
Copyright

by

Ashis Tarafdar

2000

Software Fault Tolerance in Distributed Systems

Using Controlled Re-execution

by

Ashis Tarafdar, B.Tech., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2000

Software Fault Tolerance in Distributed Systems

Using Controlled Re-execution

Approved by

Dissertation Committee:

To my parents

Acknowledgments

I consider myself to have been an extremely fortunate Ph.D. student in having

Vijay Garg as my Ph.D. supervisor. It is impossible to fully express the many ways

in which he has helped to make my Ph.D. experience a fulfilling and enjoyable

phase of my life. He has been a constant source of inspiration, encouragement, and

guidance in my research work and, thanks to him, I have been able to freely explore

new ideas and work on what is fun. Moreover, he has been a friend, encouraging

me in my non-Ph.D. related endeavours as well.

This dissertation has been shaped by discussions that I have had at various

times with fellow students. I am indebted to Rajmohan Rajaraman and Kedar

Namjoshi for discussions early in my Ph.D., which inspired me to follow up on my

early ideas. Sriram Rao and Om Damani have always been there for me whenever I

needed someone to bounce my ideas off of. Neeraj Mittal has helped me at various

times by reviewing my papers and providing me with valuable criticism that has

greatly improved my work. I am also grateful to Sandip Ray who has helped me by

providing a critical ear during the final stages of my dissertation through which I

learned the lesson of “not claiming too much”.

My committee members, Mohamed Gouda, Harrick Vin, Lorenzo Alvisi,

Craig Chase, and Keith Marzullo, have also helped to shape my Ph.D. into its cur-

rent form through their valuable comments and criticisms. Their varied expertise

has provided me with different perspectives from which to re-evaluate my work.

v

I am grateful to my friends in Austin for making my Ph.D. a very enjoyable

experience. My ever-cheerful office-mates, Seldron Geziben and Sandip Ray, have

helped to make my working environment not seem like one. Fun evenings, weekend

trips, late-night discussions, intense gym workouts are but some of the memorable

experiences that I have variously shared with Nandan Nayampally, Om Damani,

Seema Damani, Landy Haile, Sriram Rao, Vivek Nagaraj, Elizabeth Tolley, Shalu

Srinivasan, Meghan Lessor, Paul Lessor, Tyrell Williams, Noelle Hairston, Mad-

hukar Korupolu, Tushar Parikh, Rajmohan Rajaraman, Pawan Goyal, Prashant

Shenoy, Mukesh Khare, Kedar Namjoshi, Anuj Gosalia, Aamir Nawaz, Tarun Anand,

and C. Bala Kumar.

The biggest credit goes to my family for their love and support. My late

father, Sankar Tarafdar, an astrophysicist, inspired my interest in research from an

early age. My mother, Anima Tarafdar, has kept me going by her never-ending

confidence in me. My brother, Shantanu Tarafdar, has helped me with practical

advice at various stages. My other brother, Soumen Tarafdar, has helped to keep

me smiling through the hard times. Without my family, this dissertation would

never have been written.

Ashis Tarafdar

The University of Texas at Austin

August 2000

vi

Software Fault Tolerance in Distributed Systems

Using Controlled Re-execution

Publication No.

Ashis Tarafdar, Ph.D.

The University of Texas at Austin, 2000

Supervisor: Vijay K. Garg

Distributed applications are particularly vulnerable to synchronization faults. An

important approach to tolerating synchronization faults is rollback recovery , which

involves restoring a previous state and re-executing. Existing rollback recovery

methods depend on chance and cannot guarantee that synchronization faults do not

recur during re-execution. We propose a new rollback recovery method, controlled

re-execution, based on selectively adding synchronizations during re-execution to

ensure that synchronization faults do not recur. The controlled re-execution method

gives rise to three interesting questions: How do we determine the synchronizations

that ensure a safe re-execution? How do we monitor an application to detect faulty

global conditions? How well does controlled re-execution perform in practice?

The first part of the dissertation addresses the predicate control problem

which takes a computation and a global property and adds synchronizations to the

computation to maintain the property. We design efficient algorithms to solve the

problem for many useful predicates, including disjunctive predicates and various

types of mutual exclusion predicates. These predicates correspond to commonly

encountered synchronization faults such as races.

vii

The second part of the dissertation investigates the predicate detection prob-

lem which involves determining whether a global property occurs in a computation.

We address the problem for the useful class of conjunctive predicates and in the con-

text of an extended model of computation that allows improved predicate detection

over the conventional model. We show that, in general, the problem is NP-Complete.

However, an efficient solution is demonstrated for the useful cases of receive-ordered

and send-ordered computations. Further, this solution can be used to achieve an

improved, though exponential, solution for the general problem.

The third part of the dissertation involves an experimental study of the

controlled re-execution method. We evaluate the controlled re-execution method

in tolerating race faults and find that the extra tracing costs imposed are within

tolerable limits and that it greatly enhanced the likelihood of recovery. We conclude

that controlled re-execution is an effective and desirable method for tolerating races

in long-running non-interactive distributed applications.

viii

Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

1.1 The Predicate Control Problem . 5

1.2 The Predicate Detection Problem . 8

1.3 Controlled Re-execution: An Experimental Study 11

1.4 Summary . 12

1.5 Overview of the Dissertation . 13

Chapter 2 Model 14

2.1 Computations . 14

2.2 Cuts . 16

2.3 Predicates . 17

2.4 Consistent Cuts . 18

2.5 More on Consistent Cuts . 19

2.6 Runs . 22

2.7 Interval Graphs . 23

Chapter 3 The Predicate Control Problem 26

3.1 Overview . 26

3.2 Problem Statement . 28

ix

3.3 Predicate Control is NP-Complete 29

3.4 Disjunctive Predicates . 32

3.5 Mutual Exclusion Predicates . 42

3.6 Readers Writers Predicates . 50

3.7 Independent Mutual Exclusion Predicates 56

3.8 Generalized Mutual Exclusion Predicates 65

Chapter 4 The Predicate Detection Problem 73

4.1 Overview . 73

4.2 A Case for the Extended Model . 74

4.3 Problem Statement: Conjunctive Predicate Detection 80

4.4 Conjunctive Predicate Detection is NP-Complete 81

4.5 Local Linearizations . 84

4.6 Solving Conjunctive Predicate Detection Under Constraints 87

4.7 Solving Conjunctive Predicate Detection Without Constraints 95

Chapter 5 Controlled Re-execution: An Experimental Study 97

5.1 Overview . 97

5.2 The Context . 98

5.3 Re-execution Methods . 99

5.3.1 Simple Re-execution . 100

5.3.2 Locked Re-execution . 100

5.3.3 Controlled Re-execution . 101

5.3.4 A Qualitative Evaluation . 105

5.4 Experimental Setting . 107

5.4.1 Implementation and Environment 107

5.4.2 Synthetic Benchmarks . 108

5.4.3 Parameters . 109

x

5.5 Experiments . 110

5.5.1 The Costs of Controlled Re-execution 110

5.5.2 The Benefits of Controlled Re-execution 112

5.6 Extensions . 116

5.7 Summary . 118

Chapter 6 Related Work 120

6.1 The Predicate Control Problem . 120

6.2 The Predicate Detection Problem . 123

6.3 Controlled Re-execution . 124

Chapter 7 Conclusions and Future Directions 127

Bibliography 131

Vita 145

xi

Chapter 1

Introduction

Distributed applications are difficult to write correctly. An important reason is that,

in addition to the usual software faults, distributed applications suffer from synchro-

nization faults such as race conditions. Such synchronization faults are particularly

hard to detect during testing and, therefore, are responsible for a significant fraction

of application failures [IL95]. As a result of these difficulties many critical software

packages are not available in distributed form, in spite of potential performance

benefits [Pan95].

Software fault tolerance 1 offers a complementary approach to dealing with

software faults. Whereas fault prevention techniques are applied during the design,

implementation, and testing phases of the software cycle to prevent faults from

persisting in the operation phase, fault tolerance techniques are applied during the

operation phase to minimize the damage caused by those faults that do persist.

A software fault tolerance system relates to an application in two ways: as an

observer during normal operation, and as a controller during failure recovery. The

observation aspect of the fault tolerance system involves monitoring the application

for the early detection of a failure. Failure detection depends on the type of failure

involved. For example, heartbeat protocols aim at detecting crash failures, and

1We use software fault tolerance to denote software-fault tolerance (the tolerance of software
faults) and not software fault-tolerance (tolerance techniques implemented in software).

1

Software Fault
Tolerance System

Application

ControlObservation

Figure 1.1: Observation and Control

data integrity checks aim at detecting data corruption failures. On the other hand,

the control functionality of a fault tolerance system has usually involved general-

purpose strategies, such as failing over to a backup process or restarting from a

previously stored checkpoint. One of our aims is to show that, using information

about the failure and its causes, specialized control schemes can take more effective

corrective action than general-purpose schemes. In particular, our focus will be on

failures arising from synchronization faults, an important category in the context of

distributed applications.

A particular execution of an application is determined by three factors: the

application program, the data provided as input, and the environment in which the

program is executed. This corresponds to three approaches to tolerating software

faults in a given execution. The design diversity approach [AC77, Ran75] uses

redundant modules that are independently developed so that a failed execution

could be recovered by resorting to an alternative module. The main shortcomings

of this approach are the high cost in programming effort and the critical assumption

that the same fault will not appear in independently developed implementations

for the same function. The data diversity approach [AK88] uses application-specific

techniques to re-express the input data in an attempt to provide an alternative

failure-free execution. However, this technique is only applicable in cases for which

2

the re-expression of input data is possible and such a re-expression can help bypass a

fault. Our focus is on the third approach, environment diversity [WHF+97], which

rolls back the application to a previous state and re-executes so that changes in

environmental conditions may induce a distinct and failure-free re-execution. This

approach assumes that a fault may not recur each time an application is re-executed

with the same inputs. It has been observed in several studies [Ada84, Cri91, GR93,

IL95] that many software faults exhibit such behavior. In particular, synchronization

faults belong to this class since they are sensitive to an environmental determinant

– the relative timing between processes.

The environment diversity approach to software fault tolerance is an applica-

tion of the rollback recovery method [EAWJ99] to software faults. Rollback recovery

of a failed application occurs in three distinct phases:

• Detection: The detection of failures is more difficult in distributed appli-

cations because of the challenge of detecting global conditions on distributed

state. While it is sometimes sufficient to check for local conditions on a single

process, early detection of failures often requires the detection of global condi-

tions. For example, a load imbalance across the distributed application could

be an early indicator of potential failures. In particular, detecting synchro-

nization failures, such as races, involves global rather than local detection.

The problem of detecting a global condition in a distributed execution has

been formalized as the predicate detection problem [BM93, Gar96].

Predicate detection is usually specified in a model of distributed computation

that consists of a partially ordered set of events with each process viewed as

a sequence of events [Lam78]. However, this model causes “false causality”

[ACG93, CS93, SBN+97], causing some global states that satisfy the predicate

to go undetected. An extended model has been proposed [ACG93] to correct

this problem by viewing a process as a partially ordered set of events. In

3

Chapter 4 of this dissertation, we investigate the predicate detection problem

in the framework of this extended model of a distributed computation.

• Restoration: The problem of restoring a failed distributed application to

a previous state has been the central focus in studies of rollback recovery

[EAWJ99]. While this dissertation does not deal with this problem, we briefly

note the implications of software faults in the context of general-purpose

restoration techniques. It has been observed [CC98b] that failures arising

from software faults are not usually fail-stop, that is, faulty data may have

been written to stable storage before a failure is detected. Therefore, instead

of focusing on restoring the latest restorable state, the focus is on the impor-

tant problem of determining which state to restore. The interested reader is

referred to [WHF+97] and [CC98a] for interesting and extensive studies of this

issue.

• Re-execution: The re-execution phase involves re-executing the application

from a restored state to avoid a recurrence of a failure. In most rollback

recovery techniques, this consists of simply restarting the application from the

restored state. This method is effective under the assumption that failures

are unrelated. While in some failures, such as power outages, this assumption

may hold, failures due to software faults are usually not unrelated. Therefore,

it is desirable to determine re-execution methods that explicitly attempt to

control the application during re-execution so as to bypass software faults and

avoid the recurrence of a failure.

In this dissertation, our focus is on the class of synchronization faults. These

faults are known to be an important source of failures [IL95]. In the con-

text of synchronization faults, we propose a novel re-execution method, con-

trolled re-execution, that uses trace information to appropriately synchronize

during re-execution to prevent a recurrence of a synchronization failure. Un-

4

like re-execution methods that depend on chance, controlled re-execution can

guarantee in advance that the re-execution will be failure-free. In Chapter 5,

we experimentally evaluate the controlled re-execution method in the case of

race faults, an important subset of synchronization faults. The controlled re-

execution method is based on a general problem, the predicate control problem,

which involves controlling a given computation by adding synchronizations

such that a given global property is maintained. In Chapter 3, we formulate

and investigate the predicate control problem.

To summarize in a different order, our goals are:

• To formulate and investigate the predicate control problem.

• To investigate the predicate detection problem in a general model.

• To specify and experimentally evaluate controlled re-execution.

In the next three sections, we give an introduction to our work towards

each of these goals. This is followed by a short summary and an overview of the

dissertation.

1.1 The Predicate Control Problem

Informally, the predicate control problem is to determine how to add synchroniza-

tions to a distributed computation so that it maintains a global predicate (property).

As an example, consider the computation shown in Figure 1.2(a) with three pro-

cesses, P1, P2, and P3. The processes have synchronized by sending messages to

one another. Suppose the stated global predicate is the mutual exclusion predicate,

so that no two processes are to be in critical sections (labeled CS1, CS2, CS3, and

CS4) at the same time. Clearly, the given computation does not maintain mutual

exclusion at all times. Figure 1.2(b) shows the same computation with added syn-

chronizations that ensure that mutual exclusion is maintained at all times. We call

5

such a computation a “controlling computation”. The main difficulty in determining

such a controlling computation lies in adding the synchronizations in such a man-

ner as to maintain the given property without causing deadlocks with the existing

synchronizations.

The predicate control problem is given the input computation a priori whereas

conventional synchronization problems are given the computation on-line. In this re-

spect, the predicate control problem is the off-line variant of on-line synchronization

problems. For example, the mutual exclusion problem has been widely studied in

its on-line version [Ray86] but not in its off-line version – mutual exclusion predicate

control 2 It is to be expected that, since the computation is not known before-hand,

the on-line synchronization problems are harder to solve than their off-line coun-

terparts. For example, in on-line mutual exclusion, one cannot, in general, avoid

deadlocks without making some assumptions (e.g. critical sections do not block).

Thus, on-line mutual exclusion is impossible to solve. To understand why this is

true, consider the scenario in Figure 1.2(a). Any on-line algorithm, being unaware of

the future computation, would have a symmetric choice of entering CS1 or CS2 first.

If CS2 is entered first, it would result in a deadlock. An off-line algorithm, being

aware of the future computation, could make the correct decision to enter CS1 first

and add a synchronization from CS1 to CS2. Thus, while it is often impossible to

synchronize on-line, it may be possible to synchronize off-line. Our aim in studying

the predicate control problem, is to determine when it is possible to synchronize

off-line and how efficiently this can be done.

While the main focus in this dissertation is the software fault tolerance ap-

plication, the predicate control problem has potential applications in other domains.

An example application is distributed debugging in which a computation is often

known a priori for the purpose of replaying. Applying predicate control in this

2Note that we do not use the term “off-line” to imply that predicate control must be applied
before run-time. It merely means that whenever it is applied, it is given the computation a priori .

6

added synchronizations

P3

CS1

CS2

CS3

CS4
P1

P2

P3

CS1

CS2

CS3

CS4
P1

P2

(b) controlling computation(a) original computation

Figure 1.2: The Predicate Control Problem

context would allow the programmer to observe the replayed computation under

various constraints, facilitating the localization of software faults. Another poten-

tial application is off-line scheduling, in which a set of parallel tasks are to be

executed with inter-task dependencies known before-hand. Predicate control allows

automatic scheduling of the tasks to satisfy a given global constraint.

Contributions

Since, in its full generality the predicate control problem deals with any predicates,

it is not surprising that we find the problem to be NP-Complete. It is, therefore,

important to study the predicate control problem in the context of specific and

useful predicates.

The first type of predicates that we consider is the class of “disjunctive

predicates”. Intuitively, these predicates state that at least one property must be

maintained at all times or, in other words, that a bad combination of events does

not occur. Some examples of these predicates are: “at least one server is available”

and “at least one process has a token”. We determine the necessary and sufficient

conditions under which predicate control can be solved for disjunctive predicates.

We then describe an O(np) algorithm to solve disjunctive predicate control, when

possible, where n is the number of processes and p is bounded by the number of

events in the computation.

7

The next important class of predicates are “mutual exclusion predicates”.

These are particularly important in software fault tolerance since they exactly cor-

respond to bypassing races. (Note: we use the term “race” to denote concurrent

accesses of a shared object. This is sometimes called a “data race” and is distinct

from other types of races, especially message races and producer-consumer races).

We determine the necessary and sufficient conditions for solving predicate control for

the mutual exclusion predicate and describe an efficient algorithm. It is interesting

that, though the algorithm is very different from the one for disjunctive predicate

control, the complexity is similar – O(np), where p is the number of critical sections

in the computation.

The mutual exclusion predicate has two important extensions: “readers writ-

ers predicates” and “independent mutual exclusion predicates”. Readers writers

predicates correspond to mutual exclusion with the semantics of read and write

critical sections. Independent mutual exclusion has the semantics of critical sec-

tions that have different types, where only critical sections of the same type are

mutually exclusive. We determine the necessary and sufficient conditions for solv-

ing for readers writers predicates and construct an O(np) algorithm that generalizes

the algorithm for mutual exclusion. Unfortunately, we find that, for independent

mutual exclusion predicates, predicate control is NP-Complete. However, we are

able to solve it under certain conditions, using an algorithm similar to the one for

readers writers predicates.

1.2 The Predicate Detection Problem

The predicate detection problem [BM93, Gar96] is usually specified in a happened

before model of distributed computation that consists of a partially ordered set

of events with each process viewed as a sequence of events [Lam78]. Consider a

happened-before model representation of a certain distributed computation shown

8

CS

CSa b c d

CS

CSc d a b

CS

CSc d

a b

(i) Good Computation (ii) Bad Computation

(iii) New Model

Figure 1.3: Example: Addressing False Causality

in Figure 1.3(i). If mutual-exclusion violation is the predicate that we are try-

ing to detect, it would not be detected because the message ensures that the two

critical sections cannot occur at the same time. However, in reality, the message

may have been fortuitous and may have induced false causality between the critical

sections which leads to missing the violation of mutual exclusion. The sections of

execution marked by intervals (a, b) and (c, d) may be “independent” (for example,

independent threads). The scenario in Figure 1.3(i) is just one possible scheduling

of events. Figure 1.3(ii) shows another scheduling in which mutual-exclusion would

be violated.

The happened before model was extended [ACG93] to a model that partially

orders the events in a local process, allow events within a process to be independent.

Figure 1.3(iii) shows such a model for the example. This representation models both

of the previous schedulings. In general, there would be an exponential number of

happened-before representations corresponding to a single representation in the new

model. We refer to the new model as the extended model . Thus, the extended model

reduces the false causality problem and allows better detection of predicates.

While it is desirable to solve the predicate detection problem in the extended

model, most of the algorithms for predicate detection have been framed in the hap-

9

pened before model. What, then, are the implications of solving predicate detection

in the extended model?

Contributions

We focus on the important class of “conjunctive predicates” which can be solved

efficiently in the happened-before model [GW94]. Conjunctive predicates are speci-

fied as conjunctions of local predicates. Thus, they express the combined occurrence

of local events. Note that conjunctive predicates are the negations of disjunctive

predicates. Some examples of these predicates are: “all servers are unavailable” and

“no process has a token”.

We demonstrate that for general computations (in the extended model), the

problem is NP-Complete. This is an indication of how using the extended model

makes predicate detection a harder problem. However, for certain restricted, but

useful, classes of general computations, the problem may be solved efficiently. These

restricted classes correspond to computations that have either the receive events or

the send events totally ordered, while allowing all other events to be partially or-

dered. Some natural programming styles produce computations that fall in these

categories. Further, we can decompose a general computation into a set of gen-

eral computations in these classes, to achieve an improved (though exponential)

algorithm.

It is definitely harder to solve predicate detection in the extended model

than in the happened-before model. However, even being able to solve predicate

detection efficiently for a restricted class is a great improvement over the alternative

of solving predicate detection on an exponential number of corresponding happened-

before representations. In the worst case where the general computation does not

have either totally ordered sends or totally ordered receives, we may decompose

the problem into extended computations each of which belongs to one of these

10

classes and so efficiently solve for each such diagram. Even though this solution is

exponential, it still achieves, in general, an exponential reduction as compared to

considering all possible happened-before representations.

1.3 Controlled Re-execution: An Experimental Study

In this study, we focus on long-running, non-interactive applications that commu-

nicate using messages and use a common network file system. Such applications

are suitable for rollback recovery approaches. Typical examples of such applications

are scientific programs and simulations. Further, we focus on a particular type of

synchronization fault — “races”. A race occurs when two processes access a file

concurrently. Consider an execution that has races, such as the execution shown in

Figure 1.2(a) (viewing the file accesses as critical sections). Suppose that a rollback

recovery approach is used so that a failure has been detected (the failure could be

corrupted data on the file) and the application has been restored to a previous saved

state. How should the processes be re-executed so as to avoid a recurrence of the

failure?

One method, which we call “simple re-execution”, is to simply restart all

the processes and allow them to execute freely [HK93, WHF+97]. This method

relies on chance to change the relative timing between the processes in such a way

that races do not recur in the re-execution. Another method, “locked re-execution”,

involves locking all the file accesses during re-execution. This method eliminates

races but introduces the possibility of deadlocks. Again, it depends on chance to

re-execute safely. The “controlled re-execution” method uses traced information

from the previous execution as input to the predicate control algorithm (for mutual

exclusion predicates). During re-execution, extra synchronization messages are used

to enforce the synchronizations added by the predicate control algorithm. This

method does not rely on chance, and can give a guarantee that there are neither

11

races nor deadlocks during re-execution. However, this benefit comes at the cost of

tracing the computation during normal execution.

In order to make an evaluation of controlled re-execution, we require a quan-

titative evaluation of: (1) how much of a disadvantage is posed by the tracing cost,

and (2) how much of an advantage is involved in the improved recovery. This is the

objective of our experimental study.

Contributions

In our experiments, we used synthetic applications so that we could study controlled

re-execution under different parameters. In particular, there were two parameters

that are important: the frequency of communication and the frequency of file ac-

cesses. Our experiments demonstrate that the tracing overhead is less than 1%

even for applications with relatively high communication and file access frequencies

(with respect to parameters of real scientific applications). In order to check the

relative likelihood of recovery, we executed applications that periodically have races

and measured how long it takes before each of the three re-execution methods fails

to tolerate races. We varied the applications for various values of communication

and file access density. We found that controlled re-execution is significantly better

than either locked re-execution or simple re-execution for tolerating races. Thus,

since the tracing costs are within tolerable limits and the advantage in recovery

is significant, we conclude that the controlled re-execution method is effective and

desirable for tolerating races in long-running, non-interactive scientific applications.

Further, this case study serves as an indicator for the potential advantages of us-

ing controlled re-execution for other types of synchronization faults and in other

application domains.

12

1.4 Summary

• Predicate Control: By designing efficient algorithms for solving the predi-

cate control problem for some important classes of predicates, we make a first

step in determining the feasibility of off-line synchronization.

• Predicate Detection: Towards understanding the implications of the ex-

tended model on the predicate detection problem, we study and design algo-

rithms for the detection of conjunctive predicates.

• Controlled Re-execution: As a case study in evaluating controlled re-

execution, we demonstrate that it is a desirable and effective method for tol-

erating race faults in long-running, non-interactive distributed applications.

1.5 Overview of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we define

our model. Next, we have the three main chapters of the dissertation: Chapter 3

discusses our study of the predicate control problem, Chapter 4 investigates the

predicate detection problem, and Chapter 5 describes our experimental evaluation

of the controlled re-execution method. In Chapter 6, we give a summary of related

work. Finally, we draw conclusions and describe future directions in Chapter 7.

13

Chapter 2

Model

The predicate control problem and the predicate detection problem are based on

a model of distributed computations and concepts related to distributed computa-

tions. Our model is similar to the happened before model [Lam78], described in more

detail in [BM93, Gar96] and extended in [ACG93]. However, some of the concepts

presented are unique to our requirements, and we will make special note of this

where appropriate.

2.1 Computations

Since we are going to be concerned mainly with distributed computations, we drop

the qualifier distributed and call them simply computations.

• 〈computation〉 : A computation is a tuple 〈E1, E2, · · ·En,→〉 where the

Ei’s are disjoint finite sets of “events” and → (precedes) is an irreflexive partial

order on E =
⋃

iEi. We abbreviate 〈E1, E2, · · ·En,→〉 to 〈E,→〉 with the

understanding that n is to be always used to represent the size of the partition

of E into E1, E2, · · ·En.

Informally, each Ei represents a process, and the partial order → represents a partial

ordering of events such that e → f means that the event e may have directly or

indirectly caused the event f . We say e “causally precedes” f . Note that, in

14

general, the → relation is merely an approximation of causality. An example of

approximating causality to obtain a → relation on events is given by the happened

before model [Lam78], in which → is defined as the smallest relation satisfying the

following: (1) If e and f are events in the same process and e comes before f

according to the local process clock, then e → f , (2) If e is the send event of a

message and f is the receive event for the same message by another process, then

e → f , and (3) If e → f and f → g, then e → g. Note that this approximation

causes the events in a process to be totally ordered. We define such computations

as follows:

• 〈→i〉 : Let →i denote the relation → restricted to the set of events Ei.

• 〈locally ordered computations〉 : A computation 〈E,→〉 is a locally

ordered computation if, for each i, →i is a total order.

For now, we assume that all computations are locally ordered. In Chapter 4, we will

return to general computations and motivate the distinctions between the models.

Another special class of computations are runs, defined as:

• 〈run〉 : A computation 〈E,→〉 is a run if → is a total order.

A run is an even weaker approximation of causality than locally ordered compu-

tations. A run corresponds to an interleaving of all the events in the distributed

computation. Finally, we define some notation concerning computations:

• 〈→〉 : (e→f) ≡ (e = f) ∨ (e→ f)

In a similar way, we represent a corresponding reflexive relation for any given

relation, e.g.: (e � f) ≡ (e = f) ∨ (e ≺ f)

• 〈e.proc〉 : (e.proc = i) ≡ (e ∈ Ei)

Informally, e.proc is the identifier for the process containing e.

15

2.2 Cuts

• 〈cut〉 : A cut is a subset of E containing at most one event from each Ei.

A cut corresponds to the intuitive notion of a global state. Sometimes a cut has

been defined to correspond to the notion of a history (all events preceding a global

state). In such definitions, the frontier of a cut corresponds to our cut . Since, we

will be dealing more frequently with the notion of a global state than a history, we

formalize the notion of history in terms of global state rather than the other way

around.

If a cut intersects a process at an event e, then the local state on that process

corresponding to the cut is the one reached by executing event e. If the cut does not

intersect a process, then the local state on that process corresponding to the cut is

the initial state on that process. To represent an initial state explicitly, we augment

our model with initialization events:

• 〈⊥i〉 : Corresponding to each Ei we define a special event ⊥i (⊥i /∈ E).

• 〈⊥〉 : Let ⊥ =
⋃

i {⊥i}.

Each ⊥i corresponds to a special “dummy” event that initializes the state of process

Ei. Note that ⊥i is not a real event. Introducing the dummy events, ⊥, allows a

one-to-one correspondence between the informal notion of local states corresponding

to a process Ei and the formal notion of Ei ∪ {⊥i}, in which an event corresponds

to the local state that follows it. We next define a local ordering between events

and dummy events:

• 〈≺i〉 : For each i, let ≺i be the smallest relation on Ei ∪ {⊥i} such that:

∀e ∈ Ei : ⊥i ≺i e, and

∀e, f ∈ Ei : e→i f ⇒ e ≺i f .

