
Adaptive General Perfectly Periodic Scheduling
Shailesh Patil and Vijay K. Garg

{patil, garg}@ece.utexas.edu
Department of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712

Abstract— We propose an adaptive algorithm Adaptmin to
create perfectly periodic schedules. A perfectly periodic schedule
schedules a client regularly after a predefined amount of time
known as the period of the client. The periodicity of such sched-
ules can be used to save battery life of nodes in a wireless network.
The quality of a perfectly periodic schedule is a function of the
ratio between the granted and requested periods. We find a worst
case performance bound on the quality of schedules produced
by Adaptmin. We also deduce family of input instances where
either Adaptmin does no worse than previous work, or always
outperforms previous work. The better performance ofAdaptmin
is confirmed by simulations results for randomly generated input
instances. The simulation results also show that the schedules
produced by Adaptmin can be more than 25% efficient. We
also propose a variant of Adaptmin which is computationally
much less demanding compared to previous work, but is very
close toAdaptmin in terms of efficiency. Finally we compare our
algorithms to optimal scheduling, simulation results indicate that
our algorithms performance is close to optimal scheduling.

Keywords: Scheduling, Distributed systems, Algorithms, Anal-
ysis of algorithms

I. I NTRODUCTION

Power consumption is one of the major challenges faced in
the design of portable wireless devices. In an ad-hoc network,
multiple portable devices may communicate with each other
for different services. This requires the devices to be awake
throughout the session of interaction with another device. One
way to reduce power consumption is to schedule devices after
a fixed period of time, so that they are awake only when they
are being served.

Consider a scenario where a device has to serve requests
from multiple devices. In order to do so, a schedule has to
be defined that grants access to every requesting client device.
In our setup, for any clienti, a request is defined by a tuple
(bi, τi), wherebi is the requested length andτi is the requested
time period. In other words, clienti requests to be served for
bi consecutive time slots everyτi time slots. Based on the
requests, the serving device forms a scheduleS. A schedule
is said to beperfectly periodic[8] if each client is scheduled
exactlyevery τS

i time slots, whereτS
i is called the period of

client i for scheduleS. Note thatτS
i may be different from

the requested time periodτi. In fact for some set of requests,
it is impossible to give the exact requested period to all the
clients. If τS

i = τi for all i, thenS is called a distortion free
schedule. The efficiency of a schedule is a function of the ratio
of τS

i andτi. In this paper we propose an adaptive algorithm
Adaptminthat produces efficient perfectly periodic schedules
in polynomial time.

To formally define the efficiency of a schedule, we introduce
some notation. The set of requests or jobs is known as
an‘instance’ and is denoted byJ = {(bi, τi)n

i=1}, where n
denotes the number of jobs. The requested bandwidth of job
i is defined asβi = bi

τi
. The total bandwidth of an instance

J is defined to beβJ =
∑n

i=1 βi. To evaluate the quality
of a perfectly periodic schedule, two measures are suggested
in [7] [8]. The first measure is an average measure known as
CAV E(J, S), and is defined asCAV E(J, S) = 1

βJ

∑n
i=1 βi

τS
i

τi
.

The second measure is a maximum measure and is defined as
CMAX(J, S) = max { τS

i

τi
|i ∈ J}.

The original motivation for studying perfectly periodic
schedules was broadcast disks. In a broadcast disk system a
server broadcasts data “pages” to clients in a perfectly periodic
manner; allowing clients to sleep until its desired page is
broadcast. Note that this is a special case of the portable
wireless device scenario where two-way communication is
required. Other motivations include teletext systems [1] [2],
chairperson assignment [11], machine maintenance [12] [3]
[4] and fair time scheduling problems.

It has been shown in [5] by Bar-Noy et. al., that even
deciding whether a given set of requests can be scheduled
in a perfectly periodic manner is NP hard. However in [7] [6],
polynomial complexity tree based scheduling algorithms have
been presented as a suboptimal solution to the problem for
the case where∀i ∈ J , bi = 1. This work has been extended
in [8] to requests withbi greater than or equal to one. To the
best of our knowledge, this is the only proposed solution for
the general case. Tree-based perfectly periodic scheduling has
also been investigated for possible inclusion into the IEEE’s
802.11e WAN QoS standard. Dhanakoti et. al. in [10] propose
a binary-tree-based perfectly periodic scheduling scheme for
fault avoidance in 802.11 WLANs. In this paper we study the
case wherebi is greater than one and compare our algorithm
to that proposed in [8].

