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Abstract

Debugging distributed programs is considerably more
difficult than debugging sequential programs. We address
issues in debugging distributed programs and provide a
general framework for observing and controlling a dis-
tributed computation and its applications to distributed de-
bugging. Observing distributed computations involves solv-
ing the predicate detection problem. We present the main
ideas involved in developing efficient algorithms for pred-
icate detection. Controlling distributed computations in-
volves solving the predicate control problem. Predicate
control may be used to restrict the behavior of the dis-
tributed program to suspicious executions. We also present
an example of how predicate detection and predicate con-
trol can be used in practice to facilitate distributed debug-
ging.

1. Introduction

While developing software, we sometimes experience a
software failure– a mismatch between expected and actual
software executions.Debuggingis the process of tracking
down the source of such a software failure. While the skill
and intuition of the software developer play a major part in
the debugging process, an indispensable factor is the effec-
tive use of software tools that provide an environment for
observing and controlling executions. Such tools, known
asdebuggers, have been widely used for traditional sequen-
tial software development. However, the trend towards dis-
tributed software leads to issues which make traditional de-
buggers inadequate. It is to identify and address these issues
that the field of distributed debugging has received wide at-
tention.�supported in part by the MCD Fellowshipysupported in part by the NSF Grants ECS-9414780, CCR-9520540,
TRW faculty assistantship award, a General Motors Fellowship, and an
IBM grant

Distributed debugging is an ongoing research area. The
increasing number of distributed programs together with the
inherent difficulty in writing such programs and the limited
support currently provided for distributed debugging would
lead to a potentially catastrophic increase in the number of
unreliable distributed programs. Therefore, there is a con-
stant search for new and better techniques for distributed
debugging.

We divide the actions of a debugger into two categories
– observationand control. These are exemplified by the
most common operations in traditional debuggers: setting
breakpoints (control) and observing variable values (obser-
vation). In distributed systems, observation and control are
made more difficult by the distributed nature of the execu-
tions involved.

Our goal is provide a general framework for observing
and controlling a distributed computation and to demon-
strate the effectiveness of this framework in distributed de-
bugging. This paper is not a complete survey of the dis-
tributed debugging field; rather it is a summary of those
aspects of distributed debugging that are part of the focus
of the work done at the Parallel and Distributed Systems
Laboratory (PDSLAB) at the University of Texas at Austin.

The paper is organized as follows. Section 2 presents
a summary of current distributed debugging techniques in
practice and in research. Section 3 describes our model of
distributed computation and global predicates. Section 4
discusses key problems and their solutions for observation
of global properties. Section 5 discusses various models of
control and reports some of our work for control. Finally,
Section 6 describes an example of debugging a distributed
system.

2. Brief Survey

While debuggers in use today (e.g. gdb, dbx, Vi-
sual C++’s debugger) provide limited support for multi-
threaded concurrency, they cannot support distributed pro-
grams which run in multiple address spaces. A limited form



of monitoring may be achieved by running multiple debug-
gers on each of the processes. However, even so, basic
debugging features such as deterministic replay and global
breakpoints are not supported.

In spite of the lack of support for distributed debugging
in commercial tools, there have been many research projects
that have built either prototype or full-fledged implemen-
tations. An extensive summary of these projects may be
found in [13]. Closely related to debugging is the field
of testing which studies the process of selecting test cases.
A good summary of testing techniques for distributed pro-
grams may be found in [15].

Aside from practical implementation work, much re-
search has been devoted to the study of problems arising in
distributed debugging. As noted before, we classify these
problems into those that deal with observation and those
that deal with control.

Predicate Detection[1, 6] is the main problem involved
in observing distributed computations. It involves detect-
ing whether a specified global property ever occurs in a
distributed computation. For example, one might wish to
check that the validity of mutually exclusive sections of
code is maintained. Predicate detection is used to set global
breakpoints in distributed computations. Approaches to
solving predicate detection are divided into three categories:
global snapshot based [2], lattice construction based [4],
and predicate restriction based [7] approaches. The first
approach can detect onlystablepredicates (which remain
true once they become true). The second approach uses
the interleaving model of concurrency and, therefore, suf-
fers from combinatorial explosion. The last approach uses
a partial order model and limits itself to classes of predi-
cates which can be detected efficiently. Our focus in this
paper will be on the third approach to predicate detection.

