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A (MAX,+) ALGEBRA FOR NON-STATIONARYAND NON-DETERMINISTIC PERIODIC DISCRETEEVENT SYSTEMSPublication No.Guillaume Philippe Brat, Ph.D.The University of Texas at Austin, 1998Supervisors: Vijay K. GargMiroslaw MalekModern technology deals with complex problems which are often described in termsof discrete-valued variables. Furthermore, the values of these variables may besubject to important discontinuities. These systems, called discrete event systems(DES), are described as collections of events (such as the arrival of a message or thecompletion of a task). These events are characterized by their occurrences in time.In fact, occurrences mark changes in the state of the system.There has been an extensive body of work that analyzes a class of DES rep-resented by timed event graphs. One of the most promising approaches is basedon a particular algebraic structure that causes the equations describing a systemto be linear. This algebra, called the (max,+) algebra helps characterize DES bycomputing the occurrence times of all the events comprising the system. This ana-lytic approach has been augmented to include the ability of synthesizing controllersfor DES. A discrete event systems can be controlled by delaying some of its eventsvii



(obviously, the ones that are controllable) to force the system to match a speci�ctemporal behavior.The goal of this research is to extend this framework based on the (max,+)algebra so that it can apply to a larger class of systems. Therefore, this work de�nesa (max,+) algebra of periodic signals that can compute and synthesize controllersfor the temporal behavior of DES that have non-stationary delays (i.e., delays thatcan vary over time) and that may include some non-deterministic features.This dissertation increases the application domain of the (max,+) algebrato include timed discrete event systems in which delays can vary over time as longas they ultimately follow a periodic pattern. Delays are completely de�ned by two�nite lists of delay values. The �rst one consists of values that do not follow anyparticular pattern. They are applied only once (during what is called a transitoryphase). The second list de�nes a pattern that is repeated over time; this correspondsto the periodic phase of the delay. Unfortunately, the inclusion of time-varyingdelays results in the de�nition of a non-commutative algebra. This means that thealgorithms used in the traditional (max,+) algebra to compute the closure matrix ofa transition matrix of a system no longer apply. Therefore, this dissertation de�nesa new �xed-point algorithm that computes closure matrices for time-varying discreteevent systems based on their initial conditions.The main criticism about the (max,+) algebra is that it applies only to deter-ministic systems. This dissertation also de�nes a hierarchical modeling frameworkwithin which the (max,+) algebra of signals can be applied to non-deterministicmodels. Given the constraints of this algebra, it has been necessary to restrict thetype of non-determinism allowed in models. In essence, the impact of each non-deterministic part of a system has to be contained within an independent subnetthat can be reduced to a single place. The delay of this place is the result of a convo-lution operation on the delays in each of the paths in the current non-deterministicpart. The inf-convolution must be used to compute earliest �ring times.viii
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Chapter 1
Introduction
The research community has devoted a lot of attention to the modeling of com-plex systems. In fact, many communities research di�erent aspects of the analy-sis of complex systems. For example, the �eld of discrete event systems has seenresearch on performance analysis and controllability of a certain type of systems[6, 23, 29, 30, 37, 53, 54, 55, 61, 68]. The performance analysis aspect has beenresearched in other communities such as the real time system [3, 7, 8, 9, 10, 11, 33,36, 39, 41, 45, 49, 50, 51, 56, 58, 60, 62, 66] and the fault tolerant system [57] com-munities. The controllability aspect has originated in the control theory community.Both problems can also be seen as optimization problems which are studied in theoperation research community. Moreover, all these communities often use the samemathematical tools to solve di�erent problems, or di�erent aspects of a problem.The goal of this work is to study one of these mathematical tools, the (max,+)algebra, and extend its application to a class of systems called discrete event sys-tems (DES) A DES is a system for which events (such as the arrival of a client ina queue, the completion of a task, or sending a signal) cannot be represented by acontinuous variable. This work focuses on events that result in concurrent activitiesand synchronizations. There are many examples of such systems.1



