Adaptive General Perfectly Periodic Scheduling

Shailesh Patil and Vijay K. Garg
{patil, garg @ece.utexas.edu
Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, TX 78712

Abstract—We propose an adaptive algorithm Adaptmin to To formally define the efficiency of a schedule, we introduce
create perfectly periodic schedules. A perfectly periodic schedule some notation. The set of requests or jobs is known as
schedules a client regularly after a predefined amount of time an‘instance’ and is denoted by = {(b;,7:)",}, wheren

- 1y 11)= [

known as the period of the client. The periodicity of such sched- . . .
ules can be used to save battery life of nodes in a wireless network, d€Nnotes the number of jobs. The requested bandwidth of job

The quality of a perfectly periodic schedule is a function of the @ iS defined as3; = % The total bandwidth of an instance
ratio between the granted and requested periods. We find a worst .J is defined to bes; = >oi, 3. To evaluate the quality
case performance bound on the quality of schedules produced of g perfectly periodic schedule, two measures are suggested

by Adaptmin We also deduce family of input instances where . 171 1a1 The first measure is an average measure known as
either Adaptmin does no worse than previous work, or always

S
outperforms previous work. The better performance ofAdaptmin Cave(J,S), and is defined a€'ay (J, S) = @% Z?:l ﬁv%
is confirmed by simulations results for randomly generated input The second measure is a maximum measure and is defined as
instances. The simulation results also show that the schedulesCMAX(J7 S) = max {Z-|i € J}.
produced by Adaptmin can be more than 25% efficient. We Ti

also propose a variant of Adaptmin which is computationally The original motivation for studying perfectly periodic
much less demanding compared to previous work, but is very gchedules was broadcast disks. In a broadcast disk system a

close toAdaptminin terms of efficiency. Finally we compare our « " . . -
algorithms to optimal scheduling, simulation results indicate that server broadcasts data “pages” to clients in a perfectly periodic

our algorithms performance is close to optimal scheduling. manner; allowing Clients_ t(_) sleep u_ntil its desired page is
broadcast. Note that this is a special case of the portable

wireless device scenario where two-way communication is
required. Other motivations include teletext systems [1] [2],
. INTRODUCTION chairperson assignment [11], machine maintenance [12] [3]

Power consumption is one of the major challenges faced[f and fair time scheduling problems.
the design of portable wireless devices. In an ad-hoc network
multiple portable devices may communicate with each oth
for different services. This requires the devices to be awa

throughomsjt the session of |ntera.ct|oln with arl]n%thleréje\{lce. O Slynomial complexity tree based scheduling algorithms have
way tore uce power consumption is to schedule devices aifgf, , presented as a suboptimal solution to the problem for
a fixed period of time, so that they are awake only when they. ..o \whersi € J b — 1. This work has been extended
arecbelr)g served. o wh device h in [8] to requests withh; greater than or equal to one. To the

f onsi I?rla jce_nano IW erde a e(;/lce as tohsedrv:a rﬁqu%ﬁ t of our knowledge, this is the only proposed solution for
rom mu tiple devices. In order to do so, a schedule has {Rq general case. Tree-based perfectly periodic scheduling has
be defined that grants access to every requesting client devggo been investigated for possible inclusion into the IEEE’s

In our se:]up, for aﬂy client, a Lelques:] Is d(_afinhed by a tuDC:eBOZ.lle WAN QoS standard. Dhanakoti et. al. in [10] propose
(_bi’Ti)’ whereb; Is the requeste: gngt anlis the requested binary-tree-based perfectly periodic scheduling scheme for
time period. In other words, clieritrequests to be served forfault avoidance in 802.11 WLANS. In this paper we study the

bi consecuélve time slé)ts_eve}r‘yi time sl(r)]tsc.ﬁjl?:\sedhog }he case where; is greater than one and compare our algorithm
requests, the serving device forms a sche schedule /1ot broposed in [8].

