (2)

Lemma 7 states that if there is a chain of events from s to ¢ then s.v < t.v. In the
traditional algorithm, proof of the property s — ¢t = s.v < t.v (which does not hold here)
is essentially the same as this proof. This is because, in the traditional algorithm, local
clocks are incremented for every event type. Note also that the proof of lemma 7 does
not use the initial conditions. Thus the lemma holds independent of the initial values of
the vectors.

Lemma?7 s -t = s.v <tw

Proof: It is sufficient to show that for all £ > 0: s —, ¢ = s.v < {.v. We use induction
on k.

Base (k=1) :
s —1 t
= {lemma?2 }
S <imt V s~1
= {expand s <, t and s~ t }
(s,int,t) V (s,snd,t) V (Ju: (s,rev(u),t)) V (Fu: (u,rev(s),t))
= { Snd, Rev, and Int rules }
(scv=tw) V (so<tw) V (s.vo<tw) V (s <tw)
= { simplify }
s.v < tw
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Induction: (k> 1)

=

=

=

s—pt AN (k>1)
{lemma 3 }
(Fu:is g1 u A u—qt)
{ induction hypothesis }
(Fu i so <wuw A uwv <tw)
{ simplify }
s.v < tw
n

Lemma 8 states that if two states s and ¢ are on different processes, and s does not
causally precede ¢, then t.v[s.p] < s.v[s.p]. Our formal proof of this lemma is nontrivial.
This proof is by induction on k in the -4} relation.

Lemma 8 (Vs,t:sp#£tp:s /At = tw[sp <sv[s.p])

Proof: It issufficient to show that forall &k > 0: s Ap t A s.p # t.p = t[s.p] < s.v[s.pl.
We use induction on k.

Base (k- =10) :

=

=

sholt N spFitp

{lemma 5 }

Init(t) N sp#tp

{ let u be initial state in s.p }

Init(t) A sp#tp A (Ju:Init(u) N up=sp:u=sV u— s)
{lemma 7 }

Init(t) N sp#tp A (Ju:Init(u) AN up=sp:uv=sv V uv < sv)
{ Init rule }

tols.p]=0 A (Fu:uwv[sp=1:uv=sv V uv<s0)

{ simplify }

t.wls.p] < s.v[s.p]

Induction: (k > 0)

=

=

=

=

shrt N spFtp N k>0

{ let u satisfy u <, ¢, u exists since =Init(t) }

St AN spElp N up=tp A u =<t

{lemma 6 }

shHiuNO0<jg<k ANupFsp AN u<it

{ inductive hypothesis }

u.w[s.p] < swfs.p] A u <im t

{ expand u <, t }

u.wls.p] < swls.p] A ((uyint, t) V (u,snd,t) V (u,rev(w),t))

Consider each disjunct separately:
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Case 1: (u,int,t)
w.v[s.p] < swfs.p] A (u,int,t)
= { Int rule }
u.w[s.p] < swfs.p] At =wuw
= { simplify }
t.wls.p] < s.v[s.p]

Case 2: (u,snd,t)
u.v[s.p] < swls.p] A (u,snd,t)
= { Sndrule, sp#£tp}
u.v[s.p] < s.wfs.p] A twls.p] = wv[s.p]
= { simplify }
t.wls.p] < s.v[s.p]

Case 3: (u,rcv(w),t)
u.v[s.p] < swfs.p] A (u,rev(w),t)
= { Revrule }
u.wls.p] < swfs.p] A (u,rev(w),t) A (to[s.p] = uwls.p] V tw]s.p] = w.v[s.p)])
= { simplify }
tols.p] < swls.p] V ((u,rev(w),t) A to[s.p] = w.v[s.p])
For case 3, it suffices to prove the following two cases.
Case 3A: w.p=s.p
to[s.p] = ww[s.p] A (u,rev(w),t) A w.p=s.p
= { let & satisfy w <, ¥, ¢ exists since w ~» ¢ implies = Final(w) }
to[s.p] =ww[s.p] A (w,snd,x) N w.p=s.p
= { otherwise s — ¢ }
tofs.p] =ww[s.p] A (w,snd,x) N wp=sp A w—s
= { since w <, x }
tofs.p] =ww[s.p] A (w,snd,x) N wp=sp A (=85 V & — )
= { Snd rule }
tols.p] =wwls.p] A wolsp] < aw[s.p] A (x=s5V 2 — 3)
= {lemma?7 }
tofs.p] = ww[s.p] A wols.p] < zw[s.p] A zv < sw
= { simplify }
t.wls.p] < s.v[s.p]