• 〈≺〉 : Let ≺=
⋃

i ≺i.

16

Thus, the ≺ relation augments the →i relation by ordering the initialization event

⊥i before all events in Ei. Using the initialization events ⊥, we can now define, for

any cut, a unique event/initialization event corresponding to each process as:

• 〈C[i]〉 : For a cut C, define C[i] ∈ E ∪ ⊥ such that:

C[i] = e, if C ∩ Ei = {e}, and

C[i] = ⊥i, if C ∩ Ei = ∅.

Finally, we define a relation ≤ on cuts as follows:

• 〈≤〉 : For two cuts C1 and C2 define a relation ≤ as:

C1 ≤ C2 ≡ ∀i : C1[i] � C2[i]

2.3 Predicates

Predicates represent the informal notion of properties on local or global states:

• 〈local predicate〉 : A local predicate of an Ei in a computation is a

(polynomial-time computable) boolean function on Ei ∪ {⊥i}.

• 〈global predicate〉 : A global predicate of a computation 〈E,→〉 is a

(polynomial-time computable) boolean function on the set of cuts of the com-

putation.

Local predicates are used to define properties local to a process, such as: whether

the process is in a critical section, whether the process has a token, or whether,

for a process variable x, x < 4. Global predicates define properties across multiple

processes, such as: whether two processes are in critical sections, whether at least

one process has a token, or whether, for variables x and y on different processes,

(x < 4) ∧ (y < 3). We use predicate instead of global predicate, when the meaning

is clear from the context.

17

2.4 Consistent Cuts

All cuts in a computation do not correspond to global states that may have happened

in the computation. To see why this is true, consider the set of events which causally

precede any event in a given cut, which we call the causal past of the cut:

• 〈G.past〉 : The causal past of a set of events G ⊆ E in a computation 〈E,→〉

is G.past = {e ∈ E : ∃f ∈ G : e→f}

Suppose there is an event e in the causal past of a cut C and suppose e has not yet

occurred in the global state corresponding to C. Since a cause must always precede

the effect, the cut C does not represent a global state that may have happened.

Cuts which represent global states that may have happened are called consistent

global states. The reason we say that a consistent global state may have happened

is that its occurrence depends on the particular interleaving of the partially ordered

set of events that occurred in real time.

• 〈consistent cut〉 : A cut C is consistent if ∀e ∈ C.past : C[e.proc] 6≺ e.

Note that, in the case of a locally ordered computation, C[e.proc] 6≺ e is the same

as e � C[e.proc].

We now prove two useful results about consistent cuts. The first one allows

us to extend a single event to a consistent cut that contains it. This corresponds

to the intuition that the local state following the event must have occurred at some

time. Therefore, there must be some consistent cut (global state that may have

happened) that contains it.

Lemma 1 (Extensibility) Let C be the set of consistent cuts of a computation

〈E,→〉, then:

∀e ∈ E : ∃C ∈ C : e ∈ C

Proof: Let e be an event in E. Consider a maximal (w.r.t. ≤) cut C contained in

{e}.past. Since C is maximal, it must contain e. Consider any event f in C.past.

18

Since C is contained in {e}.past, f is also in {e}.past. Suppose C[f.proc] ≺ f . Then

since f is in {e}.past, C is not maximal and we have a contradiction. Therefore,

C[f.proc] 6≺ f . So, C is consistent. 2

The next result tells us that a cut that is consistent in a computation is

also consistent in any computation that is less strict (that is, the partial ordering of

events in the latter is less strict than the first).

Lemma 2 If 〈E,→′〉 and 〈E,→〉 are computations such that →⊆→′, then any cut

that is consistent in 〈E,→′〉 is also consistent in 〈E,→〉.

Proof: Let C be a consistent cut in 〈E,→′〉. Let e be any event in the causal past

of C with respect to →. Since →⊆→′, e is also in the causal past of C with respect

to →′. Therefore, C[e.proc] 6≺ e. So, C is consistent in 〈E,→〉. 2

2.5 More on Consistent Cuts

This sections presents definitions and results related to consistent cuts that only

apply to locally ordered computations. In case of locally ordered computations,

every event has a unique next event and a unique previous event:

• 〈e.next〉 : For e ∈ Ei ∪{⊥i}, e.next denotes the immediate successor to e in

the total order defined by the ≺i relation. If no successor exists, e.next = null,

where null does not belong to E ∪⊥.

• 〈e.prev〉 : For e ∈ Ei ∪ {⊥i}, e.prev denotes the immediate predecessor

to e in the total order defined by the ≺i relation. If no predecessor exists,

e.prev = null, where null does not belong to E ∪ ⊥.

Note that null (not an event) should not be confused with ⊥i (the initialization

event). In fact, ⊥i.prev = null.

The following result shows us an alternative way of proving that a cut is

consistent.

19

Lemma 3 In a computation 〈E,→〉:

a cut C is consistent ≡ ∀i, j : C[i].next, C[j] ∈ E : C[i].next 6→ C[j]

Proof: (1) Suppose C is consistent. We show by contradiction that:

∀i, j : C[i].next, C[j] ∈ E : C[i].next 6→ C[j].

Suppose there is an i and j such that C[i].next → C[j]. Then C[i].next ∈ C.past.

But C[i] ≺ C[i].next contradicting the consistency of C.

(2) Suppose C is not consistent. We prove by contradiction that:

∃i, j : C[i].next, C[j] ∈ E : C[i].next→ C[j].

Since C is not consistent, there is an event, say e, such that e ∈ C.past and

C[e.proc] ≺ e. Therefore, C[e.proc].next � e. By transitivity, C[e.proc].next ∈

C.past. Therefore, ∃j : C[j] ∈ E : C[e.proc].next→ C[j]. 2

The next is a well-known result about the set of consistent cuts in a compu-

tation [Mat89].

Lemma 4 The set of consistent cuts of a computation forms a lattice under ≤.

Proof: Let C1 and C2 be any two consistent cuts. Let C be a consistent cut defined

such that for each i, C[i] is the minimum of C1[i] and C2[i]. Clearly, this ensures

that for any lower bound C ′ of C1 and C2, C
′ ≤ C. Therefore, to show that C is

the greatest lower bound of C1 and C2, it remains to show that C is consistent.

Suppose C is not consistent. Using Lemma 3, there must exist i and j such

that C[i].next → C[j]. Without loss of generality, suppose C[i] = C1[i]. Clearly,

C[j] 6= C1[j] since, otherwise, the consistency of C1 is contradicted. Therefore,

C[j] = C2[j]. By the definition of C, C2[j] � C1[j]. Therefore, by transitivity,

C1[i].next → C1[j]. This contradicts the consistency of C1. This shows that C is

consistent and, therefore, C is the greatest lower bound of C1 and C2.

In a similar way, we can demonstrate the existence of the least upper bound

of C1 and C2. 2

20

It can further be verified that the lattice is a distributive one. This result

allows us to define the consistent cut that is the greatest lower bound or least upper

bound of a non-empty set of consistent cuts. Consider the set A of consistent cuts

containing an event e. Lemma 1 tells us that A is non-empty. By Lemma 4, there

is a consistent cut that is the greatest lower bound of A. Further, it is easy to check

that this consistent cut contains e. Therefore, we can define the following:

• 〈lcc(e)〉 : For each event e in a computation, let lcc(e) denote the least

consistent cut that contains e.

Informally, lcc(e) represents the earliest global state for which e has occurred. It is

verifiable that lcc(e) is the maximum cut contained in {e}.past (similar to the proof

of Lemma 1). Therefore, we have:

Lemma 5 lcc(e).past = {e}.past.

This result shows us that lcc(e), which corresponds to the earliest global state for

which e has occurred, is formed by the “frontier” of the causal past of e (that is,

the set of last events per process in the causal past of e).

There can be only one global state that occurs immediately before lcc(e) and

it is represented by the following cut:

• 〈lccprev(e)〉 : For each event e in a computation, let lcc-prev(e) denote the

cut formed from lcc(e) by deleting e, and then by adding e.prev if e.prev /∈ ⊥.

To show that lcc-prev(e) is indeed the global state that occurs immediately before

lcc(e), we must show that it is consistent.

Lemma 6 For any event e in a computation, lcc-prev(e) is consistent.

Proof: We prove by contradiction. Let f be any event in lcc-prev(e).past such that

lcc-prev(e)[f.proc] ≺ f . Clearly, by the definition of lcc-prev(e) we have f.proc 6=

21

e.proc. Therefore, lcc-prev(e)[f.proc] = lcc(e)[f.proc] (by the defn. of lcc-prev(e)).

Further, since f is in lcc-prev(e).past, it is also in lcc(e).past. This contradicts the

consistency of lcc(e). 2

2.6 Runs

In this section we state some definitions and results specific to runs. In the case of

a run, we can make a stronger assertion about the set of consistent cuts than the

fact that it forms a lattice (Lemma 4):

Lemma 7 The set of consistent cuts of a run is totally ordered under ≤.

Proof: We prove by contradiction. Suppose that C1 and C2 are two consistent

cuts in a computation 〈E,→〉 such that C1 6≤ C2 and C2 6≤ C1. Therefore, there

must exist i and j such that C1[i] ≺ C2[i] and C2[j] ≺ C1[j]. Since → is a total

order, without loss of generality, let C2[i] → C1[j]. Therefore, C2[i] is in C1.past

contradicting the consistency of C1. 2

This corresponds to the intuition that since the events in a run are totally

ordered, the global states must also occur in sequence. Further, for any global state

that occurs, there is a unique event that can lead up to it. This unique event is

defined as:

• 〈ge(C)〉 : For each consistent cut C of a run 〈E,→〉, such that C 6= ∅, let

the greatest event in C with respect to → be denoted by ge(C).

The next result shows us that there is a one-to-one correspondence between the

consistent cuts (excluding ∅) and the events in a run.

Lemma 8 In a given run, ge and lcc are inverses of each other.

Proof: Consider a computation, 〈E,→〉. It follows directly from Lemma 5 that

∀e ∈ E : ge(lcc(e)) = e. Therefore, it remains to prove that lcc(ge(C)) = C,

22

for a consistent cut C 6= ∅. We prove by contradiction. Suppose lcc(ge(C)) 6= C,

then there is an i such that lcc(ge(C))[i] 6= C[i]. By the definition of lcc, we

must have: lcc(ge(C))[i] ≺ C[i]. By the definition of ge, C[i] → ge(C) and so,

C[i] ∈ lcc(ge(C)).past. This contradicts the consistency of lcc(ge(C)). 2

2.7 Interval Graphs

Let 〈E,→〉 be a locally ordered computation and let α1, α2, · · ·αn be a set of local

predicates. Each local predicate αi defines a partition of the sequence of events

〈Ei ∪ {⊥i},≺i〉 into “intervals” in which αi is alternately true and false. We define

this formally as:

• 〈interval〉 : An interval I is a non-empty subset of an Ei∪{⊥i} correspond-

ing to a maximal subsequence in the sequence of events in 〈Ei∪{⊥i},≺i〉, such

that all events in I have the same value for αi.

We next introduce a few notations and definitions related to intervals.

• 〈Ii〉 : Let Ii denote the set of intervals of Ei ∪ {⊥i}.

• 〈I〉 : Let I =
⋃

i Ii.

• 〈I.proc〉 : (I.proc = i) ≡ (I ⊆ (Ei ∪ {⊥i}))

• 〈I.first〉 : For an interval I, I.first denotes the minimum event in I with

respect to ≺I.proc.

• 〈I.last〉 : For an interval I, I.last denotes the maximum event in I with

respect to ≺I.proc.

• 〈≺i (for intervals)〉 : For any i, let the ≺i relation on events apply to

intervals as well, such that I1 ≺i I2 ≡ I1.f irst ≺i I2.f irst.

23

• 〈I.next〉 : I.next denotes the immediate successor interval of interval I with

respect to ≺I.proc, or null if none exists (null is distinct from all intervals).

• 〈I.prev〉 : I.prev denotes the immediate predecessor interval of interval I

with respect to ≺I.proc, or null if none exists (null is distinct from all intervals).

• 〈local predicate (on intervals)〉 : A local predicate αi also applies to an

interval I ⊆ Ei ∪ {⊥i} such that αi(I) ≡ αi(I.first).

• 〈true interval〉 : An interval I is called a true interval if αI.proc(I).

• 〈false interval〉 : An interval I is called a false interval if ¬αI.proc(I).

The following relation on the set of intervals, I, is defined so that I1 7→ I2

represents the intuitive notion that: “I1 must enter before I2 can leave”.

• 〈7→〉 : 7→ is a relation on intervals defined as :

I1 7→ I2 ≡











I1.f irst→ I2.next.f irst if I1.prev 6= null and I2.next 6= null

true if I1.prev = null or I2.next = null

Note that, the conditions I1.prev 6= null and I2.next 6= null imply that I1.f irst /∈ ⊥

(so → is defined) and I2.next.f irst is defined. If I1.prev = null or I2.next = null,

then we define I1 7→ I2 to be true. Since the execution starts in the first interval of

every process and ends in the last interval of every process, this corresponds to the

intuition that I1 must enter before I2 can leave. Further, note that the relation 7→

is reflexive, corresponding to the intuition that an interval must enter before it can

leave. Unlike many of the relations we deal with, it is to be noted that the relation

7→ is not a partial order and may have cycles.

The set of intervals I together with the relation 7→ forms a graph, called an

interval graph.

24

• 〈interval graph〉 : 〈I, 7→〉 is called the interval graph of computation

〈E,→〉 under the set of local predicates α1, α2, · · ·αn.

The interval graph represents a higher granularity view of a computation, in which

the intervals may be viewed as “large events”. However, there is one important

difference — an interval graph may be cyclic, while a computation is partially or-

dered.

25

Chapter 3

The Predicate Control Problem

In this chapter we describe our results in studying the predicate control problem

and design algorithms, some of which will be used in the experimental study of

controlled re-execution in Chapter 5.

3.1 Overview

We first define the predicate control problem formally in Section 3.2. Informally,

the predicate control problem is to determine how to add edges to a computation

(that is, make the computation stricter) so that it maintains a global predicate.

In its full generality, the predicate control problem deals with any predicates

and it would, therefore, be expected that it is hard to solve. We establish in Sec-

tion 3.3 that it is NP-Complete. However, as we will see, there are useful predicates

for which the problem can be solved efficiently.

The first class of predicates that we study in Section 3.4 is the class of

“disjunctive predicates” that are specified as a disjunction of local predicates. Intu-

itively, these predicates can be used to express a global condition in which at least

one local condition has occurred, or, in other words, in which a bad combination of

local conditions has not occurred. For example: “at least one server is available”.

First, we show that a necessary condition to solve the problem for disjunctive pred-

26

Generalized Mutual Exclusion

Readers Writers Independent Mutual Exclusion

Mutual Exclusion

Figure 3.1: Variants of Mutual Exclusion Predicates

icates is the absence of a clique of n false intervals in the interval graph. Next,

we design an algorithm for solving the problem when the necessary condition is

satisfied, thus establishing that the condition is also sufficient. The algorithm is of

complexity O(np), where n is the number of processes and p is the number of false

intervals in the interval graph.

The next class of predicates is that of “mutual exclusion predicates” which

state that no two processes are in critical sections at the same time. Mutual exclusion

predicates are particularly useful in software fault tolerance since they correspond to

races, a very common type of synchronization faults. In Section 3.5, our two results

show that the necessary and sufficient conditions for solving predicate control for

mutual exclusion predicates is the absence of a non-trivial cycle of critical sections

in the interval graph. We also design an algorithm of complexity O(np), where p is

the number of critical sections in the computation.

We can generalize the mutual exclusion predicates to “readers writers predi-

cates” specifying that only “write” critical sections must be exclusive, while “read”

critical sections need not be exclusive. Another generalization is the “independent

mutual exclusion predicates” where critical sections have “types” associated with

them, such that no two critical sections of the same type can execute simulta-

neously. Finally, “generalized mutual exclusion predicates” allow read and write

critical sections and multiple types of critical sections. Figure 3.1 illustrates the

relative generality of the four problems.

In Section 3.6, we find that the necessary and sufficient conditions for solving

27

predicate control for readers writers predicates is the absence of a non-trivial cycle of

critical sections with at least one write critical section. For independent mutual ex-

clusion, however, we discover that the problem is NP-Complete in general. We show

this in Section 3.7, and also show that a sufficient condition for solving the problem

is the absence of a non-trivial cycle of critical sections with two critical sections of

the same type. However, in general, this condition is not necessary. The results for

generalized mutual exclusion follow along similar lines. We do not describe indi-

vidual algorithms for readers writers and independent mutual exclusion predicates.

Instead, in Section 3.8, we describe a general O(np) algorithm that solves predicate

control for general mutual exclusion predicates (under the sufficient conditions).

This algorithm can be applied to solving readers writers predicates (in general) and

independent mutual exclusion predicates (under the sufficient conditions).

3.2 Problem Statement

In order to state the problem, we first require the concept of a “controlling computa-

tion”. Informally, given a predicate and a computation, a controlling computation is

a stricter computation for which all consistent cuts satisfy the predicate. Formally,

it is defined as:

• 〈controlling computation〉 : Given a computation 〈E,→〉 and a global

predicate φ, a computation 〈E,→c〉 is called a controlling computation of φ in

〈E,→〉, if: (1) →⊆→c, and

(2) for all consistent cuts C in 〈E,→c〉: φ(C)

Given this definition, the predicate control problem is:

The Predicate Control Problem: Given a computation 〈E,→〉 and a global

predicate φ, is there a controlling computation of φ in 〈E,→〉?

The search problem corresponding to the predicate control problem is to find such

28

a controlling computation, if one exists.

3.3 Predicate Control is NP-Complete

We prove that predicate control is NP-Complete in two steps. We first define the

predicate control problem for runs and show that it is equivalent to the predicate

control problem. We next show that the predicate control problem for runs is NP-

Complete.

The Predicate Control Problem for Runs: Given a computation 〈E,→〉 and

a global predicate φ, is there a controlling run of φ in 〈E,→〉?

Lemma 9 The Predicate Control Problem is equivalent to the Predicate Control

Problem for Runs.

Proof: Let 〈E,→〉 be a computation and φ be a global predicate. We have to show

that a controlling computation of φ in 〈E,→〉 exists if and only if a controlling run

of φ in 〈E,→〉 exists.

Since a run is a special case of a computation, the “if” proposition follows.

For the “only if” proposition, suppose a controlling computation 〈E,→c〉 of

φ in 〈E,→〉 exists. Let <c be any linearization of →c (a linearization of a partial

order is a totally ordered superset). If C is a consistent cut of 〈E,<c〉, then C is also

a consistent cut of 〈E,→c〉 (Lemma 2). Since, 〈E,→c〉 is a controlling computation,

we have φ(C). Therefore, 〈E,<c〉 is also a controlling computation of φ in 〈E,→〉.

2

Lemma 10 The Predicate Control Problem for Runs is NP-Complete.

Proof: First, we show that the problem is in NP. A non-deterministic algorithm

need only guess a run 〈E,<c〉 such that <c is a linearization of →. To check that

a run is a controlling computation, we first enumerate all the consistent cuts in the

29

run. By Lemma 8, each consistent cut is the lcc of some event, and, therefore, we can

achieve the enumeration by finding the lcc of each event in the run. Using Lemma 5

and the fact that the causal past of a cut is unique, it can be easily shown that the

lcc of an event can be constructed in polynomial time. Further, by definition, it can

be checked in polynomial time that the given predicate satisfies each lcc.

To show that the problem is NP-Hard, we transform SAT. Let U = {u1, · · · um}

be a set of boolean variables, and D = {d1, · · · dk} be a set of clauses forming an in-

stance of SAT. Let ψ be the boolean function over the set of truth assignments such

that ψ(t) ≡ t satisfies D. (ψ can be represented as a boolean formula in conjunctive

normal form).

For each variable ui ∈ U , construct a singleton set of events Ei = {ei}.

Construct one more set Em+1 = {em+1, e
′
m+1}. Let E =

⋃

i∈{1,···m+1}Ei. Let

relation → be defined so that em+1 → e′m+1 and no other events are related. Clearly

→ is a partial order on E and →i is a total order. Therefore, 〈E,→〉 is a (locally

ordered) computation.

For each i, let αi be a local predicate on Ei∪{⊥i} as follows. Let αm+1(⊥m+1) =

true, αm+1(em+1) = false, and αm+1(e
′
m+1) = true. For each i ≤ m let αi(⊥i) =

false and αi(ei) = true. Note that for each cut C, there is a truth assignment tC

such that tC(ui) ≡ αi(C[i]). Define a global predicate φ = αm+1(C[m+1]) ∨ ψ(tC).

Thus, we have a polynomial construction from an instance (U,D) of SAT to

an instance (〈E,→〉, φ) of the Predicate Control Problem for Runs. We next show

that this is indeed a transformation.

Part 1: Suppose that 〈E,<c〉 is a controlling run of φ in 〈E,→〉. Let C be any

consistent cut containing e (by Lemma 1). Since φ(C) = true and αm+1(C[m+1]) =

false, we must have ψ(tC). Therefore, tC is a truth assignment that satisfies the set

of clauses D.

Part 2: Suppose that t is a truth assignment of variables in U that satisfies D.

30

1

2

i

m

1u

2u

mu

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

iu

e 1

e 2

e i

e m

e m+1 m+1e’m+1

e m+1

true

true

false

false

false

false

false

false

true false

true

true

true

true

true

Controlling ComputationTruth Assignment

the only consistent cut passing through

Figure 3.2: Proof: The Predicate Control Problem for Runs is NP-Complete

Define ;
c such that →⊂ ;

c and ;
c contains the following edges in addition to

edges in →: (1) for each i ≤ m such that t(ui) = true, the edge ei;
cem+1, and

(2) for each i ≤ m such that t(ui) = false, the edge e′m+1;
cei. Let →c be the

transitive closure of ;
c. Since each Ei except Em+1 does not have both incoming

and outgoing ;
c edges, there can be no cycles in ;

c, and, therefore, →c is a partial

order and 〈E,→c〉 is a computation. Let <c be any linearization of →c.

Claim: The run 〈E,<c〉 is a controlling run of φ in 〈E,→〉.

Proof: Let C be a consistent cut of the run 〈E,<c〉. We show that φ(C) = true. If

αm+1(C[m + 1]) = true, we directly have φ(C) = true. Therefore, we consider the

remaining possibility: αm+1(C[m+ 1]) = false. By the definition of αm+1, we have:

C[m+1] = em+1. We next show that tC = t. Consider any i ≤ m. We consider two

31

cases depending on the value of t(ui):

Case 1: t(ui) = true:

Therefore, ei <
c em+1 (by the definition of ;

c and ;
c ⊂<c). Since C is

consistent and C[m+ 1] = em+1, we must have C[i] = ei. By the definition of

αi, we have αi(C[i]) = true. Therefore, tC(ui) = true.

Case 2: t(ui) = false:

Therefore, e′m+1 <c ei (by the definition of ;
c and ;

c ⊂<c). Since C is

consistent and C[m + 1] = em+1, we must have C[i] = ⊥i. By the definition

of αi, we have αi(C[i]) = false and, therefore, tC(ui) = false.

This proves that tC = t. Since t satisfies the set of clauses, D, we have ψ(tC) = true.

Therefore, φ(C) = true. 〈 End: Proof of Claim 〉 2

Theorem 1 The Predicate Control Problem is NP-Complete.

Proof: Follows directly from Lemmas 9 and 10. 2

3.4 Disjunctive Predicates

• 〈disjunctive predicates〉 : Given n local predicates α1, α2, · · · , αn, the

disjunctive predicate φdisj is defined as:

φdisj(C) ≡
∨

i∈{1,···,n}

αi(C[i])

Some examples of disjunctive predicates are:

(1) At least one server is available: avail1 ∨ avail2 ∨ . . . availn

(2) x must happen before y: after x ∨ before y

(3) At least one philosopher is thinking: think1 ∨ think2 ∨ . . . thinkn

(4) (n − 1)-mutual exclusion: ¬cs1 ∨ ¬cs2 ∨ . . . ¬csn

32

Note how we can even achieve the fine-grained control necessary to cause a spe-

cific event to happen before another as in property (3). This was done using local

predicates to check if the event has happened yet. (n − 1)-mutual exclusion is a

special case of k-mutual exclusion, which states that at most k processes can be in

the critical sections at the same time.

We next determine a necessary condition for solving the predicate control

problem for disjunctive predicates.

Theorem 2 Let 〈I, 7→〉 be the interval graph of a computation 〈E,→〉 under local

predicates α1, α2, · · · , αn. If 〈I, 7→〉 contains a clique of n false intervals, then there

is no controlling computation of φdisj in 〈E,→〉.

Proof: Let 〈I, 7→〉 have a clique X of n false intervals. Since for any two distinct

false intervals I and I ′ in X, I 7→ I ′ and I ′ 7→ I, we must have I.proc 6= I ′.proc.

Therefore, each of the false intervals in X is on a distinct Ei. Let I1, I2, · · · In be the

false intervals of X, such that Ii.proc = i). We prove by contradiction that there is

no controlling computation of φdisj in 〈E,→〉.

Suppose that 〈E,→c〉 is a controlling computation of φdisj in 〈E,→〉. Let

<c be any linearization of →. Therefore, by Lemma 2, 〈E,<c〉 is also a controlling

computation. We next show that there is a consistent cut C in the run 〈E,<c

〉 such that ¬φdisj(C), thus, contradicting the fact that 〈E,<c〉 is a controlling

computation.

Consider two cases:

Case 1: ∀i : Ii.next = null :

Let C be the maximum cut in the run 〈E,→〉. It is easy to verify that C is

consistent (as in any computation). Since each Ii is the last interval and is

also a false interval, ¬(φdisj(C)).

Case 2: ∃i : Ii.next 6= null :

33

Let e be the minimum event in 〈E,<c〉 such that e = Ii.next.f irst for some

i. Let C ′ = lcc(e). Consider any j ∈ {1, · · · n} such that j 6= i. Consider two

cases:

Case a: Ij.prev = null : In this case Ij.f irst = ⊥j. Therefore, Ij.f irst �j

C ′[j].

Case b: Ij .prev 6= null : Since Ij 7→ Ii, we have Ij.f irst→ e. Further, since

→⊆<c, we have Ij.f irst <
c e. Therefore, by the consistency of C ′, we

have Ij.f irst �j C
′[j].

Therefore, in both cases: Ij.f irst �j C
′[j] –[A]

Consider two cases:

Case a: Ij.next = null : Clearly, C ′[j] �j Ij.last.

Case b: Ij .next 6= null : Since e <c Ij .next.f irst (by the definition of e) and

since e = ge(C ′) (by Lemma 8), we have C ′[j] <c e <c Ij .next.f irst.

Therefore, C ′[j] �j Ij .last.

Therefore, in both cases: C ′[j] � Ij .last –[B]

By [A] and [B], we have C ′[j] ∈ Ij and therefore ¬αj(C
′[j]). Let C =

lcc-prev(e). Since, ∀j : j 6= i : C[j] = C ′[j], we have: ¬αj(C[j]). Further,

since e = Ii.next.f irst, C[i] = Ii.last, and therefore, ¬αi(C[i]). So, ¬φdisj(C).

Also, by Lemma 6, C is consistent.

2

Algorithm Description

In order to show that the necessary condition is also sufficient, we design an al-

gorithm that finds a controlling computation whenever the condition is true. The

algorithm is shown in Figure 3.3.

34

The algorithm takes as input the n sequences of intervals for each of the

processes. The output contains a sequence of added edges. The central idea is that

this sequence of added edges links true intervals into a continuous “chain” from the

start of the computation to the end. Any cut must either intersect this chain in a

true interval, in which case it satisfies the disjunctive predicate, or in an edge, in

which case the cut is made inconsistent by the added edge.