is said to beperfectly periodic[8] if each client is scheduled
exactlyevery 7 time slots, where” is called the period of ~ This paper is divided into five sections. Section Il presents
client i for scheduleS. Note that~” may be different from an overview of the algorithm presented in [8]. This is followed
the requested time periog. In fact for some set of requests,by a description of the proposed algorithhdaptmin Section

it is impossible to give the exact requested period to all thB of the paper gives analytical bounds for the same. We also
clients. If 77 = 7, for all 4, then S is called a distortion free present families of instances wheielaptmineither does no
schedule. The efficiency of a schedule is a function of the ratimrse than previous work or always outperforms it. A com-
of 7 andr;. In this paper we propose an adaptive algorithiputationally light variant ofAdaptmin Adaptand simulation
Adaptminthat produces efficient perfectly periodic schedulegsults are presented in section IV. Section V concludes the
in polynomial time. paper.

Keywords: Scheduling, Distributed systems, Algorithms, Anal-
ysis of algorithms

It has been shown in [5] by Bar-Noy et. al., that even
Eciding whether a given set of requests can be scheduled
a perfectly periodic manner is NP hard. However in [7] [6],

|1Ill | |1I1I | |1I1I | |1I1I | |

Algorithm Adaptmin

a

Input: Instance |1|1|2| |1|1| | |1|1|2| |1|1| | |
b

Output: Schedul&

Steps: ENESETININ ESESETETE] ESESEYRN NN ESESETETEY

Cc
1. Round the periods to nearest power of 2,7i.e= 21997 1 for allj.

|1I1I2I4I |1I1I3I3I3|1I1I2I | |1I1I3I3I3|

2. Sort the jobs in the increasing order of periods.
d
3. Find the minimum periot = min{z' | i 7J}, maximum period)) o
T' = max{' | i 73} and the number of intervads= T'/t'. Fig. 2. Adaptminscheduling instancd = {(2, 3), (1,5), (1, 13), (3,8)}

4. For each joly, starting with the first job, follow steps 5 to 7.

5. Try to schedule jobin the interval with least job length scheduled for the instance. AlgorithmA will produce a schedule that
among the first; = 7'/t intervals. doubles the period. A more complex example is whee=

6. If the job is scheduled, then schedule the job in alltintervals that {(2,4),(1,8),(2,8), (1’_16_)}' A distortion free schedule (_:an
are at a multiple of; intervals away (from the first interval inwhich ~ also be formed for this instance, batexpands each period
the job is scheduled) and go back to step 4. Else, go to the next step. by a factor Of%. One can easily come up with more examples

7. Find the interval within the firgi; intervals that requires the whereA < R, but a distortion free perfectly periodic schedule

minimum expansion to accommodate ijoay intervak. Expand exists.

all intervals by the minimum expansion. Scheduld jokinterval Fig. 1 gives the algorithm forAdaptmin We explain

k and the intervals that are at a multiplexahtervals away fronk. this proposed algorithm with an example Consider an in-
Go to step 4. :

stance J = {(2,3),(1,5),(1,13),(3,8)}. The first step

is to round all periods up to nearest power of two, i.e.,
Fig. 1. Algorithm for Adaptmin 7! = 2[lee27i1, This gives us the modified instanck =
{(2,4),(1,8),(1,16),(3,8)}. Step2 requires that the input
instance be sorted in the ascending order according to periods,
e, vi,j € J,if i, <75, theni < j. No order is required
among jobs with equal periods. Note that algoritidmalso

We define some notation that will be needed during tifequires the same kind of ordering in the input instance. The

description and analysis of proposed algorithms. The fréerted instance is given by = {(2,4), (1,8),(3,8),(1,16)}.
bandwidth of an instance is defined a@s; = 1 — 3. Like algorithm A, our Salgorithm also equally scales the

[1. Adaptmin

The extent of a instance is defined & = rﬁg {f ‘fg‘,’} rounded periods?, i.e., TT— will be equal for alli. This is
The minimum requested period of an instance is Aenoted tisirable, since it allows the maximum change in the period

t; = min{7;li € J}, while the maximum period is denotedof a particular job to be bounded and thus ensures some level
by Ty = max {r;|i € J}. We will drop the subscrip/ when of fairness among the jobs. Also, scaling rounded periods
there is no ambiguity about the instance being referred to. differently may lead to higher computational complexity.

