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Abstract In a concurrent system with N processes, vector

clocks of size N are used for tracking dependencies between

the events. Using vectors of size N leads to scalability prob-

lems. Moreover, association of components with processes

makes vector clocks cumbersome and inefficient for systems

with a dynamic number of processes. We present a class

of logical clock algorithms, called chain clock, for tracking

dependencies between relevant events based on generaliz-

ing a process to any chain in the computation poset. Chain

clocks are generally able to track dependencies using fewer

than N components and also adapt automatically to systems

with dynamic number of processes. We compared the per-

formance of Dynamic Chain Clock (DCC) with vector clock

for multithreaded programs in Java. With 1% of total events
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being relevant events, DCC requires 10 times fewer compo-

nents than vector clock and the timestamp traces are smaller

by a factor of 100. For the same case, although DCC requires

shared data structures, it is still 10 times faster than vector

clock in our experiments. We also study the class of chain

clocks which perform optimally for posets of small width

and show that a single algorithm cannot perform optimally

for posets of small width as well as large width.

Keywords Vector clock · Dependency tracking · Predicate

detection.

1 Introduction

A concurrent computation consists of a set of processes ex-

ecuting a sequence of events. Some of these events are unre-

lated and can be carried out in parallel with each other. Other

events must happen in a certain sequence. This information

about the ordering between events is required by many ap-

plications. Some examples include:

1. Debugging and monitoring: Distributed breakpoints [16],

data-race detection [27,29], global predicate detection

[10,19], execution replay [30], runtime verification [32],

access anomaly detection [13], sequential consistency

verification[8].

2. Fault tolerance and recovery: Process Groups [6], con-

sistent checkpoints [34,21].
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3. Others : Termination detection [25], causal message de-

livery [7,31].

The order between the events in a concurrent computa-

tion is usually modeled through the Lamport’s happened-

before relation [23], denoted by →. The happened-before

imposes a partial order on the set of events in the system and

hence a distributed computation is usually modeled through

a partially ordered set or poset. The vector clock algorithm

[15], [26] captures the happened-before relation by assign-

ing a timestamp to every event in the system. The timestamp

is a vector of integers with a component for every process

in the system. Let the vector timestamp for an event e be de-

noted by e.V . Then, for any two events e and f , the following

holds: e → f ⇔ e.V < f .V . In other words, the timestamps

are able to capture the ordering information completely and

accurately. This guarantee provided by the vector clock is

called the strong clock condition [4] and forms the require-

ment desired by the applications from vector clocks.

In the vector clock algorithm, each process maintains a

vector of integers. On the send of a message, a process needs

to piggyback a vector timestamp on the message which re-

quires copying the vector timestamp. Similarly, on the re-

ceive of a message, a process needs to find maximum of

two vector timestamps. For a system with N processes, each

timestamp is of size N and each of the operations are O(N)

operations making the algorithm unscalable. Moreover, vec-

tor clocks become inefficient and cumbersome in systems

where the number of processes can change with time. Due

to these overheads, vector clocks are used in very few appli-

cations in practice.

In this paper, we present a class of timestamping algo-

rithms called chain clocks which alleviate some of the prob-

lems associated with vector clocks for applications like pred-

icate detection. In these applications only the order between

the relevant events needs to be tracked and these relevant

events constitute a small percentage of the total number of

events. In particular, we show that if the events which in-
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Fig. 1 (a) A computation with 4 processes (b) The relevant subcom-

putation

crement the same component are totally ordered (or form a

chain), then the timestamps capture the ordering accurately.

For example, consider the computation shown in Figure

1(a). We are interested in detecting the predicate “there is

no message in transit”. For this predicate, the set of relevant

events is the set of all send and receive events. The origi-

nal computation is based on 4 processes or chains. However,

as shown in Figure 1(b), the set of relevant events can be

decomposed in terms of two chains and timestamped using

vector timestamps of size 2.

Vector clock is just one instance of chain clocks where

events on a process constitute a chain. Charron-Bost [9] showed

that for all N there exists a computation with N processes

which requires a vector clock of size at least N to capture

the ordering accurately. As a result, we are forced to have

a vector of size N in general to track dependency between

the events. However, we present some chain clocks which

can decompose a computation into fewer than N chains in

many cases. The dynamic chain clock (DCC) introduced in

this paper, finds a chain decomposition of the poset such that

the number of chains in this decomposition is bounded by N

but generally requires fewer than N chains for the decompo-

sition. Another variant of chain clock, antichain-based chain

clock (ACC) gives a partition where the number of chains

is bounded by
(k+1

2

)

– the optimal number of chains in the

online decomposition of a poset of width k [11]. The width

of a poset is the minimum number of chains required to de-

compose the poset by any algorithm (online or offline). For

predicate detection and monitoring applications, where rel-

evant events are infrequent, both these clocks require much
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fewer components than N and they can be easily incorpo-

rated in tools like JMPaX [32].

Variable based chain clock (VCC) is an instance of chain

clocks which uses chains based on access events of relevant

variables in a shared memory system instead of processes

in the system. For predicate detection, the number of vari-

ables on which the predicate depends is often smaller than

N and in such a case, VCC requires fewer components in

the timestamp. All these chain clocks – VCC, DCC, ACC

– adapt automatically to process creation and termination as

the components of the clock are not bound to specific pro-

cesses. For applications such as predicate detection, we also

exploit the fact that at a given point during the computation,

we are interested in the dependencies between only a sub-

set of relevant events. We define the notion of contemporary

events for this purpose and describe an optimization which

can reduce the number of components in the chain decompo-

sition by introducing artificial dependencies between events.

We compared the performance of DCC with vector clocks

by using a multithreaded program which generated a ran-

dom poset of events. The results show that DCC provides

tremendous savings as compared to vector clocks. For a sys-

tem with 1% of total events being relevant events, DCC re-

quires 10 times fewer components than the vector clock. As

a consequence, the memory requirements of the programs

are reduced. For purposes of debugging and replay, an ap-

plication may need to produce a trace containing the vector

timestamps of all the events in the system. Using DCC, the

estimated trace sizes are about 100 times smaller as com-

pared to the ones generated by vector clocks. DCC also im-

poses a smaller time overhead on the original computation

as operations like comparison and copying are performed on

smaller vectors. This can be seen in our experiments where

an order of magnitude speedup was observed. DCC can also

be used in an off-line fashion to compress the vector clock

traces generated by a computation.

A drawback of DCC and ACC is that they require shared

data structures which make them more suitable for shared

memory systems than distributed system. For the shared mem-

ory system, the DCC performs uniformly better than vec-

tor clocks on time and space requirements. Our experiments

show that DCC is also a viable option for a distributed sys-

tem with a large number of processes. In such cases, the time

overhead of DCC was also lower than that of vector clock

in addition to savings in bandwidth and trace size. Using a

server to provide shared data structures needed by DCC is

not a limitation in applications like monitoring and predi-

cate detection which, in general, use an observation system

separate from the computation. A hybrid model, presented

later in the paper, can be used for multithreaded distributed

applications which can exploit shared memory for threads of

one process while allowing the processes to make their own

decisions without the need of a central server.

We also examine the effect of having process informa-

tion on optimal chain decomposition. We show that for posets

of small width, process information does not help. More-

over, if an algorithm performs optimally for small width,

then we can force the algorithm to use more than N chains

i.e. the algorithm may perform worse than the vector clock

algorithm or DCC. This result shows that it is not possible

to devise an algorithm which is guaranteed to perform op-

timally on all posets and hence the system designers need

to decide if they want strong guarantees for posets of small

width or posets of large width.

In summary, we make the following contributions:

1. We present a class of logical clock algorithms, called

chain clocks, which can be used to track dependencies

between relevant events accurately.

2. We give specific instances of chain clocks (DCC, ACC,

VCC) which can track dependencies efficiently and are

useful for different classes of applications.

3. We prove theoretical bounds on the number of chains re-

quired by any online algorithm for chain decomposition.

This essentially, provides a lower bound on the number

of components required by any chain clock algorithm in

the worst case.
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4. As an application, we consider the use of chain clocks

for predicate detection and show a technique to further

optimize chain clocks for predicate detection.

5. We present experimental results which demonstrate that

for certain applications, chain clocks can outperform the

vector clock algorithm by a factor of 10 and reduce the

memory requirements also by an order of magnitude.

The paper is organized as follows. Section 2 gives our

system model and the notation used in the paper. Section 3

introduces the class of chain clock algorithms and the char-

acterization of the algorithms in this class. Sections 4 and 5

give two specific instances of chain clock algorithms called

Dynamic Chain Clock (DCC) and Antichain-based Chain

Clock (ACC) respectively. In section 6, we provide lower

bounds on the number of chains required by any online chain

decomposition algorithm. Section 7 considers the chain clock

algorithm for the shared memory system and presents an in-

stance of chain clock algorithm called Variable-based Chain

Clock (VCC). In section 8, we apply the chain clock algo-

rithm to the problem of predicate detection and consider an

optimization which can further reduce the number of com-

ponents required by the chain clocks. Section 9 presents some

experimental results comparing the performance of chain

clocks with vector clocks. Section 10 gives some possible

extensions to the chain clocks. We discuss some related work

in 11. Finally, section 12 concludes by summarizing our con-

tributions and the future directions of research. Appendix

gives proofs for some of the theorems which were stated

without proof in the main body.

2 System Model and Notation

In this section, we present our model of a distributed sys-

tem. Although the chain clocks are more useful for shared

memory systems, we first use a distributed system model for

simplicity and ease of understanding as most of the previous

work on timestamping events uses this model.

The system consists of N sequential processes (or threads)

denoted by p1, p2, . . . , pN . A computation in the happened

before model is defined as a tuple (E,→) where E is the set

of events and → is a partial order on events in E. Each pro-

cess executes a sequence of events. Each event is an internal,

a send or a receive event. For an event e ∈ E, e.p denotes the

process on which e occurred.

We define a relation precedes, denoted by  between

events as follows:

1. e f if e.p = f .p and e immediately precedes f in the

sequence of events in process e.p.

2. e f if e is a send event and f is the corresponding re-

ceive event.

Then Lamport’s happened-before relation (→) on E is

the transitive closure of the relation . If e is equal to f or

e → f , we denote it by e→ f .

Two events e and f are said to be comparable if e → f or

f → e. If e and f are not comparable, they are said to be con-

current and this relationship is denoted by e ‖ f . The events

for which the happened-before order needs to be determined

are called relevant events and the set of such events are de-

noted by R ⊆ E. The history of an event e consists of all the

events f such that f → e and is denoted by H (e). Let e.V be

the vector timestamp associated with an event e and let m.V

be the timestamp associated with a message m.