The purpose of each iteration of the main loop in lines L12-L23 is to add one

true interval, anchor, to the chain of true intervals. The intervals I1, · · · , In form a

“frontier” of intervals that start at the beginning of the computation and continue

until one of them reaches the end. In each iteration, a valid pair, consisting of a

true interval, anchor, and a false interval, crossed, is selected at line L13, such that

anchor does not have to leave before crossed leaves. If no such valid pair, we can

(and will) show that the necessary condition must be true so that an n-sized clique

of false intervals exists in the interval graph. Next, the anchor is added to the

chain of true intervals at line L19. Finally, the frontier advances such that crossed

is crossed and all intervals which must enter as a result of this are entered (lines L20

- L23). After the loop terminates, the output is constructed from the chain of true

intervals by connecting them in reverse order.

The time complexity of the algorithm is O(np) where p is the number of

false-intervals in the computation The naive implementation of the algorithm would

be O(n2p) because the outer while loop iterates O(np) times and calculating the

set V alidPairs() can take O(n2) time to check every pair of processes. However,

an optimized implementation avoids redundant comparisons in computing the set

V alidPairs(). Since, in this approach, each new false-intervals has to be compared

with n− 1 existing false-intervals, the time complexity is O(np).

35

Types:

event: (proc: int; v: vector clock) (L1)
interval: (proc: int; α: boolean; first: event; last: event) (L2)

Input:

I1, I2, · · · , In: list of interval, initially non-empty (L3)

Output:

O: list of (event, event), initially null (L4)

Vars:

I1, I2, · · · , In: interval, initially ∀i : Ii = Ii.head (L5)
valid pairs: set of (interval, interval) (L6)
chain: list of interval (L7)
anchor, crossed: interval (L8)
prev, curr: interval (L9)

Notation:

Ni =

{

min X ∈ Ii : Ii �i X ∧ X.α = false, if exists
null, otherwise

(L10)

select(Z) =

{

arbitrary element of set Z, if Z 6= ∅
null, otherwise

(L11)

Procedure:

while (∀i : Ni 6= null) do (L12)
valid pairs := {(Ii, Nj)| (Ii.α = true) ∧ (Ni 67→ Nj)} (L13)
if (valid pairs = ∅) (L14)

exit(“no controlling computation exists”) (L15)
(anchor, crossed) := select(valid pairs) (L16)
if (anchor.prev = null) then (L17)

chain := null (L18)
chain.add head(anchor) (L19)
for (i ∈ {1, · · ·n}: i 6= crossed.proc) do (L20)

while (Ii.next 6= null ∧ Ii.next 7→ crossed) (L21)
Ii := Ii.next (L22)

Icrossed.proc := crossed.next (L23)
anchor := select({Ii : i ∈ {1, · · ·n} ∧ Ni = null}) (L24)
if (anchor.prev = null) then (L25)

chain := null (L26)
chain.add head(anchor) (L27)
prev := chain.delete head() (L28)
while (chain 6= null) do (L29)

curr := chain.delete head() (L30)
O.add head((prev.first, curr.next.first)) (L31)
prev := curr (L32)

Figure 3.3: Algorithm for Predicate Control of the Disjunctive Predicate

36

We have assumed, of course, that the algorithm is correct. We now establish

this. In doing so, we also prove that the necessary condition – the existence of an

n-sized clique of false intervals – is also a sufficient one for solving predicate control

for disjunctive predicates.

We first show that the algorithm is well-specified so that it is indeed an

algorithm – all the terms used are well-defined and it terminates.

Lemma 11 The algorithm in Figure 3.3 is well-specified.

Proof: We first check that all terms in the algorithm are well-defined. The second

condition, Ii.next 7→ crossed, in L21 is well-defined assuming that the first condi-

tion, Ii.next 6= null, is checked prior to it. The only remaining non-trivial check is

for the term curr.next.first at line L31. To show that it is well-defined, first note

that, for all the intervals anchor added to chain at line L19, anchor.next 6= null

since anchor.α = true (by lines L13 and L16) and Nanchor.proc 6= null (by termi-

nating condition L12). Therefore, immediately after line L27, for all intervals X

in chain, we have: (X = chain.head) ∨ (X.next 6= null). Lastly, note that the

interval chain.head immediately after line L27 is never assigned to curr (by L28).

We next check termination. The while loop in lines L21-L22 terminates

since Ii advances once per iteration. The while loop in lines L12-L23 terminates

since Icrossed.proc advances by at least one interval in each iteration. The loop in

lines L29-L32 terminates since chain reduces by one interval in each iteration. 2

Next, we prove two useful invariants maintained by the algorithm.

Lemma 12 The algorithm in Figure 3.3 maintains the following invariants on

I1, I2 · · · , In (except in lines L20-L23 while Ii’s are being updated):

INV1: ∀i, j : if Ii.next 6= null and Ij .prev 6= null then Ii.next 67→ Ij .prev

INV2: ∀i : if Ii.prev 6= null then Ii.α = true ∨ (∃j : Ii 7→ Ij.prev ∧ Ij .α = true)

37

Proof: (structural induction treating L20-L23 as atomic)

Base Case: Initially, ∀j : Ij = Ij.head and, therefore, ∀j : Ij.prev = null and INV1

and INV2 follow.

Inductive Case: The only statements that update any Ii are L20-L23. Therefore, we

assume that INV1 and INV2 are true before an occurrence of L20-L23. We denote

the values of the variables Ii at this point by I ′i. We must prove that INV1 and INV2

are true after the occurrence of L20-L23. We denote the values of the variables Ii

at this point by Ii

To prove that INV1 holds, let Ii.next 6= null and Ij.prev 6= null and consider

two cases:

Case 1: Ij 6= I ′j: Therefore, the variable Ij was updated at either L22 or L23.

Case a: Ij updated at L23: Therefore, Ij.prev = crossed. Also, by the ter-

minating condition of while loop L21 and since Ii.next 6= null, Ii.next 67→

crossed. Therefore, Ii.next 67→ Ij.prev.

Case b: Ij updated at L22: Therefore, Ij 7→ crossed. Since Ij .prev 6= null

and crossed.next 6= null (since anchor 67→ crossed - line L13, L16), we

have: Ij .f irst→ crossed.next.first. –[A]

Also, by the terminating condition of loop L21 and since Ii.next 6= null,

Ii.next 67→ crossed. –[B]

From [A] and [B], we have Ii.next.f irst 6→ Ij.f irst. Therefore, Ii.next 67→

Ij .prev.

Case 2: Ij = I ′j: We know that I ′i.next 6= null since Ii.next 6= null and I ′i � Ii

(since variable Ii is always advanced). We also know that I ′j.prev 6= null since

I ′j = Ij. Therefore, by the inductive hypothesis, we have: I ′i.next 67→ I ′j .prev.

Since Ij = I ′j , we further have: I ′i.next 67→ Ij.prev. Therefore, I ′i.next.f irst 6→

Ij .f irst. Since I ′i � Ii, we have I ′i.next.f irst→Ii.next.f irst. Therefore, by

38

transitivity, Ii.next.f irst 6→ Ij .f irst. It follows that Ii.next 67→ Ij.prev.

We next prove that INV2 holds after lines L20-L23. Let Ii.prev 6= null. We

have two cases:

Case 1: Ii = I ′i: By the inductive hypothesis, let j be such that Ii 7→ I ′j.prev ∧

I ′j .α = true. If Ij = I ′j , then INV2 clearly holds. Suppose Ij 6= I ′j. Therefore,

either Ij was updated at L22 or at L23.

Case a: Ij updated at L23: Therefore, Ij = crossed.next. Since crossed.α =

false, we have Ij .α = true. Further, since Ii 7→ I ′j .prev and I ′j �j crossed,

we have: Ii 7→ Ij.prev. Therefore, INV2 holds.

Case b: Ij updated at L22: From the terminating condition of the loop at

L21, we have:

I ′j .next 7→ crossed and so, I ′j.next.f irst→ crossed.next.first. –[A]

Since Ii 7→ I ′j .prev and Ii.prev 6= null , we have:

Ii.f irst→ I ′j.f irst. –[B]

Using [A] and [B] and transitivity, we have:

Ii.f irst→ crossed.next.first and so, Ii 7→ crossed. Further,

crossed.next.α = true and so INV2 follows (instantiating crossed.proc

for j).

Case 2: Ii 6= I ′i: In this case, either Ii was updated in L23 or L22. If at L23, then

Ii.α = true and INV2 follows. If at L22, then by the loop condition at L21,

we have: Ii 7→ crossed. Therefore, INV2 follows (instantiating crossed.proc

for j).

2

We next show that if the algorithm exits abnormally at line L15, failing to

produce a controlling computation, then no controlling computation exists for the

problem instance.

39

Lemma 13 If the algorithm in Figure 3.3 exits at line L15, then no controlling

computation exists.

Proof: If ∀i, j : Ni 7→ Nj then we have a clique of n false intervals and the result

follows from Theorem 2. Therefore, let i and j be such that Ni 67→ Nj. Since the set

valid pairs = ∅ (line L14), we must have Ii.α = false (from line L13). –[A]

Therefore, by the definition of Ni, we have: Ii = Ni. So, since Ni 67→ Nj, we

have: Ii.prev 6= null –[B]

Applying INV2 and using [A] and [B] let k be such that: Ii 7→ Ik.prev ∧

Ik.α = true. Since Ni 67→ Nj and Ni = Ii and Ii 7→ Ik.prev we have: Nk 67→ Nj . This

contradicts the fact that valid pairs = ∅ (line L14). 2

Finally, we show that the output does form a controlling computation.

Lemma 14 If the algorithm in Figure 3.3 terminates normally, then 〈E,→c〉 is a

controlling computation of φdisj in 〈E,→〉, where →c is the transitive closure of the

union of → with the set of edges in O.

Proof: First, we show that 〈E,→c〉 is a computation. Just before loop L29-32, we

have ∀I ∈ chain : I.prev 6= null (by lines L17-L18 and and L25-L26). Therefore,

in line L31, prev.first ∈ E (i.e. prev.first /∈ ⊥). Clearly, the same holds for

curr.next.first. Therefore, O determines a set of edges on E. Let ;
c represent

this set of edges.

We show by contradiction that →c is an irreflexive partial order. Since →c

is transitive by definition, we assume that it is reflexive. Therefore, → ∪ ;
c has a

cycle, say C. Among the edges in C let X.first;cY.next.first be the edge such that

X is the latest to be added to chain. Let U.first;cV.next.first, be the next ;
c

edge in the cycle C (note that U = X if there is only one ;
c edge in C). Consider

the algorithm step in which X is the anchor and added to chain. Since Y was the

anchor immediately before X, and since the anchor is not affected by the update

to Ii’s in lines L20-L23, we have: IY.proc = Y . –[A]

40

Since U cannot be added after X (by the definition of X), we have: U �

IU.proc. –[B]

Since U.first;cV.next.first is the next ;
c edge in the cycle C follow-

ing the edge X.first;cY.next.first, we have: Y.next.first → U.first. (Note:

Y.next.first 6= U.first since both Y and U are true intervals). Therefore, using [A]

and [B], we have: IY.proc.next.f irst→ IU.proc.f irst –[C]

Since ;
c is a set of edges on E, we know that U.prev 6= null. Therefore,

using [B], we have: IU.proc.prev 6= null Therefore, applying INV1: IY.proc.next 67→

IU.proc.prev and, so: IY.proc.next.f irst 6→ IU.proc.f irst, which contradicts [C]. There-

fore, →c is an irreflexive partial order and 〈E,→c〉 is a computation.

It remains to prove that 〈E,→c〉 is a controlling computation. Let C be a

consistent cut in 〈E,→c〉. Let I be the last interval to be added to chain such that:

I.first � C[I.proc] (such an I must exist, since the initial conditions together with

lines L17-L18 ensure that for first interval X, X.first ∈ ⊥). Consider two cases:

Case 1: I is the last interval added to chain: Since I was added in line L27,

I.next = null (by L24). Therefore, C[I.proc] � I.last. Together with the

definition of I, this implies that C[I.proc] ∈ I. Therefore αI.proc(C[I.proc])

and so, φdisj(C).

Case 2: I is not the last interval added to chain: Let I ′ be the next interval

to be added to chain. Therefore, I ′.f irst;cI.next.first (by L31). –[A]

By the definition of I, we have: C[I ′.proc] ≺ I ′.f irst. Therefore, since C is

consistent in 〈E,→c〉, I ′.f irst /∈ C.past. In particular, I ′.f irst 6→cC[I.proc].

From [A], we must have: C[I.proc] ≺ I.next.first. Together with the defini-

tion of I, we have C[I.proc] ∈ I. Therefore αI.proc(C[I.proc]) and so, φdisj(C).

2

41

Our final theorem in this section states the sufficient condition for solving

disjunctive predicate control as demonstrated by the correctness of our algorithm.

Theorem 3 Let 〈I, 7→〉 be the interval graph of a computation 〈E,→〉 under local

predicates α1, α2, · · · , αn. If 〈I, 7→〉 does not contain a clique of n false intervals,

then there is a controlling computation of φdisj in 〈E,→〉.

Proof: By Lemmas 11, 13, and 14, the algorithm in Figure 3.3 determines a con-

trolling computation if 〈I, 7→〉 does not contain a clique of n false intervals. 2

3.5 Mutual Exclusion Predicates

• 〈mutual exclusion predicates〉 : Let critical1, critical2, · · · , criticaln be

n local predicates and let critical(e) ≡ criticale.proc(e). The mutual exclusion

predicate φmutex is defined as:

φmutex(C) ≡ ∀ distinct i, j : ¬ (critical(C[i]) ∧ critical(C[j]))

• 〈critical section〉 : A critical section (non-critical section) denotes a true

(false) interval in 〈E,→〉 with respect to critical1, critical2, · · · , criticaln.

Mutual exclusion is one of the most common forms of synchronization in

distributed applications. In particular, the results for mutual exclusion predicates

will be used in the controlled re-execution method in Chapter 5.

The next two theorems demonstrate the necessary and sufficient conditions

for solving predicate control for the mutual exclusion predicates.

Theorem 4 Let 〈I, 7→〉 be the interval graph of a computation 〈E,→〉 under local

predicates critical1, critical2, · · · , criticaln. If 〈I, 7→〉 contains a non-trivial cycle of

critical sections, then there is no controlling computation of φmutex in 〈E,→〉.

42

Proof: We prove the result by contradiction. Let X be a non-trivial cycle of critical

sections in 〈I, 7→〉 and let 〈E,→c〉 be a controlling computation of φmutex in 〈E,→〉.

Let <c be a linearization of →c forming a controlling run 〈E,<c〉 (by Lemma 2).

We next show that there is a consistent cut C in the run 〈E,<c〉 such that

¬φmutex(C), thus, contradicting the fact that 〈E,<c〉 is a controlling computation.

Consider two cases:

Case 1: ∀CS ∈ X : CS.next = null :

Let C be the maximum cut in the run 〈E,→〉. It is easy to verify that C is

consistent (as in any computation). Since X has at least two critical sections,

¬φmutex(C).

Case 2: ∃CS ∈ X : CS.next 6= null :

Let e be the minimum event in 〈E,<c〉 such that e = CS.next.first for

some CS ∈ X. Let CS′ be the critical section preceding CS in the cycle X.

Therefore, CS′ 7→ CS. Let C ′ = lcc(e). Consider two cases:

Case a: CS′.prev = null :

Since CS′.f irst ∈ ⊥, we have CS′.f irst � C ′[CS′.proc].

Case b: CS′.prev 6= null :

Since CS′ 7→ CS, we have CS′.f irst→ e and so, CS′.f irst <c e. There-

fore, since C ′ is consistent, CS′.f irst � C ′[CS′.proc]

In both cases, CS′.f irst � C ′[CS′.proc]. –[A]

Consider two cases:

Case a: CS′.next = null :

Clearly, C ′[CS′.proc] � CS′.last.

Case b: CS′.next 6= null :

Since e <c CS′.next.f irst (by the definition of e) and since e = ge(C ′)

43

(by Lemma 8), we have C ′[CS′.proc] <c e <c CS′.next.f irst. Therefore,

C ′[CS′.proc] � CS′.last.

In both cases, C ′[CS′.proc] � CS′.last –[B]

By [A] and [B], we have C ′[CS′.proc] ∈ CS′ and therefore critical(C ′[CS′.proc]).

Let C = lcc-prev(e). Since, ∀j : j 6= e.proc : C[j] = C ′[j], we have:

critical(C[CS′.proc]). Further, since e = CS.next.first, C[CS.proc] = CS.last,

and therefore, critical(C[CS.proc]). So, ¬φmutex(C). Also, by Lemma 6, C is

consistent.

2

Theorem 5 Let 〈I, 7→〉 be the interval graph of a computation 〈E,→〉 under local

predicates critical1, critical2, · · · , criticaln. If 〈I, 7→〉 does not contain a non-trivial

cycle of critical sections, then there is a controlling computation of φmutex in 〈E,→〉.

Proof: Since there are no non-trivial cycles of critical sections in 〈I, 7→〉, we can

topologically sort the critical sections to form a sequence: CS1, CS2, · · ·CSm such

that CSi 7→ CSj ⇒ i ≤ j. –[A]

Define a relation ;
c on events in E as follows. For each i ∈ {1, · · · ,m− 1},

if CSi.next 6= null and CSi+1.prev 6= null, then CSi.next.f irst;
cCSi+1.f irst.

Further, no other events are related by ;
c.

Define →c to be the transitive closure of → ∪;
c. We first show that 〈E,→c〉

is a computation and next show that it is a controlling computation.

If 〈E,→c〉 is not a computation, then →c is not an irreflexive partial order.

Since →c is transitive by definition, it must be reflexive. Therefore, → ∪ →c must

have a cycle, say X. Since 〈E,→〉 is a computation, there can be no cycle that

involves no ;
c edges. Therefore, let CSi.next.f irst;

cCSi+1.f irst be the ;
c edge

in X such that i has the maximum value. Let CSj.next.f irst;
cCSj+1.f irst be

44

the next ;
c edge in the cycle X (note that it is possible that i = j). Therefore,

CSi+1.f irst→CSj.next.f irst. Since by definition two critical sections are not con-

tiguous, the equality cannot hold. Therefore, CSi+1.f irst → CSj.next.f irst and

so, CSi+1 7→ CSj. By [A], we have: i + 1 ≤ j and so i < j. This contradicts the

choice of i as maximum. Therefore, 〈E,→c〉 is a computation.

Before showing that 〈E,→c〉 is a controlling computation, we first prove a

claim:

Claim 1: For all critical sections CSi and CSj such that i < j, if CSi.next 6= null

and CSj.prev 6= null then CSi.next.f irst→
c CSj.f irst.

Proof: (by induction on j − i)

Base Case: j − i = 1

Directly from the definition of ;
c.

Inductive Case: j − i > 1

Consider two critical sections CSi and CSj such that i < j and CSi.next 6=

null and CSj.prev 6= null. We have two cases:

Case 1: CSj−1.prev = null:

Therefore, by definition, CSj−1 7→ CSi. By [A], we have j − 1 ≤ i. Together

with i < j, this implies j = i+1, which violates the inductive case assumption.

Case 2: CSj−1.prev 6= null:

By the inductive hypothesis, we have: CSi.next.f irst→
c CSj−1.f irst. –[IH]

Consider two sub-cases:

Case a: CSj−1.next = null:

Therefore, by definition, CSj 7→ CSj−1. By [A], we have j ≤ j− 1 giving

a contradiction.

Case b: CSj−1.next 6= null:

Since by the choice of j, CSj.prev 6= null, we have by the definition of

45

;
c: CSj−1.next.f irst;

cCSj.f irst. Together with [IH], by transitivity,

this gives: CSi.next.f irst→
c CSj.f irst.

2 (Proof of Claim)

We now show that 〈E,→c〉 is a controlling computation. Suppose it is not.

Then, let C be a consistent cut in 〈E,→c〉 such that ¬φmutex(C). Therefore, we

have distinct i and j such that critical(C[i]) and critical(C[j]).

Let C[i] ∈ CSk and C[j] ∈ CSl. Without loss of generality, k < l. (Since

i 6= j, k 6= l).

Consider two cases:

Case 1: CSk.next = null ∨ CSl.prev = null:

Therefore, by definition, CSl 7→ CSk. By [A], l ≤ k, contradicting k < l.

Case 2: CSk.next 6= null ∧ CSl.prev 6= null:

Therefore, by Claim 1, we have: CSk.next.f irst →
c CSl.f irst. Since C[i] ∈

CSk, we have: C[i].next � CSk.next.f irst and since C[j] ∈ CSj, we have:

CSl.f irst � C[j]. Therefore, by transitivity, C[i].next →c C[j], violating the

consistency of C.

2

Algorithm Description

The proof of the above theorem provides a simple algorithm for finding a controlling

computation based on topologically sorting the interval graph of critical sections.

We provide a more efficient algorithm in Figure 3.4, making use of the fact that

the critical sections in a process are totally ordered. The central idea used in the

algorithm is to maintain a frontier of critical sections (CS1, · · · , CSn) that advances

from the start of the computation to the end. Instead of finding a minimal critical

46

Types:

event: (proc: int; v: vector clock) (L1)
interval: (proc: int; critical: boolean; first: event; last: event)(L2)

Input:

I1, I2, · · · , In: list of interval, initially non-empty (L3)

Output:

O: list of (event, event), initially null (L4)

Vars:

I1, I2, · · · , In: interval, initially ∀i : Ii = Ii.head (L5)
valid cs: set of interval (L6)
chain: list of interval (L7)
crossed: interval (L8)
prev, curr: interval (L9)

Notation:

CSi =

{

min X ∈ Ii : Ii �i X ∧ X.critical = true, if exists
null, otherwise

(L10)

CS = { CSi | (1 ≤ i ≤ n) ∧ (CSi 6= null) } (L11)

select(Z) =

{

arbitrary element of set Z, if Z 6= ∅
null, otherwise

(L12)

Procedure:

while (CS 6= ∅) do (L13)
valid cs := { c ∈ CS | ∀c′ ∈ CS : (c′ 6= c) ⇒ (c′ 67→ c) } (L14)
if (valid cs = ∅) (L15)

exit(“no controlling computation exists”) (L16)
crossed := select(valid cs) (L17)
chain.add head(crossed) (L18)
Icrossed.proc := crossed.next (L19)

if (chain 6= null) (L20)
prev := chain.delete head() (L21)

while (chain 6= null) do (L22)
curr := chain.delete head() (L23)
O.add head((curr.next.first, prev.first)) (L24)
prev := curr (L25)

Figure 3.4: Algorithm for Predicate Control of the Mutual Exclusion Predicate

47

section of the whole interval graph, we merely find the minimal critical section in

the current frontier. It is guaranteed to be a minimal critical section of the remain-

ing critical sections in the interval graph at that point. Therefore, this procedure

achieves a topological sort.

The main while loop of the algorithm executes p times in the worst case,

where p is the number of critical sections in the computation. Each iteration takes

O(n2), since it must compute the valid cs. Thus, a simple implementation of the

algorithm will have a time complexity of O(n2p). However, a better implementation

of the algorithm would amortize the cost of computing valid cs over multiple iter-

ations of the loop. Each iteration would compare each of the critical sections that

has newly reached the head of its list with the existing critical sections. Therefore,

each of the p critical section reaches the head of the list just once, when it is com-

pared with n − 1 critical sections. The time complexity of the algorithm with this

improved implementation is, therefore, O(np). Note that a naive algorithm based

directly on the constructive proof of the sufficient condition in Theorem 5 would

take O(p2). We have reduced the complexity significantly by using the fact that the

critical sections in a process are totally ordered.

We next prove the correctness of the algorithm.

Lemma 15 The algorithm in Figure 3.4 is well-specified.

Proof: To prove that the algorithm is well-specified, the only non-trivial check is

for the term curr.next.first at line L23. To show that curr.next 6= null at this

point, we prove that, after the termination of loop L13-L19, for all critical sections

c in chain : (c.next = null) ⇒ (c = chain.head). Let c be a critical section in

chain such that c.next = null. Consider the point when c is about to be added to

chain in line L18. Since c ∈ valid cs, we have ∀c′ ∈ valid cs : (c′ 6= c) ⇒ (c′ 67→ c)

However, since c.next = null, we have ∀c′ ∈ C : c′ 7→ c. Therefore, c is the only

48

element of valid cs at this point. It follows that after line L19, CS = ∅ and the loop

terminates. Therefore, after the termination of loop L13-L19, c = chain.head.

The algorithm terminates since the loop L13-L19 advances one critical section

in each iteration and the loop L20-L24 decreases chain by one critical section in each

iteration. 2

Lemma 16 If the algorithm in Figure 3.4 exits at line L16, then no controlling

computation exists.

Proof: At the point of exit at line 16 valid cs = ∅. Therefore, the graph 〈CS, 7→

〉 has no minimal element. Since CS 6= ∅ (by the terminating condition at line

L13), there must be a non-trivial cycle in 〈CS, 7→〉. Therefore, by Theorem 4, no

controlling computation exists. 2

Lemma 17 If the algorithm in Figure 3.4 terminates normally, then 〈E,→c〉 is a

controlling computation of φmutex in 〈E,→〉, where →c is the transitive closure of

the union of → with the set of edges in O.

Proof: We show that, at the termination of loop L13-L19, chain is a topological

sort of the graph 〈C, 7→〉. Then, since lines L20-L24 construct the same ;
c relation

as in the proof of Theorem 5, 〈E,→c〉 is a controlling computation of φmutex in

〈E,→〉.

Let chain.set denote the set of intervals in chain. First, we note that the

algorithm maintains the following invariant:

INV1: ∀c ∈ C : c ≺ CSc.proc ⇒ c ∈ chain.set

Next, consider the point just before L17, when crossed is about to be added to

chain. Let c be any critical section in C − chain.set such that c 6= crossed. By

INV1, we have CSc.proc � c. If c 7→ crossed then CSc.proc 7→ crossed, contradicting

crossed ∈ valid cs. Therefore c 67→ crossed. Therefore, crossed is minimal in

〈C − chain.set, 7→〉. Therefore, chain is a topological sort of 〈C, 7→〉. 2

49

Theorem 6 The algorithm in Figure 3.4 solves the predicate control problem for

the mutual exclusion predicate.

Proof: This follows directly from Lemmas 15, 16, and 17. 2

3.6 Readers Writers Predicates

Let critical1, critical2, · · · , criticaln be n local predicates and let critical(e) ≡

criticale.proc(e) and let a critical section (non-critical section) denote a true (false)

interval in 〈E,→〉 with respect to critical1, critical2, · · · , criticaln.

• 〈read-critical/write-critical〉 : A critical section is either read-critical or

write-critical .

• 〈write critical(I)〉 : We define write critical(I) to be true for a write-

critical section I and false for all other intervals. We also say write critical(e)

for all events e in a write-critical section.

• 〈read critical(I)〉 : We define read critical(I) to be true for a read-critical

section I and false for all other intervals. We also say read critical(e) for all

events e in a read-critical section.

• 〈readers writers predicate〉 : The readers writers predicate φrw is defined

as:

φrw(C) ≡ ∀ distinct i, j : ¬ (critical(C[i]) ∧ write critical(C[j]))

The readers writers predicate is a generalized form of mutual exclusion allow-

ing critical sections to be read or write-critical. Two critical sections cannot enter

at the same time if one of them is write-critical. The next two theorems establish

the necessary and sufficient conditions for solving the predicate control problem for

readers writers predicates. Since the algorithm that will be presented in Section 3.8

50

is applied to readers writers predicates without significant simplification, we do not

present a specialized algorithm for readers writers predicates.

Theorem 7 Let 〈I, 7→〉 be the interval graph of a computation 〈E,→〉 under local

predicates critical1, critical2, · · · , criticaln. If 〈I, 7→〉 contains a non-trivial cycle

of critical sections containing at least one write-critical section, then there is no

controlling computation of φrw in 〈E,→〉.