As mentioned earlier, an algorithm callédwas proposed Continuing with the example, we describe ssapow. Step3
in [8] to create perfectly periodic schedules. It was shown thealculates the minimum rounded perigd= 4, the maximum
if all the periods of the instancé are of the formr; = 2™ie, rounded periodl” = 16. The algorithm divides the total
where e is a constant, and\ > R, then a distortion free schedule intox = T"/¢' intervals, each interval of lengtti.
perfectly periodic schedule exists and can be created uskgr the given instance, the number of intervalsris- 4, with
the proposed tree based algorithm. It was further shown ttestch interval of length’ = 4. We meet the perfectly periodic
for any instance with periods that are of the foftie, if property of the schedule being produced by ensuring that for
all the periods are scaled by a factor gf+ R, then for any job: with requested period/, the job is scheduled within
the resulting instanc& > R. Algorithm A first rounded the «; = 7//t’ intervals.
periods to powers of two. Then, all the periods were scaledIn step4, we consider the first jol§2,4). Step5 tries to
by a factor of 3’ + R/, where s’ and R’ are the bandwidth schedule this job in the first; = 1 interval(s). Since there is
and extent of the input instancafter rounding periods to space, it is possible to do so. Stephen schedules the job in
the nearestpower of two. A perfectly periodic schedule wadl the intervals that are; = 1 interval away. This is shown
produced using tree scheduling for the scaled up instangeFig. 2(a), where 1 denotes the first job. Next, we loop back
However, the requiremert > R is very restrictive. Consider to step4 and consider the second jdh,8). Here an = 2,
the instanceJ = {(1,1)}. In this example,A = 0 and and since both the first and second interval have equal empty
R =1, but it is easy to produce a distortion free schedulpace, step schedules the job in the first interval, while step

6, schedules it in the third. Fig. 2(b) illustrates this. We again To obtain a schedule foy, one needs to add jobs with
loop back to steg and now consider the third job, i.€3,8). period 29¢; to the schedule created fof,_;. Let U be the
Sinceas is also equal t@, this job also has to be scheduled irset of intervals and?~! be the length scheduled in interval
the first two intervals. However in stép we are unable to find for .J,_;. By assumption

enough space in either of the first two intervals. This means g1

that there is a need to expand the intervals, for this we proceed 19-1 < Z Li(Bi/2%)

to step7. Step7 finds the interval among the first two intervals v

that requires the minimum expansion to accommodasé). o =

This is clearly the second interval, and it requires an expansiéﬁK = 0 In _Jg,l),

of one slot. All intervals are expanded by a unit slot, &hck) ~ Considering the worst case, we assume
is scheduled in the second and the fourth interval, as shown g—1

in Fig. 2(c). We again loop back to stepand consider the YueU, 197 = ZLk(Bk/2’“).
last job (1,16). Step4 places the job in the first interval, and k=0

this completes the schedule. The completed schedule is shogg of period9t,; are divided among? intervals. Consider

in Fig. 2(d). This completes our description of the algorithmpe case wherrotall jobs of period29t,; have been scheduled,
One can think ofAdaptminas a ‘best fit’ solution, because itjgt (y,) be the length scheduled in intervaluntil now. Then
greedily tries to find the best interval to schedule a job. ¢

1. ANALYSIS OF Adaptmin Juel, stifu) =15 > B, /29,
A. Performance bound by averaging argument,
In thi i I h f i _
n this section we analyze the performanceAafaptminby JreU, sti(r) 1871 < B,/29.

finding the upper bounds ofi 4z and Cy; 4x Of schedules

produced by the algorithm. We first consider the case whes@éce Adaptminschedules job in the interval with the most
all the periods are powers of two, i.e., of the form= 2™i¢, empty space, none of the remaining jobs will be scheduled in
where e is a constant. In this case, all time periods are of. Then, the maximum length added to any interval will be
the form 2*¢, where k is an integer that varies frot to L4(B,/29). So,

K :=log,(T'/t). We group jobs of equal period together. Let g

Qr = {(b;,)| = 2%t &i € J} denote the set of jobs with 19 < ZLk(Bk/Qk).

periods equal t@*t. The sum of lengths for jobs with equal k=0

periods is denoted aBj, = > _;cq, bi- Define This completes the proof.]