Control of distributed computations can be at various
levels. So far, the literature has focussed mainly on the most
basic form of control: deterministic replaying of distributed
computations to recreate failures [10, 14]. This leads to a
debugging cycle consisting of passive observation and com-
putation replaying. We believe that a more effective and
active debugging method would involve instead a cycle of
observation followed by controlled replaying based on ob-
servation [17]. We may classify control intoon-line control
or off-line controldepending on whether it is applied to a
fresh computation or to a replayed computation. Off-line
control is easier to achieve than on-line control because of
the pre-knowledge of future events. One method to control
a computation is to re-order messages. This form of control
(which may also be considered a testing methodology) has
been studied in both its on-line [12] and off-line [8] vari-
ants. We consider a less-intrusive form of control which is
only capable of delaying events (and not reordering them).
This has been termed thepredicate controlproblem and has
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Figure 1. Addressing False Causality

been studied in both on-line and off-line variants [17].

3. Modeling Distributed Computations

The traditional model of a distributed computation has
been based on thehappened beforerelation introduced in
[9]. The distributed system is divided into a set of pro-
cesses. Events on a single process are totally ordered ac-
cording to the local clock from the initial (earliest) eventto
the final (latest) event. Processes are assumed to commu-
nicate only through the use of messages and don’t share a
common clock or common state. Therefore, events across
processes can only be partially ordered based on whether an
event can possibly “know” about another through a chain
of messages. To summarize, an evente1 happened before
another evente2 if and only if e2 follows e1 on the same
process ore2 can “know” aboute1 through some chain of
message communications. We also say that two events are
concurrentif neither happened before the other. Since, an
event can cause another eventonly if it happened before the
other event, the happened before relation is said to model
potential causalitybetween events.

The happened-before model of a computation is easy to
implement while tracing a running distributed computation.
This involves the use of vector clocks [11]. A vector clock
is stored for each event. By comparing the vector clocks of
two events, we can deduce their ordering with respect to the
happened-before relation.

Although the happened-before model has been the basis
for most of the work in distributed debugging, it has often
been criticized for allowing false causality. This is illus-
trated in the example in Figure 1. Consider running a dis-
tributed mutual-exclusion program. The happened-before
model of the resulting distributed computation is shown in
Figure 1(a). If mutual-exclusion violation is the predicate
that we are trying to detect, it would not be detected be-
cause the message ensures that the two critical sections can-
not occur at the same time. However, in actuality, the mes-



sage may have been fortuitous and the sections of execu-
tion marked by intervals(a; b) and (c; d) may have been
independent (for example, independent threads). The sce-
nario in Figure 1(a) may be just one possible scheduling
of events. Figure 1(b) shows another scheduling in which
mutual-exclusion would be violated.

A model which partially orders the events on a local pro-
cess would allow events within a process to be independent.
Figure 1(c) shows such a model for the example. This repre-
sentation models both of the previous schedulings. In gen-
eral, there would be an exponential number of happened-
before representations corresponding to a single represen-
tation in the new model. We call the new model astrong
causality diagram[16].

Strong causality is based on thestrong causally precedes
relation between events. It is an extension of happened be-
fore based on the key observation that totally ordering the
events on a single process leads to false causality between
events. Therefore, it allows events on a single process to be
partially ordered. This allows for better modeling of inde-
pendence between local events, which we have just seen is a
key factor in detecting more bugs. This is especially impor-
tant in view of the prevalence of multi-threaded programs,
in which events in the same process but on different threads
are often independent.