This paper is divided into five sections. Section II presents
an overview of the algorithm presented in [8]. This is followed
by a description of the proposed algorithmAdaptmin. Section
III of the paper gives analytical bounds for the same. We also
present families of instances whereAdaptmineither does no
worse than previous work or always outperforms it. A com-
putationally light variant ofAdaptmin, Adapt and simulation
results are presented in section IV. Section V concludes the
paper.

Algorithm Adaptmin

Input: Instance J

Output: Schedule S

Steps:

1. Round the periods to nearest power of 2, i.e. � �i
i

ττ log2'= for all i.

2. Sort the jobs in the increasing order of periods.

3. Find the minimum period t' = min{ �

i' | i ∈ J}, maximum period
 T' = max{�

i' | i ∈ J} and the number of intervals � = T'/t'.

4. For each job i, starting with the first job, follow steps 5 to 7.

5. Try to schedule job i in the interval with least job length scheduled
 among the first � i = �

i'/t' intervals.

6. If the job is scheduled, then schedule the job in allłintervals that
 are at a multiple of � i intervals away (from the first interval in which
 the job is scheduled) and go back to step 4. Else, go to the next step.

7. Find the interval within the first � i intervals that requires the
 minimum expansion to accommodate job i, say interval k. Expand
 all intervals by the minimum expansion. Schedule job i in interval
 k and the intervals that are at a multiple of � i intervals away from k.
 Go to step 4.

� Fig. 1. Algorithm forAdaptmin

II. Adaptmin

We define some notation that will be needed during the
description and analysis of proposed algorithms. The free
bandwidth of an instance is defined as∆J = 1 − βJ .
The extent of a instance is defined asRJ = max {bi|i∈J}

min {τi|i∈J} .
The minimum requested period of an instance is denoted by
tJ = min {τi|i ∈ J}, while the maximum period is denoted
by TJ = max {τi|i ∈ J}. We will drop the subscriptJ when
there is no ambiguity about the instance being referred to.

As mentioned earlier, an algorithm calledA was proposed
in [8] to create perfectly periodic schedules. It was shown that
if all the periods of the instanceJ are of the formτi = 2mie,
where e is a constant, and∆ ≥ R, then a distortion free
perfectly periodic schedule exists and can be created using
the proposed tree based algorithm. It was further shown that
for any instance with periods that are of the form2mie, if
all the periods are scaled by a factor ofβ + R, then for
the resulting instance∆ ≥ R. Algorithm A first rounded the
periods to powers of two. Then, all the periods were scaled
by a factor ofβ′ + R′, whereβ′ and R′ are the bandwidth
and extent of the input instanceafter rounding periods to
the nearestpower of two. A perfectly periodic schedule was
produced using tree scheduling for the scaled up instance.
However, the requirement∆ ≥ R is very restrictive. Consider
the instanceJ = {(1, 1)}. In this example,∆ = 0 and
R = 1, but it is easy to produce a distortion free schedule

d

c

b

a

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 12 2

1 13 3 3 3 3 31 21 1 1 1 1 2

1 13 3 3 3 3 31 21 1 1 1 1 24

Fig. 2. Adaptminscheduling instanceJ = {(2, 3), (1, 5), (1, 13), (3, 8)}

for the instance. AlgorithmA will produce a schedule that
doubles the period. A more complex example is whenJ =
{(2, 4), (1, 8), (2, 8), (1, 16)}. A distortion free schedule can
also be formed for this instance, butA expands each period
by a factor of2316 . One can easily come up with more examples
where∆ < R, but a distortion free perfectly periodic schedule
exists.