Example 1 (Assembly line)Consider an assembly line (see Figure 1.1 in which a part of type A and a part oftype B are put together to form a �nal product. Assume that the operation takes �time units and that uA(t) (uB(t) respectively) denotes the number of parts of typeA (B respectively) arrived by time t and that y(t) represents the number of �nalproducts by time t.
Line B

Line A Final product line

RobotFigure 1.1: Assembly line.Then, the equationy(t) = minfuA(t� �); uB(t� �)grepresents the dynamic behavior of the assembly line over time. The quantities uA,uB , and y are called counters (i.e., they measure a number of parts). One can de�nethe dual problem by introducing dater functions, e.g., u0A(n) (u0B(n) respectively) isthe arrival date of the nth part of type A (B respectively) and y0(n) is the date ofproduction for the nth �nal product. Then, the system can be represented by thefollowing equation: y0(t) = � +maxfu0A(n); u0B(n)g.Example 2 (Throughput constraint)Consider a machine that can work on only one part at a time for a duration of �2



time units. Let u(t) be the number of parts arrived at time t and y(t) the numberof parts completed at time t. Then, using counters, the system can be representedby y(t) = minfu(t� �); y(t� �) + 1gor, dually using daters (0u(n) be the time of arrival of the nth raw part and y0(n) itscompletion time), by y0(n) = maxfu0(n) + �; � + y0(n� 1)g.
Example 3 (Interprocess communication)As shown in Figure 1.2, a processor A sends messages to a processor B as follows.

Processor A Processor B

message

acknowledgementFigure 1.2: Interprocessor communication example.Each outgoing message is placed in a queue (which is assumed to have su�cientcapacity). Assume that a message from A to B takes � time units. After sendingits message, A waits for an acknowledgment message from B (which takes � 0 timeunits) before sending its next message. Let u(n) be the time of arrival of the nthmessage in the queue and xA(n) be the time of departure from the queue of the nthmessage. Then, xA(n) = maxfxA(n� 1) + � + � 0; u(n)g.
Example 4 (Manufacturing process [23])Consider the manufacturing process described in Figure 1.3. Upon arrival (x1(k) is3



Set-Up MillingPart

Arrival Part

Completed

Machine Reset

Figure 1.3: Manufacturing process example.the time of arrival), parts are �rst set-up (s) in a machine queue, and then worked(w) in order of arrival. Let x2(k) represent the departure of the kth part from thequeue, and x3(k) its completion time. Each operation takes a constant amount oftime. However, the inter-arrival time (a) may vary due to the work 
oor schedule.Moreover, the machine reset time (r) is not constant either. We, however, assumethat both a and r ultimately follow periodic patterns. The delay functions arede�ned as follows: s(x) = x+ 1w(x) = x+ 4a(x(k)) = 8><>: x(k) + 5 if k is oddx(k) + 7 if k is evenr(x(k)) = 8><>: x(k) + 4 if k mod 5 = 0x(k) + 1 otherwisewhere k is the kth occurrence of the event type x. Then, the system is described bythe following equations.x1(k) = maxfx1(k � 1) + a(k); v1gx2(k) = 8><>: 8k > 1 : maxfx1(k) + s; x3(k � 1) + r(k � 1); v2gk = 1 : maxfx1(k) + s; v2gx3(k) = maxfx2(k) + w; v3g 4



All these examples share a common feature. They can be described using lin-ear equations in some algebra based on non-conventional operators. The \counter"equations can be expressed in an algebra with the min operator and the arithmeticaddition. The \dater" can be expressed in an algebra based on the max operator andthe arithmetic addition. Given these changes of operators, all these equations arelinear. This work focuses on \dater" equations, and thus, it is based on the (max,+)algebra. In fact, in this algebra, the analysis of most systems can be reduced to theresolution of the following equation:x = Ax� vwhere � represents the max operator.The (max,+) algebra has been applied to the study of DES [28, 29, 30].A comprehensive survey of this work can be found in [6] and [37]. Building onthese results, Cofer and Garg showed that (max,+) algebras can also be appliedto solve supervisory control problems for real-time DES [25, 27]. As Baccelli andGaubert, they see DES as �nite sets of events which occur in�nitely often in adiscrete time space. Thus, each event is completely de�ned by an in�nite sequenceof time occurrences. In a DES, some events cannot be controlled while others can.The problem of controlling a system consists of delaying controllable events (whichcan cause the indirect delay of uncontrollable events) to match a speci�ed temporalbehavior. Cofer and Garg show that the (max,+) algebra can be used as a frameworkfor controller synthesis.The main goal of this research is to de�ne a (max,+) algebra that works on a�nite representation of in�nite sequences of events (hence, allowing the automationof Cofer and Garg's algorithms for controller synthesis) and to extend the scope ofthe traditional (max,+) algebra to the analysis of DES with non-stationary delays(i.e., delays that vary over time). 5