The set of events E with the order imposed by Lamport’s

happened before relation defines a partially ordered set or

poset. A subset of elements C ⊆ E is said to form a chain iff

∀e, f ∈ C : e → f or f → e. Similarly, a subset of elements

A ⊆ E is said to form an antichain iff ∀e, f ∈ A : e ‖ f . The

width of a poset is the maximum size of an antichain in the

poset.

For a vector V we denote its size by V.size. For 1 ≤ i ≤
V.size, the ith component of vector V is given by V [i]. For

performing operations such as max and comparison on two

different sized vectors, the smaller vector 1is padded with
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zeroes and then the operations are performed in the usual

way.

3 Chain Clocks

The computation poset is generally represented as a set of

chains corresponding to the processes, with edges between

the chains corresponding to messages exchanged. The same

poset can also be represented in terms of a different set of

chains with dependencies among these chains. Chain clocks

use this idea to generalize the vector clock algorithm. In the

vector clock algorithm, a component of the vector is asso-

ciated with a process in the system. Instead, chain clocks

decompose the poset into a set of chains, which are poten-

tially different from the process chains, and then associate

a component in the vector timestamp with every chain. We

show that using any set of chains, not necessarily the process

chains, suffices to satisfy the strong clock condition.

With this intuition, we devise different strategies for de-

composing the subposet R of relevant events into chains.

In many cases, especially when the percentage of relevant

events is small, the subposet R can be decomposed into fewer

chains than the number of processes in the system. As a re-

sult, smaller vectors are required for timestamping events.

For example, consider the computation shown in Figure 1(a).

We are interested in detecting the predicate “there is no mes-

sage in transit”. For this predicate, the set R is the set of all

send and receive events. The original computation is based

on 4 processes or chains. However, as shown in Figure 1(b),

the subposet R can be decomposed in terms of two chains.

The details of the timestamping mechanism used for this

computation are given in section 4.

The algorithm for chain clocks is given in Figure 2. The

chain clock algorithm is very similar to the vector clock al-

gorithm and differs mainly in the component of the clock

chosen to increment. The component choosing strategy is

abstracted through a primitive called GI (for GetIndex). Pro-

cess pi maintains a local vector V which may grow during

the course of the algorithm. A component of vector V is in-

cremented when a relevant event occurs. The component to

be incremented for a relevant event e is decided by the prim-

itive GI and is denoted by e.c. Note that, if the index e.c does

not exist in the vector V , then V is padded with zeroes till the

size of V is e.c and then the e.c component is incremented.

On the send of a message, a timestamp is piggybacked on it

and on the receipt of a message, the local vector is updated

by taking max with the timestamp of the message.

We define a property on the index returned by GI, called

Chain-Decomposition property:

For all distinct e, f ∈ R : e.c = f .c ⇒ e ∦ f

Intuitively, it says that all the events which increment the

same component must form a chain. The following theorem

shows that if GI primitive satisfies the chain-decomposition

property, the chain clock satisfies the strong clock condition.

Theorem 1 Given that the GI primitive satisfies the chain

decomposition property, the following holds

∀e, f ∈ R : e → f ⇔ e.V < f .V

pi::

var

V : vector of integer

initially (∀ j : V [ j] := 0)

On occurrence of event e:

if e is a receive of message m:

V := max(V,m.V );

// Execution point L.

if e ∈ R :

e.c := GI(V,e);

//The vector size may increase during this operation.

V [e.c]++;

if e is a send event of message m:

m.V := V ;

Fig. 2 Chain clock algorithm
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Proof Consider e, f ∈ R.

(⇒) e → f ⇒ e.V < f .V

Consider the events along the path from e to f . For the events

along a process, the chain clock’s value never decreases and

for the receive events, the chain clock is updated by taking

the component-wise maximum of the local and the received

vectors. Hence, e.V ≤ f .V . Moreover, the component f .c is

incremented at f and hence, e.V [ f .c] < f .V [ f .c]. Therefore,

e.V < f .V .

(⇐) e9 f ⇒ e.V ≮ f .V

If f → e, then f .V < e.V and hence e.V ≮ f .V . Now con-

sider e ‖ f . By chain decomposition property, e.c , f .c. Let

g be the last event in the history of f such that g.c = e.c.

This event is uniquely defined as the set of events which

increment a component form a total order by the chain de-

composition property.

First assume that g exists. By the chain clock algorithm,

it follows that g.V [e.c] = f .V [e.c]. Events g and e must be

comparable as both of them increment the component e.c. If

e → g, then e → f which leads to contradiction. If g → e,

then e.V ≥ g.V and e increments the component e.c. There-

fore, e.V [e.c] > g.V [e.c] = f .V [e.c].

Now suppose that g does not exist. If no event in the his-

tory of f has incremented the component e.c, then f .V [e.c]=

0. Since e increments the component e.c, e.V [e.c]> f .V [e.c].

In both the cases, we have e.V [e.c]> f .V [e.c] and hence,

e.V ≮ f .V . ut

Similar to vector clocks, chain clocks also allow two

events to be compared in constant time if the chains con-

taining the events are known. The following lemma forms

the basis for this constant time comparison between times-

tamps.

Lemma 1 The chain clock algorithm satisfies the following

property:

∀e, f ∈ R : e → f ⇔ (e.V [e.c]≤ f .V [e.c])

∧(e.V [ f .c] < f .V [ f .c])

Proof Follows from the proof of Theorem 1 ut

The GI primitive can be any function which satisfies the

chain decomposition property. In the following sections, we

consider some GI primitives which satisfy the chain decom-

position condition and are suited for certain applications. At

this point, it can be seen that vector clock is also a chain

clock where the GI primitive simply returns e.p as the index

for an event e. This GI primitive satisfies the chain decom-

position property as all the events in a process are totally

ordered. As a result, the vector clock algorithm algorithm

decomposes R into chains based on the processes and hence

the size of the vector clocks is N.

4 Dynamic Chain Clock

Dynamic chain clock (DCC) is a chain clock which uses a

dynamically growing vector. The GI primitive finds a com-

ponent of the clock such that any concurrent event does not

increment the same component. We first present a simple

version of the GI primitive for DCC in Figure 3. It uses a

vector Z shared between the processes in the system. In a

distributed system, a shared data structure can be hosted on

a server and the operations on the structure can be performed

through remote procedure call (RPC). From an algorithmic

perspective, it is equivalent to using a shared data structure

and we describe our algorithms assuming shared data struc-

tures.

Intuitively, the vector Z maintains the global state infor-

mation in terms of the number of events executed along ev-

ery chain in the system. It is initialized with an empty vector

at the start of the program and subsequently maintains the

maximum value for every component that has been added so

far. When a call to GI(V,e) is made, it first looks for a com-

ponent which has the same value in V and Z. If the search

is successful, that component is incremented. Otherwise, a

new component is added to Z and incremented. Finally, the

updated component is returned to the calling process. Note
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GI(V,e):://synchronized

var

Z: vector of integer

//vector with no components

initially (Z = φ)

if ∃i : Z[i] = V [i]:

let j be such that Z[ j] = V [ j];

else

//add a new component

Z.size++;

j := Z.size;

Z[ j]++;

return j;

Fig. 3 An implementation of GI for chain clocks

Call V Z V ′ Z′

GI(V,a) φ φ (1) (1)

GI(V,b) (1) (1) (2) (2)

GI(V,e) φ (2) (0,1) (2,1)

GI(V, f ) (0,1) (2,1) (0,2) (2,2)

GI(V,g) (0,2) (2,1) (0,3) (2,3)

GI(V,c) (2) (2,3) (3) (3,3)

GI(V,d) (3,1) (3,3) (4,1) (4,3)

GI(V,h) (4,3) (4,3) (4,4) (4,4)

Fig. 4 A partial run of the computation given in Figure 1

that if there are more than one up-to-date components, then

any one of them could be incremented.

The Figure 1(b) shows the timestamp assignment by DCC

for the relevant events in computation corresponding to the

run given in Figure 4 in Figure 1(a). The values of the vari-

ables just after starting execution of GI are shown under the

variable names themselves (V and Z) and the updated values

after the completion of the call are listed under their primed

counterparts (V ′ and Z′).

For the ease of understanding, we have presented the al-

gorithm in the given form where the whole method is syn-

chronized. However, for correctness of the algorithm we just

require the read and write (if any) to every component Z[i]

and size variable Z.size be atomic instead of reads and writes

to the complete data structure Z being atomic. The given al-

gorithm can be modified to suit this requirement easily. The

following theorem shows that the implementation of GI sat-

isfies the chain decomposition property. Here we sketch the

main idea and a more detailed proof can be found in the Ap-

pendix.

Theorem 2 The implementation of GI in Figure 3 for the

chain clock algorithm satisfies the chain decomposition prop-

erty.

Proof Consider a pair of minimal events e, f ∈ R which vi-

olate the chain decomposition property i.e., e ‖ f and e.c =

f .c. By minimal it is meant that chain decomposition prop-

erty holds between e and events in H ( f ) and also between

f and events in H (e). Since GI is synchronized, the calls to

GI for different events in the system appear in a total order.

Value of Z just before the call GI(V,e) is made is denoted

by Ze and value of Z just after the call GI(V,e) is completed

is denoted by Z′
e. Similarly, e.V and e.V ′ denote the values

of V just before and after the call GI(V,e) is made, respec-

tively. Without loss of generality, assume that e completes

the call to GI before f . Then e increments the component

e.c and the vector Z is updated so that Z ′
e[e.c] = e.V ′[e.c].

When f calls GI, it can update the component e.c only if

f .V [e.c] = Z f [e.c]. Since the value of a component is never

decreased, Z f [e.c]≥ Z′
e[e.c] and hence f .V [e.c]≥ e.V ′[e.c].

Let the events in the history of event f which increment

the component e.c be H. For all g∈H, g must be comparable

to event e as e and f are a minimal pair which violate the

chain decomposition property. If ∃g ∈ H : e → g, then e → f

leading to contradiction. If ∀g ∈ H : g → e, then f .V [e.c] <

e.V ′[e.c] which again leads to contradiction. Hence the GI

primitive satisfies the chain decomposition property for all

the events in the computation. ut

Using a central server raises the issues of reliability and

performance for distributed systems. A central server is a

cause of concern for fault-tolerance reasons as the server be-

comes a single point of failure. However, in our system the
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state of the server consists only of Z vector which can be

reconstructed by taking the maximum of the timestamps of

the latest events on each process.

Some simple optimizations can be used to improve DCC’s

performance and mitigate the communication overhead. The

key insight behind these optimizations is that an application

does not need to know the timestamp until it communicates

with some other process in the system. A process after send-

ing a timestamp request to the server need not wait for the

server’s reply and can continue with its computation. Sim-

ilarly, it can combine the GI requests for multiple internal

events into one message.