Fig. 1 gives the algorithm forAdaptmin. We explain
this proposed algorithm with an example. Consider an in-
stance J = {(2, 3), (1, 5), (1, 13), (3, 8)}. The first step
is to round all periods up to nearest power of two, i.e.,
τ ′i = 2dlog2 τie. This gives us the modified instanceJ ′ =
{(2, 4), (1, 8), (1, 16), (3, 8)}. Step 2 requires that the input
instance be sorted in the ascending order according to periods,
i.e., ∀i, j ∈ J , if τi ≤ τj , then i ≤ j. No order is required
among jobs with equal periods. Note that algorithmA also
requires the same kind of ordering in the input instance. The
sorted instance is given byJ ′ = {(2, 4), (1, 8), (3, 8), (1, 16)}.

Like algorithm A, our algorithm also equally scales the
rounded periodsτ ′i , i.e., τS

i

τ ′i
will be equal for all i. This is

desirable, since it allows the maximum change in the period
of a particular job to be bounded and thus ensures some level
of fairness among the jobs. Also, scaling rounded periods
differently may lead to higher computational complexity.

Continuing with the example, we describe step3 now. Step3
calculates the minimum rounded periodt′ = 4, the maximum
rounded periodT ′ = 16. The algorithm divides the total
schedule intoα = T ′/t′ intervals, each interval of lengtht′.
For the given instance, the number of intervals isα = 4, with
each interval of lengtht′ = 4. We meet the perfectly periodic
property of the schedule being produced by ensuring that for
any jobi with requested periodτ ′i , the job is scheduled within
αi = τ ′i/t′ intervals.

In step4, we consider the first job(2, 4). Step5 tries to
schedule this job in the firstα1 = 1 interval(s). Since there is
space, it is possible to do so. Step6 then schedules the job in
all the intervals that areα1 = 1 interval away. This is shown
in Fig. 2(a), where 1 denotes the first job. Next, we loop back
to step4 and consider the second job(1, 8). Here α2 = 2,
and since both the first and second interval have equal empty
space, step5 schedules the job in the first interval, while step

2

6, schedules it in the third. Fig. 2(b) illustrates this. We again
loop back to step4 and now consider the third job, i.e.,(3, 8).
Sinceα3 is also equal to2, this job also has to be scheduled in
the first two intervals. However in step5, we are unable to find
enough space in either of the first two intervals. This means
that there is a need to expand the intervals, for this we proceed
to step7. Step7 finds the interval among the first two intervals
that requires the minimum expansion to accommodate(3, 8).
This is clearly the second interval, and it requires an expansion
of one slot. All intervals are expanded by a unit slot, and(3, 8)
is scheduled in the second and the fourth interval, as shown
in Fig. 2(c). We again loop back to step4 and consider the
last job(1, 16). Step4 places the job in the first interval, and
this completes the schedule. The completed schedule is shown
in Fig. 2(d). This completes our description of the algorithm.
One can think ofAdaptminas a ‘best fit’ solution, because it
greedily tries to find the best interval to schedule a job.

III. A NALYSIS OF Adaptmin

A. Performance bound

In this section we analyze the performance ofAdaptminby
finding the upper bounds onCAV E andCMAX of schedules
produced by the algorithm. We first consider the case where
all the periods are powers of two, i.e., of the formτi = 2mie,
where e is a constant. In this case, all time periods are of
the form 2kt, where k is an integer that varies from0 to
K := log2(T/t). We group jobs of equal period together. Let
Qk = {(bi, τi)|τi = 2kt &i ∈ J} denote the set of jobs with
periods equal to2kt. The sum of lengths for jobs with equal
periods is denoted asBk =

∑
i∈Qk

bi. Define

Lk(b) = max
q∈P (Qk)

{
∑

i∈q

bi |
∑

i∈q

bi ≥ b s.t. ∀j ∈ q
∑

i∈q−j

bi < b},

whereP (Qk) is the power set ofQk. Let use describeLk(b)
in a more verbose manner. To find the quantity, we first find
all the subsetsq of Qk, such that

∑
i∈q bi ≥ b and if any job

j is removed fromq, then
∑

i∈q−j bi < b. Then among such
subsets, we choose the set for which the sum of job lengths
is maximum,Lk(b) denotes that maximum.