The strong causally precedes relation is also easy to im-
plement while tracing a running distributed computation. It
involves a generalization of vector clocks that was intro-
duced in [5] which allow the tracing of a general partial
order. Comparing the clocks of two events gives us their
relative ordering according to the strong causally precedes
relation.

The choice of how much independence to model depends
on the particular application. As we will see, problems be-
come harder to solve in the new strong causality model but
the model itself is more expressive. This expressiveness is
demonstrated in both observation and control. During ob-
servation, as illustrated in the mutual exclusion example,
strong causality allows us to detect more bugs [16]. During
control, strong causality may be used to model independent
events and thus model various message reorderings in the
same model. A form of this kind of modeling may be found
in [8]. For our purposes of controlling using event delays,
the happened before model suffices.

Since each event leads to a state, we may apply both hap-
pened before and strong causally precedes to order states
instead of events. In such a case, we define aglobal state
to be a complete set of local component states and aconsis-
tent global stateto be a global state in which all local states
are mutually unordered with respect to the relation under
consideration.

A global predicateis a boolean function on the set of
global states. Such predicates will be used in the predicate

detection and predicate control problems.

4. Observing Computations: Predicate Detec-
tion

Predicate detection involves observing a computation to
detect the existence of a global state that satisfies a given
predicate. Checking every global state by explicit construc-
tion would lead to combinatorial explosion and so we fol-
low the approach of trying to avoid this by working in the
partial order model rather than attempting to construct all
possible interleavings (an approach that has been studied
[4]).

4.1. NP-Completeness and Conjunctive Predicates

Even within the happened before model, if the predicate
is a boolean expression it has been demonstrated that the
predicate detection problem is NP-complete [3]. In spite of
this fact, there are efficient algorithms for predicate detec-
tion for several useful classes of predicates. For a survey of
such algorithms, refer to [6].

In particular, the class ofconjunctive predicatesis found
to be very useful in practice. These are predicates that can
be expressed as a conjunction of local predicates. Intu-
itively, these properties check if a combination of events
happen together. An example of a global predicate would
be detecting if functions on two processes are entered at the
same time, violating a required mutual-exclusion property.

4.2. Detecting Conjunctive Predicates in the Hap-
pened Before Model

The detection of conjunctive predicates has been effi-
ciently solved in [7]. Their algorithm first eliminates all
states in which the local predicate is false. It then starts at
the initial global state and proceeds forward. It successively
considers global states in such a manner that it is not nec-
essary to consider all interleavings and the total number of
global states considered is linear in the size of the happened
before model. The key observation that allows this is that
if, in a global state under consideration, two statess andt
are related by happened before (s happened beforet), thens can never be in a consistent global state because it would
also happen before any local state followingt on the same
process. Sos may be eliminated and a new global state
may be constructed. At every step we eliminate some local
state from consideration which ensures a linear number of
steps. The whole algorithm requiresO(n2m) comparisons,
wheren is the number of processes andm is a bound on the
number of send and receive events in a process.



4.3. Detecting Conjunctive Predicates in the Strong
Causality Model

As noted before, the strong causality model allows us to
express independences between events on a local process,
thus leading to better bug detection. In the strong causality
model, we cannot apply the same algorithm for conjunc-
tive predicate detection because the key observation which
allowed us to eliminate a local state from consideration in
every global state considered would not work as before. In
fact, the problem becomes NP-complete as is demonstrated
in [16].

However, for a large class of computations, we can still
efficiently detect conjunctive predicates. If, in a compu-
tation, the events which send messages are all totally or-
dered with respect to each other, then we say that the com-
putation is send-ordered. Analogously, we may define
receive-orderedcomputations as those which have totally
ordered receive events. Now for the classes of send-ordered
and receive-ordered computations, we can efficiently detect
conjunctive predicates. The algorithm to do so is presented
in [16]. It applies a preprocessing step to the strong causal-
ity model to convert it to a representative happened before
model on which the above algorithm for conjunctive predi-
cates may be applied.