4.1 Bounding the number of chains for DCC

d1
c1b1

p2
a2 b2

c2 d2

a1
p1

(1,2) (1,2,2)

(0,1) (0,1,1) (0,1,1,1) (0,1,1,1,1)

(1) (1,2,2,2)

Fig. 5 A computation timestamped with simple DCC requiring more

than N components

Although the algorithm in Figure 3 provides the chain

decomposition property, it may decompose the computation

in more than N chains. For example, consider the computa-

tion involving two processes given in Figure 5 with all the

events being relevant events. Figure 6 gives a prefix of a run

of the computation with the result of the calls to GI made in

the order given. Variable names follow the same convention

as in Figure 4. Note the call GI(V,b1). Here, V has up-to-

date information about both first and second components but

it chooses to increment the second component. This is a bad

choice to make because when b2 is executed, it is forced to

start a new chain. A series of such bad choices can result in

a chain clock with an unbounded number of components as

in the example described above.

Figure 7 presents an improved version of the GI algo-

rithm which bounds the number of chains in the decomposi-

Call V Z V ′ Z′

GI(V,a1) φ φ (1) (1)

GI(V,a2) φ (1) (0,1) (1,1)

GI(V,b1) (1,1) (1,1) (1,2) (1,2)

GI(V,b2) (0,1) (1,2) (0,1,1) (1,2,1)

GI(V,c1) (1,2,1) (1,2,1) (1,2,2) (1,2,2)

GI(V,c2) (0,1,1) (1,2,2) (0,1,1,1) (1,2,2,1)

Fig. 6 A partial run of the computation given in Figure 5

tion. This algorithm maintains another shared data structure

called F such that F[i] is the last process to increment Z[i]. In

GI(V,e), the algorithm checks if there is a component i such

that F[i] = e.p. If such a component exists, it is incremented

otherwise the algorithm looks for an up-to-date component

to increment. If no such component exists, then a new com-

ponent is added. If process p was the last to increment com-

ponent i, then it must have the latest value of component i

and in this way, this revised algorithm just gives preference

to one component ahead of others in some cases. The proof

of correctness for this algorithm follows from that of the pre-

vious algorithm assuming that accesses to F[i] and Z[i] are

atomic.

The algorithm in Figure 7 maintains the following in-

variants:

(I1) Z.size = F.size

Sizes of Z and F are increased together.

(I2) ∀i : pF [i].V [i] = Z[i]

F[i] maintains the value of the process which last up-

dated the component i.

(I3) ∀i, j : F[i] , F[ j]

Before setting F[i] = p, F is scanned to check that there

is no j such that F[ j] = p.

Now consider the same run of the computation in Figure

5 timestamped using the new version of GI in Figure 8. The

crucial difference is in the way the two algorithms timestamp

event b1. At b1, V has up-to-date information about both the

components but the new version of GI chooses to increment

the first component as it was the component which was last

incremented by p2. As a result, now b2 still has up-to-date
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GI(V,e):: //synchronized

var

Z: vector of integer

F : vector of integer

initially (Z = φ, F = φ)

if ∃i : F [i] = e.p

let j be such that F [ j] = e.p;

else

if ∃i : Z[i] = V [i]

let j be such that Z[ j] = V [ j];

else

//add a new component

Z.size++;

F.size++;

j := Z.size;

Z[ j]++;

F [ j] := e.p;

return j;

Fig. 7 Improved implementation of GI

Call V Z F V ′ Z′ F ′

GI(V,a1) φ φ φ (1) (1) (2)

GI(V,a2) φ (1) (1) (0,1) (1,1) (2,1)

GI(V,b1) (1,1) (1,1) (2,1) (2,1) (2,1) (2,1)

GI(V,b2) (0,1) (2,1) (2,1) (0,2) (2,2) (2,1)

GI(V,c1) (2,2) (2,2) (2,1) (3,2) (3,2) (2,1)

GI(V,c2) (0,2) (3,2) (2,1) (0,3) (3,3) (2,1)

Fig. 8 A partial run of the computation with new GI given in Figure 5

information about second component and the addition of a

new component is avoided. Continuing this way, the algo-

rithm timestamps the computation using two components

only. In fact, this algorithm guarantees that the number of

components in the clock never exceeds N as shown by the

next theorem.

Theorem 3 The primitive GI in Figure 7 with the chain clock

algorithm satisfies: ∀e ∈ E, (e.V).size ≤ N.

Proof From invariant (I3), F contains unique values. Since

F contains the process ids, F.size ≤ N throughout the com-

putation. By invariant (I1), this implies that Z.size≤N. More-

x u

y z

Fig. 9 A poset of width 2 forcing an algorithm to use 3 chains for

decomposition

var

B1, . . . ,Bk: sets of queues

∀i : 1 ≤ i ≤ k, |Bi| = i

∀i : q ∈ Bi,q is empty

When presented with an element z:

for i = 1 to k

if ∃q ∈ Bi : q is empty or q.head < z

insert z at the head of q

if i > 1

swap the set of queues Bi−1 and Bi \{q}
return

Fig. 10 Chain Partitioning algorithm

over, for any event e, (e.V).size ≤ Z.size and hence

(e.V).size ≤ N. ut

5 Antichain-based Chain Clock

The DCC algorithm does not provide any bound on the num-

ber of chains in the decomposition in terms of the optimal

chain decomposition. Dilworth’s famous theorem states that

a finite poset of width k requires at least k chains for de-

composition [12]. However, constructive proofs of this re-

sult require the entire poset to be available for the partition.

The best known online algorithm for partitioning the poset

is due to Kierstead [22] which partitions a poset of width

k into (5k − 1)/4 chains. The lower bound on this problem

due to Szemérdi (1982) as given in [37] states that there is

no online algorithm that partitions all posets of width k into

fewer than
(k+1

2

)

chains.

However, the problem of online partitioning of the com-

putation poset is a special version of this general problem

where the elements are presented in a total order consistent
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with the poset order. Felsner [14] has shown that even for the

simpler problem, the lower bound of
(k+1

2

)

holds. As an in-

sight into the general result, we show how any algorithm can

be forced to use 3 chains for a poset of width 2. Consider the

poset given in Figure 9. Initially two incomparable elements

x and y are presented to the chain decomposition algorithm.

It is forced to assign x and y to different chains. Now an el-

ement z greater than both x and y is presented. If algorithm

assigns z to a new chain, then it has already used 3 chains

for a poset of width 2. Otherwise, without loss of generality

assume that the algorithm assigns z to x’s chain. Then the

algorithm is presented an element u which is greater than x

and incomparable to y and z. The algorithm is forced to as-

sign u to a new chain and hence the algorithm uses 3 chains

for poset of width 2.

Furthermore, Felsner showed the lower bound to be strict

and presented an algorithm which requires at most
(k+1

2

)

chains to partition a poset. However, the algorithm described

maintains many data structures and it can require a scan of

the whole poset for processing an element in the worst case.

We present a simple algorithm which partitions the poset

into at most
(k+1

2

)

chains and requires at most O(k2) work

per element.

The algorithm for online partitioning of the poset into at

most
(k+1

2

)

chains is given in Figure 10. The algorithm main-

tains
(k+1

2

)

chains as queues partitioned into k sets B1,B2...,Bk

such that Bi has i queues. Let z be the new element to be in-

serted. We find the smallest i such that z is comparable with

the head of one of the queues in Bi or one of the queues in Bi

is empty. Let this queue in Bi be q. Then z is inserted at the

head of q. If i is not 1, queues in Bi−1 and Bi \q are swapped.

Every element of the poset is processed in this fashion and

in the end the non-empty set of queues gives us the decom-

position of the poset.

The following theorem gives the proof of correctness of

the algorithm.

Theorem 4 The algorithm in Figure 10 partitions a poset of

width k into
(k+1

2

)

chains.

Proof We claim that the algorithm maintains the followings

invariant:

(I) For all i: Heads of all nonempty queues in Bi are incom-

parable with each other.

Initially, all queues are empty and so the invariant holds.

Suppose that the invariant holds for the first m elements. Let

z be the next element presented to the algorithm. The algo-

rithm first finds a suitable i such that z can be inserted in one

of the queues in Bi.

Suppose the algorithm was able to find such an i. If i = 1,

then z is inserted into B1 and the invariant is trivially true.

Assume i ≥ 2. Then z is inserted into a queue q in Bi which

is either empty or has a head comparable with z. The re-

maining queues in Bi are swapped with queues in Bi−1. Af-

ter swapping, Bi has i−1 queues from Bi−1 and the queue q

and Bi−1 has i− 1 queues from Bi \ q. The heads of queues

in Bi−1 are incomparable as the invariant I was true for Bi

before z was inserted. The heads of queues in Bi which orig-

inally belonged to Bi−1 are incomparable to each other due

to the invariant I. The head of q, z, is also incomparable to

the heads of these queues as i was the smallest value such

that the head of one of the queues in Bi was comparable to

z. Hence, the insertion of the new element still maintains the

invariant.

If the algorithm is not able to insert z into any of the

queues, then all queue heads and in particular, queue heads

in Bk are incomparable to z. Then z along with the queue

heads in Bk forms an antichain of size k + 1. This leads to

a contradiction as the width of the poset is k. Hence, the

algorithm is always able to insert an element into one of

the queues and the poset is partitioned into fewer than
(k+1

2

)

chains. ut

Note that our algorithm does not need the knowledge of

k in advance. It starts with the assumption of k = 1, i.e., with

B1. When a new element cannot be inserted into B1, we have

found an antichain of size 2 and B2 can be created. Thus the

online algorithm uses at most
(k+1

2

)

chains in decomposing
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posets without knowing k in advance. This algorithm can be

used to implement the GI primitive in a way similar to DCC

by associating a component of the chain clock with every

queue in the system to obtain ACC.

To implement the ACC algorithm efficiently, we main-

tain a linked list Li for every queue Bi and a vector Z con-

taining the maximum global state as in the DCC algorithm.

A node in a linked list Li contains the index of vector Z cor-

responding to the chain which the node represents. To com-

pare an element e with the top element of a node n with

value j, we compare e.V [ j] and Z[ j]. The element e is com-

parable with the top element of node n if e.V [ j] = Z[ j]. To

swap the queues in Bi and Bi−1 while keeping the queue rep-

resented by n in its place, we remove the node n from Li,

insert it in Li−1 and swap the pointers for Li and Li−1. This

way the entire swap operation can be done in O(1) time and

doesn’t require any change to the representation of the indi-

vidual vector timestamps. Note that in this implementation,

the values stored in linked list nodes are never written to and

we just need to ensure that the swapping and the modifica-

tions to the linked lists are atomic. A simple way to ensure

this is to lock the linked lists Li and Li−1 whenever we are

reading the linked list Li. A more complex scheme involving

read/write locks per linked lists can also be devised which

would allow multiple readers to read from a linked list.