We define one more quantity before presenting the bound,

Jρ = {(bi, τi) ∈ J | log2(
τi

tJ
) ≤ ρ},

i.e., an instance containing a subset of jobs ofJ with periods
less than or equal to2ρtJ .

Lemma 3.1:For an instanceJ with periods of the form
τi = 2mie, the maximum length in an interval for a schedule
S created usingAdaptminis at most

K∑

k=0

Lk(Bk/2k),

Proof: The proof is shown by performing induction on
J̄ρ := Jρ ∪ {(0, TJ)}. The bound is obvious on a schedule
created forJ̄0. Assume the bound is true on a schedule created
for J̄g−1.

To obtain a schedule for̄Jg one needs to add jobs with
period 2gtJ to the schedule created for̄Jg−1. Let U be the
set of intervals andlg−1

u be the length scheduled in intervalu,
for J̄g−1. By assumption

lg−1
u ≤

g−1∑

k=0

Lk(Bk/2k)

(BK = 0 in J̄g−1).
Considering the worst case, we assume

∀u ∈ U, lg−1
u =

g−1∑

k=0

Lk(Bk/2k).

Jobs of period2gtJ are divided among2g intervals. Consider
the case wherenot all jobs of period2gtJ have been scheduled,
let l(u) be the length scheduled in intervalu until now. Then
if

∃ u ∈ U, s.t. l(u)− lg−1
u ≥ Bg/2g,

by averaging argument,

∃ r ∈ U, s.t. l(r)− lg−1
r < Bg/2g.

Since Adaptminschedules job in the interval with the most
empty space, none of the remaining jobs will be scheduled in
u. Then, the maximum length added to any interval will be
Lg(Bg/2g). So,

lgu ≤
g∑

k=0

Lk(Bk/2k).

This completes the proof.

Theorem 3.2:For an instanceJ with periods of the form
τi = 2mie and

∑K
k=0 Lk(Bk/2k) > t, the CAV E(J, S) for a

scheduleS created usingAdaptminis less than

Cb =
∑K

k=0 Lk(Bk/2k)
t

Proof: The proof follows easily from Lemma 3.1.

Note that when
∑

k Lk(Bk/k) ≤ t, CAV E = 1.
Consider an instanceJ = {(2, 4), (1, 8), (1, 8), (2, 16)}, a

schedule created usingAdaptminfor J trivially achieves the
bound. This shows that the bound is tight. For instances with
jobs having periods that are not power of two, the bound can
be trivially shown to be2Cb.

B. Comparison withA

Since bothA andAdaptminround periods to nearest power
of two, it is sufficient to compare the distortion produced
by each after rounding. Recall thatJ ′ denotes the modified
instanceJ after rounding of periods, with the rounded off
periods being denoted byτ ′i . The minimum and maximum
rounded periods denoted byt′ andT ′ respectively, while the
bandwidth and extent forJ ′ are denoted byβ′ andR′.

Note that
∑K

k=0 Bk/2kt = β′, so if (Cb − β′) ≤ R′, then
Adaptminwill alwaysproduce a more efficient schedule than
that produced by algorithmA. However, if (Cb − β′) > R′,

3

then Adaptmin maystill outperformA, sinceCb may not be
achieved whileA always scales periods byβ′ + R′. This
indicates that in generalAdaptminmay outperformA.

From the above discussion, one can come up with family
of instances whereAdaptminwill always outperformA. Ex-
amples of such family of instances are instances thatafter
rounding of periods contain jobs with at most two different
periods.

Consider the case whereJ ′ contains jobs with exactly one
period. ThenAdaptmin will expand rounded periods by a
factor of max{1, β′}. In other wordsAdaptminwill produce
no distortion after rounding forβ′ < 1. While A will expand
the round periods by a factor ofmax{1, β′ + R′} (depending
on whether∆′ ≥ R′, or 1 ≥ β′ + R′). Then it is clear
that Adaptminwill always outperformA, i.e., i.e., not only
Adaptminwill produce distortion for a subset of instance for
which A produces distortion, but the distortion produced by
Adaptminwill be less.