Case 3B: w.p # s.p
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to[s.p] = ww[s.p] A (u,rev(w),t) A w.p # s.p

{ use s 4 t, k>0, and lemma 6 }

tofs.pl =ww[s.p] AN wp#sp AN shjw A0S i<k
{ inductive hypothesis }

tols.p] = wwls.p] A wools.p] < s.0[s.p]

{ simplify }

t.o[s.p] < s.v[s.p] m

Lemma 9 is a refinement of lemma 7 for the case when s.p # t.p. Note that the

result of lemma 8 is used in this proof, indicating that perhaps it is necessary to prove
equation 2 in order to prove equation 1.

Lemma 9 (Vs,t:sp#tp:s—1t= sv<to)

Proof:

It is sufficient to show that for all £ > 0: s =5t A s.p#£t.p = tv < sw. We

use induction on k.

Base (k=1) :

=

=

s—1t AN spF£itp

{ defn of —; and lemma 2 }

s~t N spF£tp

{ let u satisfy u <;,, t }

spFup N (u,rev(s),t)

{ otherwise t — s (since there is only one event between u and t) }
ub s N ospFup A (u,rev(s),t)

{ lemma 8 and rcv rule }

swlu.p] < wolup] A (Vi tofi] = max(u.oi], s.0[i]))

s.v <tw

Induction (k> 1) :

=

=

s—=pt AN E>0 A s.pF£tp

{lemma 3 }

(Fuis —pru A u—1t A s.p#tp)

{ u.p can not have two values }

(Fuis—pru A u—1t A (up#tp V u.p#s.p))

(Fui(s—pru AN u—1t ANup#tp) V (s —=p1u A u—11t A ups.p))
{ inductive hypothesis }

(Fu (s =1 u A uw <tw) V (so<uwv A u—qt))

{lemma 7 }

(Fu: (so <ww A uw <tw) V (so<uwv A uwv < to))

s.v <tw
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Theorem 1 states the property which we set out to prove at the beginning of this
section.

Theorem 1 (Vs,t:sp#tp:s—t& sv<tw)

Proof: Immediate from Lemmas & and 9. n

6 Direct Dependency Clock

Lamport’s algorithm uses acknowledgments to implement a local clock which is equiv-
alent to direct dependency clocks. In this section we define a direct dependency clock
(DDClock) so that we may use it at an abstract level in the mutual exclusion algorithm.

Direct dependency clocks are a weaker version of vector clocks [11]. They require
smaller message tags to implement (one integer vs. the number of processes, N), but
they provide a weaker form of causality information. For many applications such as this
one, the weaker version of the clock suffices.

6.1 Algorithm

The algorithm for maintaining a DDClock is described by the initial conditions and the
actions taken for each event type.

For any initial state s:
(Vi:i#£sp:sofi]=0) A (s.w][s.p]=1)

Rule for a send event or an internal event (i.e., (s < 1) A =(Ju :u~>1)):
twlt.p] = swft.p] + 1

Rule for a receive event (i.e., s <;p, t A u~~t):
t.o[t.p] = max(s.v[t.p], u.vfu.p]) + 1
t.o[u.p] = max(uw.v[u.p], s.v[u.p])

6.2 Proof

It is easy to see from the implementation of DDClock that property DD1, shown below,
holds:

§=<imt V s~t= swlsp] <tw[t.p] N sv[s.p] < twls.p| (DD1)