6 Chain Decomposition with Process Information

In the previous section, the problem of optimal chain decom-

position did not take into account the process information

associated with every element of the poset. Intuitively, this

process information should aid in the chain decomposition

of the poset and we should be able to decompose a poset

into fewer than
(k+1

2

)

chains at least for some cases. In this

section, we present some results for this problem.

We define the chain decomposition problem for a com-

putation poset with process information, T (k,N), as a game

between players Bob and Alice in the following way:

Bob presents elements of an up-growing partial order of

width k to Alice. Information about the decomposition of the

poset into N chains is given to Alice in the form of a chain

label assigned to every element that is presented. Alice needs

to decompose the poset into as few chains as possible.

Let η(N) be the integer which satisfies
(η(N)+1

2

)

≤ N <
(η(N)+2

2

)

. When N is clear from the context, we will simply

use η to denote η(N). Note that η = Θ(
√

N).

It is also important to mention that the bound given by

Felsner [14] also holds for problem T (k,N) for the case

when N >> k as all the elements in the Felsner’s proof for

the lower bound can come from different chains, rendering

the process information useless.

The lower bound given by Felsner holds regardless of the

knowledge of k to Alice. However, for the problem T (k,N),

the bounds are different depending upon Alice’s knowledge

of k.

For the problem T (k,N), we show two results

1. The bound given by Felsner still holds for problem T (k,N)

when k ≤ η.

2. If Alice’s algorithm meets Felsner’s bound for the prob-

lem T (k,N) with k ≤ η and Alice does not have knowl-

edge of k, then Bob can force Alice to use N + β − 1

chains. Here β = η(N −1).

For our problem of assigning timestamps to events in a

distributed computation, k is in fact unknown to the algo-

rithm. So, these results show that as an algorithm designer,

one needs to make a choice between the algorithms which

perform well when width is small and the ones which do not

use more than N chains in the worst case (such as DCC). We

can not get the best of both the worlds with any algorithm.

The proof for the first result closely follows Felsner’s

proof. Here we essentially show that with N ≥
(k+1

2

)

chains

in the given decomposition, we have enough freedom to gen-

erate the posets in Felsner’s original proof which can force

Alice to use
(k+1

2

)

chains. We do not need to show anything

else as the given chain decomposition into N chains only al-
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p1

p3

p2

a2
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b2

b3

b1a1

Fig. 11 Ladder Poset of 3 processes

p4

BiChaP 2

BiChaP 1

Q2

b2

b1

a2 c2 d2

d1p1

p2

p3

a1 c1

c4 d4

a3 b3

Fig. 12 Building Q3 from Q2. Here BiChaPs are chosen arbitrarily

lows Alice to give one decomposition preference over other

decompositions and Felsner’s proof works for any decom-

position chosen.

Theorem 5 For the problem T (k,N) with k ≤ η, Bob can

force Alice to use
(k+1

2

)

chains.

Proof See Appendix. ut

Let S be the class of the algorithms which uses less than

or equal to
(k+1

2

)

chains for a poset of width k when k ≤ η. If

k is known to Alice, then at the start of the game, Alice can

use an algorithm from S when k ≤ η and use an algorithm

like DCC which bounds the number of chains by N when k >

η. However, the interesting case is to consider the problem

when k is unknown to Alice. For this problem, we show that

if Alice uses an algorithm from S then Bob can force Alice

to use N +η(N −1)−1 chains in the worst case.

We introduce some of the terminology that would be

used in proving this result

– Ladder Poset: A ladder poset of a subset G = {g1, . . . ,gm}
of processes consists of two elements ai and bi from

every process gi such that ai → a j and bi → b j when

i < j. Figure 11 shows a ladder poset of three processes

{p1, p2, p3}.

– BiChaP (Bi Chained Process): During chain decompo-

sition of the ladder poset, if the elements ai and bi for

a process pi are assigned to different chains, then pi is

called a Bi-Chained process or BiChaP.

A BiChaP is very useful from Bob’s point of view as

it has forced Alice to use more than one chain to decom-

pose the elements of one process. As a result, by generating

BiChaPs Bob can force Alice to use more than N chains to

decompose a poset of N processes.

Assuming Alice uses an algorithm from class S , we pro-

ceed in the following manner to prove the result

1. Bob constructs a poset Qk of width at most k and N =
(k+1

2

)

+ 1 such that Alice is forced to generate at least

k−1 BiChaPs.

2. Then, Bob extends Qk to a poset Pk which forces Alice

to use at least N + k−1 chains for the decomposition of

Pk.

Lemma 2 For T (k,N),k > 1 with k unknown to Alice, Bob

can construct a poset Qk of width at most k with N =
(k+1

2

)

+

1 such that Alice would be forced to generate at least k− 1

BiChaPs.

Proof Let the set of all elements belonging to non-BiChaPs

be Xk. We use induction to prove the lemma.

Induction Hypothesis For T (k,N) with k > 1,N =
(k+1

2

)

+

1, Bob can construct a poset Qk of width at most k which

would force Alice to generate k−1 BiChaPs. The elements

from non-BiChaPs of Qk can be decomposed in two chains.

In addition, either there exists an element xk ∈ Xk such that

for all e ∈ Xk : e→xk, or Xk = φ.

Base Case: k = 2 For k = 2 and N = 4, Alice can use at

most
(k+1

2

)

= 3 chains. Bob constructs a ladder poset and

continues to present elements in the process order till Alice

generates a BiChaP. Alice has to generate a BiChaP for at
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least one of the 4 processes otherwise each process would

start a new chain and by the end of the 4th process, Alice

would have used 4 chains for decomposition. This violates

the assumption that Alice uses at most 3 chains for decom-

posing a poset of width 2.

Hence, Alice was forced to generate k− 1 = 1 BiChaP

for this case and the resulting poset be Q2. This poset has

width at most 2 as it can be decomposed into two chains

along the sides of the ladder poset. The structure of lad-

der poset ensures that the last element generated by a non-

BiChaP is suitable to serve as x2 provided X2 , φ.

Inductive Step Suppose that poset Qm exists for k = m with

m − 1 BiChaPs. Bob starts with Qm and constructs a new

ladder poset using processes other than the BiChaPs. This

is shown in Figure 12. Let f be the first event executed by

a non-BiChaP when the new ladder poset was started from

Qk. If xk and f exist, then Bob adds a dependency from xk to

f . Figure 12 shows this dependency between the elements b2

and c1. Otherwise, there are only inter-process dependencies

between the elements.

The BiChaPs themselves form m−1 chains and have an

element which is incomparable to the new ladder subposet

and to the other BiChaPs. Since the non-BiChaPs could be

decomposed into two chains in Qm, they can still be decom-

posed in two chains as all the elements in the new ladder

subposet are greater than the elements in non-BiChaPs in

Qm. This is possible due to the additional dependency that

was introduced between xk and f . In Figure 12, these chains

are {a1,a2,c1,c2,c4} and {b1,b2,d1,d2,d4}. Hence, the new

poset Qm+1 has width at most m+1. If there is a non-BiChaP

in the new ladder subposet, then xk+1 is the last element

from a non-BiChaP in the new ladder subposet. Otherwise,

xk+1 = xk.

Bob has
(m+2

2

)

+1− (m−1)=
(m+1

2

)

+3 (non-BiChaPs)

processes available for constructing the new ladder subposet.

The 2(m−1) chains used up by BiChaPs would be unavail-

able to the other processes. Thus, the number of chains avail-

BiChaP 2

BiChaP 1

Q2

b2

b1

a2 c2 d2

d1p1

p2

p3

a1 c1

a3 b3

p4

c4 d4

p5

p6

p7

Fig. 13 Extending Q3 to force Alice to use N +β−1 chains

able to Alice for use in the new ladder subposet is
(m+2

2

)

−
2(m−1) =

(m
2

)

+3 as she uses an algorithm from S . So Al-

ice cannot assign elements of one process to one chain for all

the processes as the number of chains is less than the num-

ber of processes. Hence, Alice would be forced to generate

a BiChaP and the total number of BiChaPs now is m.

Hence, the inductive hypothesis holds and the lemma is

proved. ut

Theorem 6 Let β = η(N−1). For T (k,N),k > 1 with k un-

known to Alice, if Alice uses an algorithm from the set S ,

then Bob can force Alice to use at least N +β−1 chains.

Proof Bob first constructs the poset Qβ. Since N ≥
(β+1

2

)

+

1, using Lemma 2 Bob can force Alice to generate β − 1

BiChaPs in Qβ. After constructing Qβ, Bob makes every pro-

cess execute an event which is concurrent to every other such

event executed by other processes. As a result, the new poset

would have width N and Alice would end up using at least

2(β − 1) + N − (β− 1) = N + β − 1 chains - the BiChaPs

using at least 2(β− 1) chains and the others using at least

N − (β−1) chains. Figure 13 shows this step for N = 7. ut

The ACC algorithm discussed in the previous section be-

longs to the set S but it does not make any use of the process

information. It does not guarantee that the number of chains

in the decomposition is less than N and in the worst case,

when the width of the poset is N, ACC can give a decom-

position consisting of
(N+1

2

)

chains. We can modify ACC
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to perform better than this using process information in the

following way.

The algorithm uses ACC till the number of chains is be-

low a bound l and switches to DCC thereafter. The chains

produced by ACC can be reused for DCC but at this point,

it might be possible that the elements from a single process

occur at multiple chain heads. As a consequence, we would

not able to guarantee that the total number of chains used by

DCC would be less than N in this case. If l is chosen to be

small, the upper bound for chain decomposition is close to

N but the algorithm may require more than
(k+1

2

)

chains for

decomposing many posets. On the other hand, a bigger value

of l results in the algorithm requiring many more chains than

N in the worst case but less than
(k+1

2

)

for a large number of

posets. In particular, for l = N + 1, we show the following

result.

Lemma 3 Let M(k,N,N + 1) be the maximum number of

chains required by modified ACC for partitioning any poset

of width k obtained from a computation involving N pro-

cesses with l = N +1. Then,

M(k,N,N +1) =







(k+1
2

)

if k ≤ η

2N −η otherwise

Proof If k ≤η, then normal ACC does not require more than
(η+1

2

)

chains and hence the modified ACC does not switch

to DCC. As a result, M(k,N,N +1) =
(k+1

2

)

for k ≤ η.

For k > η, the number of queues may grow more than N.