Now consider the case whereJ ′ contains jobs with exactly
two different periods. If∆′ < R′, Adaptmin will expand
rounded periodsat most by a factor of β′ + R′, while A
will alwaysexpand rounded periods by a factor ofβ′ + R′.
However if ∆′ ≥ R′, both the algorithms do not expand the
rounded periods. It is clear that for such a family of instances
Adaptminwill never do worse thanA. An example instance
that contains exactly two different periods after rounding
is J = {(1, 3), (1, 4), (2, 5), (1, 7), (1, 8)}, so a fairly large
number of instances may belong to the family.

Let us describe another family whereAdaptmin always
outperformsA. Definec to be the maximum job length in an
instance, i.e.,c := max{bi|i ∈ J}. Note thatc = Rt = R′t′.
Consider a family of instances where each job after rounding
contains different periods, i.e., every job inJ ′ has a unique
period after rounding. We claim that for such a family of
instanceAdaptmin always outperformsA. To validate our
claim, we present the following lemma.

Lemma 3.3:Consider an instanceJ such that the rounded
period instanceJ ′ contains jobs with unique periods. Then the
maximum length scheduled in an interval of a schedule created
usingAdaptminfor the J is bounded byB0 + c, whereB0 is
the length of the job with minimum periodt in J .

Proof: Recall that the first step ofAdaptminis to round
the job periods to their nearest power of two. This is followed
by sorting the jobs in increasing order of their periods.

We give the proof by induction on jobs being scheduled.
It is clear that the bound will hold when the first job is
scheduled. By assumption, the bound holds afteri − 1 jobs
have been scheduled. We need to prove that the bound holds
after scheduling of jobi.

Let τ ′i = 2gt′, then jobi has to be scheduled once within
the first 2g intervals. Consider jobs2, . . . , i − 1, i.e., all the
jobs scheduled before jobi excepting the first one. All of them
have unique periods of the form2k, wherek < g. Then each

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

β

C
A

V
E

A
Adapt
Adaptmin

Fig. 3. Performance ofA, Adapt andAdaptmin

job will be scheduled in2g−k intervals. Note that∀g,

g−1∑

k=2

2g−k < 2g.

Then there exists at least one interval where the scheduled
length is onlyB0, the lengths scheduled in all other intervals
will be equal or greater. So the maximum length scheduled
in an interval after jobi has been scheduled isB0 + c. This
completes the proof.

When the number of jobsn is greater than1, (B0/t′) < β′

it is clear that for instances which contain unique periods after
roundingAdaptminwill always outperformA. The case where
n = 1 has been discussed earlier. One can extend our claim to
the case whereJ ′ contains job with unique periods for periods
greater thant′.

We focus on the maximum measure now. It is quite easy
to see that the maximum measureCMAX(J, S) for Adaptmin
is bounded by2Cb, while for A the bounded is2(β + R). If
Cb ≤ (β+R), then clearlyAdaptminwill have a lowerCMAX ,
and theAdaptminwill either always outperform or never do
worse thanA for families of instances described above.

IV. SIMULATION RESULTS

We performed simulations to observe the performance of
the discussed algorithms. Two criteria were observed, the
efficiency of the schedule produced in terms ofCAV E and
the computational complexity in terms of CPU time used. All
simulations were performed using MATLABR©.

A. Adapt and Optimal Scheduling

We also compareAdaptminandA to two more algorithms.
Adaptis a variant ofAdaptmin. When scheduling a jobi using
Adapt, the job is scheduled in thefirst interval among the first
αi intervals that has enough space to accommodatei instead of
the interval containing the maximum empty space. However,
if none of the firstαi intervals has space to accommodate

4

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

β

C
A

V
E

A
Adapt
Adaptmin

Fig. 4. Performance ofA, Adapt andAdaptminwith w = 2

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

β

C
A

V
E

A
Adapt
Adaptmin

Fig. 5. Performance ofA, Adapt andAdaptminwith w = 3

i, then like Adaptmin, Adapt expands intervals by the least
amount required. More formally, the algorithm forAdaptcan
be obtained by replacing the step5 in the algorithm for
Adaptminby “Starting with the first interval, try to schedule
job i in the first αi = τ ′i/t′ intervals.”. One can think of
Adapt as a ‘first fit’ solution. Simulation results show that
performance ofAdapt is very close toAdaptmin. However,
since Adapt does not always search for the interval with
maximum empty space, it is computationally more efficient
thanAdaptmin.