Property DD?2 follows from D D1 since there must be a chain between s and ¢ and each
link in the chain must satisfy DDI.

s —t = swls.p| < toft.p] A swfs.p] < tols.p] (DD2)
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Theorem 2 states the main DDClock property. It uses the relation — which is a subset
of —. Given states s and ¢, s + ¢ is true if and only if s # ¢ and there is a path (ie,
chain) from s to ¢ which includes at most one message.

s=t=s=tV (Juvis=2u A u~v Av=t)

Theorem 2 Vs, t:s#t:(s— 1)< (s.v[s.p] < twls.p])

Proof:
First prove s £t A s+—t = sw[s.p] < twls.pl:
st
= {defnof — }
s —1

= { property DD2 }
s.os.p] < t[s.p]
Then prove s #t A =(s — 1) = s.v[s.p| > t.v[s.p] by induction on the states at process
t.p:
Base case: Init(t)
Init(t) = t[s.p] = 0. Also, s.v[s.p] > 1 for all s.
Thus, s.v[s.p] > t.v]s.p].
Induction case: Assume theorem holds for ¢, where ¢ = t.prev.
Case 1: (t,rcv(s’),t) A s'.p=s.p
From the algorithm, t.v[s.p] = s".v[s.p]. If =(s — 1), then ' — s,
which implies s".v[s.p] < s.v[s.p] (since s is send state and the
local clock is incremented). Thus, s.v[s.p] > t.v[s.p].
Case 2: Negation of case 1.
In this case, t.v[s.p] = t.v][s.p]. Also, s #¢ A —(s — 1) is equivalent
tos#1 A =(s+1). Thus, by substitution into the theorem,
s#Et AN (s— 1) = sw[s.p] > twls.p]. ]

7 Mutual Exclusion

Let a system consist of a fixed number of processes and a shared resource called the
critical section. It is required that no more than one process use the critical section at
any time. The algorithm to coordinate access to the critical section must satisfy the
following properties which are stated informally in the time domain. They will be given
in the causality domain when formalized.

Safety: Two processes should not have permission to use the critical section simultane-
ously.

Liveness: Every request for the critical section is eventually granted.

17



Fairness: Different requests must be granted in the order they are made.

Now the problem is formalized in the causality domain. To start, Lamport’s algorithm
assumes that all channels are FIFO, which can be stated as follows:

§<t AN s~uNt~v=(v<u)

For any state s, we define req(s) to be true if and only if the process P, has requested
the critical section and has not yet released it, and c¢s(s) to be true if and only if the
process P;, has permission to enter the critical section in the state s. Note that reg(s)
and es(s) are predicates, not program variables. They are a function of process state and
will be defined formally in the algorithm.

Both req and cs are false in an initial state. Now suppose t < u < v and that a request
for the critical section was made in ¢, access was granted in u, and it was released in v.
Then req(s) is true for all states s such that ¢ < s < v, and ¢s(s) is true for u < s < .
It is assumed that a process which is granted access to the critical section eventually
releases it:

cs(s) = (Ft:s <t:-reg(l)) (Cooperation)

The task is to develop a distributed algorithm to ensure the required safety, liveness
and fairness properties. The safety and liveness properties can be stated formally in the
causality domain as follows:

sl[t = =(es(s) A es(t)) (Safety)
req(s) = (Ft s <t A es(t)) (Liveness)

Before presenting the causality based fairness property, a little ground work is needed.
First, let
next_cs(s) = min{t|s <t A cs(t)}
where min is with respect to the order <. Informally, next_cs(s) is the first local state

after s in which the process F;, has access to the critical section. Also, define a boolean
function req_start(s) as follows:

req_start(s) = req(s) N —req(s.prev)

Thus, req-start(s) is true if and only if Ps, made a request for the critical section in
state s. Then, the fairness property can be stated as:

(req_start(s) A req_start(t) A s — t) = next_cs(s) — next_cs(t) (Fairness)