In that case, we switch to DCC. At the time of switching, all

the η queues in Bη would be non-empty as
(η+1

2

)

≤N. By the

invariant on the queue sets, the queue heads in Bη would be

incomparable. Since any two events on the same process are

comparable, the different queue heads in Bη come from dif-

ferent processes. Using DCC after this point would ensure

that the algorithm does not require more than N −η addi-

tional queues as DCC uses at most one queue per process.

So the total number of queues in that case would be at most

N +N −η = 2N −η. ut

There is still a gap between the lower bound given by

Theorem 6 and the bound that the modified ACC achieves.

It may be possible to strengthen the lower bound or to have

a better algorithm which meets the proven lower bound.

7 Chain Clocks for Shared Memory System

In this section, we adapt the chain clock algorithm for shared

memory systems. We first present our system model for a

shared memory system.

7.1 System Model

The system consists of N sequential processes (or threads)

denoted by p1, p2, . . . , pN . Each process executes a set of

events. Each event is an internal, read or a write event. Read

and write events are the read and write of the shared vari-

ables respectively and generically they are referred to as ac-

cess events. A computation is modeled by an irreflexive par-

tial order on the set of events of the underlying program’s

execution. We use (E,≺) to denote a computation with the

set of events E and the partial order ≺. The partial order ≺
is the smallest transitive relation that satisfies:

1. e ≺ f if e.p = f .p and e is executed before f .

2. e ≺ f if e and f are access events on the same variable

and e was executed before f .

With each shared variable x, a vector x.V is associated. The

access to a variable is assumed to be sequentially consistent.

The rest of the notation can be defined in a way similar to

the distributed system model using the relation ≺ instead of

the → relation.

Here we have considered a shared memory model which

considers only the “happened-before” relation between the

processes as opposed to other models for shared memory

systems. This model, with slight modifications, is the one

which is generally used in runtime verification tools like JM-

PaX [32]. The vector clock and DCC algorithm described

earlier for distributed systems work for this system model as

well.
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Fig. 14 (a) A computation with shared variables x and y (b) Relevant

subcomputation timestamped with VCC

7.2 Chain Clock Algorithm

The chain clock algorithm for the shared memory system is

given in Figure 15. In the next section, we give some more

strategies for choosing a component to increment in chain

clock for shared memory systems.

7.3 Variable-based Chain Clock

In this section, we present chain clocks based on variables,

called Variable-based Chain Clock (VCC). Since the access

events for a variable are assumed to be sequentially consis-

tent, they form a chain. As a result, the set of relevant events

pi::

var

V : vector of integer

initially (∀ j : V [ j] := 0)

On occurrence of event e :

if e is an access event of shared variable x:

V := max(V,x.V );

if e ∈ R :

e.c := GI(V,e);

//The vector size may increase during this operation.

V [e.c]++;

if e is an access event of shared variable x:

x.V := V ;

Fig. 15 Chain Clock Algorithm for Shared Memory Systems

can be decomposed in terms of chains based on the vari-

ables. Suppose the set of relevant events, R, consists of ac-

cess events for variables in the set Y . Then, we can have

a chain clock which associates a component in the clock

for every variable x ∈ Y in the following way. Let θ : Y →
[1 . . . |Y |] be a bijective mapping from the set of variables to

the components in the vector. Then GI(V,e) for an event e

which accesses a variable x simply returns θ(x). It is easy to

see that this GI primitive satisfies the chain decomposition

property.

VCC is very useful for predicate detection in shared mem-

ory systems. Consider a predicate Φ whose value depends

on a set of variables Y . In a computation where Φ is being

monitored, the set of relevant events is a subset of the ac-

cess events for variables in Y . For many predicate detection

problems, the size of set Y is much smaller than the number

of processes in the system and hence VCC results in sub-

stantial savings over vector clocks. In fact, using VCC we

can generalize the local predicates to predicates over shared

variables. Then the predicate detection algorithms like con-

junctive predicate detection [19] which are based on local

predicates work for shared variables without any significant

change. As an example, consider the computation involving

two shared variables x and y given in Figure 14(a). We are

interested in detecting the predicate (x = 2)∧ (y = 2). Using

VCC, we can timestamp the access events of x and y using

the first component for x and the second component for y

as shown in the Figure 14(b). Now the conjunctive predicate

detection can be done assuming the access events of x and y

as two processes with the vector clock timestamps given by

VCC.

In some cases, VCC requires fewer components than the

number of variables that need to be tracked. For example,

if two local variables belonging to the same process need to

be tracked, it suffices to keep just one component for both

of them. Here we are exploiting the fact that any two events

on a process are totally ordered. We can generalize this idea

and use one component for a set of variables whose access
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events are totally ordered. This happens when the access to

a set of variables is guarded by the same lock. VCC does

not require any shared memory data structure other than that

required for any chain clock algorithm in shared memory

systems and so it is beneficial to use VCC over DCC for

systems when percentage of relevant events is high but the

events access a small set of variables.

A dynamic strategy based on the variables can also be

devised. The improved implementation of GI for DCC can

be modified such that F keeps track of the last variable to in-

crement a component. This results in a dynamic chain clock

with the number of components bounded by the number of

variables to be tracked.

As mentioned earlier, we can also modify VCC to be

used in tools such as JMPaX. JMPaX models reads of a

shared variable as concurrent events and uses a modified ver-

sion of vector clocks which captures this relationship. If the

model in JMPaX is changed to our model, then VCC can be

directly used instead of the vector clock algorithm in JM-

PaX. Moreover, VCC can also be modified to support the

JMPaX memory model. To support the JMPaX model, two

vectors V and Vw are associated with every variable instead

of a single vector V . The vector V for a variable maintains

the maximum timestamp seen for an access event for the

variable and the vector Vw maintains the maximum times-

tamp seen for a write event for the variable. The GI primi-

tive used now corresponds closely to the GI primitive used

for DCC; it creates chains in a dynamic fashion as opposed

to chains just being associated statically with variables. The

chain clock algorithm modified for this model is given in

Figure 16.

8 Predicate Detection Using Chain Clocks

Till now we had assumed that we were interested in main-

taining the happened before relation between all the rele-

vant events executed in the system. However, an applica-

tion such as predicate detection tries to find a consistent cut

pi::

var

V : vector of integer

initially (∀ j : V [ j] := 0)

On occurrence of event e :

if e is a read event of shared variable x:

V := max(V,x.Vw);

if e is a write event of shared variable x:

V := max(V,x.V );

if e ∈ R :

e.c := GI(V,e);

//The vector size may increase during this operation.

V [e.c]++;

if e is a read event of shared variable x:

x.V := max(V,x.V );

if e is a write event of shared variable x:

x.V := max(V,x.V );

x.Vw := x.V ;

Fig. 16 Chain Clock Algorithm for Shared Memory Systems with con-

current reads

Workspace

e

f

Fig. 17 Adding a new edge while maintaining the same set of contem-

porary consistent cuts

only between a subset of relevant events. In general, pred-

icate detection involves a centralized checker process. On

the occurrence of a relevant event, the timestamp of the rel-

evant event is sent to the checker process. The checker pro-

cess repeatedly looks for a consistent cut among the rele-

vant events such that the cut satisfies the predicate, throwing

away events which it knows for sure cannot be a part of such

a consistent cut. As a result, at any time during the predicate

detection, the checker process needs to compare only a sub-
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set of events in its workspace. This provides an opportunity

to reduce the components required for chain clocks for pred-

icate detection. Figure 17 shows a poset and a workspace,

where adding an edge from event e to f can reduce the num-

ber of components required for chain decomposition with-

out affecting the set of consistent cuts in the workspace. The

same observation has been used earlier for bounding the size

of the vector clock components [2,28] but not for reducing

the number of components in the vector clock.

8.1 Contemporary Events

We use the familiar notion of consistency in event-based

model modified to use chains instead of processes. A con-

sistent cut or a global state G ⊆ R is a set of events such that

if e ∈ G, then ∀ f ∈ R : f → e ⇒ f ∈ G. A consistent cut

is frequently identified with its frontier. For events e, f ∈ R,

we say e and f are pairwise consistent iff (@g ∈ R : g.c =

e.c∧e→ g→ f )∧(@g∈R : g.c = f .c∧ f → g→ e). In terms

of chain clocks, this condition can be captured as f .V [e.c]≤
e.V [e.c]∧ e.V [ f .c] ≤ f .V [ f .c]. The frontier of a consistent

cut G, f rontier(G) is a set of events in G, one from every

chain, such that every event is pairwise consistent with ev-

ery other event.

We introduce an older-than relation (�) on the set of

relevant events (R). It is a non-reflexive, asymmetric and

transitive relation. For e, f ∈ R, if e is not older than f , it

is denoted by e 6� f . If e 6� f and f 6� e, then e and f

are said to be contemporary events and is denoted by e 8 f .

The� relation can be characterized by the following prop-

erties:

1. ∀e, f ∈ R : e → f ⇒ f 6� e

2. ∀e, f ,g ∈ R : (e� f )∧ ( f→g) ⇒ (e� g)

3. ∀e, f ,g ∈ R : (e.c = f .c)∧(e→ f )∧( f� g)⇒ (e� g)

Given the older-than relation, we are only interested in

finding consistent cuts among the contemporary events. In

terms of predicate detection, the older-than relation can be

interpreted as follows: For an event f ∈ R, all the events e ∈

R which were deleted from the workspace before f arrived

are older-than f . As a result, the workspace always consists

of only contemporary events and the checker process finds

consistent cuts consisting of contemporary events. Note that

although the happened-before relation and the older-than re-

lation are very similar, they capture slightly different orders;

happened-before relation captures the dependency between

the events imposed by the computation while the older-than

relation captures the order in which the events are processed

by the checker process.

To reduce the number of components for chain decom-

position, we extend the happened-before relation by adding

some edges from the older-than relation. This allows us to

reuse existing chains as the events which were initially con-

current to each other, can be made part of the same chain.

We show that this operation is safe i.e. if G was a consistent

cut discovered by the checker process in the original poset,

then G is also a consistent cut in the new poset. Note that it is

important to consider only the consistent cuts which are ex-

amined by the checker process as adding new edges would

make a previously consistent cut inconsistent.

We define a new relation� on the set of events R as the

transitive closure of the relation →∪�. This relation cap-

tures the partial order generated by introducing edges from

� in →. Note that � is well defined due to property 1

of� and →. Since adding edges to poset only reduces the

number of consistent cuts, the new relation would not intro-

duce any new consistent cuts that were absent in the original

poset. We show that using � instead of → does not also

decrease the set of consistent cuts which are examined.

We define the notion of a contemporary consistent cut.

A contemporary consistent cut G is a consistent cut in the

poset (R,→) which satisfies the following property: ∀e, f ∈
f rontier(G) : e 8 f . We show that a contemporary consis-

tent cut in (R,→) remains a consistent cut in the new poset

(R,�).