1.1 Other Models for Discrete Event SystemsDiscrete event systems have been a subject of interest for di�erent research com-munities such as control theory, operation research, real time, and fault tolerance.Therefore, many techniques, with solid mathematical foundations, have been de-vised to study di�erent aspects of problems related to DES. This section describesseveral \families" of techniques, which are suitable, to some degree, for the timinganalysis or controller synthesis of timed DES.Classic stochastic models (such as queuing network, stochastic PN, Marko-vian and semi-Markovian models) are quite well adapted to evaluate the averageperformance of DES. This characteristic is useful for computing metrics such as themean cycle rate of a system, but it ignores extremal behaviors, which is detrimentalwhen assessing real time properties. Note that all of the other families discussed inthis section include some stochastic models.Most work on untimed DES is based on automata theory and formal lan-guages as described in the work of Ramadge and Wonham [64, 68] and others[15, 54, 55]. Events of a system are associated with transitions between statesof an underlying (often �nite) state automaton. The set of all possible event se-quences in a DES forms the language of the system. Automata are also frequentlyused to model real time systems. Thus, �nite state automata [3, 36, 42, 50, 51],timed automata [4, 5, 33, 46, 56, 61, 62], and hybrid automata [1, 2, 47] have beensuccessfully used to verify real-time properties in systems. Note that HyTech [47]can also synthesize controllers.The theory of Petri nets [63] has been used quite often to model and analyzeDES. Transitions in Petri nets (see Chapter 2 for details on Petri net theory) canbe regarded as events which occur when speci�c conditions (generally modeled withthe presence of tokens in places) are met. Further details on Petri nets can be foundin [59]. Besides the stochastic extensions to Petri nets, there have been two ways ofintroducing time in Petri nets: one is associating time with transitions (by setting6



an enabling time or a �ring time) [35, 65] and the other one associates time withplaces [31, 67]. Of interest among the models that associate time with transitionsis the work of Leveson and Stolzy which provided a basis for subsequent workson the analysis of safety properties in real time systems using Petri nets [57]. Intheir model, min and max �ring times de�ne ranges of �ring delays for transitions.This idea is also found in Modechart [50, 51]. Note that models based on (max,+)algebra are often speci�ed using a subclass of Petri nets called timed event graphs(see Chapter 2 for details) in which time is associated with places (meaning thatafter arriving in a place, a token has to wait a certain amount of time before beingable to participate in the enabling of the output transition of the place).1.2 Research ObjectivesThere are three objectives for this research. The �rst, and main, objective is toextend the traditional framework of the (max,+) algebra to the analysis of non-stationary, timed discrete event systems (i.e., systems in which delays can vary in aperiodic manner over time). The second objective is to provide a framework suitablefor the automation of the controller synthesis algorithms de�ned by Cofer and Garg.The last objective is to extend the class of analyzable systems to include systemswith non-determinism.The main contributions of this dissertation are:� the extension of the traditional (max,+) algebra to non-stationary, timed,discrete event systems� the implementation in C++ of this algebra using e�cient algorithms� the extension of the (max,+) algebra to non-deterministic systems
7