Proof:

We prove the result by contradiction. In interval graph 〈I, 7→〉, let X be

a non-trivial cycle of critical sections containing a write-critical section W . Let

〈E,→c〉 be a controlling computation of φmutex in 〈E,→〉. Let <c be a linearization

of →c forming a controlling run 〈E,<c〉 (by 2).

We next show that there is a consistent cut C in the run 〈E,<c〉 such that

¬φrw(C) contradicting the fact that 〈E,<c〉 is a controlling computation. Consider

two cases:

Case 1: W.next = null :

Let CS be the critical section following W in X. Since X is non-trivial,

CS 6= W . Consider two cases:

Case a: CS.next = null: Let C be the maximum cut in the run 〈E,→〉. It

is easy to verify that C is consistent (as in any computation). Since

W.next = null and CS.next = null, ¬φrw(C).

Case b: CS.next 6= null: Let e = CS.next.first and C ′ = lcc(e). Consider

two cases:

W.prev = null : Since W.first ∈ ⊥, we have W.first � C ′[W.proc].

W.prev 6= null : Since W 7→ CS, we have W.first→ e and so,

W.first <c e. Therefore, since C ′ is consistent, W.first � C ′[W.proc]

51

In both cases, W.first � C ′[W.proc] –[A]

Since W.next = null, we have: C ′[W.proc] �W.last –[B]

By [A] and [B], C ′[W.proc] ∈ W and so write critical(C ′[W.proc]). Let

C = lcc-prev(e). Since, ∀j : j 6= e.proc : C[j] = C ′[j], we have:

write critical(C[W.proc]). Further, since e = CS.next.first, we have

C[CS.proc] = CS.last, and therefore, critical(C[CS.proc]). So, ¬φrw(C).

Also, by Lemma 6, C is consistent.

Case 2: W.next 6= null :

Let C ′ = lcc-prev(W.next.first). If there is a CS in X distinct from W such

that: CS.first � C ′[CS.proc] � CS.last, then since C ′ is consistent and

¬φrw(C), we are done. Therefore, assume that for all critical sections CS in

X distinct from W : (C ′[CS.proc] ≺ CS.first) ∨ (CS.last ≺ C ′[CS.proc]).

–[D]

Let CS1 and CS2 be any two consecutive critical sections in X. Suppose that

CS2.f irst � C ′[CS2.proc]. –[E]

Therefore, applying [D], we have: CS2.last ≺ C ′[CS2.proc]. –[F]

Consider two cases:

Case a: CS1.prev = null: In this case, since CS1.f irst ∈ ⊥ we have:

CS1.f irst � C ′[CS1.proc].

Case b: CS1.prev 6= null: Since CS1 7→ CS2 and since CS2.next 6= null

(from [F]), we have: CS1.f irst → CS2.next.f irst. This, together with

[F] and transitivity gives us: CS1.f irst ∈ C ′.past. Since C ′ is consistent,

CS1.f irst � C ′[CS1.proc].

Therefore, in both cases: CS1.f irst � C ′[CS1.proc]. Combining this with our

supposition [E], we have: ∀CS1, CS2 ∈ X : CS2.f irst � C ′[CS2.proc] ⇒

52

CS1.f irst � C ′[CS1.proc]. Therefore, since W.first � C ′[W.proc] (by the

definition of C ′), we have: ∀CS ∈ X : CS.first � C ′[CS.proc]. Combining

this with [D] we have: ∀CS ∈ X : CS = W ∨ CS.next.first � C ′[CS.proc].

–[G]

Let CS be the critical section following W in the cycle X.

Let C = lcc-prev(CS.next.first). From [G], CS.next.first � C ′[CS.proc],

and so: C[CS.proc] ≺ C ′[CS.proc]. Therefore, by Lemma 7 we have: C < C ′.

So, we have: C[W.proc] � C ′[W.proc]. Using the definition of C ′: C[W.proc] �

W.last. –[H]

Consider three cases:

Case a: W.prev = null:

Therefore, W.first ∈ ⊥ and so W.first � C[W.proc].

Case b: W.proc = CS.proc:

In this case, W ≺ CS and, therefore, W.first � C[w.proc].

Case c: W.prev 6= null ∧ W.proc 6= CS.proc :

SinceW 7→ CS and CS.next 6= null (because of [G]), we have: W.first→

CS.next.first. Therefore, W.first ∈ lcc(CS.next.first).past. By the

consistency of lcc(CS.next.first), we have:

W.first � lcc(CS.next.first)[W.proc]. Since W.proc 6= CS.proc, by the

definition of lcc-prev:

lcc-prev(CS.next.first)[W.proc] = lcc(CS.next.first)[W.proc].

Therefore, W.first � C[W.proc].

In all cases: W.first � C[W.proc]. This, together with [H], gives us:

C[W.proc] ∈W . Therefore, write critical(C[W.proc]), and by the definition of

C, we have critical(C[CS.proc]). Therefore, ¬φrw(C). Further C is consistent

by definition.

53

2

Theorem 8 Let 〈I, 7→〉 be the interval graph of a computation 〈E,→〉 under local

predicates critical1, critical2, · · · , criticaln. If 〈I, 7→〉 does not contain a non-trivial

cycle of critical sections containing at least one write-critical section, then there is

a controlling computation of φrw in 〈E,→〉.

Proof: Let C be the set of critical sections in I. Let 7→C denote the relation 7→

restricted to the set C. Let S be the set of strongly connected components of the

graph 〈C, 7→C〉. Let →֒ be a relation defined on strongly connected components as:

SCC →֒ SCC′ ≡ ∃CS ∈ SCC,CS′ ∈ SCC ′ : CS 7→ CS′

Clearly, →֒ is a partial order on S. Therefore, we can topologically sort the graph

〈S, →֒〉 to give a sequence of strongly connected components:

SCC1, SCC2, · · · , SCC l such that SCCi →֒ SCCj ⇒ i ≤ j –[A]

Define a relation ;
c on events in E as the set of tuples:

{ (CSi.next.f irst, CSj.f irst) | CSi.next 6= null ∧ CSj.prev 6= null ∧

∃k ∈ {1, · · · , l− 1} : CSi ∈ SCCk ∧ CSj ∈ SCCk+1 }

Define →c to be the transitive closure of → ∪ ;
c.

We first show by contradiction that 〈E,→c〉 is a computation. If it is not,

then there must be a cycle, say X, in the graph 〈E,→ ∪;
c〉. Since 〈E,→〉 is a

computation, X must have at least one ;
c edge. Consider the set of ;

c edges in X,

and let CSi.next.f irst ;
c CSj.f irst be the edge such that CSi belongs to the max-

imum strongly connected component (among such edges) in the topological sorted

order (i.e. CSi ∈ SCCk and k has the maximum value). Let CSi ∈ SCCk, and so,

CSj ∈ SCCk+1. Let CSa.next.f irst ;
c CSb.f irst be the next ;

c edge in the cycle

X (note that it is possible that a = i). Therefore, CSj.f irst → CSa.next.f irst.

Since, by definition, two critical sections cannot be contiguous, the equality cannot

hold. Therefore, CSj.f irst → CSa.next.f irst, and so, by definition, CSj 7→ CSa.

So, if CSa ∈ SCCp, we have: SCCk+1 →֒ SCCp. Therefore, by [A], k + 1 ≤ p

54

and so k < p. This contradicts the choice of k as maximum. Therefore, 〈E,→c〉 is

a computation.

Before showing that 〈E,→c〉 is a controlling computation, we first prove a

claim:

Claim 1: For all critical sections CS ∈ SCCp and CS′ ∈ SCCq such that p < q, if

CS.next 6= null and CS′.prev 6= null, then: CS.next.first →c CS′.f irst.

Proof: (by induction on q − p)

Base Case: (q - p = 1): Directly from the definition of ;
c.

Inductive Case: (q - p ¿ 1): Let CS ∈ SCCp and CS′ ∈ SCCq such that p < q, if

CS.next 6= null and CS′.prev 6= null. Let CS′′ be any critical section in SCCq−1.

We have two cases:

Case 1: (CS′′.prev = null):

Therefore, by definition: CS′′ 7→ CS, and so SCCq−1 →֒ SCCp. Using [A],

we have: (q − 1) ≤ p. Together with p < q, this implies that: q = p+ 1 which

violates the inductive case assumption.

Case 2: (CS′′.prev 6= null):

Subcase 2.1: (CS′′.next = null)

Therefore, by definition, CS′ 7→ CS′′, and so SCCq →֒ SCCq−1.

Using [A], it follows that q ≤ (q − 1). Thus, we have a contradiction.

Subcase 2.2: (CS′′.next 6= null)

Therefore, CS′′.next.f irst ;
c CS′.f irst. Further, by the inductive hy-

pothesis, CS.next.first →c CS′′.f irst. If follows, by transitivity, that:

CS.next.first →c CS′′.f irst.

2 (Proof of Claim 1)

55

We now show that 〈E,→c〉 is a controlling computation. Suppose it is not.

Then, let C be a consistent cut of 〈E,→c〉 such that ¬φrw(C). Therefore, we have

distinct i and j such that write critical(C[i]) and critical(C[j]). Let C[i] ∈ CS and

C[j] ∈ CS′. Further let, CS ∈ SCCp and CS ∈ SCCq. Without loss of generality,

let p ≤ q. Consider two cases:

Case 1: p = q:

In this case, both CS and CS′ are in the same strongly connected component

of 〈C, 7→C〉. Further CS is a write-critical section and CS′ is a distinct critical

section. Therefore, there is a non-trivial cycle of critical sections in 〈I, 7→〉

containing a write-critical section, thus, contradicting the assumptions.

Case 2: p < q:

Subcase 2.1: CS.next = null ∨ CS′.prev = null:

Therefore, by definition, CS′ 7→ CS, and so, SCCq →֒ SCCp. Using

[A], we have: q ≤ p which is a contradiction.

Subcase 2.2: CS.next 6= null ∧ CS′.prev 6= null:

Therefore, by Claim 1, we have: CS.next.first →c CS′.f irst. Since

C[i] ∈ CS, we have: C[i].next � CS.next.first and since C[j] ∈ CS′,

we have: CS′.f irst � C[j]. Therefore, by transitivity, C[i].next→c C[j]

violating the consistency of C.

2

3.7 Independent Mutual Exclusion Predicates

Let critical1, critical2, · · · , criticaln be n local predicates and let critical(e) ≡

criticale.proc(e) and let a critical section (non-critical section) denote a true (false)

interval in 〈E,→〉 with respect to critical1, critical2, · · · , criticaln.

• 〈k-critical〉 : A critical section is k-critical for some k ∈ {1, · · ·m}.

56

• 〈k critical(I)〉 : We define k critical(I) to be true for a k-critical section I

and false for all other intervals. We also say k critical(e) for all events e in a

k-critical section.

• 〈independent mutual exclusion predicate〉 : The independent mutual

exclusion predicate φind is defined as:

φind(C) ≡ ∀ distinct i, j : ∀ k : ¬ (k critical(C[i]) ∧ k critical(C[j]))

The independent mutual exclusion predicate is a generalized form of mutual

exclusion allowing critical sections to have types in k ∈ {1, · · ·m}. Two critical

sections cannot enter at the same time if they are of the same type. The next

result shows us that the problem becomes hard for this generalization. However, we

will determine sufficient conditions for solving it that allow us to solve the problem

efficiently under certain conditions.

Theorem 9 The predicate control problem for the independent mutual exclusion

predicate is NP-Complete.

Proof:

Let PC-IND denote the predicate control problem for the independent mutual

exclusion predicate. PC-IND is in NP for the same reasons that the general Predicate

Control problem is in NP. We prove that PC-IND is NP-Hard by transforming 3SAT.

Let U = {u1, u2, · · · uw} be a set of variables, and C = {c1, c2, · · · cx} be a set

of clauses, forming an instance of 3SAT. Let li1, li2, li3 be the three literals in clause

ci.

To construct an instance of PC-IND from this instance of 3SAT, we first

construct a set of events E as follows:

• For each clause ci define 6 processes with event sets Ei1, Ei2, Ei3, · · · , Ei6. Each

Eip has two events denoted by eip1 and eip2. Let Ei = Ei1 ∪ Ei2 ∪ · · · ∪ Ei6.

57

• For each variable ur define 2 processes with event sets E′
r1, E

′
r2. Each E′

rq has

two events denoted by e′rq1 and e′rq2. Let E′
r = E′

r1 ∪ E
′
r2.

Let E =
⋃

iEi ∪
⋃

r E
′
r and n = |E| = 2w + 6x.

Let ; be a relation on E defined as follows:

• Within each Ei: ei22 ; ei31, ei42 ; ei51, ei62 ; ei11

• For each literal lip ∈ ci such that lip = ur for some variable ur:

ei(2p)1 ; e′r22, e
′
r11 ; ei(2p−1)1, ei(2p−1)1 ; e′r12, e

′
r21 ; ei(2p)1

• For each literal lip ∈ ci such that lip = ur for some variable ur:

ei(2p)1 ; e′r12, e
′
r21 ; ei(2p−1)1, ee(2p−1)1 ; e′r22, e

′
r11 ; ei(2p)1

Let ≺ be a relation on E such that the local events in an Eip or an Erq are

totally ordered by ≺ so that: eip1 ≺ eip2 and e′rq1 ≺ e′rq2.

e i12 i22e i32e i42e
i52e i62e

e’r12 e’r22

e’r21e’r11
e i11 i21e i31e i41e i51e

i61e

j12e

j11e

j32e
j22e

j31e

j42e
j52e j62e

j61ej51e
j41ej21e

c iE for clausei
urE’ for variabler c jjE for clause

li3E and E for literal
i5 i6

i3l = u = truer u = truer j1 rl = u = false

Figure 3.5: Proof: PC-IND is NP-Complete

Let → be the transitive closure of ; ∪ ≺. To show that → is irreflexive,

we prove that there are no cycles in the graph 〈E,; ∪ ≺〉. Any event in an E′
rq

has either incoming or outgoing edges but not both. Therefore, no event in an E′
rq

can be involved in a cycle. Since any distinct Ei and Ej have no edges between

58

them, the only remaining possibility is a cycle within an Ei. Considering only edges

within Ei, any Eip has either incoming edges to its events or outgoing edges from

its events but not both. Further, there are no cycles within an Eip. Therefore, there

is no cycle within an Ei. Thus, we have shown that → is irreflexive. Clearly, → is

also transitive and so, 〈E,→〉 is a computation.

Define local predicates critical1, critical2, · · · , criticaln, such that each pro-

cess consists of exactly one critical section containing only its first event. So, for

each Eip, there is exactly one critical section, CSip = {eip1} and for each E′
rq, there

is exactly one critical section CS′
rq = {e′rq1}.

The critical sections in an Ei are i critical and the critical sections in an E′
r

are (x+ r) critical. Therefore, there are m = (x+w) independent types of critical

sections. Define global predicate φind based on these critical section definitions.

Thus, we have a polynomial construction from an instance (U , C) of 3SAT

to an instance (〈E,→〉, φind) of PC-IND. We next show that the construction is

indeed a transformation.

Part 1: Let t be a truth assignment on variables in U such that t satisfies the set

of clauses in C. Define a relation ;
c1 on E as follows:

• For each variable ur:

if t(ur) = true then e′r22 ;
c1 e′r11

if t(ur) = false then e′r12 ;
c1 e′r21

• For each literal lip in a clause ci:

if lip is true under t then ei(2p)2 ;
c1 ei(2p−1)1

if lip is false under t then ei(2p−1)2 ;
c1 ei(2p)1

For any i, let Ci denote the set of 6 critical sections in Ei. Define 7→c1
i relation

on Ci as:

∀j, k ∈ {1, · · · , 6} : CSij 7→c1
i CSik ≡ eij2 ;

c1 eik1 ∨ eij2 ; eik1

59

Depending on whether each lip is true or false under t, we have 8 cases (by the

definition of ;
c1). Since t satisfies clause ci, at least one of li1, li2, li3 must be true

under t, and one of the cases is not possible. It is easy to verify that for each of the

remaining 7 cases, there are no cycles in the graph 〈Ci, 7→
c1
i 〉.

Therefore, we can topologically sort 〈Ci, 7→
c1
i 〉. Consider a topological sort

in which all the maximal critical sections are selected last. Therefore, if pi is a

permutation of {1, · · · , 6} representing the topological sort, then:

TOP1: ∀j, k : CSij 7→c1
i CSik ⇒ pi(j) < pi(k), and

TOP2: ∀j : CSij is maximal in 〈Ci, 7→
c1
i 〉 ⇒

(∀k : pi(k) > pi(j) ⇒ CSik is maximal in 〈Ci, 7→
c1
i 〉)

Define a relation ;
c2 on E that orders critical sections in Ci in the topolog-

ically sorted order as follows:

• In each Ei:

∀j, k : (pi(j) = pi(k) − 1 ∧ CSj 67→
c1
i CSk) ⇒ eij2 ;

c2 eik1

Let →c be the transitive closure of → ∪ ;
c1 ∪ ;

c2. We next prove that

→c is irreflexive. This is equivalent to proving the following:

Claim 1: There is no cycle in ≺ ∪ ; ∪ ;
c1 ∪ ;

c2.

Proof: We consider three cases for a cycle and prove that each case is not possible.

Case 1: A cycle within an E′
r: The cycle cannot be within a single E′

rq since

there is only one edge (≺) between the two events. Since t assigns either true

or false to variable ur, there is only one edge (;c1) between E′
r1 and E′

r2.

Therefore, there can be no cycles within an E′
r.

Case 2: A cycle within an Ei: The cycle cannot be within a single Eij since

there is only one edge (≺) between the two events. We prove by contradiction

that there cannot be a cycle intersecting multiple Eij ’s. Suppose there is such

a cycle X. Among all the intersected Eij’s, consider Eik such that pi(k) =

60

max{pi(j) : Eij ∩ X 6= ∅} (i.e. CSik is the last critical section in the

topological sort of 7→c1
i among all intersected CSij’s). Let the cycleX intersect

Eil immediately after Eik. Therefore, there must be an edge (;, ;
c1, or ;

c2)

from eik2 to eil1. Therefore, either it is a ;
c2 edge or CSik 7→c1

i CSil. So,

using the definition of ;
c2 or TOP1, we have pi(k) < pi(l). This contradicts

the choice of k.

Case 3: All other cycles: For any distinct Ei and Ej there are no edges between

them. Therefore, we have only to consider cycles that intersect at least one E′
r.

Let X be such a cycle intersecting E′
r. We consider the case when t(ur) = true.

The case t(ur) = false follows along similar lines. By the definition of ;
c1,

we have e′r22 ;
c1 e′r11. If this edge were excluded, no event in E′

r would have

both incoming and outgoing edges. Therefore, the cycle X must include this

edge. From the definition of ;, there are two possible cases for the next edge

in the cycle X:

Case 1: e′r11 ; ei(2p−1)1 is the next edge in cycle X, for some i and p:

In this case, the literal lip = ur and, therefore, is true under t. Therefore,

by the definition of ; and ;
c1, there are no outgoing edges from Ei(2p−1)

in ; ∪ ;
c1. Therefore, CSi(2p−1) is maximal in 〈Ci, 7→

c1
i 〉.

Since the cycle X contains at least one maximal critical section in 〈Ci, 7→
c1
i

〉, consider the critical section CSik such that: pi(k) = max{pi(j) :

CSij is maximal in 〈Ci, 7→
c1
i 〉 ∧ Eij ∩ X 6= ∅} (i.e. CSik is the last

maximal critical section in the topological sort of 〈Ci, 7→
c1
i 〉 that is inter-

sected by cycle X). Since CSik is maximal in 〈Ci, 7→
c1
i 〉, Eik can have no

outgoing edges in ;∪;
c1. Therefore the outgoing edge from Eik in the

cycle must be: eik2 ;
c2 eiq1 such that p(q) = p(k)+1. Since, CSiq is also

maximal in 〈Ci, 7→
c1
i 〉 (by TOP2), this contradicts the choice of pi(k).

61

Case 2: e′r11 ; ei(2p)1 is the next edge in cycle X, for some i and p:

In this case, the literal lip = ur and, therefore, is false under t. There-

fore, using CSi(2p) as the maximal critical section in X we arrive at a

contradiction in a similar manner to Case 1.

End of Proof (Claim 1)

Therefore, 〈E,→c〉 is a computation. It is easy to verify that for any k such

that 1 ≤ k ≤ (x + w), all of the k-critical sections can be arranged in a sequence

CS1, · · · , CSm such that ∀i : CSi.next.f irst →c CSi+1.f irst (where m is 6 or 2

depending on whether 1 ≤ k ≤ x or x < k ≤ (x+w)). Therefore, we can prove that

〈E,→c〉 is a controlling computation along similar lines to the proof of Theorem 5.

Part 2: Let 〈E,→c〉 be a controlling computation of φind in 〈E,→〉. Before con-

structing a truth assignment on U , we prove:

Claim 2: For any two distinct k-critical sections CS and CS′, either

(1) CS.next.first →c CS′.f irst, or

(2) CS′.next.f irst →c CS.first,

but not both.

Proof: Clearly both (1) and (2) cannot be true since otherwise there would be

a cycle in →c. Suppose both (1) and (2) are false. Let C be the consistent

cut that is the least upper bound (lub) of lcc(CS.first) and lcc(CS′.f irst) (us-

ing Lemma 4). Since (1) is false, CS.next.first /∈ lcc(CS′.f irst).past and since

CS.first ≺ CS.next.first, we have CS.next.first /∈ lcc(CS.first).past (using

Lemma 5). Therefore, CS.next.first /∈ C.past (by the definition of lub). Together

with CS.first � C[CS.proc] (by the definition of lub), we have: C[CS.proc] ∈

CS. In a similar way, it can be shown that: C[CS′.proc] ∈ CS′. Therefore,

62

k critical(C[CS.proc]) ∧ k critical(C[CS′.proc), and so: ¬φind(C). This con-

tradicts the fact that 〈E,→c〉 is a controlling computation. End of Proof (Claim

2)

We construct a truth assignment t on U such that for a variable ur:

• t(ur) = true, if CS′
r2.next.f irst →c CS′

r1.f irst, and

• t(ur) = false, if CS′
r1.next.f irst →c CS′

r2.f irst

By Claim 2, this is a valid truth assignment.

Further, let x be a boolean function on literals defined as follows:

• x(lip) = true, if CSi(2p).next.f irst →c CSi(2p−1).f irst, and

• x(lip) = false, if CSi(2p−1).next.f irst →c CSi(2p).f irst

Again, by Claim 2, this is a valid definition.

Claim 3: (x(lip) = true) ≡ (lip is true under t)

Proof:

Case 1: x(lip) = true:

Therefore, substituting in the definition of x, we get:

ei(2p)2 →c ei(2p−1)1 –[A]

Case a: lip = ur for some r:

Assume t(ur) = false, then (substituting):

e′r12 →c e′r21 –[B]

From the definition of →, we have:

e′r21 → ei(2p)1 and ei(2p−1)1 → e′r12 –[C]

From [A], [B], and [C], we have a cycle contradicting the fact that 〈E,→c〉

is a computation. Therefore, t(ur) = true, and so, lip is true under t.

63

Case b: lip = ur for some r:

Assume t(ur) = true, then (substituting):

e′r22 →c e′r11 –[D]

From the definition of →, we have:

e′r11 → ei(2p)1 and ei(2p−1)1 → e′r22 –[E]

From [A], [D], and [E], we have a cycle contradicting the fact that 〈E,→c〉

is a computation. Therefore, t(ur) = false, and so, lip is true under t.

Case 2: x(lip) = false:

Along similar lines to Case 1, we can show that lip is false under t.

End of Proof (Claim 3)

Now, we show that the truth assignment t satisfies the set of clauses C. Con-

sider any clause ci. If all of x(li1), x(li2), and x(li3) are false, then by the definition of

x, ≺ and →, we have a cycle in →c: ei12, ei21, ei22, ei31, ei32, ei41, ei42, ei51, ei52, ei61, ei62.

Therefore, at least one literal, say x(lip) is true. It follows from Claim 3 that lip is

true under t. Therefore t satisfies ci. 2

Although the problem is NP-Complete, the next result states a sufficient

condition under which it can be solved. The condition is the absence of cycles

containing two critical sections of the same type. Under these conditions, we can

construct an efficient algorithm. Since the algorithm that will be presented in Sec-

tion 3.8 is applied to independent mutual exclusion predicates without significant

simplification, we do not present a specialized algorithm in this section.

Theorem 10 Let 〈I, 7→〉 be the interval graph of a computation 〈E,→〉 under local

predicates critical1, critical2, · · · , criticaln. If 〈I, 7→〉 does not contain a non-trivial

cycle of critical sections containing two k-critical section for some k, then there is

a controlling computation of φrw in 〈E,→〉.

Proof: The proof is along similar lines to the proof of Theorem 8. 2

64

3.8 Generalized Mutual Exclusion Predicates

Using the definitions of the previous two sections:

• 〈generalized mutual exclusion predicate〉 : The generalized mutual

exclusion predicate φgen mutex is defined as:

φgen mutex(C) ≡ ∀ distinct i, j :

¬ (critical(C[i]) ∧ write critical(C[j])) ∧

∀ k : ¬ (k critical(C[i]) ∧ k critical(C[j]))

Generalized mutual exclusion predicates allow critical sections to have types

and be read/write-critical. Clearly the predicate control problem is NP-Complete for

generalized mutual exclusion predicates. Further, a similar sufficient condition can

be proved combining the sufficient conditions for readers writers and independent

mutual exclusion predicates.

Algorithm Description

Based on the proof of the sufficient conditions, we can design a simple algorithm

based on determining the strongly connected components in the critical section

graph and then topologically sorting them. Instead, we present a more efficient

algorithm in Figure 3.6.

In order to understand how the algorithm operates, we require the concept

of a “general interval”. A general interval is a sequence of intervals in a process that

belong to the same strongly connected component of the interval graph. For the

purposes of the algorithm, it is convenient to treat such sequences of intervals as a

single general interval. We now define general intervals and define a few notations.

• 〈general interval〉 : Given an interval graph 〈I, 7→〉, a general interval is

a contiguous sequence of intervals in an 〈Ii,≺i〉 subgraph.

65

• 〈g.first/g.last〉 : For a general interval g, let g.first (g.last) represent the

first and last intervals in g.

• 〈g.set〉 : Let g.set represent the set of intervals in the sequence g.

• 〈7→ (for general intervals)〉 : Let G denote the set of general intervals in

a computation. We define the (overloaded) relation 7→ for general intervals as:

∀g, g′ ∈ G : g 7→ g′ ≡ g.first 7→ g′.last

• 〈α(g)〉 : We say that a general interval g is true under a local predicate α if

α(g.first). In particular, if g is true under a local predicate critical, we call

g a general critical section.

• 〈→֒〉 : Let G1 ⊆ G be a set of general intervals. Let SG1
, the set of strongly

connected components in the graph 〈G1, 7→〉. We define a relation →֒ on SG1

as follows:

∀s, s′ ∈ SG1
: s →֒ s′ ≡ ∃g ∈ s, g′ ∈ s′ : g 7→ g′

Clearly, 〈SG1
, →֒〉 has no cycles.