Lemma 4 Given e ∈ R and a contemporary consistent cut

G with e ∈ f rontier(G), ∀ f ∈ G : e 6� f .
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Proof Suppose ∃ f ∈ G : e� f . Let a ∈ f rontier(G) such

that f→a. Such an element a must exist due to property that

a consistent cut can be defined in terms of the events which

happened before the elements in the frontier. Then by prop-

erty 2 of the � and →, e� a. However, both a and e

belong to f rontier(G) and so they must be contemporary.

This leads to contradiction and hence ∀ f ∈ G : e 6� f . ut

Lemma 5 For a,b ∈ R, if a� b, then b ∈ G implies a ∈ G

for every contemporary consistent cut G.

Proof Consider a contemporary consistent cut G which in-

cludes b. Let e ∈ R such that e.c = a.c and e ∈ f rontier(G).

Since e.c = a.c, either e → a or a → e. If e → a, then using

property 3 of � and →, we get e� b. This contradicts

Lemma 4 and hence, a → e. Since the consistent cut G must

include all events which happened before e, it includes a as

well. ut

Theorem 7 Let G be a contemporary consistent cut in poset

(R,→) with older-than relation�. Then G is also a con-

sistent cut in the poset (R,�).

Proof Consider f ∈ G and an event e ∈ R such that e� f .

Suppose the path from e to f consists of m edges of the form

ai � bi, i = 1 . . .m such that bi→ai+1, i = 1 . . .m− 1. Then

we show that e is present in the consistent cut G. The proof

is by induction on m.

Base Case: m = 0 In this case, we have e → f . By the defi-

nition of consistent cut, e ∈ G.

Induction Step Suppose the result holds for m = s. Now

consider a consistent cut G with the path between e and f

consisting of s + 1 edges from �. Consider the events bs

and e. They satisfy e� bs and the path between e and bs

has s edges from �. Therefore, using induction hypothe-

sis for m = s, e is in any consistent cut which includes bs.

Since bs+1→ f , bs+1 ∈ G and by Lemma 5, as+1 ∈ G. Again

by the definition of consistent cut, as+1 ∈ G ⇒ bs ∈ G. Since

all consistent cuts having bs contain e, therefore e ∈ G. ut

8.2 Conjunctive Predicate Detection using Contemporary

Events

In this section we discuss the modifications that the weak

conjunctive predicate (WCP) detection algorithm [19] re-

quires to support chain clocks and the optimization involv-

ing contemporary events. A WCP is a conjunction of local

predicates and we are interested in detecting when the predi-

cate becomes true under the possibly modality. The WCP al-

gorithm involves a centralized checker process which main-

tains a queue of vector timestamps corresponding to every

process in the system. Whenever a process finds that its lo-

cal predicate is true, it sends a timestamp of the event to

the checker process. The checker process inserts the times-

tamp in the queue corresponding to the process. The checker

process periodically examines the heads of the queues and

checks if there exist two timestamps which are inconsistent.

If such a pair is found, the smaller timestamp from the pair

is removed. This process is repeated till the checker process

cannot find any inconsistent pair of timestamps in which

case it has found a consistent cut satisfying the predicate

or all the queues become empty and the predicate never be-

comes true. There are certain optimizations which can be ap-

plied to this algorithm to reduce the number of timestamps

which need to be reported to the checker process.

In section 7, the local predicates can be generalized to

predicates on variables whose accesses form a total order

and in our discussion, we would use this generalized notion

of local predicates. The relevant events in the system consist

of the events which change the value of the local predicate.

This idea is very similar to that of interval clocks [1] and in

a similar manner, it can be shown that by considering this

set of relevant events, we can accurately check if a predicate

becomes true in the computation.

With DCC the process responsible for timestamping events

also serves as the checker process. This allows the times-

tamping algorithm to examine the workspace and introduce

additional edges based on the older-than relation. The older-

than relation used here is the one described in the previous
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section. The new timestamping algorithm with this modifi-

cation is given in Figure 18. The algorithm proceeds as the

normal DCC algorithm till it is unable to find an existing

component which can be reused for the new event e. Before

adding a new component, it checks with the workspace if it

is possible to use an existing component by adding a new

edge between an event deleted from the workspace and e.

For this purpose, we maintain a vector D and a list of vec-

tors H. Vector D is the maximum of the timestamp of all the

deleted elements. For a component i, H[i] is the timestamp of

the deleted event f which satisfied f .V [i] = D[i]. If there are

more than one such events, then any of them can be used.

To add a new edge, we look for a component j in D such

that Z[ j] = D[ j]. If the event corresponding to the timestamp

H[ j] is g, we add an edge from g to e. By Theorem 7, we are

guaranteed that such an edge is safe. Adding an edge from

g to e amounts to updating e.V to the maximum of e.V and

g.V (or H[ j]). Since D[ j] = Z[ j], e.V is now guaranteed to

have an up-to-date value of the component j and can hence

increment that component. The vectors D and the list H are

updated whenever an event is deleted from the workspace.

On deleting an event e, D is updated to max(D,e.V ). If this

operation updated the component i of D, then H[i] is set to

e.V . Here again we need atomicity of operations on the in-

dividual components of D, H and Z.

As opposed to the definitions of other GI primitives, this

implementation also modifies e.V . In case of a shared mem-

ory system, this change does not require any modifications

to the chain clock algorithm. However, in case when we are

using this primitive for a distributed system, we also need to

communicate the vector e.V back to the process.

Note that the WCP algorithm itself needs to be modified

to use the component chains instead of process chains. An

important effect of this change would be that the global state

of the system would not be captured completely by just the

frontier of the cut. Instead, we would need to keep track of

each of the local predicates by remembering the value set

by the last (possibly deleted) event to change that predicate.

Since all the events which update a local predicate are totally

ordered, the last event is well-defined.

GI(V,e):: //synchronized

var

Z: vector of integer

F : vector of integer

D: vector of integer

H: list of vector of integer

initially (Z = φ, F = φ)

if ∃i : F [i] = e.p

let j be such that F [ j] = e.p;

else

if ∃i : Z[i] = V [i]

let j be such that Z[ j] = V [ j];

else

if ∃i : Z[i] = D[i]

// Add dependency from deleted node

let j be such that Z[ j] = D[ j];

V := max(V,H[ j]);

else

// Add a new component

Z.size++;

F.size++;

j := Z.size;

Z[ j]++;

F [ j] := e.p;

return j;

Fig. 18 Implementation of GI which uses contemporary event opti-

mization

9 Experimental Results

We performed experiments to compare the performance of

DCC and ACC with the vector clocks. We created a mul-

tithreaded application in Java with the threads generating

internal, send or receive events. On generating an event, a

thread with some probability makes it a send or receive event

and based on another probability measure, makes it relevant.

The messages are exchanged through a set of shared queues
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and the communication pattern between the threads was cho-

sen randomly. The relevant events are timestamped through

DCC, ACC or vector clock. Three parameters were varied

during the tests: the number of threads (N), the number of

events per thread (M) and the percentage of relevant events

(α). The performance was measured in terms of three pa-

rameters: the number of components used in the clock, the

size of trace files and the execution time. A trace file logs

the timestamps assigned to relevant events during the exe-

cution of the computation. In our experiments we only es-

timate the size of the trace files and not actually write any

timestamps to the disk. The default parameters used were:

N = 100, M = 100 and α = 1%. One parameter was varied

at a time and the results for the experiments are presented in

Figures 19-24.

Figure 19 gives the number of components used by DCC

and ACC as N is varied from 100 to 4000. The number of
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components used by the vector clock algorithm is always

equal to N. We compared the number of components re-

quired by chain clocks to the width of the relevant poset

which is a measure of the performance of the optimal algo-

rithm. The results show that DCC requires about 10 times

fewer components than vector clock algorithm and hence

can provide tremendous savings in terms of space and time.

DCC gives nearly optimal results even though we have N as

the only provable upper bound. For our experiments ACC

did not perform as well as DCC. The reason for this is that

ACC can use new queues even when the incoming event can

be accommodated in existing queues. For our experiments,

this turned out to be detrimental but for some applications

ACC might perform better than DCC. However, we only

used DCC for the rest of our experiments as it was perform-

ing better than ACC and it is a simpler algorithm with the

worst case complexity bounded by that of the vector clocks.
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Figure 20 compares the time required by DCC and vec-

tor clock when N is increased from 100 to 5000. Initially, the

time taken by the two algorithms is comparable but the gap

widens as N increases. For N = 5000, DCC was more than

10 times faster than vector clock. This can be attributed to

the lower cost of copying and comparing smaller vectors in

DCC as compared to vector clocks and the profiling results

confirmed this by showing copying and computing the max-

imum of vectors as the two most time consuming operations

in the algorithm.
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Although the time measurements are not truly reliable as

they are susceptible to many external factors and depend on

the hardware being used, these results strongly suggest that

DCC incurs smaller overhead than vector clock despite us-

ing shared data structures. The difference between the exe-

cution times of vector clocks and DCC is reduced by the op-

timization of sending only updated components [33]. How-

ever, this optimization makes the assumption of FIFO chan-

nels. The system used for performing the reported experi-

ments does not incorporate these optimizations.

In Figure 21, we observe the effect of M on the num-

ber of components used by DCC as we vary it from 100 to

25,000 keeping N fixed at 100. The number of components

used by DCC gradually increases from 10 to 35. There are

two reasons for this behavior. Firstly, as M increases, there

is more chance of generating a bigger antichain and sec-

ondly, the algorithm is likely to diverge further from the op-

timal chain decomposition with more events. However, the

increase is gradual and even with 25,000 events, we are able

to timestamp events using 35 components which is a reduc-

tion of a factor of about 3 over vector clocks. Due to smaller

vectors used by DCC, the estimated trace sizes were about

100 times smaller than generated by vector clock as the av-

erage chain clock size during the run of the algorithm is even

smaller.

Finally, α is an important determinant of the performance

of DCC as shown by Figure 22. With α > 10%, DCC re-

quires more than 60 components and around this point, DCC

starts to incur more overhead as compared to vector clock

due to contention for the shared data structure. The benefit of

smaller traces and lower memory requirements still remains

but the applications to really benefit from DCC would have

α < 10%. This is true for many predicate detection algo-

rithms where less than 1% of the events are relevant events.

To test the viability of DCC for distributed systems, we

performed a simple experiment in which a server hosted the

shared data structures and the calls to GI were performed

through message exchange. The processes were threads run-

ning on the same machine communicating with each other

using queues but the server was located on a separate ma-

chine in the same LAN. Figure 23 shows the result of these

experiments when N was varied. We observe that although

the time taken by DCC increases in this case, it is still much

less than that used by vector clock. The performance of DCC
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deteriorates as we increase the number of events in the sys-

tem and in those cases vector clock performs better than

DCC as shown in Figure 24. Again depending upon the ex-

ternal factors, these results might vary but they show that

for a moderately large distributed system, DCC can compete

with vector clock. However, for small number of processes,

it is still better to use vector clocks if execution time is the

main concern.