1.3 OrganizationChapter 2 presents the mathematical foundations of this work. Monoids and dioidsare introduced and their relationship with the (max,+) algebra is described. Sincethis algebra often relies on timed event graph representations of DES, Chapter 2o�ers an introduction to Petri net theory, and in particular timed event graphs. Fi-nally, elements of lattice theory are presented to support the synthesis of controllers.Chapters 3 and 4 are devoted to the de�nition of the (max,+) algebra ofperiodic signals. Chapters 3 de�nes and justi�es the notion of periodic signals aswell as some algorithms to manipulate their forms. Chapter 4 de�nes algorithms,their proof of correctness, and theorems on operators on periodic signals. Thecomposition of these operators are the basic elements of the transition matrices inthe (max,+) algebra of periodic signals.Chapters 5 and 6 focus on the use of the (max,+) algebra of signals fortiming analysis and controller synthesis. Chapter 5 presents the di�erent means ofcomputing the solution to the equationx = Ax� vwhich is the basis for any timing analysis. Two cases are studied. First, Jordan'salgorithm [40] is used for simple systems (systems with constant delays and non-stationary systems with few feedback loops). Second, an iterative algorithm thatworks for any system is described. Chapter 6 focuses on the implementation ofcontroller synthesis. It shows how the work of Cofer and Garg can be used eventhough the (max,+) algebra of signals is not complete.Chapter 7 explores issues related to non-deterministic systems. It shows thatthe (max,+) algebra can be used in a hierarchical framework to analyze systems inwhich non-deterministic behavior is allowed as long as it is well contained.Chapter 8 describes the implementation of the (max,+) algebra of signals inC++. 8



Finally, Chapter 9 summarizes the accomplishments of this research andproposes some future directions.

9



Chapter 2
Mathematical Foundations
This chapter reviews the fundamental algebraic tools used in our study of timed,discrete event systems (DES). The main di�culty encountered in the analysis oftimed DES resides in the de�nition of realistic mathematical models for those sys-tems. Using conventional arithmetic is bound to fail since it results in characterizinga system by non-linear equations. Furthermore, system states may change at irregu-lar time intervals and their values might be subject to discontinuous jumps. Eventssynchronization is also di�cult to handle in a conventional framework.In the 1970's, Cuninghame-Green observed that, for some DES, non-linearequations can be expressed linearly using an algebra in which sum and product arede�ned as maximization and conventional addition respectively. Cuninghame-Greenstudied this algebra, called the (max,+) algebra, in the framework of operationresearch [32]. His work was paralleled by the work of Gondran and Minoux on pathalgebras. They de�ne and use path algebras, which include a (max,+) algebra, tosolve complex graph theoretical problems such as the enumeration of elementarypaths in a graph, �nding the longest path in a weighted graph and many more [40].In the 1980's, the (max,+) algebra (and other \exotic" algebras based on asimilar concept) was re-discovered and applied to the analysis of DES by Cohen,Dubois, Quadrat, and Viot [28, 29, 30]. It eventually led to the formation of the10



\Max-Plus" working group and resulted in several dissertations [37]. The founda-tions of this �eld are described in a book by Baccelli, Cohen, Olsder, and Quadrat[6] and in the dissertation of Gaubert [37]. Later on, Cofer and Garg showed howthe (max,+) algebra can be used in the synthesis of controllers for DES [23, 25].The rest of this chapter is devoted to the mathematical tools supportingthe body of work in (max,+) algebra. The �rst section o�ers generalities aboutmonoids and dioids, and their roles in the (max,+) algebra, These tools provide themathematical foundations that yield linear equations for DES. The second sectiondescribes timed event graphs (TEG) and Petri nets (PN). Petri net theory is apopular framework to analyze DES. The works described in [6, 37] show how timedevent graphs translate naturally into (max,+) algebraic equations. The third sectionpresents an introduction to lattice theory, which is the mathematical support usedin the algorithms for controller synthesis [23, 24, 25, 26, 27].2.1 Monoids and DioidsThis section is an introduction to monoids, dioids, and the (max,+) algebra whichcan be used to model certain timed DES. Further details can be found in [6, 30].De�nition 2.1 A monoid is a set X endowed with a binary operator � such that1. the operator � is associative, and2. X contains an identity element " for �.We restrict ourselves to monoids that are commutative and idempotent.De�nition 2.2 A monoid (X ;�) is idempotent if8x 2 X : x� x = x.As shown in [23], idempotency implies that the identity element " is the only elementof an idempotent monoid (X ;�) that has an inverse with respect to �.11