The algorithm maintains a frontier of general critical sections that advances

from the beginning of the computation to the end. In each iteration, the algorithm

finds the strongly connected components (scc’s) of the general critical sections in

the frontier. Then, it picks a minimal strongly connected component, candidate,

from among them (line L22). However, the candidate is not necessarily a minimal

scc of the entire critical section graph. In fact, it need not even be an scc of the

entire graph. To determine if it is, we find the mergeable set of critical sections that

immediately follow the general critical sections and belong to the same scc (line

L23). If mergeable is not empty, the critical sections in mergeable are merged with

the general critical sections in candidate to give larger general critical sections (line

66

Types:

event: (proc: int; v: vector clock) (L1)
gen interval: (proc: int; critical: boolean; first: event; last: event) (L2)
str conn comp: set of gen interval (L3)

Input:

I1,I2, · · · , In: list of gen interval, initially non-empty (L4)

Output:

O: list of (event, event), initially null (L5)

Vars:

I1, I2, · · · , In: gen interval, initially ∀i : Ii = Ii.head (L6)
scc set: set of str conn comp (L7)
valid scc: set of str conn comp (L8)
chain: list of str conn comp (L9)
candidate: str conn comp (L10)
prev scc, curr scc: str conn comp (L11)
prev, curr: gen interval (L12)

Notation:

CSi =

{

minX ∈ Ii : Ii �i X ∧ X.critical = true, if exists
null, otherwise

(L13)

CS = { CSi | (1 ≤ i ≤ n) ∧ (CSi 6= null) } (L14)
get scc(CS) = set of strongly connected components in 〈CS, 7→〉 (L15)

select(Z) =

{

arbitrary element of set Z, if Z 6= ∅
null, otherwise

(L16)

not valid(X) = X has a non-trivial cycle of critical sections with either
one write critical section or two k-critical sections (L17)

merge(c, c′) = (c.last := c′.last; c.next := c′.next) (L18)

Procedure:

while (CS 6= ∅) do (L19)
scc set := get scc(CS) (L20)
valid scc := { s ∈ scc set | ∀s′ ∈ scc set : (s′ 6= s) ⇒ (s′ 6 →֒ s) } (L21)
candidate := select(valid scc) (L22)
mergeable := { c.next.next | c ∈ candidate ∧ c.next.next 6= null ∧

∃c′ ∈ candidate : c.next.next 7→ c′} (L23)
if (mergeable = ∅) (L24)

if (not valid(candidate)) (L25)
exit(“cannot find controlling computation”) (L26)

chain.add head(candidate) (L27)
for (c ∈ candidate) do (L28)

Ic.proc := c.next (L29)
else (L30)

for (c ∈ mergeable) do (L31)
merge(CSc.proc, c) (L32)

if (chain 6= null) (L33)
prev scc := chain.delete head() (L34)

while (chain 6= null) do (L35)
curr scc := chain.delete head() (L36)

for (curr ∈ curr scc, prev ∈ prev scc) do (L37)
O.add head((curr.next.first, prev.first)) (L38)
prev scc := curr scc (L39)

Figure 3.6: Algorithm for Generalized Mutual Exclusion Predicate Control

67

L32) and the procedure is repeated. If mergeable is empty, then it can be shown

that candidate is a minimal scc of the graph. Therefore, we check that it meets

the sufficient conditions of validity (line L25), and then append it to the chain (line

L27).

Finally, after the main loop terminates, the scc’s in the chain are connected

using added edges which define the controlling computation (lines L33-L39). Note

how the use of general critical sections allows us to reduce the number of edges that

need to connect two consecutive scc’s as compared to the simple algorithm that

would be defined by the proof of Theorem 8.

The main while loop of the algorithm executes p times in the worst case,

where p is the number of critical sections in the computation. Each iteration takes

O(n2), since it must compute the scc’s. Thus, a simple implementation of the

algorithm will have a time complexity of O(n2p). However, a better implementation

of the algorithm would amortize the cost of computing scc’s over multiple iterations

of the loop. Each iteration would compare each of the critical sections that have

newly reached the heads of the lists with the existing critical sections. Therefore,

each of the p critical section reaches the head of the list just once, when it is compared

with n−1 critical sections to determine. The time complexity of the algorithm with

this improved implementation is, therefore, O(np). Note that a naive algorithm

based directly on the constructive proof of the sufficient condition in Theorem 8

would take O(p2). We have reduced the complexity significantly by using the fact

that the critical sections in a process are totally ordered.

Finally, we prove the correctness of the algorithm.

Lemma 18 The algorithm in Figure 3.6 is well-specified.

Proof: To prove that the algorithm is well-specified, the only non-trivial check is for

the term curr.next.first at line L37. To show that curr.next 6= null at this point,

we prove that, after the termination of loop L13-L19, for each strongly connected

68

component (scc) s in chain : (∃c ∈ s : c.next = null) ⇒ (s = chain.head). Let s be

an scc in chain and let c ∈ s be a critical section such that c.next = null. Consider

the point when s is about to be added to chain in line L27. Since s ∈ valid scc,

we have ∀s′ ∈ scc set : (s′ 6= s) ⇒ (s′ 6 →֒ s) However, since c.next = null, we have

∀c′ ∈ C : c′ 7→ c. Therefore, ∀s′ ∈ scc set : s′ →֒ s. Therefore, s is the only

element of valid scc at this point. It follows that after line L29, CS = ∅ and the

loop terminates. Therefore, after the termination of loop L19-32, s = chain.head.

We next show that the algorithm terminates. The loop L19-L32 terminates

since in each iteration either one Ii advances over a critical section (line L29) or two

distinct critical sections merge into one (line L32). The loop L34-L38 terminates

since chain decreases by one critical section in each iteration. 2

Lemma 19 If the algorithm in Figure 3.6 exits at line L26, then there is a non-

trivial cycle of critical sections with:

(1) at least one write-critical, or

(2) two k-critical sections for some k ∈ {1, · · · ,m}.

Proof: Follows directly from the condition at line L25. 2

Lemma 20 If the algorithm in Figure 3.6 terminates normally, then 〈E,→c〉 is a

controlling computation of φgen mutex in 〈E,→〉, where →c is the transitive closure

of the union of → with the set of edges in O.

Proof:

At any point in the algorithm, let C denote the set of regular (not general)

critical sections in the input computation. Note that C is a constant throughout

the algorithm execution. Let S be the set of strongly connected components (scc)

in the graph 〈C, 7→〉. We use the relations 7→ and →֒ for both regular and general

intervals and scc’s since the usage is clear from context. Let CG denote the set of

69

general critical sections in I =
⋃

i Ii at any stage of the algorithm (note that CG is

a variable since it changes at the merge step during the algorithm).

Let scc be a function that maps each critical section in C to the strongly

connected component in S that contains it. First, we prove that the following are

invariants.

INV1: ∀g ∈ CG : ∀x, y ∈ g.set : scc(x) = scc(y)

INV2: g is reachable from g′ in the graph 〈CG , 7→〉 ⇒

∀x ∈ g.set, x′ ∈ g′.set : x is reachable from x′ in the graph 〈C, 7→〉

It is easy to prove that INV2 is a consequence of INV1 (by induction on the length of

the reachability path). Therefore, we have only to prove that INV1 is an invariant.

We do so by structural induction.

Initially, each general critical section in CG contains only one critical section

and so INV1 holds. The only step at which CG changes is the merge at line L32.

Consider the execution point just before line L32. Since c ∈ mergeable we have:

c.prev.prev ∈ candidate, and –[A]

let c′ ∈ candidate such that c 7→ c′. –[B]

Since candidate is an scc of the subgraph 〈CS, 7→〉 of 〈CG , 7→〉, c′ and c.prev.prev

are in the same scc, say s, of 〈CG , 7→〉. Clearly, c.prev.prev 7→ c. Together with [B],

this implies that c is also in s. Therefore:

c and c.prev.prev are reachable from each other in graph 〈CG , 7→〉. –[C]

Since candidate ⊆ CS, using [A], we have c.prev.prev = CSc.proc. Let x and y

be any two critical sections in g.set, where g is the general critical section formed

by merging c.prev.prev with c. By the inductive hypothesis, the case when both x

and y belong to c or to c.prev.prev is trivial. Therefore, without loss of generality,

assume that x ∈ c and y ∈ c.prev.prev. By the inductive hypothesis, and since

INV2 follows from INV1, we use INV2 and [C] to give: x and y are reachable from

each other in graph 〈C, 7→〉. Therefore, scc(x) = scc(y).

70

Now, consider the point of execution just before line L27 when candidate is

added to chain. Let chain.set be the set of general critical sections in the scc’s of

the sequence chain. It is easy to show that the following is an invariant:

INV3: ∀c ∈ CG : c ≺ CSc.proc ⇒ c ∈ chain.set

Suppose there is a general critical section c in (CG − (candidate ∪ chain.set)) such

that for some c′ ∈ candidate, c 7→ c′. Consider two cases:

Case 1: CSc.proc ∈ candidate: Since by definition, c /∈ candidate, we have c 6=

CSc.proc. Using INV3, we have CSc.proc ≺ c and, since c is a critical section

CSc.proc.next.next � c. Together with c 7→ c′, this gives CSc.proc.next.next 7→

c′. This contradicts the fact that mergeable = ∅ just before line L27 (by the

check at L25).

Case 2: CSc.proc /∈ candidate: Using INV3, we have CSc.proc � c. Since c 7→ c′,

we have CSc.proc 7→ c′. Let s ∈ scc set such that CSc.proc ∈ s. Therefore

s →֒ candidate and s 6= candidate. This contradicts the fact that candidate

was selected from valid scc (lines L21, L22).

Therefore, ∀c ∈ (CG − (candidate ∪ chain.set)) : ∀c′ ∈ candidate : c 67→ c′ –[D]

This proves that candidate is an scc in (CG − chain.set) and, furthermore, that it is

a minimal scc in (CG − chain.set).

Let reg(candidate) be the set of regular critical sections in candidate (i.e.

{x ∈ C | ∃g ∈ candidate : x ∈ g.set}). Similarly, let reg(chain.set) be the set

of regular critical sections in chain.set. By the definition of ord on CG , we have:

∀c, c′ ∈ CG : (∃x ∈ c, x′ ∈ c′ : x 7→ x′) ⇒ (c 7→ c′). Therefore, by [D], we have:

∀x ∈ (C − (reg(candidate)∪ reg(chain.set))) : ∀x′ ∈ reg(candidate) : x 67→ x′ –[E]

By INV2, we know that all critical sections in reg(candidate) are reachable from one

another. Therefore, using [E], reg(candidate) is an scc in 〈C − reg(chain.set), 7→〉.

Further, using [E] again, reg(candidate) is a minimal scc in 〈C−reg(chain.set), 7→〉.

71

Since the minimal scc is chosen at each step, chain represents a topological

sort of the graph 〈S, →֒〉. Therefore, from the construction of O from chain in lines

L33-L38 of the algorithm, the →c relation is the same as that defined in the proof

of Theorem 8 (note that the optimization of connecting general critical sections by

the ;
c edges instead of regular critical sections, as in the proof of Theorem 8, does

not affect the equality of →c defined by each). Therefore, in a very similar way to

the proof of Theorem 8, we can prove that 〈E,→c〉 is a controlling computation of

φgen mutex in 〈E,→〉. 2

Theorem 11 The algorithm in Figure 3.6 solves the predicate control problem for

the generalized mutual exclusion predicate if the input computation has no non-trivial

cycles of critical sections containing two k-critical sections for some k ∈ {1, · · · ,m}.

Proof: By Lemma 18, the algorithm always terminates, and by Lemma 20, if it

terminates normally then it outputs a controlling computation. By Lemma 19, if it

terminates at line L26, then there is a non-trivial cycle with:

(1) at least one write-critical, or

(2) two k-critical sections for some k ∈ {1, · · · ,m}.

In case (1), Theorem 7 indicates that no controlling computation exists. Therefore,

it is only in case (2) that the algorithm fails to find a controlling computation

that does exist, (which is to be expected since the problem is NP-Complete by

Theorem 9). 2

72

Chapter 4

The Predicate Detection Problem

In this chapter, we present our study of predicate detection in the extended model

of computation.

4.1 Overview

The extended model of computations [ACG93] extends the happened before model

by allowing partially ordered events within a process. While this seems like a small

difference, it has broad implications. In Section 4.2, we give the background for the

extended model of distributed computations and discuss why the extended model

should be preferred to the happened before model for certain applications.

We focus on the important class of “conjunctive predicates” which can be

solved efficiently in the happened-before model [GW94]. Conjunctive predicates are

specified as conjunctions of local predicates and express the combined occurrence of

local events. Some examples of these predicates are: “all servers are unavailable”

and “no process has a token”. In Section 4.3, we formally state the problem of

conjunctive predicate detection (predicate detection for conjunctive predicates).

Unfortunately, our first result is that the problem is NP-Complete in general.

We prove this in Section 4.4. This is an indication of the difficulty of solving predi-

cate detection in the extended model. However, this is to be expected since a general

73

computation (in the extended model) represents, in general, an exponential number

of happened before computations. We call this set of happened before computations

as the set of “local linearizations” of the general computations. In Section 4.5, we

demonstrate the equivalence between detecting a predicate in a general computation

and detecting it in the corresponding set of local linearizations.

The next results in Section 4.6 show that it is indeed possible to find an

efficient algorithm in the special case of “receive-ordered” and “send-ordered” com-

putations. A receive ordered computation has totally ordered receive events, while

other events may be partially ordered (and similarly for send-ordered computa-

tions). These computations are important since some natural programming styles

create computations that fall in these categories. Note that obtaining efficient algo-

rithms under such constraints is a big improvement over the alternative method of

detection in an exponential-sized set of local linearizations.

Finally, in Section 4.7, we deal with general computations under no restric-

tions. Although, the problem is NP-Complete, we show that the algorithms of the

previous section can be utilized by first decomposing a general computation into a

set of receive-ordered or send-ordered computations. Though exponential in time,

by restricting the search to the set of receive-ordered or send-ordered computations,

this approach is still a great improvement over the alternative method of detection

in the set of all local linearizations.

4.2 A Case for the Extended Model

The happened before model [Lam78] has been used to model distributed computa-

tions, capturing the notions of logical time and potential causality . As a result, these

two notions have long been considered the same. In this section, we argue that these

two notions are different and, in fact, starkly contradictory in nature. They arise

in different applications and require different models. Although happened before

74

suffices to model logical time, it is not good for modeling potential causality.

Historical Perspective

The history of modeling distributed computations may be divided into three stages.

The first stage started with Lamport’s introduction of happened before to model

logical time [Lam78]. The second started with Mattern’s observation that happened

before may also be used to model potential causality [Mat89]. The third stage

consisted of the gradual discovery that using happened before to model potential

causality leads to problems owing to inherent false causality [CS93, SBN+97] and

the definition of extended models of computation [ACG93, HW96].

Stage 1: Happened Before and Logical Time

Many applications, such as mutual exclusion and deterministic replay, need to know

the order in which events happen in time. In a distributed system, events on different

processes do not share a common clock. This makes it impossible to determine their

order in real time using time-stamping mechanisms. Lamport [Lam78] introduced

logical time to order distributed events in a manner that approximates their real

time order.

To model logical time, Lamport defined the happened before relation, denoted

by →, as the smallest relation satisfying the following: (1) If a and b are events in

the same process, and a comes before b according to the total ordering specified by

the local clock on that process, then a → b. (2) If a is the send event of a message

and b is the receipt of the same message by another process, then a → b. (3) If

a→ b and b→ c, then a→ c. Further, two events a and b are concurrent , denoted

by a‖b, if and only if they are incomparable using the happened before relation (i.e.

(a 6→ b) ∧ (b 6→ a)).

Lamport went on to define a logical clock mechanism which constructed a

75

total order of events that is a linearization of the happened before relation. This

total order may be viewed as a possible ordering of events in real time and is sufficient

for applications that need a notion of logical time.

Stage 2: Happened Before and Potential Causality

If an event happens before another event, it has the potential for causing that

event. Many applications, such as recovery and debugging, require the tracking of

such causal dependencies. Mattern [Mat89] realized that such applications would

benefit by a mechanism to quickly determine the happened before relation between

events.

The totally ordered logical clock mechanism that proved useful for applica-

tions requiring a notion of logical time is not good for applications requiring the

notion of potential causality. In Mattern’s own words: “For some applications (like

mutual exclusion as described by Lamport himself in [Lam78]) this defect is not

noticeable. For other purposes (e.g., distributed debugging), however, this is an im-

portant defect.” Mattern, therefore, proposed a vector clock mechanism that allows

the happened before relation between events to be deduced.

Stage 3: False Causality Problems and Extended Models

An event that happens before another event need not necessarily cause it. This is

implicit when we say that happened before tracks potential causality. Therefore,

an inherent problem in using happened before in applications that require causality

tracking is that sometimes events that are independent are believed to have a causal

dependency. This phenomenon is called false causality . While any approximation

of causality must have false causality, the happened before model was found to fall

particularly short in this respect. We cite three examples of application domains

where this has happened.

76

Firstly, happened before has been used as the basis of causally and totally

ordered communication support. Cheriton and Skeen [CS93] observed that when

two send events have a false causal dependency between them, the resulting effect

is to make the receipt of one message unnecessarily wait for the receipt of the other.

This overhead was mentioned as one of the limitations of causally and totally ordered

communication support.

Secondly, happened before has been used in tools to detect data races in

multi-threaded programs. Savage, et al [SBN+97] pointed out that false causality

between events causes some data races to go undetected. This is because if one

event happens before another, it may falsely be believed to cause that event and

thus a potential data race between the independent events may be missed.

The third application domain is predicate detection, the focus of this chapter.

As we noted in Chapter 1, using the happened before model would miss the detection

of certain predicates owing to the false causality between events. Since predicate

detection has applications in distributed debugging and distributed monitoring, this

translates to certain faulty conditions being missed.

The incidence of the false causality problem in a number of applications was

noted by Ahuja, et al [ACG93]. They proposed a passive-space and time view of a

computation that partially orders the events within a process. They also propose

a more general vector clock mechanism than the one proposed by Mattern. These

vector clocks trade the cost incurred and the accuracy of causality identification.

In a later study, Hrischuk and Woodside [HW96] also proposed more refined

approximations of causality than the happened before model. A distinguishing

feature of their scenario causality model is the use of typed nodes and typed edges

in the computation graph.

77

Real Time True CausalityPotential CausalityLogical Time

decreasing strictness of partial order of events(total order)

Figure 4.1: Spectrum of models

Logical Time is not Potential Causality

We have seen that happened before has come to be used to model both logical time

and potential causality in distributed computations. In spite of demonstrations to

the contrary [ACG93, HW96], this has led to a wide-spread belief that the two

concepts are the same. We now present a brief argument that the concepts are not

only different but opposite in nature.

The applications that motivated Lamport to model logical time were notably

different from those that motivated Mattern to model potential causality. The first

kind of applications, represented by mutual exclusion, require as close an approxi-

mation to real time order as possible. Happened before is, in fact, the best possible

approximation of real time order that one can make in a message-passing distributed

system without external channels and global clocks. The kind of applications that

require potential causality, represented by distributed recovery, require as close an

approximation as possible to the true causality between events.

As illustrated in Figure 4.1, real time and true causality fall at opposite ends

of a spectrum of partial orders based on their strictness. While logical time tries to

approximate the real time total order that lies on one end of the spectrum, potential

causality tries to approximate true causality at the other end. Happened before was

initially introduced to model logical time and therefore closely approximates real

time. By a historical accident, it was also used to model potential causality. In

fact, in attempting to approach real time, the happened before model creates more

78

false causality than necessary. A better model for potential causality would be a

less strict partial order that approaches true causality in the spectrum indicated in

Figure 4.1. In both of the studies [ACG93, HW96] on modeling potential causality,

the authors describe a spectrum of choices for models that approximate true causal-

ity. In [ACG93], flexible models are proposed that allow trading off the cost with

the accuracy of the approximation.

Closing Comments

A computation, in the sense that we have used it, is something that has actually

happened. It may, therefore, seem peculiar that a single potential causality model

may capture multiple possible interleavings of local events (or, multiple possible

happened before computations). The same fact may be noticed in the happened

before model as compared to the real time ordering model. The happened before

model allows multiple possible real time orderings. In both cases, the explanation for

this seeming paradox is that what actually happened lies in the eyes of the beholder .

If the observer is interested in applications that require logical time, he would pay

attention to the ordering of local events based on real time. However, if the observer

were interested in applications that require potential causality, he would only pay

attention to the causal ordering of local events.

The crucial deciding factor in choosing the happened before or the potential

causality model is the type of application being considered. A litmus test for making

this decision would be to ask the following question: Would a global clock help? A

“yes” would indicate happened before, while a “no” would indicate potential causal-

ity. For example, in mutual exclusion, a global clock would allow the timestamping

of critical section requests in real time and lead to a fair granting order. In fact, even

without a global clock, if there were multiple threads in a process, we would prefer

to treat local events as being totally ordered using the local process clock. In an

79

application like race detection, for example, a global clock would have no advantage

because any more ordering would merely induce more false causality and reduce our

chances of detecting a race.

The purpose of this section has been to draw attention to the false causality

problem which limits the effectiveness of the happened before model in modeling

potential causality. A more effective model of potential causality allows events

within a process to be partially ordered. We now present our study of the predicate

detection problem in this extended model of computation.

4.3 Problem Statement: Conjunctive Predicate Detection

In this chapter, we consider general computations corresponding to the extended

model of computation. All of the definitions in our model (Chapter 2) apply to

general computations, except for those in Sections 2.5, 2.6, and 2.7. The definition

of the predicate detection problem in this model is:

The Predicate Detection Problem: Given a general computation 〈E,→〉 and

a global predicate φ, is there a consistent cut C such that φ(C)?

We focus on the class of conjunctive predicates defined as:

• 〈conjunctive predicates〉 : Given n local predicates α1, α2, · · · , αn, the

conjunctive predicate φconj is defined as:

φconj(C) ≡
∧

i∈{1,···,n}

αi(C[i])

The reason that conjunctive predicates are important is that their detection is suf-

ficient for the detection of any global predicate which can be written as a boolean

expression of local predicates [Gar96]. This is true since the boolean expression can

be expressed in disjunctive normal form giving rise to the disjunction of conjunctive

predicates. Each of the conjunctive predicates can then be detected independently.

80

For example, for a distributed application with x, y, and z being variables on three

processes, the predicate:

even(x) ∧ ((y < 0) ∨ (z > 6))

can be rewritten as:

(even(x) ∧ (y < 0)) ∨ (even(x) ∧ (z > 6))

Each of the disjuncts is a conjunctive predicate. It can also be shown that, even if

the global predicate is not a boolean expression of local predicates, but is satisfied

by a finite number of consistent cuts, then it can also be expressed as a disjunction

of conjunctive predicates.

Note that the reason that we do not solve the predicate detection problem

for disjunctive predicates (defined in the Chapter 3) is that it is trivial to do so.

One has simply to scan each process to see if the corresponding local predicate is

true for any event. If so, the disjunctive predicate is detected. It is interesting

to note that the negation of a conjunctive predicate is a disjunctive predicate. As

a result, if a conjunctive predicate indicates a failure, then it is its negation, a

disjunctive predicate, which must be given as input to the predicate control problem

to maintain. Thus, the detection of conjunctive predicates is complementary to the

control of disjunctive predicates.

The problem of conjunctive predicate detection was efficiently (in O(mn2)

time, where m is a bound on the number of events in a process) and optimally solved

for locally ordered computations in [GW94]. However, in the extended model, the

problem becomes expectedly harder as we establish in the following section.

4.4 Conjunctive Predicate Detection is NP-Complete

Let CPG denote the predicate detection problem for the Conjunctive Predicate in

General computations.

81

Theorem 12 CPG is NP-Complete.

Proof: CPG is in NP because, given a cut C, φconj(C) can be checked in polynomial

time (by the definition of predicates) and a naive check for consistency based directly

on its definition can be checked in polynomial time.

To show that CPG is NP-Hard, we transform 3SAT. Let U = {u1, u2, · · · uw}

be a set of variables, and D = {c1, c2, · · · cx} be a set of clauses, forming an instance

of 3SAT. Let li1, li2, li3 be the three literals in clause ci.

For each variable ur, define a set of events E′
r = {e′r1, e

′
r2}. For each clause

ci, define a set of events Ei = {ei11, ei21, ei31, ei12, ei22, ei32}. Let E =
⋃

iEi ∪
⋃

r E
′
r.

On each Ei, define a relation ≺i= {(ei11, ei12), (ei21, ei22), (ei31, ei32)}. let ≺=
⋃

i ≺i.

Define ; as the smallest relation on E such that:

- for each literal lip = ur for some variable ur: eip2 ; e′r2.

- for each literal lip = ur for some variable ur: eip2 ; e′r1.

Let → be the transitive closure of ≺ ∪ ;. It is easy to verify that the graph

〈E,≺ ∪ ;〉 has no cycles. Therefore, 〈E,→〉 is a computation.

Define local predicates α1, · · · , αx, α
′
1, · · · , α

′
w such that:

- for each Ei: αi(⊥i) = false, ∀p : αi(eip1) = true, and ∀p : αi(eip2) = false.

- for each E′
r: α′

r(⊥
′
r) = false, α′

r(e
′
r1) = true, and α′

r(e
′
r2) = false.

Define φconj based on these local predicates. Thus, we have constructed an instance

of CPG, 〈〈E,→〉,φconj〉, from an instance of 3SAT, 〈U,D〉. We next show that this

is indeed a transformation.

Part 1: Suppose that t is a truth assignment assignment of variables in U that

satisfies C. We prove that φconj is detected in 〈E,→〉. Define a cut C as follows.

For each Ei, let lip be a literal which is true under t (since t satisfies D) and let

C[i] = eip1. For each E′
r, if t(ur) = true then C[r′] = e′r1, and if t(ur) = false then

C[r′] = e′r2. Clearly, φconj(C). We next show by contradiction that C is consistent.

82

SupposeC is not consistent. Let e be an event in C.past such that C[e.proc] ≺

e. By the definition of ≺, we know that e must belong to some Ei corresponding

to a clause ci. Note that e cannot be a ⊥i or a eip1 since C[e.proc] ≺ e. Therefore,

suppose e = eip2 so that C[i] = eip1. Since eip2 ∈ C.past, let e′ be an event in C

such that eip2 → e′. Consider two cases:

• Case 1: lip = ur for some variable ur:

By the definition of →, we must have: e′ = e′r2. Since C[i] = eip1, lip is true

under t. Therefore, t(ur) = true and so C[r′] = e′r1. This contradicts the fact

that e′ = e′r2 belongs to C.

• Case 2: lip = ur for some variable ur:

By the definition of →, we must have: e′ = e′r1. Since C[i] = eip1, lip is true

under t. Therefore, t(ur) = false and so C[r′] = e′r2. This contradicts the

fact that e′ = e′r1 belongs to C.

Therefore, in both cases we get a contradiction. So, C is consistent.

Part 2: Suppose C is a consistent cut in 〈E,→〉 such that φconj(C). Define a truth

assignment t as follows: t(ur) = true if C[r′] = e′r1 and t(ur) = false if C[r′] = e′r2.

Consider a clause ci. We know from the definition of local predicate αi that

C[i] = eip1 for some p. Consider two cases:

• Case 1: lip = ur:

Since C[i] = eip1 and eip1 ≺ eip2 and eip2;e′r2, the consistency of C would be

violated if C[r′] = e′r2. Therefore, C[r′] = e′r1. So, t(ur) = true. Thus, literal

lip is true under t, and so, clause ci is satisfied by t.

• Case 2: lip = ur:

Since C[i] = eip1 and eip1 ≺ eip2 and eip2;e′r1, the consistency of C would be

violated if C[r′] = e′r1. Therefore, C[r′] = e′r2. So, t(ur) = false. Thus, literal

lip is true under t, and so, clause ci is satisfied by t.

83

Thus t satisfies C. 2

4.5 Local Linearizations

In practice, a computation is formed by the transitive closure of a local ordering

relation and a remote ordering relation. We now make these relations explicit.

• 〈(x)+〉 : The notation (x)+ denotes the transitive closure of a relation x.

• 〈locally precedes, remotely precedes〉 : We assume that a computation

〈E,→〉 has associated with it two relations locally precedes (<) and remotely

precedes (;) such that:

– < is an irreflexive partial order on E such that e < f ⇒ e.proc = f.proc.

– ; is an irreflexive partial order on E such that e; f ⇒ e.proc 6= f.proc.

– → = (< ∪ ;)+. Although not required, it is expected that < and ;

do not contain transitively redundant edges.

• 〈〈E,→, <,;〉〉 : When the distinction is important, we will use the notation

〈E,→, <,;〉 to denote a computation 〈E,→〉 with locally precedes relation

< and remotely precedes relation ;.

• 〈< (extended)〉 : We extend < to E ∪ ⊥ such that ∀e ∈ Ei : ⊥i <i e.