10 Extensions

In this section, we present some extensions and variations

for the DCC algorithm which are more suited for certain sys-

tems and communication patterns.

10.1 Static Components

The DCC algorithm can be modified to associate some com-

ponents of the clock with static chains like processes. For

example, to associate component i of the clock with process

p j , the component i is marked as “static”. Now, process p j

always increments component i and the other processes do

not consider component i while updating their clocks. The

shared data structures need to maintain the list of “static”

components, but they do not need to track the static com-

ponents themselves. Moreover, process p j does not have to

go through the shared data structures to increment the static

component. It may also require fewer components in some

cases. For instance, if most of the events generated by pro-

cess p j are relevant, then it might be better to associate one

component with p j rather than associating the events of p j

with different chains.

10.2 Component Choosing Strategy

Different strategies can be adopted to choose the component

to be incremented in primitive GI(V,e) if the calling process

does not already have a component in F. The decision can

be based on the communication pattern or could simply be

choosing the first component which is up-to-date. Consider

the case when processes are divided in process groups such

that the processes within the group communicate more often

with each other than with processes from other group. In

such a case, the events from processes within the same group

are more likely to form longer chains and so a good strategy

would be to give preference to a component which was last

incremented by some process in the same process group.

10.3 Chain-based plausible clock

Plausible clocks [35] provide an approximation to the order

between the events in the computation. A plausible clock

based on chain clocks can also be designed in more than one

ways. One solution would be to stop adding more compo-

nents to the chain clock once its size has reached a threshold.

After that, an event increments the component for which it

has the up-to-date information. If no such component exists,

then the event chooses one component of the clock based on

certain strategy and increments that. Some strategies given

in [20] may be applicable for chain clocks as well. Other

possibility would be to maintain multiple copies of the shared

data structures which are independently updated by the pro-

cesses in the system. This option makes the approach more

feasible for distributed systems as it shares the load on mul-

tiple servers. Experiments need to be conducted for com-

paring the plausible clocks based chains and other plausible

clocks.

10.4 Hybrid Clocks for Distributed Computing

For a large distributed system where a centralized server

is infeasible, a hybrid algorithm which distributes the work

among several servers and reduces the synchronization over-

head is more suitable. The processes in the system are di-

vided into groups and a server is designated to each group

which is responsible for finding the component to increment

for events on processes in that group. Considering the chain
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clock as a matrix with a row for every server, each server

is made responsible for the components in its corresponding

row. Representing the clock as a matrix, instead of a vector

allows each server to independently add components to their

rows and the comparisons to be performed row by row. At

one extreme, when all the processes are in one group this

scheme reduces to the centralized scheme for DCC. On the

other extreme, when a group is just one process, it reduces

to the vector clock algorithm. The hybrid algorithm in gen-

eral uses more components than DCC as it discovers chains

within the same group. However, it still requires fewer com-

ponents than vector clock and distributes the load among

several servers. It could be very effective for multithreaded

distributed programs as the threads within one process can

use shared memory to reduce the number of components and

different processes can proceed independently in a manner

similar to vector clocks.

11 Related Work

Certain optimizations have been suggested for the vector

clock algorithm which can reduce the bandwidth require-

ment. For example, in [33] by transferring only the compo-

nents of a vector that have changed since previous transfer,

the overhead of vector transfer can be reduced. However, it

requires the channels to be FIFO and imposes an O(N) space

overhead per process. This technique can also be used with

DCC or any other chain clock but the savings might vary

depending upon the type of the clock.

One approach to tackle the scalability issue with vector

clocks is to weaken the guarantees provided and use clocks

with bounded size. Two techniques based on this idea have

been proposed in the literature: plausible [35] clocks and k-

dependency [5] vector clocks. Plausible clocks approximate

the causality relation by guaranteeing the weak clock con-

dition and try to satisfy the strong clock condition in most

cases. The k-dependency vector clocks provide causal de-

pendencies that, when recursively exploited, reconstruct the

event’s vector timestamp. These ideas are not used by many

real applications as either complete ordering information is

required or Lamport clock is sufficient. In contrast, DCC can

track the ordering information accurately with fewer than N

components in many cases.

Ward [36] proposed an approach based on dimension [11]

of the poset for timestamping events. In general, the dimen-

sion of a poset is smaller than its width and hence this al-

gorithm may require fewer components than chain clocks.

However, it is an off-line algorithm and requires the com-

plete poset before assigning the timestamps. In comparison,

DCC incurs a much smaller overhead on the ongoing com-

putation and is more suitable for runtime verification and

monitoring. In addition, dimension based clocks lack some

properties satisfied by the width-based clocks like chain clocks.

In particular, using width-based clocks, two events can be

compared in constant time if the chain to which the events

belong is known. For dimension-based clocks, we need to

do a complete component-wise comparison to obtain the or-

der between events. Similarly, using dimension-based clocks

we cannot capture the ordering between consistent cuts [17]

which can be done with width-based clocks.

There has also been some work done on bounding the

size of the each of the vector clock components so as to

reduce the storage requirements for the timestamps. Moste-

faoui and Theel [28] presented a solution in which the clocks

of all the processes are reset to 0 once a clock reaches a pre-

determined limit. This solution requires all the processes to

block at the time of reset. Arora et. al [2] use a notion of

a contract which contains guarantees from the application

about the events which can be potentially compared and the

communication pattern in the computation. The advantage

of this approach is that it does not require blocking resets.

Some of these ideas may be used for developing a bounded

version of chain clocks as well as for reducing the number

of components used in chain clocks.

Vector clocks for systems satisfying certain extra prop-

erties have also been developed [3], [18]. In contrast our
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method is completely general. Some logical clocks like weak

clocks [24] and interval clocks [1] have been proposed to

track the relevant events in the system but these clocks still

require N components as opposed to DCC which can track

relevant events with fewer than N components in many cases.

12 Conclusion

This paper presents a class of timestamping algorithms called

chain clocks which track dependency more efficiently than

vector clocks. We make four principal contributions. First,

we generalize the vector clocks to a whole class of times-

tamping algorithms called chain clocks by generalizing a

process to any chain in the system. Secondly, we introduce

the dynamic chain clock (DCC) which provides tremendous

benefits over vector clocks for shared memory systems with

a low percentage of relevant events. We obtain speedup of an

order of magnitude as compared to the vector clocks and cut

down trace sizes by a factor of 100. Thirdly, we study the

problem of optimal online chain decomposition of a poset

both with and without process information. We present an

efficient algorithm for the problem and prove some new lower

bounds for it. Finally, we present the variable-based chain

clock (VCC) which is another useful mechanism for depen-

dency tracking in shared memory systems and is especially

suited for predicate detection and monitoring applications.
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A Some additional notation

We introduce some notation that would be used in the analysis of the

chain clock algorithm. For an event e, let A(e) = { f ∈E| f  e} be the

set of events that precede an event e. An event which is preceded by no

other event is called an initial event. A chain in (E,→) is a sequence

of events e0,e1, . . . ,en such that ei  ei+1. For an event e, rank(e) is

defined as the length of the longest chain from an initial event to e.

Let R(i) = { f ∈ R| f .c = i}. We also extend the definition of the

history of an element to a per chain history. Let H (e, i)= { f ∈R(i)| f →
e}. Intuitively, H (e, i) is the set of events in the history of e which have

incremented component i. On the occurrence of event e, let the value

of V at the execution point L in chain clock algorithm (marked in Fig-

ure 2) be denoted by e.W . Note that in the case of relevant events, this

value will be different from the timestamp to event e.

To simplify the analysis, we consider the vectors involved to be of

constant size s with zeroes padded from their actual length till s, where

s is the maximum length attained by any vector during the course of

the algorithm. It is easy to see that this does not change the semantics

of the algorithm.

B Proof of Correctness of GI for DCC

We now prove that the given implementation of GI along with the chain

clock algorithm satisfies the chain-decomposition property. We first

introduce some notation that is used in the analysis. We define a re-

lation “accesses i” between events in R(i), denoted by Bi, as follows:

e, f ∈ R(i) : eBi f if the call G(V,e) accessed Z[i] before G(V, f ). Since

the accesses to Z[i] are totally ordered, Bi is a total order. The order Bi

is also consistent with → because for e, f ∈ R(i), if e → f , then the call
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G(V, f ) could not have been made before the predecessors of f (includ-

ing e) occurred. Therefore, for e, f ∈R(i) : e→ f ⇒ eBi f . For e∈R(i),

we define L(e, i) = { f |( f ∈ R(i))∧ ( f Bi e)} as the set of events which

incremented ith component before e. Clearly, H (e, i) ⊆ L(e, i) as Bi is

consistent with →.

The following lemma is a direct consequence of the algorithm in

Figure 3.

Lemma 6 For e ∈ R(i), the function call GI(V,e) reads the value of

Z[i] as |L(e, i)|.

Proof The vector Z is initialized to
−→
0 and Z[i] is incremented in a call

GI(V, f ) whenever f .c = i. Since the accesses are totally ordered, the

value of Z[i] read by GI(V,e) would be equal to the number of events

that incremented Z[i] before the call to GI(V,e). So the value read is

equal to v = |{ f |( f ∈ R(i))∧ ( f Bi e)}|. ut

The chain decomposition property is equivalent to showing that

set of events R(i) forms a chain and the following theorem proves that

the implementation of GI in Figure 3 coupled with the implementation

of the vector clock algorithm in Figure 2 satisfies it.

Theorem 8 The implementation of primitive GI in Figure 3 with the

vector clock algorithm in Figure 2 satisfies the following:

∀e, f ∈ R(i) : (e → f )∨ ( f → e)

Proof We prove the theorem by induction on k = rank(e) in the fol-

lowing statements:

(I1) ∀e ∈ E, ∀i : 1 ≤ i ≤ s : e.W [i] = |H (e, i)|
(I2) ∀e, f ∈ R(i) : (rank( f ) ≤ rank(e)) ⇒ f → e

(I3) ∀e, f ∈ E : rank( f ) ≤ rank(e)

⇒ (H ( f , i) ⊆ H (e, i))∨ (H (e, i) ⊆ H ( f , i))

Base case (k = 0): (I1) If k = 0, then e is an initial event and V is ini-

tialized to
−→
0 . So ∀i : 1 ≤ i ≤ s : e.W [i] = 0. Since e is an initial event,

so ∀i : 1 ≤ i ≤ s : H (e, i) = φ. Therefore, e.W [i] = |H (e, i)|.
(I2) If rank(e) = 0, then we need to consider f such that rank( f ) =

0 ∧ f .c = e.c = i. Suppose such an f exists. Without loss of gener-

ality assume that e Bi f . Then e increments Z[i] and so Z[i] , 0. If

rank( f ) = 0, then f .W [i] = 0 and so during the execution of GI(V, f ),

f .W [i] , Z[i]. So by the algorithm for GI in Figure 3, f .c , e.c. This

leads to a contradiction. So, @ f ∈R : ( f .c = e.c)∧(rank( f )≤ rank(e)).