5. Controlling Computations: Predicate Con-
trol

The form of control that we impose on the distributed
computation ispredicate control– the maintenance of a
global safety property. The debugger has control over the
relative execution speeds of the processes but may not re-
order the messages. Thus the computation remains the same
in terms of the sequence of events on each process. How-
ever, among all the possible global states that could possibly
occur in the computation, the controlled execution speeds
can ensure that certain global states cannot occur.

In terms of the happened before model of a dis-
tributed computation, predicate control involves adding ex-
tra causality edges to constrain the partial-order to a stricter
partial-order. An extra causality edge would enforce that
an event on one process must wait for an event on another
process. Further, the added causality must not cause cycles
with the existing causality.

Following our definition of a consistent global state, the
added causal edges would reduce the number of consistent
global states. The goal is to add causality edges so that only
those global states that satisfy the specified global predicate
are consistent. It is also desirable to add as few causality
edges as possible since they constrain concurrency in the
computation.

An important distinction may be made depending on
whether the distributed computation is being controlled for
the first run or during a replay. If it is being controlled for
the first run, then the partial-order of events is not knowna
priori . Since the partial-order of events is provided on-line,
we call thison-line predicate control. During a replay, since
the partial-order of events is provided off-line in the trace,
the control is calledoff-line predicate control. Clearly, on-
line predicate control is harder than off-line predicate con-
trol.

5.1. NP-Completeness and Disjunctive Predicates

If the specified global predicate to be maintained is a
simple boolean expression of local predicates then it can be
shown that the problem of determining if a control strategy
exists is NP-complete [17]. Considering that the predicate
detection problem is also NP-complete for general boolean
expressions, this fact is not surprising. The issue of obvious
interest is whether there is a useful class of predicates for
which predicates can be controlled efficiently.

One such class of predicates isdisjunctive predicates.
These are predicates which may be expressed as a disjunc-
tion of local predicates. Intuitively, these predicates state
that at least one property must be satisfied at all times or,
in other words, that a bad combination of events does not
occur. Some examples of useful disjunctive predicates are:(1) Two process mutual exclusion::cs1 _ :cs2(2) At least one server is available:avail1 _ avail2 _ : : : availn(3) x must happen beforey:after x _ before y(4) At least one philosopher is thinking:think1 _ think2 _ : : : thinkn(5) (n� 1)-mutual exclusion::cs1 _ :cs2 _ : : : :csn
Note how we can even achieve the fine-grained control nec-
essary to cause a specific event to happen before another
as in property(3). This was done using local predicates to
check if the event has happened yet.

5.2. Solving Off-line Disjunctive Predicate Control

A disjunctive predicate divides the sequence of local
states in each process into true and false intervals depend-
ing on whether the local disjunct is satisfied. We must en-
sure that any consistent global state intersects at least one
true interval. Clearly, the initial global state must intersect a
true interval. Before this true interval can become false, we
must wait for another true interval. This translates to adding
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a causality edge from the beginning of the second true inter-
val to the end of the first true interval. When the second true
interval is to be exited, we must wait for a third, and so on.
This leads to a chain of alternating true intervals and back-
ward pointing added causality edges (Figure 2). Finally, this
chain must end in a true interval that includes the last state
of some process. Since any global state has to intersect this
chain, it must either satisfy the disjunctive predicate or it
must be inconsistent.

The only problem that remains is whether the chain of
true intervals can be selected efficiently. This is demon-
strated by an algorithm in [17] which achieves predicate
control if at all possible. The algorithm runs inO(n2p)
wherep is a bound on the number of false intervals in a
process.

5.3. Solving On-line Disjunctive Predicate Control

Without prior knowledge of the entire partial-order of
events, it is impossible to prevent a deadlock while adding
causal edges on-line [17]. An adversary can force the de-
bugger into making the wrong choice when presented with
multiple possible causal edges to add. Since the debugger
is unaware of the future computation, it is unable to avoid
creating ‘wait-for’ cycles with the as yet unrevealed partial-
order.