Ly(b) = Jnax){Z bi| Y bi>bst¥jeq Y bi<bl, Theorem 3.2:For an instance/ with periods of the form
! " ieq i€q 1€q—] T, = 2™e and Zf:o Li(By/2%) > t, the Cayp(J,S) for a

where P(Q},) is the power set of);. Let use describd,(b) scheduleS created usinghdaptminis less than

in a more verbose manner. To find the quantity, we first find ZK Li(By/2")

all the subsetg of Q, such thatzieq b; > b and if any job O = &=k=0

.. t .

j is removed fromy, then}_,. . b; < b. Then among such Proof: The proof follows easily from Lemma 3.1. m
subsets, we choose the set for which the sum of job lengths

is maximum, L, (b) denotes that maximum. Note that wher)_, Li(By/k) < t, Cavp = L.

We define one more quantity before presenting the bound, Consider an instancé = {(2,4),(1,8), (1,8),(2,16)}, a
- schedule created usimdaptminfor J trivially achieves the
K3

Jp = {(bi,) € J| logz(?) < p}, bound. This shows that the bound is tight. For instances with
J

_) o _) _ jobs having periods that are not power of two, the bound can
i.e., an instance containing a subset of jobs/akith periods pe trivially shown to beC;.

less than or equal t&°¢ ;.
] _ _ B. Comparison withA
Lemma 3.1:For an instance/ with periods of the form Since bothA and Adaptminround periods to nearest power
; = 2™ie, the maximum length in an interval for a schedule P P p

. . of two, it is sufficient to compare the distortion produced
§ created usingidaptminis at most by each after rounding. Recall thdt denotes the modified
K instanceJ after rounding of periods, with the rounded off
> Li(Bi/2Y), periods being denoted by/. The minimum and maximum
k=0 rounded periods denoted by and 7" respectively, while the
Proof: The proof is shown by performing induction onbandwidth and extent foy’ are denoted by’ and R’'.
J, == J, U{(0,Ty)}. The bound is obvious on a schedule Note thaty;_ By/2*t = @, so if (C;, — ') < R/, then
created forJ,. Assume the bound is true on a schedule creatédlaptminwill alwaysproduce a more efficient schedule than
for J,_1. that produced by algorithrA. However, if (Cy, — ') > R/,

then Adaptmin maystill outperformA, sinceC, may not be s

achieved whileA always scales periods by + R’. This oA

indicates that in generadldaptminmay outperformA. at +ﬁ3§§mm « d
From the above discussion, one can come up with family

of instances wherddaptminwill always outperformA. Ex- i

amples of such family of instances are instances #itdr .
rounding of periods contain jobs with at most two different Y

periods. © Ll
Consider the case wherE contains jobs with exactly one
period. ThenAdaptminwill expand rounded periods by a 2

factor of max{1, 3’}. In other wordsAdaptminwill produce
no distortion after rounding fof’ < 1. While A will expand
the round periods by a factor efax{1, 3’ + R’} (depending)
on whetherA’ > R, or1 > ' + R/). Then it is clear 0
that Adaptminwill always outperformA, i.e., i.e., not only
Adaptminwill produce distortion for a subset of instance for

which A produces distortion, but the distortion produced by
Adaptminwill be less.

twg Oggﬁ(;?gi;dzrert:)%;aff Awhiﬂé];?rxggpstrﬁ?]swmtr;;::ﬂy job will be scheduled ir29—* intervals. Note that/g,

rounded periodsat mostby a factor of 3 + R/, while A g-1

will alwaysexpand rounded periods by a factor @f+ R’. ZQQ*I@ <29

However if A’ > R/, both the algorithms do not expand the k=2

rounded periods. It is clear that for such a family of instanchen there exists at least one interval where the scheduled
Adaptminwill never do worse tharA. An example instance length is only B, the lengths scheduled in all other intervals
that contains exactly two different periods after roundingill be equal or greater. So the maximum length scheduled
is J = {(1,3),(1,4),(2,5),(1,7),(1,8)}, so a fairly large in an interval after jobi has been scheduled By + c. This
number of instances may belong to the family. completes the proof.]