Note that next_cs(s) and next_cs(t) exist due to liveness. Furthermore, next_cs(s)
and next_cs(t) are not concurrent due to safety. Therefore,

next_cs(s) — next_cs(t)

is equivalent to
—(next_cs(t) — next_cs(s))
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7.1 Algorithm

An informal description of Lamport’s mutual exclusion algorithm [9] is given, followed
by a formal description in the causality domain. In the informal description each process
maintains a logical clock (used for timestamps) and a queue (stores requests for the
critical section).

o To request the critical section, a process sends a timestamped message to all other
processes and adds a timestamped request to the queue.

e On receiving a request message, the request and its timestamp is stored in the queue
and an acknowledgment is returned.

o To release the critical section, a process sends a release message to all other processes.
e On receiving a release message, the corresponding request is deleted from the queue.

e A process determines that it can access the critical section if and only if: 1) it has a
request in the queue with timestamp ¢, and 2) ¢ is less than all other requests in the
queue, and 3) it has received a message from every other process with timestamp
greater than ¢ (the request acknowledgments ensure this).

The formal description is shown below. The DDClock is maintained as described in
section 6.2. In local state s, variable s.v refers to the value of the DDClock. Thus, s.v
is the timestamp of state s. The array s.q functions as the queue (an array suffices since
processes submit one request at a time).

e Local variables in each state s:
s.q[1..n] : integer, each element initially oo

s.v : DDClock

To request the critical section in ¢ where s <;,, t:

t.q[t.p] = s.v[t.p]
for all j : 7 # t.p: send “request” to F;

e On receiving “request” in state ¢ which was sent from state u (i.e., u ~ ¢):
t.qlu.p] = u.qlu.p]
send ack to u.p

To release the critical section in state ¢:

t.q[t.p] = oo
for all j # t.p, send “release” to P;

o On receiving “release” in state ¢t which was sent from state u:
t.qlu.p] = oo
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State s has received a request from P; if s.q[i] # oo, in which case the timestamp of
the request is the value of s.q[i]. State s has permission to access the critical section
when there is a request from P, , with timestamp less than all other requests and P,
has received a message from every other process with a timestamp greater than the
timestamp of its own request. We use the predicates req(s) and cs(s) to denote that
a request has been made and access has been granted. In the definitions shown below,
the < relation on tuples is a lexicographic ordering. In the rest of the paper, we write
s.q[s.p] < s.v[j] instead of (s.¢[s.p], s.p) < (s.v[7],7]) for notational simplicity.

req(s) = s.q[s.p] # o

es(s)

(Vy:g#sp: (s.qlsplsp) < (swljl,g) A (s.qls.pl,s.p) < (s.q[5],7) )

7.2 Proof
We define the predicate

msg(s,t) = (FJu,t' :u~t' ANu=<s At=<t)

That is, there exists a message which was sent by P, , before s and received by F;, after
t.

The mutual exclusion algorithm satisfies the property stated in lemma 10. Intuitively,
the lemma states that if s /4 ¢ and no message sent before s arrives after ¢, then ¢.¢[s.p] =

s.qls.pl.

Lemma 10 Assume FIFO. Vs, t:s.p#t.p: s/t AN —msg(s,t) = t.qs.p] = s.q[s.p].

Proof: We will use induction on 4.
Base Case: (k =0) = Init(t)

If Init(s), then the result follows from the initial assignment. Otherwise, let u be
the initial state in the process s.p. From the program text, any change in s.q[s.p] is
followed by a message send to all processes. Given this and —msg(s,t) it follows that
s.q[s.p] = u.q[s.p]. (This argument can be formalized using induction on the the number
of states that precede s in the process s.p.) From initial assignment, it again follows that
t.q[s.p] = s.q[s.p].

Induction case: s /; t.prev,j < k

Let u = t.prev. Let event(u) # receive, then ~msg(s,t) implies =msg(s, u). Using
the induction hypothesis, we get that w.g[s.p] = s.¢[s.p] and by using program text,
we conclude that t.q[s.p] = u.q[s.]. Now let event(u) = receive(w). If w.p # s.p, the
previous case applies.

