Mid-term Review.:

The Predicate Control Problem

Ashis Tarafdar

Supervising Professor: Vijay K. Garg

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

April 21, 1999

‘ Research Summary I

e Pre-Proposal Work:

— Predicate Control: Disjunctive Predicates [Tarafdar and Garg 98a]
— False Causality: Predicate Detection [Tarafdar and Garg 98b]
— False Causality: General [Tarafdar and Garg 98¢]

e Post-Proposal Work:

— Predicate Control: Mutual Exclusion [Tarafdar and Garg 992]

— False Causality: Optimistic Recovery [Damani, Tarafdar and Garg 99b]
o Future Work:

— Predicate Control: Other Predicates
— Predicate Control: Software Fault Tolerance

‘ Talk QOutline: The Predicate Control Problem I

e Model and Problem Statement
e Results for Disjunctive Predicates

e Application to Software Fault-Tolerance

‘ Model: Computations I

|6 d [H |k

state, global state, computation (a — c¢)
(G and K are consistent global states
H is an inconsistent global state

Assumptions: asynchronous, reliable message-passing

‘ Model: Global Predicates I

G\a\\/dm/
\b/c f

global predicate: boolean function on a global state

Example: mutual exclusion
B = —(criticaly A criticals)

K satisfies B

(G and H do not satisfy B

‘ Model: Controlling Computations I

a e d
f b c

—¢ is a controlling computation of B in —, if:

(1) —¢ is stricter than —, and
(2) all consistent global states in —¢ satisfy B

‘ Problem Statement I

The Predicate Control Problem:

Given a computation — and a global predicate B,
find a controlling computation of B in —

e Cycles must be avoided. (e.g. a —b—e — f)

e General Predicates: NP-Hard |[Tarafdar and Garg 98a]

‘ Applications I

Trace-and-replay applications:

e Active debugging of concurrent programs |Tarafdar and Garg 982

e Software fault-tolerance of concurrent programs [Tarafdar and Garg 99a]

‘ Disjunctive Predicates I

B =104LVIiV- VI

& |

N

k falseinterval
/‘ true interval

| |

true intervals and false intervals
H satisfies B, and G does not satisfy B

‘ Disjunctive Predicates: Examples I

e At least one philosopher is thinking:

thinky V thinky V --- V think,

e At least one server is available:

availy V avatly, V --- V avail,

e Two-process mutual exclusion:

—eritical;y Vo o—eriticals

sometimes no controlling computation exists!
n overlapping false intervals

7

‘ Conditions for Existence of Controlling Computation I

Necessary Condition:

a controlling computation exists = no n overlapping false intervals

Sufficient Condition:

no n overlapping false intervals = a controlling computation exists

‘ Algorithm: Key ldea I

next
true
interval
|a

\

In each iteration, advance the global state so that:
it advances across at least one false interval,
while staying fixed on one true interval
Store the fixed true intervals in a sequence

Add synchronizations to link the true intervals in a chain
In the controlling computation, GG is inconsistent, H satisfies B

What if the global state has advanced beyond the required true interval?

‘ Algorithm: Analysis I

Time complexity:

O(mn)

Added Synchronizations:
O(m)

where:
m is the total number of false intervals, and
n is the number of processes

‘ Other Results in Off-line Predicate Control I

Solving off-line predicate control for mutual exclusion predicates:
[Tarafdar and Garg 99a]

Simple Mutual Exclusion

— T~
~_ o

Readers Writers Independent Mutual Exclusion

Independent Read-Write Mutual Exclusion

O(mn) algorithm, where m is the number of critical sections

‘ Software Fault Tolerance: Background I

Earlier, it was thought that software failures are permanent
= design diversity approaches [Ran 75, AC 77]

Recently, it was discovered that many software failures are transient
= rollback approaches [HK 93, WHF 97]

In concurrent programs, synchronization failures (e.g races) form a large
class of transient software failures [IL 95]

Existing rollback approaches depend on chance to recover from transient
failures

‘ Tolerating Races Using Controlled Re-execution I

A race is a violation of mutual exclusion

Our Approach:

1. Trace the execution

2. Detect a race

3. Find a controlling computation (predicate control)

4. Re-execute under control

‘ Example Scenario |

e distributed processes communicate only using messages in MPI

e processes write (append) to a file in NFS

e only one process must write at a time, otherwise the file is corrupted

‘ Why would a race occur? I

e the programmer made a mistake

e changing requirements

e optimistic approaches

CS4
CS2]

|
o

\ H

Traced Computation Controlling Computation

Assumption: identifiable critical sections
Trace-and-replay, race detection in message-passing systems
Replay under control: adding synchronizations

‘ Future Work: Implementation I

Goals:

e to determine time and space overheads
e to study implementation issues

e to demonstrate viability

Status

‘ Future Work: Theory I

Extending Predicate Control:

e deadlocks
e channel predicates

e K-mutual exclusion

‘ Research Summary I

e Pre-Proposal Work:

— Predicate Control: Disjunctive Predicates [Tarafdar and Garg 98a]
— False Causality: Predicate Detection [Tarafdar and Garg 98b]
— False Causality: General [Tarafdar and Garg 98¢]

e Post-Proposal Work:

— Predicate Control: Mutual Exclusion [Tarafdar and Garg 992]

— False Causality: Optimistic Recovery [Damani, Tarafdar and Garg 99b]
o Future Work:

— Predicate Control: Other Predicates
— Predicate Control: Software Fault Tolerance

‘ Extra Slide: Algorithm |

p—
>

repeat until done
find a crossable pair of true and false intervals
if none exists then exit(“no controlling computation exists")
advance to the least consistent global state that crosses the false interval
save the true interval in the chain

‘ Extra Slide: Proof Hint - 1 I

no crossable pair exists = no controlling computation exists

Extra Slide: Proof Hint - 2

the chain of true intervals does not create any cycles