Let us describe another family wherkdaptmin always
outperformsA. Definec to be the maximum job length in an
instance, i.e.c := max{b;|i € J}. Note thatc = Rt = R't’.
Consider a family of instances where each job after roundi
contains different periods, i.e., every job Jff has a unique
period after rounding. We claim that for such a family o
instance Adaptmin always outperformsA. To validate our
claim, we present the following lemma.

15

®

B

Fig. 3. Performance of, Adaptand Adaptmin

When the number of jobs is greater thar, (B, /t') < /3’
it is clear that for instances which contain unique periods after
rr]oundingAdaptminwiII always outperformA. The case where
9= 1 has been discussed earlier. One can extend our claim to
he case wherd’ contains job with unique periods for periods
Lreater thant'.

We focus on the maximum measure now. It is quite easy
to see that the maximum measwrg; 4 x (J, S) for Adaptmin

Lemma 3.3:Consider an instancé such that the rounded is bounded by2C;, while for A th_e b_ounded (5 + R). If
period instance/’ contains jobs with unique periods. Then th& < (9+R), then clearlyAdaptmirwill have a lowerCrax,
maximum length scheduled in an interval of a schedule creal%r&d theAdaptmme! _elther .always outperfqrm or never do
using Adaptminfor the .J is bounded byB, + ¢, where B is worse thanA for families of instances described above.
the length of the job with minimum periodin J. IV. SIMULATION RESULTS

Proof: Recall that the first step okdaptminis to round Ve performed simulations to observe the performance of
the job periods to their nearest power of two. This is followel¢ discussed algorithms. Two criteria were observed, the
by sorting the jobs in increasing order of their periods. ciciency of the schedule produced in terms @iy and

We give the proof by induction on jobs being schedule e computational complexity in terms of CPU time used. All

imulati f d using MATLAB.
It is clear that the bound will hold when the first job is muations were performed using A8
scheduled. By assumption, the bound holds after1 jobs A. Adapt and Optimal Scheduling

have been scheduled. We need to prove that the bound holdgye also comparédaptminandA to two more algorithms.
after scheduling of job. Adaptis a variant ofAdaptmin When scheduling a jobusing

Let 7/ = 29¢/, then jobi has to be scheduled once withinAdapt the job is scheduled in thést interval among the first
the first29 intervals. Consider jobg,...,i — 1, i.e., all the «; intervals that has enough space to accommaodatgead of
jobs scheduled before jalexcepting the first one. All of them the interval containing the maximum empty space. However,
have unique periods of the for@f, wherek < g. Then each if none of the firsta; intervals has space to accommodate

4

B. Efficiency of Algorithms

To compare the efficiency of algorithms, we ploty &
versus the requested bandwidih The input instance having
a specifics can be generated in multiple ways. We outline
our procedure, that tries to be as random as possible and not
necessarily produce instances belong to families discussed in
Section 1lI-B. Since all algorithms round periods to nearest
power of two, we restrict the periods to be power of two. The
largest period is set t@28. We also restrict the job lengths
to integers. For a giverB, a point z; is randomly chosen
betweerh and3. A support set of periods; is generated such
thatl/7 < z; andr; < 128. From the support set, a period
say 71; is randomly chosen and the maximum length is
chosen such that; /7; < z. Then a point say:, is randomly
chosen from the intervalb,; /71, 3). A support set is again
. o generated, such that/r; < (zg — by;/71;) and 7; < 128.
Fig. 4. Performance of, Adaptand Adaptminwith w = 2 A period sayr; is randomly chosen from the support set
and the maximum lengthsy; is chosen such that;/m; <
(z9 — by;/m1:). This process is repeated until the requested
bandwidth for the job being generated is withipi128 of g.