We also implemented a brute force algorithm which is
optimal under the regime where all periods are a power of
two and all periods are expanded by the same factor. This in
some sense is the lower bound for performance of the other
algorithms.

B. Efficiency of Algorithms

To compare the efficiency of algorithms, we plotCAV E

versus the requested bandwidthβ. The input instance having
a specificβ can be generated in multiple ways. We outline
our procedure, that tries to be as random as possible and not
necessarily produce instances belong to families discussed in
Section III-B. Since all algorithms round periods to nearest
power of two, we restrict the periods to be power of two. The
largest period is set to128. We also restrict the job lengths
to integers. For a givenβ, a point x1 is randomly chosen
between0 andβ. A support set of periodsτi is generated such
that 1/τi ≤ x1 and τi ≤ 128. From the support set, a period
say τ1i is randomly chosen and the maximum lengthb1i is
chosen such thatb1i/τ1i ≤ x. Then a point sayx2 is randomly
chosen from the interval(b1i/τ1i, β). A support set is again
generated, such that1/τi ≤ (x2 − b1i/τ1i) and τi ≤ 128.
A period sayτ2i is randomly chosen from the support set
and the maximum lengthb2i is chosen such thatb2i/τ1i ≤
(x2 − b1i/τ1i). This process is repeated until the requested
bandwidth for the job being generated is within1/128 of β.
Note that the support set will always contain128 as one of the
periods, so the probability of jobs with period128 is higher
than other periods. We remedy this by truncating the support
set to the smallestw periods and choosing randomly among
them.

The simulation results are shown in Figure 3 through 6.
Figure 3 shows the result when no truncation on the support
set is performed, while figure 4 and 5 represent the case when
w = 2 and w = 3, respectively. As expected, theCAV E

increases withβ for all the algorithms. The curves ofAdapt
and Adaptmin exactly overlap in all the figures. However,
overall Adapt performs slightly better thanAdaptmin. Our
algorithm clearly outperforms algorithmA. For example in
figure 3 at β = 0.5, the average increase in periods for
schedules produced usingA is 0.61, while the same quantity
for Adapt is 0.45, i.e.,Adapt is around25% more efficient. As
w decreases, the difference between the algorithms increases
further. Note that a smallerw on an average implies a smaller
R, so with decreasingR, Adaptgives better performance. Fig-
ure 6 compares all the algorithms with the optimal scheduling
with maximum period restricted to32 instead of128. As can
be seen from the figure, our algorithms’ perform quite close
to the optimal scheduler.

C. Computational Complexity

The worst case computational complexity for all the al-
gorithms being discussed isO(nT ′/t′), however simulation
results in this section show that they have quite different
average case behavior.

To observe computational performance, instances were gen-
erated in a different manner compared to previous subsection.
We studied computational complexity by varying two parame-
ters, the number of jobsn and number of intervals, i.e.,T ′/t′.
For a givenn and T ′/t′, jobs were randomly generated and
the computation time taken byA, Adapt and Adaptminwas
measured. Computational time of the algorithms was measured

5

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

β

C
A

V
E

A
Adapt
Adaptmin
Optimal scheduling

Fig. 6. Comparision ofA, Adapt, Adaptminwith optimal scheduling

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Number of jobs (n)

T
im

e
(s

ec
)

Adaptmin T/t = 16
Adapt T/t = 16
A T/t = 16
Adapt T/t = 4
A T/t = 4
Adaptmin T/t = 4

Fig. 7. Complexity comparison ofA, Adapt andAdaptmin

using the “cputime” command of MATLABR©. The periods
were again constrained to be power of two, while the lengths
were required to be integral. The lengths for each job was
chosen randomly between1 andbt/2c. The results have been
plotted in Figure 7. WhenT/t = 16, T was equal to128 and
t was set to8, while whenT/t = 4, T = 32 and t = 8.
Figure 7 shows thatAdapt has a much better computational
time compared toA and Adaptmin, while A does better than
Adaptmin. But the difference among all the algorithms reduces
with lower T/t ratio. Our tests show that the majority of
algorithm A’s time is spent in delegating the jobs between
the left and right child nodes in the tree that is constructed,
while the majority ofAdaptminis spent in finding the interval
with maximum empty space.