We next define the concept of a “local linearization” of a general computation.

Informally, a local linearization is a locally ordered computation that can be obtained

by linearizing the partially ordered processes in a general computation. In general,

a general computation has an exponential number of local linearizations.

• 〈linearization〉 : A linearization of a partial order is a total order that

contains it.

84

• 〈local linearization〉 : A local linearization of a (general) computation

〈E,→s, <s,;〉 is a locally ordered computation 〈E,→, <,;〉 such that ∀i : <i

is a linearization of <s
i. (Note: an arbitrary choice of linearizations of <s

i’s

may not result in a computation because of possible cycles).

• 〈Lin(〈E,→s, <s,;〉)〉 : Let Lin(〈E,→s, <s,;〉) represent the set of local

linearizations of a computation 〈E,→s, <s,;〉

General computations concisely represents many locally ordered computa-

tions, thus allowing improved detection. The following result confirms that solving

predicate detection in a general computation is equivalent to solving predicate de-

tection for all of the computation’s local linearizations. First, we define the new

problem:

The Conjunctive Predicate Detection Problem in Local Linearizations

(CPL): Given a general computation 〈E,→〉, is there a consistent cut C in any

local linearization of 〈E,→〉 such that φconj(C)?

Theorem 13 CPG is equivalent to CPL.

Proof: Let the general computation 〈E,→s, <s,;〉 and the conjunctive predicate

φconj define instances of CPG and CPL.

Part 1: Suppose the cut C is a solution to CPL. Then, it follows as a corollary of

Lemma 2 that C is consistent in →s, and so, also a solution of CPG.

Part 2: Suppose the cut C is a solution to CPG. We prove that C is also a solution to

CPL. We construct 〈E,→s, <,;〉, a local linearization of 〈E,→s, <s,;〉 as follows.

If each 〈Ei,→
s
i〉 is already a total order, then we simply let <i= →s

i and we are

done. So assume that two events e and f of the same process are incomparable in →s.

From 〈E,→s, <s,;〉, we construct another general computation, 〈E,→s′, <s′,;〉

such that:

(1) <s ⊆ <s′,

85

(2) C is consistent in <s′, and

(3) e and f are comparable in →s′.

By repeating this procedure, we will eventually obtain a local linearization of

〈E,→s, <s,;〉 in which C is consistent, thus proving the result. We make e and f

comparable in →s′ as follows:

• Case 1: e→sC[k] for some k:

We add (e, f) to <s giving <s′. Clearly, no cycles are caused, since e and f

were incomparable in →s. We show that C is consistent in →s′. If not, then

there must exist an event g in the causal past (w.r.t. →s′) of C such that

C[g.proc] ≺′ g (where ≺′ is defined with respect to →s′). Since C is consistent

in →s, it cannot be that both of the following are true: g is in the causal past

(w.r.t. →s) of C and C[g.proc] ≺ g. Therefore, we have two cases:

– Case a: g is not in the causal past (w.r.t. →s) of C and C[g.proc] ≺ g:

Since g is in the causal past (w.r.t. →s′) of C, we must have g→se

and f→sh for some h ∈ C. Therefore, by transitivity, g→sC[k]. Since

C[g.proc] ≺ g, this contradicts the consistency of C in →s.

– Case b: C[g.proc] 6≺ g:

Since C[g.proc] ≺′ g, we must have C[g.proc] ≺ e and f ≺ g. Since

e→sC[k], this contradicts the consistency of C in →s.

• Case 2: e6→sC[k] for all k:

We add (f, e) to <s giving <s′. Clearly, no cycles are caused, since e and f

were incomparable in →s. We show that C is consistent in →s′. If not, then

there must exist an event g in the causal past (w.r.t. →s′) of C such that

C[g.proc] ≺′ g (where ≺′ is defined with respect to →s′). Since C is consistent

in →s, it cannot be that both of the following are true: g is in the causal past

(w.r.t. →s) of C and C[g.proc] ≺ g. Therefore, we have two cases:

86

– Case a: g is not in the causal past (w.r.t. →s) of C:

Since g is in the causal past (w.r.t. →s′) of C, we must have g→sf and

e→sh for some h ∈ C. This contradicts the condition that e6→sC[k] for

all k.

– Case b: g is in the causal past (w.r.t. →s) of C and C[g.proc] 6≺ g:

Since C[g.proc] ≺′ g, we must have C[g.proc] ≺ f and e ≺ g. Thus, by

transitivity, e is in the causal past (w.r.t →s) of C. This contradicts the

condition that e6→sC[k] for all k.

2

4.6 Solving Conjunctive Predicate Detection Under Constraints

The result of the previous section tells us that if we exhaustively detect a predi-

cate in each of Lin(〈E,→s, <s,;〉) then we have also done so for the computation

〈E,→s, <s,;〉. Since this would be very inefficient, we identify two classes of gen-

eral computations for which we may apply a special predicate detection algorithm

to a specially chosen representative from Lin(〈E,→s, <s,;〉) in order to efficiently

detect a predicate.

• 〈send/receive events〉 : In a general computation 〈E,→s, <s,;〉, if s ; t,

then we call s a send event and we call t a receive event.

• 〈Snd/Rcv〉 : Let Snd be the set of send events and Rcv be the set of receive

events in E.

• 〈Sndi/Rcvi〉 : Sndi and Rcvi denote the sets of send and receive events,

respectively, in Ei.

• 〈receive-ordered computation〉 : A computation 〈E,→s, <s,;〉 is

receive-ordered if ∀i : Rcvi is totally ordered under (<s
i)

+.

87

• 〈send-ordered computation〉 : A computation 〈E,→s, <s,;〉 is send-

ordered if ∀i : Sndi is totally ordered under (<s
i)

+.

The constraint of being send-ordered or receive-ordered is sometimes natural

for computations derived from common programming styles. For example, a scenario

that arises very often, especially in client-server systems, is:

repeat

receive a request ;

create a thread to process the request

until done

It is clear that such a scenario is receive-ordered even though the sends and per-

request processing may be independent.

Another scenario that is often used to model synchronous rounds is:

repeat

receive and process messages

until time = end-of-round ;

send messages

until done

If the sends in a round occur in a fixed order or use the same port, then they are

totally ordered while receives and local processing may be independent. Thus, a

distributed computation resulting from such a program would be send-ordered.

Let CPR and CPS denote the CPG problem specialized to receive-ordered

and send-ordered computations respectively.

From the set of local linearizations of a given computation, we pick a special

representative that satisfies the following property:

88

• 〈P1〉 : Let 〈E,→, <,;〉 be a local linearization of 〈E,→s, <s,;〉. Then

let P1 be the following property.

P1: ∀i : ∀e ∈ Ei : ∀f ∈ Rcvi : (f (<)+ e) ⇒ (f →s e)

This ensures that we linearize the partial order <s on each process such that a receive

event is ordered after all the events that are concurrent with it. The property is

well-defined because no two receive events are concurrent.

In order to ensure this property, we apply a special linearization algorithm,

RECEIVE-SORT shown in Figure 4.2, for each process. The algorithm is a mod-

ification of a standard topological sort algorithm that gives a higher priority to

non-receive events so that all events concurrent to a receive event precede it in the

total ordering. The algorithm applies this modified topological sort to the graph

〈Ei, <
s
i〉. It is easy to show that this correctly produces a linearization of the partial

order for each process. It is also easy to show that the linearizations produced by

the algorithm form a local linearization that satisfies Property P1:

Lemma 21 Let 〈E,→s, <s,;〉 be a receive-ordered computation and let <=
⋃

i <i,

where <i is the linearization of <s
i produced by applying algorithm RECEIVE SORT.

Then, 〈E,→, <,;〉 is a local linearization of 〈E,→s, <s,;〉 satisfying P1.

Proof: We first show that the graph of 〈E,→, <,;〉 satisfies P1. We next show

that the graph 〈E,< ∪;〉 has no cycles and, therefore,〈E,→, <,;〉 is a computa-

tion.

89

Input:
Ei set of events
Rcvi set of receive events in Ei

Output:
Qi queue of events in Ei, initially ∅

Notation:
select(Z) arbitrary element from non-empty set Z

Variables:
F = Ei set of events
M = ∅ set of events
R = ∅ set of events
e, f events
k[Ei] array of integers ranging over events in Ei

Algorithm:
L1 for each event e in Ei do
L2 k[e] := no. of incoming edges in <s

i for e
L3 if (k[e] = 0) then
L4 if (e ∈ Rcvi) then R := R ∪ {e}
L5 else M := M ∪ {e}
L6 while (F 6= ∅) do
L7 if (M 6= ∅) then f := select(M)
L8 else f := select(R)
L9 enqueue(Qi, f)
L10 F := F − {f}
L11 for each event e ∈ F such that f <s

i e do
L12 k[e] := k[e] − 1
L13 if (k[e] = 0) then
L14 if (e ∈ Rcvi) then R := R ∪ {e}
L15 else M := M ∪ {e}

Figure 4.2: Algorithm RECEIVE-SORT

90

The following four invariants are maintained by the algorithm at line L9:

INV1: ∀e ∈ F : k[e] = number of events that immediately precede e in 〈F,<s
i〉.

INV2: M is the set of minimal events in 〈F,<s
i〉 that are not in Rcvi.

INV3: R is the set of minimal events in 〈F,<s
i〉 that are in Rcvi.

INV4: F contains no event in 〈Ei, <
s
i〉 that transitively precedes an event inM∪R.

It is easy to prove INV1 from the algorithm, and then prove INV2 and INV3 using

it. INV4 follows from INV1 by induction on the length of the transitive path.

To show that P1 holds, let e ∈ Ei and f ∈ Rcvi be two events such that

f (<)+ e. Since 〈E,→s, <s,;〉 is receive-ordered and since < is a linearization

of <s, the case when e ∈ Rcvi follows easily. So, consider the case of e /∈ Rcvi.

Consider the iteration of the loop L6-L15 in which f was enqueued in Qi. Since

f ∈ Rcvi, f must have been chosen at line L8 (using INV2 and INV3). So M = ∅.

Further, R = {f} (using INV3, INV4, and that the computation is receive-ordered).

We conclude that f is the minimum event in 〈F,<s
i〉. Since f (<)+ e, e has not

been enqueued yet. Therefore, f (<s)+ e.

We next prove by contradiction that there are no cycles in the graph 〈E,<

∪;〉. Suppose there is such a cycle, C. Clearly C cannot be within a single Ei.

Therefore, there must be at least one receive event in C. Let R be the set of

receive events in C. Since →s is an irreflexive partial order (〈E,→s, <s,;〉 is a

computation), let r be any maximal event in 〈R,→s〉. Let s ; r′ be the next

; edge in the cycle C. Therefore, r (<)+ s. Therefore, by P1, we have r →s s.

Therefore, r →s r′ contradicting the choice of r as maximal. 2

From Property P1, we derive the following useful property:

• 〈P2〉 : Let 〈E,→, <,;〉 be a local linearization of 〈E,→s, <s,;〉. Then

let P2 be the following property.

91

P2: ∀ distinct i, j : ∀e ∈ Ei : ∀f, g ∈ Ej :

((e →s f) ∧ (f (≤)+ g)) ⇒ (e →s g)

Lemma 22 Let 〈E,→, <,;〉 be a local linearization of a receive-ordered computa-

tion 〈E,→s, <s,;〉. Then P1 ⇒ P2.

Proof: Let i 6= j and e ∈ Ei and f, g ∈ Ej and let e →s f and f (≤)+ g. Since

e →s f and e.proc 6= f.proc, there must be some receive event r in Ej such that

e →s r and r (≤s)+ f . Since < is a linearization of <s, we have r (≤)+ f , and,

therefore, r (≤)+ g. If r = g, we are done. If r (<)+ g, P1 implies that r →s g.

Therefore, by transitivity, e →s g. 2

We now apply algorithm PRED-DETECT in Figure 4.3 to the special rep-

resentative local linearization chosen using algorithm RECEIVE-SORT.

Our final result shows that applying PRED-DETECT to the representative

local linearization is sufficient for detecting the predicate in the general computation.

The main idea of the algorithm is similar to that used in [GW94] to optimally solve

the problem for locally ordered computations. We start with the lowest cut and

move upwards. If, in a cut C, we find that for some i and j, C[i].next→sC[j] then

using Property P2, we are guaranteed that C[i].next is ordered before (in →s) every

event following C[j] in the total order <. So C[i] can never be part of a consistent

cut, and can be safely discarded. If no such pair of events can be found, then the

cut is consistent. The algorithm discards at least one event in each iteration, and

so, must terminate.

Theorem 14 Let 〈E,→, <,;〉 be the local linearization of a receive-ordered com-

putation 〈E,→s, <s,;〉 produced by applying algorithm RECEIVE-SORT to each

〈Ei, <
s
i〉. Then applying algorithm PRED-DETECT to 〈E,→, <,;〉 and φconj

solves CPR for 〈E,→s, <s,;〉 and φconj .

Proof: We first show that if PRED-DETECT returns detected = true then there

is a consistent cut in 〈E,→s, <s,;〉 that satisfies φconj . It is easy to verify that the

92

Input:
Q1,Q2, . . .Qn event queues (Qi contains events of Ei ∪ {⊥i} in <i order)
α1, α2, . . . αn local predicates

Output:
detected boolean

Notation:
all = {1, 2, . . . , n}

Variables:
low, newlow subsets of all
k, l integers in all

Algorithm:
L1 low := all
L2 while ((low 6= ∅) ∧ (∀k : ¬Qk.empty)) do
L3 newlow := ∅
L4 for k in low do
L5 if (¬xk(Qk.head)) then
L6 newlow := newlow ∪ {k}
L7 else
L8 for l in all do
L9 if ((Qk.head.next,Ql.head ∈ E) ∧ (Qk.head.next →s Ql.head)) then
L10 newlow := newlow ∪ {k}
L11 if ((Ql.head.next,Qk.head ∈ E) ∧ (Ql.head.next →s Qk.head)) then
L12 newlow := newlow ∪ {l}
L13 low := newlow
L14 for k in low do
L15 Qk.delete head
L16 detected := (∀k : ¬Qk.empty)

Figure 4.3: Algorithm PRED-DETECT

93

following invariants are maintained after line L13:

INV1: ∀k /∈ low : αk(Qk.head)

INV2: ∀k, l /∈ low : (Qk.head.next,Ql.head ∈ E) ⇒ (Qk.head.next 6→
sQl.head)

Since, on termination, detected = true, by the terminating condition at L2, we

must have low = ∅ after line 13 of the final iteration. Consider the cut C such

that ∀i : C[i] = Qi.head after line 13 of the final iteration. By INV1, we know

that C satisfies φconj and by INV2, we know that C is consistent (by Lemma 3) in

〈E,→, <,;〉. Further, by Lemma 2, C is consistent in 〈E,→s, <s,;〉.

Next, we show that if PRED-DETECT returns detected = false, then there

is no consistent cut in 〈E,→s, <s, t〉hat satisfies φconj . Suppose there is such a

consistent cut, C. Since detected = false, some queue must be empty at termination.

Therefore, at least one of the C[i]’s must have been deleted from its queue. Consider

the first iteration in which a C[i] was deleted. Since φconj(C), C[i] could not have

been added to newlow at L6. Therefore, C[i] must have been added in either L10

or L12. in either case, C[i].next 6= null and C[i].next→sQj.head for some j. Since

C[i] is the first to be deleted, Qj.head(≤)+C[j]. By Lemmas 21 and 22, we know

that P2 holds. Therefore, C[i].next→sC[j] contradicting the consistency of C (by

Lemma 3). 2

Having established that CPR can be solved efficiently, it remains to solve

CPS. Consider a send-ordered computation 〈E,→s, <s,;〉. Let 〈E,→s′, <s′,;′〉

be the computation obtained by inverting all the edges in the computation so that

<s′ = {(e, f)|(f, e) ∈ <s} and ;
′ = {(e, f)|(f, e) ∈ ;}. In this computation, the

receive events become send events and vice-versa. Therefore, in order to solve CPS

in a send-ordered computation 〈E,→s, <s,;〉, we can solve CPR instead in the

receive-ordered computation 〈E,→s′, <s′,;′〉. Thus, the algorithms we described

for CPR can be used to solve CPS.

94

If m is a bound on |Ei| and e is the size of the <s relation, then we can

deduce that the time complexity of applying RECEIVE-SORT to each process is

O(mn + e) and the time complexity of PRED-DETECT is O(mn2). So the time

complexity to solve CPR or CPS is O(mn2 + e).

4.7 Solving Conjunctive Predicate Detection Without Constraints

Having efficiently solved CPR and CPS, we now take another look at the general

problem CPG. We know that CPG is NP-Complete. So, a polynomial solution to

CPG is unlikely. Two naive exponential solutions are possible. Let m be a bound on

|Ei|.The first solution enlists every cut and checks if it is consistent, taking O(mnn2)

time. The second applies a predicate detection algorithm (such as in [GW94]) to

every local linearization of the general computation, which takes O(mmnmn2) time.

However, these solutions do not perform any better for general computations

which are “close” to being send-ordered or receive-ordered. For example, in a general

computation which has two possible linearizations of receive events in one process,

we would expect not to have to pay the full price of the above naive solutions. We

now provide a solution that degrades gracefully for computations that are close to

being send-ordered or receive-ordered.

Let ki be a bound on the number of linearizations of the <s relation restricted

to the set of receive events in Ei. If we linearize for each process, we can construct

a receive-ordered computation by adding the ordering of receive events imposed

by the linearizations. For all such possible combinations of linearizations, there

would be k = k1 × k2 × . . . kn possible receive-ordered computations. We know

(as in Theorem 13) that applying predicate detection to each such receive-ordered

computations would be equivalent to applying predicate detection to the original

computation. So we can solve CPG by applying our algorithm for CPR to k receive-

ordered computations. taking O(k(mn2 + e)) time. Notice that this degrades to the

95

second naive approach in the worst case but achieves good results if k is small, or the

original computation is close to being receive-ordered. A similar approach could be

used if the computation were close to being send-ordered. Further, by decomposing

it into receive-ordered computations instead of locally ordered computations, we

save an exponential number of applications of a predicate detection algorithm as

compared to the second naive approach.

96

Chapter 5

Controlled Re-execution: An

Experimental Study

In this chapter, we describe an experimental evaluation of the controlled re-execution

method, based on the predicate control algorithms of Chapter 3.

5.1 Overview

First, in Section 5.2, we describe the application domain and assumptions for our

study.

Section 5.3 describes the controlled re-execution method along with two al-

ternative re-execution methods: simple re-execution and locked re-execution. We

also make a qualitative evaluation of controlled re-execution relative to simple and

locked re-execution. We conclude that controlled re-execution has the disadvantages

of making the “piece-wise determinism” assumption and involving an extra tracing

cost during normal operation, and the advantages of being able to give a guarantee

of recoverability and it has a higher likelihood of recovery than the other two ap-

proaches. It remains to show quantitatively: (1) how much the cost of tracing is,

and (2) how much better is controlled re-execution at being able to recover.

Section 5.4 gives the details of our experimental setting, including implemen-

tation, environment, benchmarks, and parameters. We used synthetic benchmarks

97

to allow flexibility in choosing important parameter values such as frequency of

communication and frequency of file accesses.

Section 5.5 presents the experimental results. We conclude that the tracing

overhead is less than 1% even for applications with relatively high communication

and file access frequencies (with respect to real scientific applications). We also

conclude that controlled re-execution has a significantly higher ability to tolerate

races than either the simple or the locked re-execution methods under varying values

of communication and file access frequencies.

In Section 5.6, we discuss extending controlled re-execution to other sce-

narios. This is a discussion of what we would expect if some of the assumptions

made in Section 5.2 are weakened. Important extensions that we discuss include ex-

tensions to read-write races and various blocking and non-blocking communication

primitives.

In Section 5.7, we give a brief summary.

5.2 The Context

The targeted application domain consists of long-running, non-interactive distributed

applications over a local area network. The applications communicate using mes-

sages and share files on a network file system. Some examples of applications in

this class include weather forecast systems and fluid dynamics code in aerophysics.

Messages are used in these applications both to communicate data and for syn-

chronization. Shared files are used to log intermediate results for persistence, for

debugging traces, and as an alternate communication mechanism. We chose this

application domain as a starting point for studying the effectiveness of controlled

re-execution since their long-running and non-interactive nature make them suitable

for rollback recovery in general, and further, their simple and well-defined interfaces

for communication and file i/o facilitate controlled re-execution.

98

Message passing is point-to-point and reliable. No assumption is made re-

garding the order of delivery. We assume, for simplicity, that all send invocations

are non-blocking and all receive invocations are blocking. We will consider other

blocking/non-blocking semantics in Section 5.6.

Files in the network file system are accessible from all the processes in the

application. While the file system provides a view of basic read and write operations,

the programming interface is through higher-granularity file access operations. Each

file access consists of a clearly demarcated region of code (e.g. a method of a persis-

tent object in object-oriented programs, or a procedure in procedural programs). A

file access consists of reads and writes to the file as well as other operations including

communication operations, but excluding other file accesses. A file access is called a

write file access if it contains at least one write operation and a read file access oth-

erwise. We assume that all write file accesses are synchronous (i.e. all writes reach

the file before the end of the access). This assumption is necessary because adding

synchronizations would be unable to prevent races for asynchronous writes since the

actual time at which the data reaches the file on disk is indeterminate. Further, we

assume that the network file system supports read and write locking. For simplicity,

we initially restrict our attention to write-only files (disallowing reads). We will

discuss the general case of read-write files in Section 5.6.

The types of synchronization faults that we are concerned with are races (or

data races) on files. A race occurs when two file accesses are concurrent and at least

one of them is a write file access. In order to prevent races, file accesses must be

synchronized using either messages or file locks.

5.3 Re-execution Methods

In the context of races, rollback recovery consists of three phases:

1. Detection: detect a race failure.

99

2. Restoration: restore a consistent global state.

3. Re-execution: re-execute to avoid a recurrence of the race.

Both detection and restoration have been widely studied problems. Race detection

has been studied in the context of debugging concurrent programs [CL95, FL97,

Net91, SBN+97, Tai97]. Restoration has been the central problem of much of

the work in rollback recovery for fail-stop faults (as opposed to software faults)

[EAWJ99]. Our focus is on the re-execution phase. Before describing the proposed

controlled re-execution method, we first describe two natural re-execution methods.

5.3.1 Simple Re-execution

The simplest re-execution method merely allows the application to execute normally.

There are two reasons why a race might not recur if a program is simply re-executed.

Firstly, if the relative timing of events in different processes changes (for example,

owing to different system and network load conditions) then the two file accesses

which caused a race in the previous execution may be separated in time in the re-

execution. The second reason is that applications sometimes have non-deterministic

events which cause the re-execution to differ from the previous execution. Some ex-

amples of such non-deterministic events are message receive events (since a different

message may be delivered), thread scheduling events, and signal handler events.

Note, however, that the simple re-execution method can give no guarantees that a

re-execution will be race-free.

5.3.2 Locked Re-execution

One method to guarantee that races do not recur is to use file locks to synchronize all

file accesses. However, this locked re-execution method may introduce deadlocks,

if the added file locks interfere with the synchronizations of the application. A

100

wait for
message

lock
acquired file

access 1

file
access 2wait for

lock

P1

P2

Figure 5.1: A Deadlock Scenario

deadlock is due to a cyclic wait-for dependency caused by added file locks and

application blocking message receives. A simple wait-for cycle is shown in Figure 5.1.

Deadlock scenarios arise because of file accesses which contain communi-

cations that synchronize. The traditional methodology of locking is to follow a

discipline of programming that forbids such wait-for synchronizations inside locked

critical sections. However, since the imposition of locks during re-execution is ad-

ventitious rather than planned, such situations may occur. For example, the file

access procedure might involve information gathered from multiple processes. As

another example, a file access procedure might make multiple logs for tracing pur-

poses interspersed with communications in the code being traced.

Since the locked re-execution may, in general, have different relative tim-

ings and non-deterministic choices than the first execution, it cannot be guaranteed

before-hand that the re-execution will be deadlock-free.

5.3.3 Controlled Re-execution

Controlled re-execution aims at preventing both races and deadlocks. In controlled

re-execution, explicit control messages are used to synchronize the file accesses in

a pre-determined order that does not conflict with the existing synchronizations.

Further, the previous execution is replayed rather than simply re-executed (i.e. all

101

non-deterministic events, such as message receives, are replayed [NM92]). Thus, the

replayed execution together with the added control messages form a stricter partial

order of events than the first execution. In other words, the problem of adding

synchronization edges appropriately is a direct application of the predicate control

problem for the general mutual exclusion predicate discussed in Chapter 3. File

accesses are treated as critical sections for the purposes of the algorithm. All that

remains is determine how to: (1) trace during normal execution to obtain the input

computation for predicate control, and (2) add control messages corresponding to

the extra edges in the output computation of predicate control.

5.3.3.1 Tracing

In order to represent the partial order relationship between events (required as input

to the predicate control algorithm), a vector clock mechanism [Mat89, Fid91] is used.

A vector clock is an n-sized vector with one entry per process in the system. We

refer the reader to [Gar96] for a detailed discussion on vector clock mechanisms. For

our purposes it is sufficient to know that for a computation 〈E,→〉, a vector clock

mechanism assigns to each event e ∈ E a vector clock e.v such that:

∀e, f ∈ E : e→ f ⇔ e.v < f.v

where e.v < f.v = (∀k : e.v[k] ≤ f.v[k]) ∧ (∃k : e.v[k] < f.v[k]).

Further, we can compare two events in constant time using the following property

of vector clocks:

∀e, f ∈ E : e→ f ⇔ (e.v[e.proc] ≤ f.v[e.proc]) ∧ (e.v[f.proc] < f.v[f.proc])

In order to trace the file accesses, we must interrupt execution at the begin

and end events for the file access. The vector clock value at these events is recorded.

By maintaining the sequence of these vector clocks for each process, we have the

input interval sequences for the predicate control algorithm in Figure 3.6.

102

control messages

CS1

CS2

CS3

CS4

P3

CS1

CS2

CS3

CS4

P1

P2

P3

CS1

CS2

CS3

CS4

P1

P2

(a) Traced Computation (b) Critical Section Graph (c) Controlling Computation

Figure 5.2: Controlled Re-execution

In addition to tracing for control, we must also trace all non-deterministic

events so that they may be replayed during re-execution. The ability to trace such

events is referred to as the piece-wise determinism assumption since it allows a

process execution to be divided into deterministic pieces. The same assumption is

also made in rollback recovery systems based on message logging [EAWJ99] and

trace-replay systems for debugging [CS98, LMC87, NM92, RZ97, Net93]. For the

applications under consideration, we assume that receive events, which may receive

a different message in a re-execution, are the only non-deterministic events (for now,

we are assuming that files are write-only; we deal with reads and other types of non-

deterministic events in Section 5.6). Therefore, information to identify a message

(e.g. sender’s id and position in sender’s sequence of sent messages) must be traced

at each receive event to be used in replaying the same message delivery order during

re-execution.

To summarize the key points of the tracing mechanism, the execution is

interrupted at three points: (1) receive events, (2) begin file access events, and

(3) end file access events. The traced information allows for replay. Furthermore,

the traced information provides the input computation for the predicate control

algorithm. An example of such a traced computation is depicted in Figure 5.2(a).

103

5.3.3.2 Control

Once the predicate control algorithm of Figure 3.6 is applied, the output from the

algorithm consists of a set of edges that must be added to the original computation

to obtain a controlling computation of mutual exclusion. Suppose (e, f) is one such

added edge. Note that, according to the algorithm, e is the end event for some

file access and f is the begin event of some other file access. Therefore, during

re-execution, when process e.proc reaches the end file access event e (identifiable by

comparing with vector clock e.v), it sends a control message to process f.proc. The

control message has an empty message body and has a message envelope consisting

of sender and receiver identification, vector clock e.v, and a message type (tag) value

that is distinct from all application messages. When the process f.proc reaches the

begin file access event f (identifiable by f.v), it first performs a blocking receive,

waiting for a control message from e.proc with vector clock value e.v. Once the

message is received, it continues normal execution. 1

Figure 5.2 illustrates a simple scenario of controlled re-execution in which all

critical sections (file accesses) correspond to a single file. The traced computation in

Figure 5.2(a) has races since the application synchronizations do not ensure mutual

exclusion. The predicate control algorithm uses the critical section graph shown

in Figure 5.2(b) to determine the edges to be added. Based on the added edges,

control messages are sent during re-execution as shown in Figure 5.2(c).