—6—A
1.9 —8— Adapt
—%— Adaptmin

18

171

16

15

CAVE

141

13

121

11rp

o
Cg
N

25 : ‘ ‘ ‘ Note that the support set will always contdi28 as one of the
iﬁdam periods, so the probability of jobs with perid@8 is higher
—s%— Adaptmin than other periods. We remedy this by truncating the support

set to the smallesty periods and choosing randomly among
them.

The simulation results are shown in Figure 3 through 6.
Figure 3 shows the result when no truncation on the support
set is performed, while figure 4 and 5 represent the case when
w = 2 and w = 3, respectively. As expected, thEy g
increases withs for all the algorithms. The curves dfdapt
and Adaptmin exactly overlap in all the figures. However,
overall Adapt performs slightly better thab\daptmin Our
algorithm clearly outperforms algorithrA. For example in
figure 3 ats = 0.5, the average increase in periods for
schedules produced usigis 0.61, while the same quantity
for Adaptis 0.45, i.e., Adaptis around25% more efficient. As
w decreases, the difference between the algorithms increases
further. Note that a smallar on an average implies a smaller
R, so with decreasingt, Adaptgives better performance. Fig-
ure 6 compares all the algorithms with the optimal scheduling

i, then like Adaptmin Adapt expands intervals by the leastVith maximum period restricted 2 instead of128. As can
amount required. More formally, the algorithm fadaptcan be seen from the figure, our algorithms’ perform quite close
be obtained by replacing the stépin the algorithm for to the optimal scheduler.
Adapt!”ninby “_Starting with thg first interval, try to sc.heduIeC_ Computational Complexity
job i in the firsta; = r;/t' intervals.’. One can think of The worst case computational complexity for all the al-
Adapt as a ‘first fit'" solution. Simulation results show that . : . pute ' plexity Tor .

. : gorithms being discussed 9(nT”/t'), however simulation
performance ofAdaptis very close toAdaptmin However,

since Adapt does not always search for the interval withreSUItS in_this sectu_)n show that they have quite different
verage case behavior.

maximum empty space, it is computationally more efficiert : .
. To observe computational performance, instances were gen-
than Adaptmin X : . .
erated in a different manner compared to previous subsection.
We also implemented a brute force algorithm which i8/e studied computational complexity by varying two parame-
optimal under the regime where all periods are a power t#rs, the number of jobs and number of intervals, i.€T’ /t'.
two and all periods are expanded by the same factor. ThisRor a givenn and7”/t/, jobs were randomly generated and
some sense is the lower bound for performance of the otliee computation time taken b Adapt and Adaptminwas
algorithms. measured. Computational time of the algorithms was measured

CAVE

15F

Fig. 5. Performance oA, Adaptand Adaptminwith w = 3

Overall, our results clearly indicate that bo&dapt and
Adaptminproduce much more efficient schedules tihand
from a computational complexity perspectivalaptis more
efficient thatA.

19

—6—A

1.8 —&— Adapt

—*— Adaptmin

—— Optimal scheduling

16} V. CONCLUSION

15 In this paper we proposed two algorithm&laptminand
Adaptto perform perfectly periodic scheduling. We also de-
veloped upper bounds fgkdaptmin Simulation results show
that both Adaptminand Adapt perform much better thaa,

with Adapt performing slightly better tharAdaptmin We

also comparedddaptminand Adapt to optimal scheduling,

the results show that our algorithms produce schedules close
to optimal schedules. In terms of computational complexity,

AdaptoutperformedA.

