Addressing False Causality while Detecting Predicates in Distributed Programs

Ashis Tarafdar ashis@cs.utexas.edu Vijay K. Garg garg@ece.utexas.edu

Parallel and Distributed Systems Laboratory Department of Electrical and Computer Engineering University of Texas at Austin Austin, 78712

http://maple.ece.utexas.edu

The Interleaved Model

computation, state, event

detect predicate: $(a \land b)$

The Happened-Before Model

global state, happened-before, consistent global state

detect predicates: $(a \land b)$, $(a \land c)$

The Strong Causality Model

global state, strong causally precedes, consistent global state

detect predicate: $(a \land c)$

Independent Events

• Multi-threading:

```
create_thread(thread_1);
c := t;
wait(thread_1);
```

• Independent Actions:

 $c := t \parallel rcv(b)$

• Non-blocking receives:

thread_1() :

rcv(b);

Receive-ordered Computations

Example: Multi-threaded Server

repeat
 receive a request;
 create a thread to process the request
until done

Predicate Detection in Strong Causality Model

Another look at general (not receive-ordered) computations:

There are an exponential number of receive-ordered computations. But the alternative – interleaved computations – is exponentially worse.

Conclusions

- The need for a new model of distributed computations
 - modeling local independent events
 - detecting more predicates (more bugs!)
- Our results in solving predicate detection in the new model
 - Conjunctive predicate detection is NP-Complete
 - Efficient algorithm for receive-ordered computations
 - Exponential saving for general computations

Also: send-ordered computations