7

Addressing False Causality while Detecting Predicates in
Distributed Programs

Ashis Tarafdar Vijay K. Garg
ashis@cs.utexas.edu garg@ece.utexas.edu

Parallel and Distributed Systems Laboratory
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, 78712

http://maple.ece.utexas.edu

‘ Introduction |

Predicate Detection:

Does a global condition occur in a distributed computation?

Some Applications:

e distributed debugging: global bugs
Example: Is mutual exclusion violated? (CRITy N CRIT)

e fault-tolerance: global faults
Example: Has a token been lost? (-TOKy N “TOK,)

‘ Goals I

e The need for a new model of distributed computations

e Our results in solving predicate detection in the new model

‘ The Interleaved Model |

false
causality

A

a:=t a=f b=t sd@ rovb) c:=t

[° ° ° ° ° o~
(& b,c)=(fff) (ff) (fff) (f,t,f)M (f,f,f) (f,f, 1)

computation, state, event

detect predicate: (a A b)

(b, c) = (f, f) (tyf) . (f,)) (f, t)

consistent fa]se Inconsi stent
global state causality global state

global state, happened-before, consistent global state

detect predicates: (a A b), (a A ¢)

global state, strong causally precedes, consistent global state

detect predicate: (a A ¢)

‘ Independent Events I

create_thread(thread_1); thread_1()
c =1t
wait(thread_1); rcv(b);

e Multi-threading:

e Independent Actions:

c:=t | rev(b)

e Non-blocking receives:

x := rcv(b, NON_BLOCK);
c:=1t
if (— x) then

rcv(b);

‘ Predicate Detection in the Happened-Before Model I

.. is difficult (NP-Complete) [Chase, Garg 95]

Intuition: too many global states!

=9 global states

In general, O(m™) global states, where:
m is the number of states in a process, and
n is the number of processes

‘ Predicate Detection in the Happened-Before Model I

Conjunctive Predicates: [Garg, Waldecker 94]

Are two processes critical together? (CRITy N CRIT))

Non-critical Criticd
States States

‘ Predicate Detection in the Strong Causality Model I

.. is difficult even for Conjunctive Predicates (NP-Complete)

- receive state

‘ Receive-ordered Computations I

totally ordered receive states

o (o

LT

‘ Receive-ordered Computations I

Example: Multi-threaded Server

repeat

receive a request;

create a thread to process the request
until done

‘ Linearizing a computation I

b:=t

=t rcv(b)

o
(b, ¢) = (f, f)

f)

(t.)

b= (O
b=t . “ rev(b)

b,O=0f ®H c=t (D
c= M

b:=t
®

rcv(b) . c.=t

(t, 1) (f, 1)

@

(b, c) = (f, f) (t,f)

(f, f) (f, t)

‘ Predicate Detection in Strong Causality Model I

Key observation:

linearize each process’'s computation ensuring that
receive states are ordered after all concurrent states

we can now apply predicate detection as before!

‘ Predicate Detection in Strong Causality Model I

Another look at general (not receive-ordered) computations:

There are an exponential number of receive-ordered computations.

But the alternative — interleaved computations — is exponentially worse.

A\

‘ Conclusions I

The need for a new model of distributed computations

— modeling local independent events
— detecting more predicates (more bugs!)

Our results in solving predicate detection in the new model

Conjunctive predicate detection is NP-Complete
Efficient algorithm for receive-ordered computations
Exponential saving for general computations

send-ordered computations