Hence, the statement holds.

(I3) If rank(e) = 0, then we need to consider f ∈E such that rank( f ) =

0. If rank(e) = rank( f ) = 0, then H (e, i) = H ( f , i) = φ. So H (e, i) ⊆
H ( f , i).

Induction (k > 0): (I1) By the chain clock algorithm,

e.W [i] = max{d.V [i]|d ∈ A(e)}. Now we have two cases:

Case 1: @d ∈ A(e) such that d.c = i:

Then H (e, i) =
S

d∈A(e) H (d, i)

{ Using the induction hypothesis(IH) for (I3) }
⇒ S

d∈A(e) H (d, i) = H (g, i) for some g ∈ A(e)

{ Using IH for (I1) }
⇒ max{d.W [i]|d ∈ A(e)} = g.W [i]

{ ∀ f ∈ A(e) : f .c , i ⇒∀ f ∈ A(e) : f .W [i] = f .V [i]}
⇒ g.W [i] = max{ f .V [i]| f ∈ A(e)}
{ By algorithm and IH for (I1) }
⇒ e.W [i] = g.W [i] = |H (g, i)| = |H (e, i)|.

Case 2: ∃d ∈ A(e) such that d.c = i:

{d1,d2 ∈ A(e) : d1 ‖ d2 and IH for (I2)}
@d1,d2 ∈ A(e) : (d1 , d2)∧ (d1.c = d2.c)

Let x be the unique event such that x ∈ A(e) : x.c = i.

{ Definition of H (e, i) and IH for (I2)}
⇒ ∀ f ∈ H (e, i) : f→x

{ IH for (I3) }
⇒ H (x, i) ⊇ H (d, i),d ∈ A(e)

{ IH for (I1) }
⇒ x.W [i] ≥ d.W [i],d ∈ A(e)

{ x.V [i] = x.W [i]+1∧d.V [i] = d.W [i],d , x ∈ A(e)}
⇒ x.V [i] > d.V [i],d , x ∈ A(e)

{ Definition of max }
⇒ x.V [i] = max{d.V [i]|d ∈ A(e)}
{ By algorithm and IH for (I1) }
⇒ e.W [i] = |H (x, i)|+1

{ Using H (e, i) = x∪H (x, i) }
⇒ e.W [i] = |H (e, i)|
Hence Proved.

(I2) First, suppose f Bi e. Then, if GI(V,e) returns i as the answer then

Z[i] = e.W [i]. As a result, |L(e, i)| = |H (e, i)|. Since L(e, i) ⊆ H (e, i),

this implies L(e, i) = H (e, i) and so f ∈ H (e, i) and hence f → e. Now

assume eBi f . If rank( f ) ≤ rank(e), then e9 f . Therefore, suppose

e ‖ f . Then using the same reasoning as above, we get e ∈ H ( f , i)

which gives us a contradiction. Therefore, f → e.

(I3) If H (e, i) = φ or H ( f , i) = φ, the result trivially holds. So assume

that H (e, i) , φ and H ( f , i) , φ. For g ∈ H (e, i) : rank(g) < k, so by

using (I2) for elements in H (e, i), H (e, i) is totally ordered. Similarly,

H ( f , i) is totally ordered. Let x = maxH (e, i) and y = maxH ( f , i).

Since x,y ∈ R(i) and rank(x),rank(y) < k, (I2) implies that x→y or

y→x. Suppose x→y. Then, ∀g ∈ H (e, i) : g→y. This implies, that ∀g ∈
H (e, i) : g ∈ H ( f , i) and so H (e, i)⊆ H ( f , i). The case when y→x can

be handled similarly.

Hence by induction, the claim (I2) is true for all events e ∈ R. This

gives us the required result. ut
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C Proof of Correctness of Chain Clock Algorithm

In this section we assume that the chain clock algorithm satisfies the

chain decomposition theorem. As a result, the sets R(i) and H (e, i) are

totally ordered for all e and i.

The following lemma shows that the histories of any two events

with respect to a chain are ordered.

Lemma 7 ∀e, f ∈ E : (H ( f , i) ⊆ H (e, i))∨ (H (e, i) ⊆ H ( f , i))

Proof If H (e, i) = φ or H ( f , i) = φ, the result trivially holds. So as-

sume that H (e, i) , φ and H ( f , i) , φ. By chain decomposition prop-

erty, elements in H (e, i) are totally ordered. Similarly, H ( f , i) is totally

ordered. Let x = maxH (e, i) and y = maxH ( f , i). Since x,y ∈ R(i),

x→y or y→x. Suppose x→y. Then, ∀g ∈ H (e, i) : g→y. This implies,

that ∀g ∈ H (e, i) : g∈ H ( f , i) and so H (e, i)⊆ H ( f , i). The case when

y→x can be handled similarly. ut

Lemma 8 For an event e ∈ E, ∀i : e.W [i] = |H (e, i)|.

Proof The proof follows from the proof in previous section as (I2)

is guaranteed by the chain decomposition property and (I3) is given

by Lemma 7 and given (I2) and (I3), we can prove (I1) which is the

desired result. ut

Lemma 9 For e, f ∈ E, e → f ⇒ e.V ≤ f .V.

Proof If e → f , then there is a path from e to f . For the events along a

process the vector clock’s value never decreases and on receive events

we update the vector clock by taking component wise maximum, so

e.V ≤ f .V . ut

Lemma 10 If e, f ∈ R and f 9 e, then e.V [ f .c] < f .V [ f .c].

Proof If e.c = f .c, then chain decomposition property and the given

condition f 9 e imply e → f . By the chain algorithm, f .W ≥ e.V and

f increments the component f .c. As a result, e.V [ f .c] < f .V [ f .c].

If e.c , f .c, consider the sets H (e, f .c) and H ( f , f .c). By Lemma

7, H (e, f .c)⊆H ( f , f .c) or H ( f , f .c)⊆H (e, f .c). Suppose H (e, f .c)⊃
H ( f , f .c). Then, H (e, f .c) ⊇ H ( f , f .c)∪ { f } because of the chain

decomposition property and definition of H (e, i). This implies f → e

which contradicts the assumption. So H (e, f .c) 2H ( f , f .c) and there-

fore, H (e, f .c)⊆ H ( f , f .c). By Lemma 8, e.W [ f .c]≤ f .W [ f .c]. Since

e.c, f .c, e.V [i] = e.W [i] and f increments component f .c and so e.V [ f .c]<

f .V [ f .c]. ut

The following theorem shows that the vector clock algorithm sat-

isfies the strong clock condition for the relevant events.

Theorem 9 For e, f ∈ R, e → f ≡ e.V < f .V

Proof We first prove that (e → f ) implies (e.V < f .V ). If e → f , then

by Lemma 9, e.V ≤ f .V . Moreover, Lemma 10 implies e.V [ f .c] <

f .V [ f .c]. Hence, e.V < f .V . Thus e → f ⇒ e.V < f .V . The converse

follows from Lemma 10. ut

D Proof for Theorem 5

Let the chains of the poset produced by decomposition be Ci and top(i)

be the maximal element of the chain Ci. If x is the maximal element of

the poset, then private(x) is the set of chains Ci such that top(i)≤ x and

top(i) � y for all maximal elements y , x. The process to which an el-

ement e belongs is denoted by p(e) and similarly for a set of elements

A, p(A) denotes the set of processes to which the elements in A be-

long. In particular, when we say p(private(x)), it implies
S

p(top(i))

where Ci ∈ private(x). Similarly top(private(x)) is the set
S

top(i),

Ci ∈ private(x).

Induction Hypothesis : For every positive integer k with
(k+1

2

)

≤ N,

there is a strategy S(k) for Bob so that the poset P presented so far is

of width k, has exactly k maximal elements and uses elements from

only
(k+1

2

)

processes. Moreover, the maximal elements can be num-

bered x1, . . . ,xk such that for all i, |private(xi)| ≥ i

and |p(private(xi)| = i.

Base Case : For k = 1, we use one element from process 1. The hy-

pothesis holds for this case.

Induction Step : Suppose we have strategy S(k). We construct S(k+1)

using S(k) as follows:

1. Run strategy S(k). This phase ends with an order Q1 with maximal

elements x1, . . . ,xk , |private(xi)| ≥ i and number of processes used
(k+1

2

)

.

2. Run strategy S(k) again. This time every new element is made

greater than each of x1, . . . ,xk−1 and their predecessors but incom-

parable to rest of the elements in Q1. In particular, the new ele-

ments are incomparable to elements in top(i) for Ci ∈ private(xk).

For constructing this new S(k), we reuse the processes p(Q1) \
p(private(xk)) and add a set of k new processes. The important

observation here is that for Ci ∈ private(xk), there does not exist

any element f ∈ Q1 \ top(private(xk)) such that top(i) < f . This

effectively implies that process p(top(i)) cannot be used for the

new S(k).

This phase ends with an order Q2 with k + 1 maximal elements

y1, . . . ,yk,xk . At this point, there are at least i chains in private(yi)

and an additional k chains in private(xk). Similarly, at these point

we have made use
(k+2

2

)

−1 processes.
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3. Add a new element z so that z is greater than all elements of Q2 and

p(z) = p(y1). For the chain Ci to which z is assigned, it holds that

i < private(xk) or i < private(yk). Wlog assume that i < private(xk).

Now private(z) has chains from xk and the chain to which z be-

longs. So |private(z)| ≥ k + 1 and |p(private(z))| = k + 1|. We

refer to z as zk+1 from now on.

4. In this final phase, run strategy S(k) again with all new elements

greater than y1, . . . ,yk . For this phase, we use the processes

p(Q2)\(p(private(xk))∪ p(y1)) and add a new process to the sys-

tem. This way we again have
(k+1

2

)

processes available for this

phase without violating process semantics. This phase ends with

maximal elements z1 . . . ,zk+1 so that |private(zi)| ≥ i and

|p(private(zi))| = i.

During all the four phases we added k +1 new processes to the system

and hence the total number of processes used till now is
(k+1

2

)

+(k +

1) =
(k+2

2

)

. This completes the proof of the theorem.
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