There is a seeming contradiction in replaying the non-deterministic choices of

a failed execution in order to prevent a recurrence of a failure. However, it must be

stressed that it is only the process executions that are replayed and not the sequence

of operations on a file. Since the failure outcome of the race is data interleaving

1Owing to the manner in which the algorithm orders critical sections, an optimization can be
made : the vector clock value e.v need not be sent with the control message. The receiving process
f.proc merely blocks waiting for the next message to be received from e.proc. It is verifiable that,
even without any assumptions on message ordering, this ensures that the message sent from e is
received at f .

104

on the write-only files, replaying the execution with added control synchronizations

ensures that the files are not corrupted during re-execution. The case of read-write

files will be discussed in Section 5.6.

5.3.4 A Qualitative Evaluation

Having described the operation of the three re-execution methods, we now make a

qualitative evaluation of the advantages and disadvantages of controlled re-execution

with respect to simple and locked re-execution.

5.3.4.1 Disadvantages of Controlled Re-execution:

1. Tracing Cost: Unlike simple and locked re-execution, controlled re-execution

requires tracing of information for control and replay. Tracing imposes a cost

both in space and in time. This cost is particularly important since it is

imposed during failure-free operation.

The cost in time does not involve the cost of writing the traces synchronously

to disk. This is because we are not considering failure scenarios, such as power

failures, in which volatile storage is lost. The cost in space involves the size of

one vector clock value for each receive event, begin file access event, and end

file access event. This is in contrast to the cost already imposed in order to

implement the restoration phase of recovery, typically involving checkpointing

and message logging.

2. Piece-wise Determinism Assumption: Controlled re-execution assumes

that all non-deterministic events can be identified, traced, and replayed. For

example, by assuming that the only source of non-determinism is the receive

events and tracing the order of message delivery. This assumption is not

required by either simple or locked re-execution.

105

While maintaining the piece-wise determinism assumption is a challenging

problem, the application domain under consideration has fewer sources of non-

determinism than more general applications that interact more frequently with

their environments. Sources of non-determinism usually arise from message

ordering, thread scheduling, interrupts, or system calls. Dealing with such

sources of non-determinism has been a widely-studied problem in the context

of message logging protocols [EAWJ99]. When the restoration mechanism

used for rollback recovery involves message logging, the piece-wise determin-

ism assumption is already made regardless of the re-execution scheme used.

Therefore, controlled re-execution imposes no additional assumptions in such

cases.

5.3.4.2 Advantages of Controlled Re-execution:

1. Ability to Recover: Suppose an application has failed and restored a con-

sistent global state, which one of the three methods has a greater likelihood of

providing a safe re-execution? The likelihood of simple re-execution providing

a safe re-execution (no races) depends on timing and the likelihood of file ac-

cess overlap. For locked re-execution, the likelihood of a safe re-execution (no

deadlocks) depends on the likelihood of cyclic file access/communication syn-

chronizations. For controlled re-execution, the likelihood of a safe re-execution

(no cycles in the critical section graph) depends on the likelihood of cyclic

communication synchronizations.

For the application domain under consideration, the non-determinism owing

to message reordering is expected to be low, since a receive usually corresponds

to a unique message. Thus, it is expected that a re-execution has the same

synchronization pattern as the failed execution. Therefore, the only situation

in which the mutual exclusion predicate control algorithm (for a single file)

106

fails is when a safe re-execution is impossible (refer to Section 3.5). Thus, the

likelihood of recovery in controlled re-execution is at least as high as that in

simple and locked re-execution. It remains to determine how much higher the

likelihood actually is.

2. Guarantee: Independent of the expected recoverability, controlled re-execution

also has the advantage of being able to guarantee before-hand whether it

will be able to provide a safe re-execution. In the case of simple and locked

re-execution there are no such guarantees and the re-execution must be at-

tempted before its safety is determined. Thus, repeated re-execution - detec-

tion - restoration cycles are avoided in the case of controlled re-execution.

This advantage is especially important in the context of a complementary

framework consisting of all three schemes. In such a framework, if one re-

execution method fails, another may be attempted. The advantage of an a

priori guarantee is useful in such a framework, since it is immediately clear

whether controlled re-execution should be used.

In order to make a complete evaluation of controlled re-execution, we require

a quantitative evaluation of: (1) how much of a disadvantage is posed by the tracing

cost, and (2) how much of an advantage is involved in the improved ability to recover.

This is the objective of the experimental study described in the following sections.

5.4 Experimental Setting

5.4.1 Implementation and Environment

We implemented the three re-execution methods in the form of a library that aug-

ments the functionality of MPI (Message Passing Interface). The relevant calls –

send, receive, begin file access, and end file access – are intercepted by the augmented

library before passing control to the normal routines.

107

Our implementation was based on mpich 1.1 [GL96], a portable implemen-

tation of MPI. To provide synchronous writes over a network, we exported a remote

interface to a local Unix file system. Tracing was implemented both in-memory and

using asynchronous writes to local files. Control messages were implemented using

blocking MPI messages with a unique tag value.

Since our experiments focus on the re-execution phase, we implemented sim-

ple strategies for the detection and restoration phases of recovery. For failure de-

tection, we performed an integrity check on the files to check for data corruption.

Restoration was implemented by restarting all processes, thus restoring the initial

consistent global state. This is valid for our experiments since the synthetic bench-

marks we use (described in the next section) are not sensitive to the starting point

of the re-executions.

The experimental environment consists of 4 Sun Ultra 10 Workstations (440

MHz) running Solaris 2.7 and connected by a 100 Mbps Ethernet. Each workstation

has 128MB of DRAM and a 4GB local disk.

5.4.2 Synthetic Benchmarks

For our experiments, we used synthetic benchmarks which allow various critical

parameters, such as the frequency of communication and the frequency of file access

to be varied independently. Each synthetic application is generated by running a

loop, each iteration of which picks an event with a pre-specified probability from

among a set of possible events. The possible events are: sends, receives, file access

begins, file access ends, file writes, and local events. The file accesses ensure that

file writes occur within the context of a file access and, in the default case, file

accesses are not nested. The recipient of a message is chosen uniformly at random.

Receives are blocking, waiting on a specific process in such a way as not to create

communication deadlocks (determined by a sample non-blocking execution). The file

108

corresponding to each file access is selected uniformly at random. Similar synthetic

applications have also been used in the study of message logging recovery protocols

[ARV98] and logical clock schemes [TRA96].

The main reason for selecting synthetic benchmarks is because it gives us

flexibility in selecting application parameters such as communication and file access

frequencies. We selected the parameters values for the synthetic benchmarks based

on measurements of the NPB 2.0 Benchmark Suite [BHS+95] consisting of five com-

putational fluid dynamics codes and the NAS Application I/O (BTIO) Benchmark

[Fin97] consisting of one of the NPB 2.0 Benchmark codes including file i/o. In a

similar manner as the BTIO Benchmark, we instrumented the remaining four NPB

2.0 Benchmark codes with file i/o. Further, we referred to two other studies of sci-

entific application codes: [Rao99] for measurements on the same NPB Benchmark

Suite and [AHKM96] for a detailed study of eight scientific applications that use

messages and file i/o. Furthermore, we referred to [KN94] for a study of dynamic

file-access characteristics of a production parallel scientific workload.

A further advantage of using synthetic benchmarks is that the NPB bench-

mark applications do not account for possible non-determinism in the application

codes. This biases our comparitive study of recoverability in favor of controlled

re-execution and against simple re-execution. The synthetic benchmarks allow us

flexibility in including non-determinism since a different re-execution can be gener-

ated based on the same parameters to model a non-deterministic application (alter-

natively, a single synthetic application can be replayed multiple times to model a

deterministic application).

5.4.3 Parameters

The applications under consideration have two main characteristics: the frequency

of communications and the frequency of file accesses. These are represented by the

109

following two parameters:

• mean communication period: the average time between consecutive com-

munication events (receive or send events) on a process, averaged over all

processes.

• mean file access period: the average time between consecutive file accesses

on a process, averaged over all processes.

Note that the parameters are controlled indirectly by varying the relative probabil-

ities of communication or file access events for the generated synthetic application.

Measurements are then made to determine their values.

There are other parameters for the synthetic applications for which we set

default values, unless otherwise specified. These parameters are the message size

(default: 100 bytes), the file write size (1 KB), the mean file access time (90 -

110 ms), the mean file-i/o period (30 - 35 ms), the number of files (1), and the

fraction of file-i/o that are writes (1). The defaults were chosen based on the real

application parameters (from the sources listed above) and the assumptions for the

common-case.

5.5 Experiments

5.5.1 The Costs of Controlled Re-execution

Unlike simple and locked re-execution, controlled re-execution imposes the extra

penalty of tracing during normal execution. First, we give the details of exactly

what extra information is traced and at what points. There are three execution

points at which a trace needs to be taken:

• receive events: At each receive, the following information is traced: the

sender’s id, the message tag (used to classify messages into types in MPI),

and the sender’s entry in the message’s vector clock.

110

• begin file access events: At each begin file access event, the following

information is traced : the vector clock value, whether it is a read or a write

file access (in the general case), and the file id for the file access.

• end file access events: At each end file access event, the vector clock value

is traced.

Tracing may be implemented in-memory or using asynchronous writes to files. We

do not use synchronous writes since we assume that a failure is detected in time

to save volatile memory to stable storage. The trace may be periodically shortened

by a garbage collection mechanism, under the assumption that the execution has

progressed far enough that the deleted information will never be required.

Tracing has a cost both in time and space. We use two simple metrics for

these costs:

• time overhead: This is the percentage increase in total application running

time when tracing is performed. The time overhead is measured both for in-

memory and asynchronous file tracing. Note that the time overhead is for

an application that does not incorporate other recovery mechanisms, such as

checkpointing and message logging (the overhead calculated in consideration

of existing recovery mechanisms is smaller than our measure).

• space cost: This is the amount of space required per unit time (in MB/hour).

We measured the tracing costs for applications with relatively dense commu-

nication and file access patterns. Note that mean communication period values are

in the range 10 - 200ms for the NPB Benchmarks and mean file access period values

are in the range 100 - 10000 ms (based on [Rao99] and our measurements, assuming

one file access every iteration). Table 5.1 shows the results.

The time overheads were under 1% for all applications. Further, this is true

for both in-memory tracing and asynchronous file tracing.

111

Mean Mean Time Space
comm. file access overhead (MB/hour)
period period In-memory Asynch. file
(ms) (ms) tracing tracing

30 183 0.21% 0.55% 0.72

3 159 0.15% 0.69% 2.51

87 67 0.03% 0.05% 1.50

Table 5.1: The Tracing Cost of Controlled Re-execution

The space cost is small considering that typical scientific applications can

require in the order of 1GB of disk space for storing application data [AHKM96].

Further, existing restoration techniques such as checkpointing and message logging

would typically have much larger disk space requirements. The space requirements

can be further reduced by garbage collection making in-memory tracing feasible.

Note that space required in any given period of time is exactly 12r+(8n+4)f bytes

where r is the number of receive events, n is the number of processes, and f is the

number of file accesses.

We conclude that the tracing costs for controlled re-execution are very small.

5.5.2 The Benefits of Controlled Re-execution

The benefits of controlled re-execution lie in improved likelihood of recovery. In

these experiments we aim at measuring how much of a gain this is. We use syn-

thetic applications with randomly generated communication and file access patterns.

Therefore, races are automatically generated periodically. In such a simulated faulty

scenario, we test how far an execution can proceed under each of the three methods

before a failure occurs. Note that the meaning of a failure is different for the three

methods:

112

• simple re-execution: A failure occurs when a race causes data to be corrupted

on the file. We measure the time of failure at the time of the concurrent writes

to the file.

• locked re-execution: A failure is a deadlock. We measure the time of failure as

the minimum time that a process involved in the deadlock starts to wait for a

resource.

• controlled re-execution: A failure does not really occur. Instead, controlled

re-execution can guarantee before-hand whether or not it can execute safely.

In cases where it cannot give such a guarantee, there must be a cycle of critical

sections in the interval graph. We say that controlled re-execution fails if it

cannot guarantee a safe re-execution and we measure the time of failure as the

minimum of the times at which a critical section in the cycle is entered. This

is fair since controlled re-execution can safely execute upto this point in time.

The metric we use is:

• mean time to failure (mttf): The time from the beginning of the execution,

averaged over all processes, upto the time of failure (as defined above).

The mttf for a re-execution method is an indicator of the ability of that method

to tolerate faults in a faulty application. The greater the mttf, the greater is the

likelihood of recovery.

Figure 5.3 shows the plot of mttf against mean communication period for

simple, locked and controlled re-execution methods. Multiple synthetic applications

of the corresponding parameter values were executed to obtain each mttf point. We

varied the mean communication period over a range chosen based on applications in

the NPB benchmarks (10 - 200 ms). The mean file access period was kept fixed at

200 ms. It is important to note that the scale is logarithmic since the corresponding

113

0

5000

10000

15000

20000

25000

30000

35000

40000

10 100 1000

M
ea

n
tim

e
to

 fa
ilu

re
 (

m
s)

Mean communication period (ms)

Mean file access period = 200ms

controlled
locked
simple

Figure 5.3: Plotting mttf against mean comm. period

0

5000

10000

15000

20000

25000

30000

35000

40000

0 500 1000 1500 2000 2500

M
ea

n
tim

e
to

 fa
ilu

re
 (

m
s)

Mean communication period (ms)

Mean file access period = 200ms

controlled
locked
simple

Figure 5.4: Plotting mttf against mean comm. period on a linear scale

114

linear-scaled graph shown in Figure 5.5.2 has too great a difference between the

three mttf plots for the three methods to be clearly depicted.

For both locked and controlled re-execution, we expect that the likelihood

of a failure (deadlock/cycle of critical sections) is expected to be lower as the mean

communication period increases and the communications get less dense. Clearly,

simple re-execution remains unaffected by the communication pattern changes since

the file access density is fixed.

The reason that controlled re-execution has a greater mttf than locked re-

execution is that for a given communication density, the likelihood of a deadlock

is significantly greater than the likelihood of a cycle of critical sections. If there

is a cycle of critical sections, there must necessarily be a deadlock. Further, many

deadlocks do not involve cycles of critical sections since a deadlock may occur when

file locks are acquired in an order that interferes with the messages, whereas a cycle

of critical sections depends solely on the messages.

The reason that controlled re-execution has a greater mttf than simple re-

execution is that if there is a cycle of critical sections then two of those critical

sections must occur at the same time leading to a race. However, if a race occurs

there need not be any synchronization cycles (and the likelihood reduces as the

communication density decreases).

Next we plot mttf against mean file access period while keeping the mean

communication period fixed. Figure 5.5 shows the results. The parameters for mean

file access period were picked based on applications in the NPB benchmark.

The reason all three graphs rise with increasing mean file access period is as

follows. As the file access density decreases, so does the likelihood of two file accesses

occurring concurrently. Therefore, races are less likely. Further, deadlocks are also

less likely since the file accesses are spaced further apart making it less likely for

the locks to interfere with synchronizations. Further as critical sections get spaced

115

0

5000

10000

15000

20000

25000

30000

35000

40000

1000

M
ea

n
tim

e
to

 fa
ilu

re
 (

m
s)

Mean file access period (ms)

Mean communication period = 14ms

controlled
locked
simple

Figure 5.5: Plotting mttf against mean file access period

further apart, the chance of a cycle of synchronizations also diminishes.

The reason controlled re-execution has a higher mttf than the other two

methods is as follows. If there is a cycle of critical sections, then clearly there must

be a race since two critical sections in the cycle must occur together. Further, there

must necessarily be a deadlock. However, the reverse is not true.

Thus, the overall conclusion of these experiments is that the mttf is signifi-

cantly higher for controlled re-execution than for locked and simple re-execution.

5.6 Extensions

In this section, we discuss some extensions to the controlled re-execution method.

Each of the extensions results from weakening one of the assumptions made in this

study.

Extension to other blocking/non-blocking communication primitives

We assumed that for all communications, sends are non-blocking and receives are

blocking. This assumption was made for simplicity and the other combinations can

be handled as well. The case of both blocking sends can be modeled by an extra

116

message (in addition to the one being sent) that is sent by the receiver after the

message transfer completes and for which the sender blocks waiting. The case of

non-blocking receives can be handled by simply treating them in the same way as

blocking receives for the purpose of predicate control. Often, non-blocking receives

are made in cases where the relative order of message delivery does not affect the

future synchronizations. In such cases, the non-blocking receives need not be traced

and the computation input to predicate control consists of only the blocking receives.

Extension to read-write files

We have assumed that files are write-only for the purpose of our study and so

the only races are write-write races. If the processes were to read from the file as

well, then the reads cause an extra communication channel between processes and

also introduce another potential source of non-determinism based on the order of

file accesses. There are two scenarios with different requirements for dealing with

read-write files.

In the first scenario, we consider the general case with no assumptions. The

reads must be traced for the dependencies they cause just as messages with vector

clocks being maintained for the files in addition to the processes. Since controlled

re-execution attempts to change the order of accesses at a file, in general, it is

impossible to replay the same execution beyond the first recovered race. However,

in cases where the change in order of file accesses does not affect the computation,

the replay can progress. It is possible to continue execution using controlled re-

execution upto the point where a divergence from the previous execution is detected.

No guarantees can be made beyond this point.

The second scenario is applicable to applications whose synchronization pat-

terns do not change with the values read from files. This is often true in the ap-

plication domain under consideration since, although the values of communication

117

messages often change with the values read from files, the order of synchronizations

remains unchanged. Since controlled re-execution is only sensitive to the order and

not the content of messages, in such cases it is not necessary to trace and replay

read accesses.

Extension to other non-deterministic events

In our study, we make the commonly made assumption that receive events are the

only sources of non-determinism. In general, there may be other sources of non-

determinism. We have already discussed non-determinism induced by read accesses

from files. Some other sources of non-determinism are thread scheduling events in

multi-threaded programs, system calls, and asynchronous signals. Much work has

been done in the context of rollback recovery [GGL+90, SE96] and in distributed

debugging [TCO91, MCL89, RC96] towards tracing and replaying multi-threaded

programs. For a detailed discussion of system call and asynchronous signals, we

refer the reader to [EAWJ99]. If the recovery system uses message logging, it would

already require to trace and replay non-deterministic events. In such cases, the

necessary mechanisms would be already available for controlled re-execution.

5.7 Summary

To summarize our evaluation of the controlled re-execution method with respect to

simple and locked re-execution methods.

• Advantages:

– Ability to recover: Our experiments tested the ability of the three

re-execution methods to tolerate races in synthetic applications under

different values of communication and file access density. The results

showed that the mean time to failure was significantly higher in the case

of controlled re-execution.

118

– Guarantee: Controlled re-execution does not depend on chance and can

guarantee a race-free re-execution a priori while the other two methods

cannot.

• Disadvantages:

– Piece-wise Determinism Assumption: The controlled re-execution

method makes the piece-wise determinism assumption while the other

two methods do not.

– Tracing Overhead: Unlike the other two methods, controlled re-execution

involves a tracing cost. However, our experiments on synthetic applica-

tions with high communication and file access densities show that the

time overhead is less than 1% and the space cost is in the range of 0.5-2.5

MB/hour.

119

Chapter 6

Related Work

We discuss the related research in three sections corresponding to the topics of

each of the previous three chapters: the predicate control problem, the predicate

detection problem, and controlled re-execution.

6.1 The Predicate Control Problem

The predicate control results in this dissertation were first published in [TG98c] and

[TG99]. We are aware of two previous studies of controlling distributed systems to

maintain classes of global predicates. One study [MSWW81] allows global proper-

ties within the class of conditional elementary restrictions [MSWW81]. Unlike our

model of a distributed system, their model uses an off-line specification of pair-wise

mutually exclusive states and does not use causality. [Ray88] and [TG94] study

the on-line maintenance of a class of global predicates based on ensuring that a

sum or sum-of-product expression on local variables does not exceed a threshold.

In contrast to these approaches, our focus is on general global boolean predicates,

disjunctive predicates, and mutual exclusion predicates.

Since our results in predicate control were published, some advances in solv-

ing predicate control have been made in [MG00]. The authors present an equivalent

formulation of the predicate control problem in terms of “admissible sequences”.

Based on this, they provide an algorithm for disjunctive predicates that has the

120

same time complexity as the algorithm presented in this dissertation, but has the

added advantage of generating the minimum synchronizations. They also solve the

predicate control problem for the class of “region predicates” that can express such

conditions as deadlock and termination.

Relation to Predicate Detection

Since there is a duality between observation and control, it is not surprising that

there is a relation between predicate detection, a formalization of observation, and

predicate control, a formalization of control. To understand the relationship, con-

sider a computation in which definitely : ¬φ is detected, where the modality defi-

nitely for a predicate [CM91] implies that the predicate becomes true in any possible

execution (run) corresponding to the computation. Clearly, there can be no control-

ling computation of φ in the computation since any execution corresponding to the

controlling computation is also an execution corresponding to the original computa-

tion. Therefore, a controlling computation of a predicate φ in a given computation

exists if and only if definitely : ¬φ is not detected in the computation. As evidence

of this, the necessary and sufficient conditions for detecting definitely : φ for con-

junctive predicates were demonstrated in [GW96], and are similar to our results in

predicate control for disjunctive predicates. An important difference between the

two problems is that, though the predicate detection problem for definitely : ¬φ

can be used to determine whether a controlling computation of φ exists, it is not

concerned with actually finding the controlling computation. Another interesting

conclusion is that all of our predicate control algorithms can be used to solve a

corresponding predicate detection problem.

121

Relation to On-line Synchronization

The predicate control problem is an off-line synchronization problem since it assumes

that the computation is known a priori . In contrast, existing synchronization prob-

lems [BA90] such as mutual exclusion, readers writers, and dining philosophers are

on-line and require synchronization without such pre-knowledge. The predicate con-

trol problem for each of the predicates we have studied has a corresponding on-line

synchronization problem, in which the computation is an on-line rather than an

off-line input. Predicate control for mutual exclusion predicates corresponds to the

widely-studied distributed mutual exclusion problem [Ray86, BA90, Vel93, Sin93].

Predicate control for readers writers predicates corresponds to the readers writ-

ers problem [CHP71, Lam77, BA90]. Predicate control for independent mutual

exclusion predicates does not correspond to a new on-line problem. Instead, mul-

tiple distributed mutual exclusion protocols operate independently assuming that

deadlocks are prevented using a programming discipline such as two-phase locking.

Predicate control for disjunctive predicates corresponds to a special case of the k-

mutual exclusion problem [Ray89, SR92, MBB+92, HJK93, BV95] (that allows up

to k processes inside a critical section at the same time) in which k = (n− 1).

Each of the on-line problems above make assumptions on the programming

discipline, such as non-blocking critical sections or two-phase locking. In a general

context without such assumptions, it can be shown that the on-line synchronization

problems stated above are impossible to solve [TG98c], and therefore, it is impossible

to maintain the predicate while avoiding deadlocks. Our solutions to the predicate

control problems do not make such assumptions. Instead, they make use of the pre-

knowledge of the computation to maintain the predicate while avoiding deadlocks.

Thus, off-line synchronization is, inherently, a more powerful technique than on-line

synchronization.

Another distinction between the on-line and off-line problems is that the

122

predicate control problems operate on a single computation of the distributed pro-

gram. The on-line synchronization problems, on the other hand, operate at the

level of the programming language and must, therefore, correctly synchronize for all

possible computations of the program.

6.2 The Predicate Detection Problem

The results in predicate detection presented in this dissertation were first published

in [TG98a]. Surveys of predicate detection may be found in [BM93, SM94, Gar96].

There have been three approaches to solving predicate detection. The first approach

[CL85, SK86, HJPR87, Bou87] is based on periodically computing a consistent cut

of the system through a global snapshot protocol and checking whether the cut

satisfies the given predicate. This method works only for stable predicates, such

as deadlock and termination, which remain true once they become true. However,

in general, predicates need not be stable and may become true only between con-

secutive snapshots. The second approach [CM91, AV94, JMN95] constructs the

entire lattice of cuts to detect a given predicate. This approach is able to detect

unstable predicates but it has an exponential time complexity of O(kn) where k is

the number of “relevant” local events and n is the number of processes. The third

approach [MC88, MI92, AV93, HPR93, TG93, GW94, BR94, FRGT94, JJJR94,

CG95, GC95, GTFR95, TG95, VD95, BFR96, GW96, HMRS96, HR96, GCKM97]

is based on using the structure of the predicate. Instead of constructing the entire

lattice of cuts, the approach uses the computation directly. Thus, efficient algo-

rithms can be constructed , but they are restricted to certain classes of predicates.

In this dissertation, our focus has been on the third approach.

Within the third approach, we focus on predicates that are defined on a single

cut. There are two modalities defined for detecting a predicate φ defined on a single

cut. The first modality, possibly:φ, is defined to be true if the lattice of cuts has a

123

path from the initial cut to the final cut containing at least one cut that satisfies φ.

The second modality, definitely:φ, is true if every path from the initial cut to the

final cut in the lattice of cuts contains at least one cut that satisfies φ. Note that

our definition of predicate detection corresponds to possibly:φ.

It has been shown that for the important class of conjunctive predicates, pred-

icate detection can be solved efficiently for both possibly:φ [GW94] and definitely:φ

[GW96]. Although these solutions are centralized, distributed algorithms have also

been designed [GC95, HMRS96]. Further, conjunctive predicates have been ex-

tended to “channel predicates” [GCKM97] that consider both the states of the mes-

sage channels and the states of the processes. The work most closely related to our

study is [GW94]. The main difference is that while they use the happened before

model of compoutation, our study uses the extended model of computation which

allows improved predicate detection. We use the algorithm presented in [GW94] as

part of our solution for detecting conjunctive predicates in the extended model.

The Extended Model of Computation

In our study of the predicate detection problem, we used an extended model of com-

putation that partially orders the events both across processes and within a process

so as to reduce false causality. Using partial orders to model concurrency avoids the

combinatorial explosion involved in the interleaving model. This fact has led to a

number of studies of such partial order models [Lam78, Pra86]. Problems in false

causality have been observed in application domains other than predicate detection,

such as: race detection [SBN+97], causally ordered communication [CS93], and op-

timistic recovery [DTG99]. Models that extend the happened before model [Lam78]

by allowing partially ordered events within a process have also been proposed in

[ACG93, HW96, TG98b].

124

6.3 Controlled Re-execution

For a good introduction to the past work in software fault tolerance, the interested

reader is referred to [Lyu95]. There are three approaches to tolerating software

faults. The “design diversity” approach [AC77, Ran75] uses redundant modules to

prevent a single point-of-failure. This method is effective provided the same fault

does not appear in different modules. The “data diversity” approach [AK88] use

techniques to re-express input data in an attempt to bypass faults. However, such

re-expression is effective only for a limited range of applications. This dissertation

is concerned with the “environment diversity” approach, first introduced in the

progressive retry method [WHF+97] which aims at bypassing a fault by rolling back

the application and restarting from a previous state. For certain “transient” faults,

the progressive retry method was found to be effective.

The rollback recovery method used in [WHF+97] involves three distinct

phases: detection, restoration, and re-execution. Our focus has been on the detec-

tion and re-execution phases. However, much work has been done in the restoration

phase in the context of conventional (not software) fault tolerance. For a survey of

general rollback recovery methods in distributed systems for global state restoration,

the reader is referred to [EAWJ99]. Aspects of restoration peculiar to software fault

tolerance have been studied in [WHF+97, CC98a].