Therefore, we must assume that no process can wait in
a false interval. For example, in a two-process mutual ex-
clusion this would mean that a process cannot block in its
critical section. Note that this is an assumption that has been
made in traditional solutions to mutual exclusion.

Under this assumption, we follow the same approach of
constructing a chain of true intervals and backward point-
ing causality edges. One process starts in a true interval
and before it exits the interval, it must wait for another pro-
cess to enter its true interval. The selection of this process
may be made at random or by broadcasting a request to all
processes. Since any process must eventually enter a true

interval (by the assumption), there will be no deadlocks.

6. Example: Active Debugging of a Replicated
Server System

P3

P2

P1

P2

P3

P1

P2

P3

P1

P1

P2

P3

3

1 2

4

G H

a

b c

d

e

f

a

b c

d

e

f

a

b c

d

e

f

(c) Computation C

(a) Computation C (b) Computation C

(d) Computation C

Figure 3. Example: Distributed Debugging

We have provided the ability to observe and control a dis-
tributed computation both while being replayed and while
being run for the first time. However, the utility of these
abilities depends on how effectively they can be used in the
debugging process. We now discuss applications of predi-
cate detection, and both off-line and on-line predicate con-
trol while debugging distributed programs.

Our running example will be a replicated server system
with three server processesP1, P2 andP3. During debug-
ging, a trace of the distributed computationC1 was taken
as shown in Figure 3(a). The thicker intervals in the pro-
cess executions indicate intervals when the servers weren’t
available for service.

The system should have been designed to ensure that one
server was available at all times. So we run a predicate de-
tection algorithm onC1 (such as that in Section 4.2) to de-
tectbug1: “all the servers are unavailable”. We detect two
consistent global statesG andH , as shown in the diagram,
wherebug1 is possible.

Our next step is to controlC1 with the safety predi-
cate:“at least one server must be available at all times”.
Since this is a disjunctive predicate, we may use our off-
line algorithm to controlC1, and the resulting computationC2 is shown in Figure 3(b). Note how the control messages
from a to b and fromc to d ensure that global statesG andH are no longer consistent andbug1 doesn’t occur.

We now suspectbug2: “statesf ande occur at the same
time”. We run the predicate detection algorithm in Section
4.2 to detect thatbug2 is indeed possible inC2. We now
impose the required safety predicate that “e must happen



beforef ” and controlC2 using our off-line algorithm. The
resulting computationC3 in Figure 3(c) is found to be sat-
isfactory.

However, we suspect thatbug2 may have causedbug1.
We, therefore, return to our first computationC1 and apply
off-line control to it with the safety predicate: “e must hap-
pen beforef ” This leads to computationC4 in Figure 3(d).
Note how the new control message frome to f ensures thatG andH are inconsistent. So eliminatingbug2 also elimi-
natesbug1 and we conclude thatbug2 is the most important
bug.

Now that we have discovered a possible bug in the sys-
tem, we should check all future computations under the con-
straint that this bug does not occur. We, therefore, apply our
on-line algorithm with the predicate: “emust happen beforef ” while running the system to generate new computations.
If no more bugs are detected, our confidence thatbug2 is the
problem increases.

In this illustration, we have demonstrated three areas
where predicate control may be applied:

- Determining if a bug recurs under added safety con-
straints. (off-line)

- Determining the most important bug. (off-line)
- Preventing possible bugs in computations being run for

the first time. (on-line)

7. Conclusions

Though the focus of this paper has been on distributed
debugging, observation and control of distributed compu-
tations are useful abstractions that may be used for other
problems in distributed systems that are based on modeling
distributed computations (e.g. recovery). In this paper, we
have presented the difficulties and some solutions for ob-
servation and control. We have demonstrated applications
of this framework to distributed debugging. By presenting
these results, we demonstrate the need for attention to two
aspects of distributed debugging that have been largely ig-
nored in the past:
(1) modeling a computation to eliminate false causality and
studying how best to apply this model to distributed debug-
ging, and
(2) how to control running computations while debugging,
especially while replaying a known computation.
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