CAVE

13

121

@

ACKNOWLEDGMENT

The authors would like to thank Alejandro Icaza for the
very fruitful discussions we had with him. We would also like
to thank him for helping out with the simulations. We are
o Adapimin T = 16 also grateful to the anonymous reviewers for their insightful

—&— Adapt T/t = 16

+AT/?: 16 comments.
0.21| —9—Adapt Tit=4
—%—ATIt=4

—4&— Adaptmin T/t =4

Fig. 6. Comparision ofA, Adapt Adaptminwith optimal scheduling

0.25

REFERENCES

[1] M. H. Ammar and J. W. Wong, “The Design of Teletext Broadcast
Cycles,” Performance Evaluatigrnp. 235-242, December 1985.

[2] M. H. Ammar and J. W. Wong, "On the Optimality of Cyclic Trans-
mission in Teletext Systems|EEE Transaction on Communicatipp.

g 1159-1170, November 1987.

[3] S. Anily, C. A. Glass and R. Hassin, "The Scheduling of Maintenance
Service,"Discrete Applied Mathematicsol. 80, p. 27-42, 1998.

[4] S. Anily, C. A. Glass and R. Hassin, "Scheduling of Maintenance Services
to Three Machines,Annals of Operations Researolol. 86, p. 375-391,
1999.

q : : 7 [5] A. Bar-Noy, R. Bhatia, J. Naor and B. Schieber, "Minimizing Service

00 200 300 400 500 600 700 800 900 1000 and Operation Costs of Periodic SchedulinBroceedings of the Ninth

Number of jobs (n) Annual ACM-SIAM Symposium on Discrete Algorithm41-20, January
25-27, 1998.

. . . . [6] A. Bar-Noy, A. Nisgav and B. Patt-Shamir, "Nearly Optimal Perfectly-

Fig. 7. Complexity comparison o, Adaptand Adaptmin Periodic SchedulesProceedings of the Twentieth Annual ACM Sympo-
sium on Principles of Distributed Computing.107-116, August 2001.

[7] A.Bar-Noy, V. Dreizin and B. Patt-Shamir, “Efficient Periodic Scheduling

by Trees,”Proceedings of the Twenty-First Annual Joint Conference of
using the “cputime" command of MATLA@. The periods the IEEE Computer and Communications Societiet 2, p. 23-27, June

. . . 2002.
were again constrained to be power of two, while the lengtlﬂﬁ Z. Brakerski, A. Nisgav and B. Patt-Shamir, “General Perfectly Periodic

were required to be integral. The lengths for each job was Scheduling,” Proceedings of the Twenty-First Annual Symposium on
chosen randomly betweenand |¢/2]. The results have been_ _ Principles of Distributed Computing. 163-172, 2002.

| di . h | d [9] Z. Brakerski, V. Dreizin and B. Patt-Shamir, "Dispatching in Perfectly-
plotted in Figure 7_' W e'T/t = 16, T' was equal tal28 an Periodic Schedules,” Unpublished manuscript, 2001.
t was set to8, while whenT'/t = 4, T = 32 andt = 8. [10] N.Dhanakoti, S. Gopalan and V. Sridhar, "Perfectly Periodic Scheduling
Figure 7 shows thaAdapt has a much better computational for Fault Avoidance in IEEE 802.11e in the Context of Home Networks,”
. d dAd . hil d b h Proceedings of the 14th Annual IEEE International Symposium on
time compare td_an Adaptmin while A oes. etter than Software Reliability EngineerindNovember 17-20, 2003.
Adaptmin But the difference among all the algorithms reduces1] R. Tijdeman, "The Chairman Assignment Problerbjscrete Mathe-
with lower T/t ratio. Our tests show that the majority of _ matics vol. 32, p. 323-330, 1980. .

| ithm A's time is spent in deleqating the iobs bet eeH.Z] W. Wei and C. Liu, "On a Periodic Maintenance Problef@ferations
algorithm . ' ' > p ! . gating J W Research Letterssol. 2, p.90-93, 1983.
the left and right child nodes in the tree that is constructed,
while the majority ofAdaptminis spent in finding the interval
with maximum empty space.

Fig. 7 also illustrates that both the algorithms are roughly
linear with the number of jobs. Howevekdapt seems quite
insensitive to variation iff"/¢, while A and Adaptminseem to

be linear to the variation.

o
[N
3

Time (sec)

°
&