Fig. 7 also illustrates that both the algorithms are roughly
linear with the number of jobs. However,Adapt seems quite
insensitive to variation inT/t, while A andAdaptminseem to
be linear to the variation.

Overall, our results clearly indicate that bothAdapt and
Adaptminproduce much more efficient schedules thanA. And
from a computational complexity perspectiveAdapt is more
efficient thatA.

V. CONCLUSION

In this paper we proposed two algorithmsAdaptminand
Adapt to perform perfectly periodic scheduling. We also de-
veloped upper bounds forAdaptmin. Simulation results show
that bothAdaptminand Adapt perform much better thanA,
with Adapt performing slightly better thanAdaptmin. We
also comparedAdaptmin and Adapt to optimal scheduling,
the results show that our algorithms produce schedules close
to optimal schedules. In terms of computational complexity,
Adapt outperformedA.

ACKNOWLEDGMENT

The authors would like to thank Alejandro Icaza for the
very fruitful discussions we had with him. We would also like
to thank him for helping out with the simulations. We are
also grateful to the anonymous reviewers for their insightful
comments.

REFERENCES

[1] M. H. Ammar and J. W. Wong, “The Design of Teletext Broadcast
Cycles,” Performance Evaluation, p. 235-242, December 1985.

[2] M. H. Ammar and J. W. Wong, ”On the Optimality of Cyclic Trans-
mission in Teletext Systems,”IEEE Transaction on Communication, p.
1159-1170, November 1987.

[3] S. Anily, C. A. Glass and R. Hassin, ”The Scheduling of Maintenance
Service,”Discrete Applied Mathematics, vol. 80, p. 27-42, 1998.

[4] S. Anily, C. A. Glass and R. Hassin, ”Scheduling of Maintenance Services
to Three Machines,”Annals of Operations Research, vol. 86, p. 375-391,
1999.

[5] A. Bar-Noy, R. Bhatia, J. Naor and B. Schieber, ”Minimizing Service
and Operation Costs of Periodic Scheduling,”Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, p.11-20, January
25-27, 1998.

[6] A. Bar-Noy, A. Nisgav and B. Patt-Shamir, ”Nearly Optimal Perfectly-
Periodic Schedules,”Proceedings of the Twentieth Annual ACM Sympo-
sium on Principles of Distributed Computing, p.107-116, August 2001.

[7] A. Bar-Noy, V. Dreizin and B. Patt-Shamir, “Efficient Periodic Scheduling
by Trees,”Proceedings of the Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies, vol. 2, p. 23-27, June
2002.

[8] Z. Brakerski, A. Nisgav and B. Patt-Shamir, “General Perfectly Periodic
Scheduling,” Proceedings of the Twenty-First Annual Symposium on
Principles of Distributed Computing, p. 163-172, 2002.

[9] Z. Brakerski, V. Dreizin and B. Patt-Shamir, ”Dispatching in Perfectly-
Periodic Schedules,” Unpublished manuscript, 2001.

[10] N. Dhanakoti, S. Gopalan and V. Sridhar, ”Perfectly Periodic Scheduling
for Fault Avoidance in IEEE 802.11e in the Context of Home Networks,”
Proceedings of the 14th Annual IEEE International Symposium on
Software Reliability Engineering, November 17-20, 2003.

[11] R. Tijdeman, ”The Chairman Assignment Problem,”Discrete Mathe-
matics, vol. 32, p. 323-330, 1980.

[12] W. Wei and C. Liu, ”On a Periodic Maintenance Problem,”Operations
Research Letters, vol. 2, p.90-93, 1983.

6