So, let w.p = s.p. Since s 4 t, it follows that w < s. Let w’ = w.next. From program,
w'.q[s.p] = t.q[s.p]. We now claim that s.q[s.p] = w’.¢[s.p] from which the result follows.
If not, there exists y such that w’ <y < s and y.prev.¢[s.p] # y.q[s.p]. From the program,
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Figure 2: Proof for the induction case for lemma 10

there exists a message from y to the process t.p received in the state z (assuming reliable
messages). The condition ¢ < z violates =msg(s,t). The condition ¢ = z is not possible
since exactly one message is received before ¢ which is w. And z < ¢ violates FIFO since
w <y but z < t. [
The following lemma is crucial in proving the safety property. The remaining theorems
prove that the algorithm satisfies the required properties: safety, liveness, and fairness.

Lemma 11 Assume message channels are FIFO: s.p #£t.p N s /At A s.q[s.p] < t.v][s.p]
= t.q[s.p] = s.q[s.p]

Proof: Using lemma 10, we note that it is sufficient to show that the stated the
assumptions and the antecedent imply —~msg(s,t). Let u < s be such that u.v[s.p] =
s.q[s.p]. That is, the request was made in state u. Let the message sent at u be received
by process t.p in state w. From the event descriptions, it follows that there is neither a
request message nor a release message sent after u and before s. (1)

Since u.v[u.p] < t.vu.p], from the property of dependency clocks, we get that u +— ¢.
Therefore there exists a message sent at or after v and received before t. From FIFO,
it follows that w < . From FIFO, and the fact that the message sent at u is received
before ¢, it follows that —msg(u,t). (2)

From (1) and (2), it follows that —msg(s,?). [

Theorem 3 (Safety) s.p # t.p A s|[t = —(es(s) A es(t)).

Proof: We will show that (s||t) A cs(s) A ¢s(t) implies false.
Case 1: t.v[s.p] < s.q[s.p] N s.v[t.p] < t.q[t.p]
We get the following cycle.
s.q[s.p]
<{es(s) NspFfitp}
s.o[t.p]
< { this case }
t.q[t.p]
<Hes(t) Nsp#itp}
t.o[s.p]
< { this case }

s.qls.pl.
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Case 2: s.q[s.p] < t.v[s.p] A t.q[t.p] < s.v[t.p]
We get the following cycle.
s.q[s.p]
<{es(s) NspFfitp}
s.q[t.p]
= { t.¢[t.p] < sw[t.p],t / s, Lemma 11 }
t.q[t.p]
<Hes(t) Nsp#itp}
t.q[s.p]
= { s.q[s.p] < t.v[s.p], s £~ t, Lemma 11 }
s.qls.pl.
Case 3: s.q[s.p] < tw[s.p] A s.v[t.p] < t.q[t.p]
We get the following cycle.
s.q[s.p]
<{es(s) NspFfitp}
s.o[t.p]
< { this case }
t.q[t.p]
<Hes(t) Nsp#itp}
t.q[s.p]
= { s.q[s.p] < t.v[s.p], s £~ t, Lemma 11 }
s.qls.pl.
Case 4: t.v[s.p] < s.q[s.p] A t.q[t.p] < s.v[t.p]
Similar to case 3.

Theorem 4 (Liveness) req(s) = Jt:s <t A es(t)

Proof: req(s) is equivalent to s.q[s.p] # oo. s.q[s.p] # oo implies that there exists
s1 € P, such that sy.v[s.p] = s.q[s.p] A event(sy) = request.
We show existence of the required ¢ with the following two claims:

Claim 1: 3ty : Vj # s.p: t1.0[7] > s.q[s.p] A s
Claim 2: 3ty : Vj # s.p: ta.qlg] > s.q[s.p] A s
By choosing t = max(t1,13) and verifying that e¢s(t) holds we get the desired result.

