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Happened-Before Relation in Distributed Computing

A computation is (F, — ) where F is the set of events and —
(happened-before) is the smallest transitive relation that includes:

(1) order within a process

(2) e is a send event and f is the receive implies e — f.
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Talk Outline

e Happened-Before Relation
e Applications

— Tracking Dependency: Chain decomposition, Dimension Theory

— Detecting Global Predicates: Meet-closure, Chain merging, ideal
enumeration

— Computation Slicing: Birkhoflt’s representation theorem
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Tracking Dependency

Motivation: Determine whether e happened before f.

Problem: Given (F, — ), assign timestamps v to events in F such that

Ve, feE:e = f=wv(e) <v(f)

Online Timestamps: Vector Clocks |[Fidge 89, Mattern 89]:
Every process maintains a vector v of size NV, the number of processes.
(v[k] at P; = the number of events executed by Py as known to F;).
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Vector Clocks in a Distributed System

[1,1 0,0] [2,1,0,0]

/ 2,2,3,1]

0,1,0 0]
|
/ ,0,1,1] 2,1,2,1] [2,1,3,1]
|
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all events: increment /1]

send events: piggyback v

receive events: combine timestamps
Theorem:

& e — f=wv(e) <v(f)
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Problem with vector clocks: scalability, dynamic process structure

Dynamic Chain Clocks

Idea: Computing the “chains” in an online fashion |Aggarwal and Garg
05] for relevant events
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Figure 1: (a) A computation with 4 processes (b) The relevant subcompu-
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Online Chain Decomposition

Elements presented in a total order consistent with the poset
Assign elements to chains as they arrive

Game: Bob presents elements, Alice assigns them to chains

For a poset of width k, Bob can force Alice to use k(k 4 1)/2 chains.

[Felsner 97].

An online algorithm that uses O(k?) chains with O(k?) comparisons

per event. [Aggarwal and Garg 05]
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Predicate: A global condition expressed using variables on processes

Global Predicate Detection

(a boolean function on the set of ideals of the poset) e.g., more than
one process is in critical section.

Problem: find an ideal (a consistent cut) that satisfies the given
predicate

b1

critical sections

P2
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Algorithm for general predicate

a b
D1 @o—> [ {CI,, b,C} ) [ {a,c, d} )
- d (fan ) ((fag )

NP-complete
As many as O(k™) consistent cuts

: number of events/process, n: number of processes
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Detecting Linear Predicates

(Linearity): If B is false in G then there exists an event e, such that all
“true” cuts greater than G include e.

-B(G) = (de€c E—-G:VHDOG:B(H)= (e€ H))

time
Theorem: Any linear predicate that satisfies advancement property can
be detected efficiently.

&Theorem: Chase and Garg 95| B is linear iff it is meet-closed.

(Advancement Property) can determine the “crucial” event in polynomial
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Let x; > 0 be variable at P;. Predicates of the form Groselj 93, Chase
and Garg 95]

Algorithm: Consistent cut with minimum value = min cut in the flow

graph
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Relational Predicates: Binary Variables

Restriction: z; € {0, 1}

an online fashion. [Tomlinson and Garg 96

Theorem Exists an algorithm that merges N queues into N — 1 queues in
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Detecting General Predicates
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BFS: 00, 01, 10, 11, 20, 12, 21, 13, 22, 23, 33 \ / \
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DFS: 00, 10, 20, 21, 22, 23, 33, 11, 12, 13,01

Lexical: 00, 01, 10, 11, 12, 13, 20, 21, 22, 23, 33

(©)
(b)

Enumerate all consistent cuts (ideals) of the poset
breadth first manner |[Cooper and Marzullo 911, depth first

&manner Alagar and Venkatesan 94/, lexical order |[Garg 03].
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Talk Outline

Happened-Before Relation
Tracking Dependency
Detecting Global Predicates

Computation Slicing: Using Birkhofl’s Theorem
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Motivation for Computation Slicing

satisfy b;

computation \ .

detect by A b

retain all consistent

slicing cuts that satisfy b,

slice for by B

& detect by
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Example

X, 1 2
Ple °
a b
X, 0O 2
P2 e
e f
X3 4 1 4
P—e P —
u \Y; W X
(a)

Slice with respect to (1 > 1) A (z3 < 3)

o

Detect predicate (x1 * 2 +x3 < 5) A (xz1 > 1) A

(z3 < 3)

{a,ef,u,v} {b}
> . ]

W} 19}
(b)
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Computation Slice

Problem Given (E, — ), and a global predicate B, give the smallest
sublattice containing B.

Application of Birkhoff’s Theorem: The sublattice is distributive and
therefore can be represented using its join-irreducible elements.
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Theorem: Let L be a FDL generated by the graph P. For every sublattice

L', there exists a graph P’ obtained by adding edges to P that generates
L.

Efficient algorithms for

e general predicate:
Theorem: Given a computation, if a predicate b can be detected
efficiently then the slice for b can also be computed efficiently. |[Mittal,
Sen and Garg 03]

e linear predicates: Direct computation of join-irreducibles |[Garg
and Mittal 01]

e Combining slices: Boolean operators

e Temporal Logic Operators: EF, AG, EG
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Applications:

Conclusions and Ongoing Work

e Tracking Dependency: Chain decomposition, Dimension Theory

e Detecting Global Predicates: Meet-closure, Chain merging, ideal
enumeration

e Computation Slicing: Birkhoff’s theorem
Ongoing Work
e Checking Temporal Logic Formulas on Infinite Posets

e Multislice Representation of Predicates

o
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e Use k sets of queues B, B, ..., B;,. The set B; has ¢ queues with the
invariant that no head of any queue is comparable to the head of any
other queue.

Online Chain Decomposition

e For a new element z, insert it into the first queue ¢ in B; with its
head less than z.

e Swap remaining queues in B; with queues in B;_;.
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Controlled Re-execution

P1 P1

critical sections

P2 P2

Add the synchronization necessary to maintain safety property

e.g., mutual exclusion

Efficient algorithms for computing the synchronization for:

e Locks [Tarafdar, Garg DISCO8]

& — time-complezity: O(nm) %
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dlsJunctlve predicate |[Mittal. Garg 00]
g., (n — 1)-mutual exclusion
— tzme-complexzty: O(m?)

— minimizes the number of synchronization arrows

e region predicate Mittal, Garg 00

e.g., virtual clocks of processes are “approximately” synchronized
— time-complezity: O(nm?)

— maximizes the concurrency in the controlled computation

n: number of processes, m: number of events
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