We have already discussed the related work for the detection phase in the

previous section on predicate detection. With respect to the re-execution phase,

existing approaches [WHF+97] and [CC98a] have targetted general faults and have

used a simple re-execution technique based on simply restarting the system from

a restored state, with possible message reorderings. These re-execution techniques

cannot guarantee a safe re-execution. Our controlled re-execution approach focuses

on the class of synchronization faults and can give a guarantee of safe re-execution

based on controlling the re-execution with added synchronization messages.

125

Relation to Speculative Computing

Speculative computing is another rollback approach for tolerating synchronization

faults in both shared-memory multiprocessor environments [Smi81, SP98, APR99]

and distributed shared memory environments [HW94, KCDZ95, KS97, BPA98,

Mue99]. Speculative or optimistic computing is more aggressive than conventional

fault tolerant computing in that faults are allowed to occur intentionally. This allows

greater efficiency by avoiding expensive fault prevention techniques that use locks or

barrier synchronizations. Speculative computing methods generally assume a weak

consistency model such as release consistency [KCDZ95] or group write consistency

[HW94]. Further, they assume that the level of atomicity is at the level of reads and

writes to a single object. In contrast, the controlled re-execution method assumes

a sequential consistency model [Lam79] and atomicity at the level of multi-object

operations [MG98] including sends and receives of messages and reads and writes to

files.

Another distinction is in the re-execution method employed. The forms of

control used in speculative methods are distinct from that used by controlled re-

execution – controlling the relative timing among processes through synchroniza-

tion. For example, branch prediction schemes [Smi81, SP98] ensure that a different

execution path is followed during re-execution based on the faulty branch choices

made during the previous execution. In another example, [KCDZ95] describes a

hybrid scheme as a compromise between lazy release consistency and eager release

consistency. The protocol operates by optimistically sending only a fraction of the

data that would be sent by an eager protocol. On encountering invalid data, the

protocol switches to lazy mode, explicitly acquiring the data. Unlike these special-

ized forms of control, controlled re-execution limits its control to the relative timing

among processes.

126

Chapter 7

Conclusions and Future Directions

Software fault tolerance has conventionally been perceived as a passive approach

consisting of monitoring the system and attempting general purpose techniques such

as restarting from a previous checkpoint or failing over to a backup process. In

this dissertation we have aimed at demonstrating the benefits of a more active

approach to software fault tolerance that involves taking corrective rather than

reactive measures based on an understanding of the failure and its causes. This

involves a more aggressive approach to the two functions of a run-time environment

– observation and control . The observation function must involve monitoring the

system not merely to detect failures but also to provide information of the causes

that led to the failure. The complementary control function uses this information

to decide on appropriate corrective actions.

We make a first step in this direction by showing how, in the case of syn-

chronization faults, by tracing synchronization information during normal execution,

one can take more effective corrective action during re-execution. This led us to the

investigation of the little studied off-line synchronization problem – the predicate

control problem. We designed algorithms for solving the predicate control prob-

lem for some important classes of predicates. This is encouraging, especially in the

light of the fact that the corresponding and better studied on-line synchronization

problems are impossible to solve.

127

In addition to control, we also worked towards improved observation methods

by studying and designing algorithms for detecting conjunctive predicates in an ex-

tended model. The extended model is especially important since it allows improved

detection, but we find, not surprisingly, that it makes the problem significantly

harder to solve.

An interesting future direction would be to try to apply corrective approaches

to tolerate other classes of software faults. This need not be in a transparent manner,

but may involve a programming paradigm in which information that is useful for

recovery is made explicit. For example, failures that arise from insufficient memory

may be recovered using corrective strategies that invoke garbage collection. Failures

arising from timeouts may be corrected by reducing the load on the machine through

the migration of some processes.

Another application domain that would benefit greatly from the observation

and control paradigm is that of distributed debugging. In fact, since it is more

tolerable to incur overhead in debugging than in fault tolerance, more aggressive

observation methods could be used to allow improved control. For example, tracing

the values of process variables, could allow the control strategy to intelligently reset

the variables to test the application under different conditions. It would also be

useful to apply predicate control as was done in the controlled re-execution method

to test the application under various synchronization conditions.

We have limited our study of the controlled re-execution method for toler-

ating synchronization faults to race faults. It is important to study the applica-

bility of a similar technique to other types of synchronization faults, such as dead-

locks, disjunctive predicate violations, and violations of load balancing. Another

restriction we made was to focus on the application domain of long-running, non-

interactive applications that communicate with messages and files. This is a natural

first step owing to the nice synchronization and shared resource interfaces. An in-

128

teresting question is whether the same approach could be used in other application

domains, such as multi-threaded applications which communicate using wait-notify

primitives and share objects in memory. Another interesting application domain

is distributed shared memory systems which maintain consistency conditions over

distributed shared objects.

In the study of the predicate control problem, there are some interesting

open questions. We have solved predicate control for mutual exclusion predicates

and for disjunctive predicates. These are two extreme subcases of the more general

k-mutual exclusion predicates. The k-mutual exclusion predicates specify that at

most k of the processes can enter critical sections together. Thus, we have solved

the cases of 1-mutual exclusion and (n − 1)-mutual exclusion. We do know of a

necessary condition for solving the predicate control problem for k-mutual exclusion.

This corresponds to a set of critical sections in which each critical section has at

least k incoming 7→ edges from the other critical sections. Note that from this, we

can derive the necessary and sufficient conditions for both 1-mutual exclusion and

(n − 1)-mutual exclusion. However, it still remains an open question whether the

k-mutual exclusion problem can be efficiently solved.

It would also be useful to solve the predicate control problem in the context of

relational predicates [Gar96]. An example of such a predicate is (x1 +x2 + · · ·+xn >

k), where xi’s are integer variables in different processes and k is a constant. This

allows us to express conditions such as the loss of a token and violations of a limited

resource.

The extended model of computation allows events in a process to be locally

ordered. This addresses the problem of false causality inherent in the use of the

conventional happened before model. In this dissertation, we have studied the im-

plications of the extended model in predicate detection and in another work we have

studied the implications in optimistic message logging protocols [DTG99]. Another

129

application of the extended model can be found in predictive performance models

of distributed systems [HW96]. In general, the extended model is useful in appli-

cations that benefit from improved causality tracking. Another application domain

that falls in this class is that of message ordering systems that ensure causal ordering

between messages [CS93]. Applying the extended model in causal ordering may re-

sult in more efficient implementations by avoiding unnecessary delaying of messages

owing to false causality. However, the exact cost-to-benefit trade-offs remain to be

studied.

130

Bibliography

[AC77] A. Avizienis and L. Chen. On the implementation of N-version pro-

gramming for software fault tolerance during execution. In Proc. of the

First IEEE-CS International Conference on Computer Software and

Applications, pages 149 – 155, November 1977.

[ACG93] M. Ahuja, T. Carlson, and A. Gahlot. Passive-space and time view:

Vector clocks for achieving higher performance, program correction,

and distributed computing. IEEE Transactions on Software Engineer-

ing, 19(9):845–855, September 1993.

[Ada84] E. Adams. Optimizing preventive service of software products. IBM

Journal of Research and Development, 28(1):2 – 14, Jan 1984.

[AHKM96] R. Ahuja, A. Ho, S. Konstantinidou, and P. Messina. A quantitative

study of parallel scientific applications with explicit communication.

The Journal of Supercomputing, 10(1):5–24, 1996.

[AK88] P. E. Ammann and J. C. Knight. Data diversity: An approach to

software fault-tolerance. IEEE Transactions on Computers, 37(4):418–

425, April 1988.

[APR99] S. V. Adve, V. S. Pai, and P. Ranganathan. Recent advances in memory

consistency models for hardware shared memory systems. Proceedings

of the IEEE, 87(3):445–455, March 1999.

131

[ARV98] L. Alvisi, S. S. Rao, and H. M. Vin. Low-overhead protocols for fault-

tolerant file-sharing. In Proc. of the International Conference on Dis-

tributed Computing Systems, Amsterdam, The Netherlands, May 1998.

IEEE.

[AV93] S. Alagar and S. Venkatesan. Hierarchy in testing distributed programs.

Lecture Notes in Computer Science, 749:101–116, 1993.

[AV94] S. Alagar and S. Venkatesan. Techniques to tackle state explosion in

global predicate detection. In Proc. of the International Conference

on Parallel and Distributed Systems, pages 412–417. IEEE, December

1994.

[BA90] M. Ben-Ari. Principles of concurrent and distributed programming.

Prentice Hall, 1990.

[BFR96] O. Babaoglu, E. Fromentin, and M. Raynal. A unified framework for

the specification and run-time detection of dynamic properties in dis-

tributed computations. Journal of Systems and Software, 33(3):287–

298, June 1996.

[BHS+95] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart,

Alex Woo, and Maurice Yarrow. The NAS Parallel Benchmarks 2.0.

Technical Report NAS-95-020, NASA Ames Research Center, 1995.

[BM93] O. Babaoglu and K. Marzullo. Consistent global states of distributed

systems: fundamental concepts and mechanisms. In S. Mullender, ed-

itor, Distributed Systems, chapter 4. Addison-Wesley, 1993.

[Bou87] L. Bouge. Repeated snapshots in distributed systems with synchronous

communication and their implementation in CSP. Theoretical Com-

puter Science, 49:145–169, 1987.

132

[BPA98] R. Biachini, R. Pinto, and C. Amorim. Data prefetching for software

DSMs. In Proceedings of the International Conference on Supercom-

puting, pages 385–392, Melbourne, Australia, July 1998. ACM.

[BR94] O. Babaoglu and M. Raynal. Specification and detection of behav-

ioral patterns in distributed computations. In Proc. of 4th IFIP WG

10.4 International Conference on Dependable Computing for Critical

Applications, San Diego, USA, January 1994.

[BV95] S. Bulgannawar and N. H. Vaidya. A distributed K-mutual exclusion

algorithm. In Proceedings of the 15th International Conference on Dis-

tributed Computing Systems, pages 153–160. IEEE, 1995.

[CC98a] S. Chandra and P. M. Chen. Checkpointing and the fail-stop

model. http://www.eecs.umich.edu/~pmchen/Rio/papers.html, De-

cember 1998.

[CC98b] S. Chandra and P. M. Chen. How fail-stop are faulty programs? In

Proc. of the Symposium on Fault-tolerant Computing (FTCS), Munich,

Germany, June 1998. IEEE.

[CG95] C. M. Chase and V. K. Garg. Efficient detection of restricted classes of

global predicates. In Proc. of the Workshop on Distributed Algorithms,

pages 303–317, Le Mont-Saint-Michel, France, 1995.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with

“readers” and “writers”. Communications of the ACM, 14(10):667–668,

October 1971.

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Determining

global states of distributed systems. ACM Transactions on Computer

Systems, 3(1):63 – 75, February 1985.

133

[CL95] R. Cypher and E. Leu. Efficient race detection for message-passing

programs with nonblocking sends and receives. In Proceedings of the

Symposium on Parallel and Distributed Processing, pages 534 – 541.

IEEE, 1995.

[CM91] R. Cooper and K. Marzullo. Consistent detection of global predicates.

In Proceedings of the ACM/ONR Workshop on Parallel and Distributed

Debugging, pages 163 – 173, Santa Cruz, California, 1991.

[Cri91] F. Cristian. Understanding fault-tolerant distributed systems. CACM,

34(2):56 – 78, Feb 1991.

[CS93] D. R. Cheriton and D. Skeen. Understanding the limitations of causally

and totally ordered communication. In Proc. of the 11th Symp. on

Operating System Principles, pages 44 – 57. ACM, 1993.

[CS98] J. D. Choi and H. Srinivasan. Deterministic replay of Java multi-

threaded applications. In 2nd SIGMETRICS Symp. on Parallel and

Distr. Tools, pages 48 – 59, Aug. 1998.

[DTG99] O. P. Damani, A. Tarafdar, and V. K. Garg. Optimistic recovery in

multi-threaded distributed systems. In Proc. of the Symposium on Re-

liable Distributed Systems (SRDS), pages 234 – 243, Lausanne, Switzer-

land, October 1999. IEEE.

[EAWJ99] E. N. Elnozahy, Lorenzo Alvisi, Y. M. Wang, and D. B. Johnson. A

survey of rollback-recovery protocols in message-passing systems. Tech-

nical Report CMU-CS-99-148, Dept. of Computer Science, Carnegie

Mellon University, 1999.

[Fid91] C. Fidge. Logical time in distributed computing systems. IEEE Com-

puter, 24(8):28 – 33, August 1991.

134

[Fin97] S. A. Fineberg. NAS Application I/O (BTIO) Benchmark.

http://parallel.nas.nasa.gov/MPI-IO/btio/index.html, 1997.

[FL97] M. Feng and C. E. Leiserson. Efficient detection of determinacy races

in Cilk programs. In Proc. of 9th Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 22–25, Newport, USA, June 1997.

[FRGT94] E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson. On the fly

testing of regular patterns in distributed computations. In Proc. of the

23rd International Conference on Parallel Processing, pages 73–76, St.

Charles, USA, August 1994.

[Gar96] V. K. Garg. Principles of Distributed Systems. Kluwer Academic Pub-

lishers, 1996.

[GC95] V. K. Garg and C. M. Chase. Distributed algorithms for detecting

conjunctive predicates. In Proc. of the 15th International Conference

on Distributed Computing Systems, pages 423–430, Vancouver, Canada,

1995.

[GCKM97] V. K. Garg, C. M. Chase, R. B. Kilgore, and J. R. Mitchell. Effi-

cient detection of channel predicates in distributed systems. Journal of

Parallel and Distributed Computing, 45(2):134–147, 1997.

[GGL+90] A. P. Goldberg, A. Gopal, K. Li, R. E. Strom, and D. F. Bacon. Trans-

parent recovery of Mach applications. In USENIX Mach Workshop,

pages 169–183, 1990.

[GL96] W. D. Gropp and E. Lusk. User’s guide for mpich, a portable implemen-

tation of MPI. Technical Report ANL/MCS-TM-ANL-96/6, Argonne

National Laboratory, 1996.

135

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-

niques, chapter 3. Morgan Kaufmann Publishers, 1993.

[GTFR95] V. K. Garg, A. I. Tomlinson, E. Fromentin, and M. Raynal. Expressing

and detecting general control flow properties of distributed computa-

tions. In Proc. of the 7th IEEE Symposium on Parallel and Distributed

Processing, pages 432–438, San Antonio, USA, October 1995.

[GW94] V. K. Garg and B. Waldecker. Detection of weak unstable predicates in

distributed programs. IEEE Transactions on Parallel and Distributed

Systems, 5(3):299 – 307, March 1994.

[GW96] V. K. Garg and B. Waldecker. Detection of strong unstable pred-

icates in distributed programs. IEEE Transactions on Parallel and

Distributed Systems, 7(12):1323 – 1333, December 1996.

[HJK93] S.-T. Huang, J.-R. Jiang, and Y.-C. Kuo. k-coteries for fault-tolerant

k entries to a critical section. In Proceedings of the 13th International

Conference on Distributed Computing Systems, pages 74 – 81. IEEE,

1993.

[HJPR87] J.-M. Helary, C. Jard, N. Plouzeau, and M. Raynal. Detection of sta-

ble properties in distributed applications. In Proceedings of the 6th

Symposium on Principles of Distributed Computing, pages 125–136,

Vancouver, Canada, 1987. ACM.

[HK93] Y. Huang and C. Kintala. Software implemented fault tolerance: tech-

nologies and experience. In Proc. IEEE Fault-Tolerant Comp. Symp.,

pages 138 – 144, June 1993.

[HMRS96] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Efficient distributed

detection of conjunction of local predicates in asynchronous computa-

136

tions. In Proc. of the 8th International IEEE Symposium on Parallel

and Distributed Processing, pages 589–593, New Orleans, USA, October

1996.

[HPR93] M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic sequences

of predicates in distributed computations. In Proceedings of the Work-

shop on Parallel and Distributed Debugging, pages 32 – 42. ACM/ONR,

1993.

[HR96] M. Hurfin and M. Raynal. Detecting diamond decklaces in labelled

directed acyclic graphs (a problem from distributed debugging). In

Springer-Verlag, editor, Proc. of the 22nd International Workshop on

Graph Theoretic Concepts in Computer Science, LNCS, pages 211–223,

New Orleans, USA, June 1996.

[HW94] Gudjon Hermannsson and Larry D. Wittie. Optimistic synchronization

in distributed shared memory. In Proceedings of the 14th International

Conference on Distributed Computing Systems, pages 345–354. IEEE,

1994.

[HW96] C. E. Hrischuk and C. M. Woodside. Proper time: Causal and temporal

relations of a distributed system. Technical Report SCE-96-04, Systems

and Computer Engineering, Carleton University, 1996.

[IL95] R. K. Iyer and I. Lee. Software fault tolerance in computer operating

systems. In M. R. Lyu, editor, Software Fault Tolerance, Trends in

Software Series, chapter 11, pages 249 – 278. John Wiley & Sons, Inc.,

1995.

[JJJR94] C. Jard, T. Jeron, G. V. Jourdan, and J. X. Rampon. A general ap-

proach to trace-checking in distributed computing systems. In Proc. of

137

the 14th International Conference on Distributed Computing Systems,

pages 396–403, Poznan, Poland, June 1994. IEEE.

[JMN95] R. Jegou, R. Medina, and L. Nourine. Linear space algorithm for on-

line detection of global predicates. In Springer-Verlag, editor, Proc.

of the International Workshop on Structures in Concurrency Theory,

1995.

[KCDZ95] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. An evalua-

tion of software-based release consistent protocols. Journal of Parallel

and Distributed Computing, 29:126–141, September 1995.

[KN94] D. Kotz and N. Nieuwejaar. Dynamic file-access characteristics of a

production parallel scientific workload. In Proc. Supercomputing ’94,

pages 640–649, 1994.

[KS97] M. Karlsson and P. Stenstrom. Effectiveness of dynamic prefetching in

multiple-writer distributed virtual shared memory systems. Journal of

Parallel and Distributed Computing, 43(7):79–93, July 1997.

[Lam77] L. Lamport. Concurrent reading and writing. Communications of the

ACM, 20(11):806–811, November 1977.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558 – 565, July 1978.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computer,

28(9):690–691, September 1979.

[LMC87] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs

with Instant Replay. IEEE Transactions on Computers, C-36(4):471 –

482, April 1987.

138

[Lyu95] M. R. Lyu, editor. Software Fault Tolerance. Trends in Software Series.

John Wiley & Sons, Inc., 1995.

[Mat89] F. Mattern. Virtual time and global states of distributed systems. In

Parallel and Distributed Algorithms: Proc. of the International Work-

shop on Parallel and Distributed Algorithms, pages 215 – 226. Elsevier

Science Publishers B. V. (North Holland), 1989.

[MBB+92] K. Makki, P. Banta, K. Been, N. Pissinou, and E. Park. A token

based distributed k mutual exclusion algorithm. In Proceedings of the

Symposium on Parallel and Distributed Processing, pages 408 – 411.

IEEE, December 1992.

[MC88] B. P. Miller and J. Choi. Breakpoints and halting in distributed pro-

grams. In Proceedings of the 8th International Conference on Dis-

tributed Computing Systems, pages 316 – 323. IEEE, 1988.

[MCL89] J. M. Mellor-Crummey and T. J. Leblanc. A software instruction

counter. In Proc. of the 3rd Symp. on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 78 – 86, April 1989.

[MG98] N. Mittal and V. K. Garg. Consistency conditions for multi-object

distributed operations. In Proceedings of 18th International Conference

on Distributed Computing Systems, pages 582–589, Amsterdam, The

Netherlands, May 1998. IEEE.

[MG00] N. Mittal and V. K. Garg. Debugging distributed programs using con-

trolled re-execution. In Proc. of the 19th ACM Symposium on Prin-

ciples of Distributed Computing, pages 239–248, Portland, USA, July

2000.

139

[MI92] Y. Manabe and M. Imase. Global conditions in debugging distributed

programs. Journal of Parallel and Distributed Computing, 15:62–69,

1992.

[MSWW81] A. Maggiolo-Schettini, H. Wedde, and J. Winkowski. Modeling a solu-

tion for a control problem in distributed systems by restrictions. The-

oretical Computer Science, 13(1):61 – 83, January 1981.

[Mue99] F. Mueller. Adaptive DSM-runtime behavior via speculative data dis-

tribution. In J. Rolim et al., editor, Parallel and Distributed Comput-

ing, Proceedings of the IPPS/SPDP99 Workshops, Workshop on Run-

Time Systems for Parallel Programming, LNCS 1586, pages 553–567.

Springer-Verlag, April 1999.

[Net91] R. H. B. Netzer. Race condition detection for debugging shared-memory

parallel programs. PhD thesis, University of Wisconsin-Madison, 1991.

[Net93] R. H. B. Netzer. Optimal tracing and replay for debugging shared-

memory parallel programs. In Proc. of ACM/ONR Workshop on Par-

allel and Distributed Debugging, pages 1 – 11, San Diego, USA, May

1993. Also available as ACM SIGPLAN Notices Vol. 28, No. 12.

[NM92] R. H. B. Netzer and B. P. Miller. Optimal tracing and replay for

debugging message-passing parallel programs. In Supercomputing ’92,

pages 502 – 511, November 1992.

[Pan95] C. M. Pancake. The emperor has no clothes: What HPC users need

to say and HPC vendors need to hear. In Supercomputing, San Diego,

USA, December 1995. ACM/IEEE.

[Pra86] V. Pratt. Modelling concurrency with partial orders. International

Journal of Parallel Programming, 15(1):33 – 71, 1986.

140

[Ran75] B. Randell. System structure for software fault-tolerance. IEEE Trans-

actions on Software Engineering, 1(2):220 – 232, June 1975.

[Rao99] S. S. Rao. Egida: A Toolkit for Low-overhead Fault-tolerance. PhD

thesis, Univ. of Texas at Austin, 1999.

[Ray86] M. Raynal. Algorithms for Mutual Exclusion. MIT Press, 1986.

[Ray88] M. Raynal. Distributed Algorithms and Protocols. John Wiley and Sons

Ltd., 1988.

[Ray89] K. Raymond. A distributed algorithm for multiple entries to a critical

section. Information Processing Letters, 30:189–193, February 1989.

[RC96] M. Russinovich and B. Cogswell. Replay for concurrent non-

deterministic shared-memory applications. In Proc. ACM SIGPLAN

Conf. on Programming Languages and Implementation (PLDI), pages

258–266, 1996.

[RZ97] M. Ronnse and W. Zwaenepoel. Execution replay for TreadMarks. In

Proc. of the 5th EUROMICRO Workshop on Parallel and Distributed

Processing (PDP’97), pages 343–350, January 1997.

[SBN+97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.

Eraser: a dynamic data race detector for multi-threaded programs. In

Proc. of the 16th ACM Symposium on Operating System Principles,

pages 27 – 37, Saint-Malo, France, October 1997.

[SE96] J. H. Slye and E. N. Elnozahy. Supporting nondeterministic execu-

tion in fault-tolerant systems. In Proc. 26th Fault Tolerant Computing

Symposium, pages 250–259, 1996.

141

[Sin93] M. Singhal. A taxonomy of distributed mutual exclusion. Journal of

Parallel and Distributed Computing, 18:94 – 101, 1993.

[SK86] M. Spezialetti and P. Kearns. Efficient distributed snapshots. In Proc.

of the 6th International Conference on Distributed Computing Systems.

IEEE, 1986.

[SM94] R. Schwartz and F. Mattern. Detecting causal relationships in dis-

tributed computations: In search of the holy grail. Distributed Com-

puting, 7(3):149–174, 1994.

[Smi81] J. E. Smith. A study of branch prediction strategies. In Proc. of the

8th International Symposium on Computer Architecture, pages 135–

148, May 1981.

[SP98] J. Stark and Y. Patt. Variable length path branch prediction. In Archi-

tectural Support for Programming Languages and Operating Systems,

pages 170–179, 1998.

[SR92] P. K. Srimani and R. L. Reddy. Another distributed algorithm for

multiple entries to a critical section. Information Processing Letters,

41:51–57, January 1992.

[Tai97] K. Tai. Race analysis of traces of asynchronous message-passing pro-

grams. In Proceedings of the 17th International Conference on Dis-

tributed Computing Systems, pages 261 – 268. IEEE, 1997.

[TCO91] K. C. Tai, R. H. Carver, and E. E. Obaid. Debugging concurrent ADA

programs by deterministic execution. IEEE Transactions on Software

Engineering, 17(1):45–63, January 1991.

[TG93] A. I. Tomlinson and V. K. Garg. Detecting relational global predicates

in distributed systems. In Proc. of ACM/ONR Workshop on Parallel

142

and Distributed Debugging, pages 21–31, San Diego, USA, May 1993.

Also available as ACM SIGPLAN Notices Vol. 28, No. 12.

[TG94] A. I. Tomlinson and V. K. Garg. Maintaining global assertions on

distributed sytems. In Computer Systems and Education, pages 257 –

272. Tata McGraw-Hill Publishing Company Limited, 1994.

[TG95] A. I. Tomlinson and V. K. Garg. Observation of software for distributed

systems with rcl. In Springer-Verlag, editor, Proc. of the 15th Confer-

ence on the Foundations of Software Technology and Theoretical Com-

puter Science, LNCS, December 1995.

[TG98a] A. Tarafdar and V. K. Garg. Addressing false causality while detecting

predicates in distributed programs. In Proc. of the 18th International

Conference on Distributed Computing Systems, pages 94 – 101, Ams-

terdam, The Netherlands, May 1998.

[TG98b] A. Tarafdar and V. K. Garg. Happened before is the wrong model

for potential causality. Technical Report ECE-PDS-1998-006, Parallel

and Distributed Systems Laboratory, ECE Dept, University of Texas

at Austin, 1998.

[TG98c] A. Tarafdar and V. K. Garg. Predicate control for active debugging

of distributed programs. In Proc. of the 9th Symposium on Parallel

and Distributed Processing, pages 763–769, Orlando, USA, April 1998.

IEEE.

[TG99] A. Tarafdar and V. K. Garg. Software fault tolerance of concurrent pro-

grams using controlled re-execution. In Proc. of the 13th International

Symposium on Distributed Computing, pages 210–224, Bratislava, Slo-

vak Republic, September 1999.

143

[TRA96] F. J. Torres-Rojas and M. Ahamad. Plausible clocks: Constant size

logical clocks for distributed systems. In Proc. of the Workshop on

Distributed Algorithms, Bologna, Italy, October 1996.

[VD95] S. Venkatesan and B. Dathan. Testing and debugging distributed

programs distributively. IEEE Transactions on Software Engineering,

21(2):163–177, 1995.

[Vel93] Martin G. Velazquez. A survey of distributed mutual exclusion algo-

rithms. Technical Report 93-116, Computer Science Dept., Colorado

State University, 1993.

[WHF+97] Y. M. Wang, Y. Huang, W. K. Fuchs, C. Kintala, and G. Suri. Progres-

sive retry for software failure recovery in message-passing applications.

IEEE Trans. on Computers, 46(10):1137–1141, October 1997.

144

Vita

Ashis Tarafdar was born on February 11, 1973 in Howrah, India, the son of Anima

Tarafdar and Sankar Prosad Tarafdar. He completed his schooling in Bombay, India

in June 1990. He received the Bachelor of Technology degree in Computer Science

and Engineering from the Indian Institute of Technology at Bombay in July 1994.

Thereafter, he joined graduate school at the University of Texas at Austin where he

received the Master of Sciences degree in Computer Sciences in December 1996. He

has been employed at Microsoft Corporation, IBM Almaden Research Center, and

IBM T. J. Watson Research Center during the summers of 1995, 1996, and 1999,

respectively. He was awarded the MCD graduate fellowship in January 1995 by the

University of Texas at Austin.

Permanent Address: c/o Mrs. Anima Tarafdar

606 Vigyan, Scientists’ CHS, Sector-17,

Vashi, New Mumbai - 400703, India

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

145