Claim 1 is true because the message sent at s; will eventually be acknowledged. It is
enough to note that Vj : j # s.p: Jw; € P; : 51 ~ w;. From the program, we get that on
receiving request, the message is acknowledged. Thus, Vj : 7 # s.p: Ju; € P 1 wj ~ uj.
By defining t; = max j : j # s.p: u;, and observing that for any j, w;.v[j] > s.q[s.p], we
get the claim 1.
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To show claim 2, we use induction on the number of requests smaller than s.¢[s.p] in

t1.q. We define
nreq(u) = | {k [ u.qlk] <u.qlu.p]} |

If nreq(ty) = 0, then s.¢[s.p] is minimum at ¢;.¢g and therefore c¢s(?1) holds. Assume
for induction that the claim holds for nreq(t1) = k, (k > 1). Now, let nreq(t,) = k + 1.
Consider the process with the smallest request, that is assume that ¢;.¢[7] is minimum for
some j. Let u be the state in P; such that u.v[j] = t;.¢[7]. We claim that nreq(u) = 0. If
not, let m be such that u.q[m] < uw.g[u.p]. This implies that u.¢[m] < u.q[u.p] < s.q[s.p].
Since s.¢[s.p] < t1.v[m], from FIFO it follows that #1.q[m] = u.q[m]. However, u.q[u.p] is
the smallest request message; a contradiction.

Therefore, we know that process u.p will enter critical section and thus eventually set
its ¢[u.p] to oco. This will reduce the number of requests at ¢;.p by 1. [

Theorem 5 (Fairness) (req-start(s) A req-start(t) N s — t) = (nextes(s) —
next_cs(t))

Proof: Let s’ = next_cs(s) be state in which critical section is acquired, and let s” be
state which it is released. Let ¢ = next_cs(1).
Let r be the state in P, , which received the request message sent from s.
We know the following facts:
1. r =<t, due to FIFO channels.
t.w[t.p] = t.q[t.p], due to request event at ¢.
s.w[s.p] < tw[t.p], since s — t (DD2).

s.q|s.p] = s.v[s.p], due to request event at s.
r.q[s.p] = s.q[s.p], due to receiving request at r.
r.q[s.p] < t.q[t.p], from 2,34, 5.

t.q[t.p] = t'.q[t.p], by defn of ¢'.
t'.q[t.p] < t'.q[s.p], since es(t').
9. r.qfs.p] < t'.q[t.p] <t.q[s.p], from 6,7,8.
This means that ¢[s.p] must be increased between r and ¢. That can only happen when
P, , receives the release message sent from s”. Thus s” — /. And since s’ — s, we

SRS N

conclude s’ — . n

& Conclusions

We introduced a system for specifying and proving distributed programs that is unique
in many respects. The system is built around the idea that the partial order of local
states generated by a distributed program is fundamental. A program is a specification
of the relationship between local states which are adjacent to each other in the poset. A
program property is a property of posets which holds for any poset generated by that
program. Poset properties are often succinct and elegant because they inherently account
for varying processor execution speeds.

23



The system utilizes a new proof technique, induction on the complement of the causally
precedes relation, which is useful in proving poset properties.

Program messages are modeled with what we call the “window model”. In this model,
messages are viewed as windows into the local state from which the message was sent
instead of as tuples of data flowing across a network. This model fits well with posets be-
cause the causal relationship between sender and receiver is explicit. Another advantage
is that there is less mathematical machinery to work around when designing proofs.

Our system for reasoning about distributed programs is static. Most program logics
are dynamic because the truth value of a formula is determined by the current location
of the program. In our system, local states are given names so that their variables can
be referenced. This allows us to abandon the notion of a current location and to define a
static program logic. This contrasts virtually all other program logics which are dynamic
and define the current location to be the current global state.

The specification and proof system was demonstrated on two well known algorithms
(vector clocks and mutual exclusion) and one lesser known algorithm (direct dependency

clocks).
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