De�nition 2.3 A dioid D endowed with two binary operations � and 
 (called\sum" and \product") is a dioid if the following axioms are satis�ed:1. (D;�) is a commutative, idempotent monoid (" is the identity element)2. (D;
) is a monoid (e is the identity element)3. 
 distributes over �, i.e., for all a,b,c 2 D,a
 (b� c) = (a
 b)� (a
 c)(b� c)
 a = (b
 a)� (c
 a)4. the identity element for the sum is absorbing with respect to the product, i.e.,a
 " = "
 a = "Dioids are related to the concept of semi-rings. A semi-ring is a dioid for whichthe sum operator is not necessarily idempotent. Since idempotency precludes theexistence of inverses (except for the trivial case), a dioid cannot be embedded in aring. A natural ordering can be associated with any dioid because of the propertiesof the � operator (for proof see [23]).Theorem 2.1 If (D;�;
) is a dioid then the relationx � y , x� y = yde�nes a partial order on D.Axiom 3 (distributivity) ensures that products are isotone with respect to this order,i.e., for all a; x; y 2 D, x � y ) ax� ay = a(x� y) = ay.12



2.1.1 The (max,+) AlgebraLet " = �1, e = 0, and Z be the union of the set of all integers and f"g endowedwith the maximization as the sum operator and the conventional addition as theproduct operator, i.e., for all a; b 2 Z,a� b = max(a; b)a
 b = a+ bis a commutative dioid the (max,+) algebra.This algebra is one of many exotic algebras which have been applied tooptimal control problems, asymptotic analysis in statistical physics, and decisionproblems [38].The (max,+) algebra on Z can be extended to matrices as follows. Let1 � i; j � m. Then,� 8A;B 2 Zm�n, (A�B)ij = aij � bij� 8A 2 Zm�p and B 2 Zp�n, then (A
B)ij =Lpk=1 aik 
 bkj(ZN�N ;�;
) is also a dioid, where the identity elements for � and 
 are, respec-tively, " = 0BBBB@ " � � � "... ..." � � � " 1CCCCA and I = 0BBBB@ e ". . ." e 1CCCCA .It has been shown in [6], that, if the delays and synchronizations in a systemare represented by a transition matrix A 2 (ZN�N ;�;
), then the problem can beposed as a set of equations xi = M1�j�N Aijxj � vi,where 1 � i � N , the xi's are the events characterizing the system and the vi's arethe initial conditions in the system. This system of equations can be re-written asx = Ax� v (2.1)13



the least solution [29] of which is A�vwhere A� =Mk�0Ak.A�, called the *-delay matrix of A, gives the maximum delay between event occur-rences along in�nite paths. Therefore, A�v gives the earliest occurrence times forthe events in the system.2.2 Petri Nets and Timed Event GraphsPetri nets are widely used as a graphical tool to model distributed processes andDES. A comprehensive review of their de�nition and use can be found in [59].A Petri net is a bipartite graph (G = (V;E)) in which vertices (V ) areeither places or transitions and edges (E) may go from transitions to places or fromplaces to transitions. Initially, places are marked with zero or more tokens. Thepresence of tokens in a place indicates that some condition, or state, in the processis satis�ed. Transitions are normally associated with events. A transition may beactivated, or �red, when all its predecessor places contain at least one token (i.e.,some conditions are met that cause an event to occur). Upon �ring, one token isremoved from each place preceding the transition and one token is added to each ofits successors. Formally, a Petri net is a four-tuple P = (P; T; �; �) where :� P is a set of objects called place (P 6= �),� T is a set of objects called transitions (T 6= � and P \ T = �),� � � P � T (forward incidence relation), and� � � T � P (backward incidence relation).14



There exist two approaches to associating timing information with Petri nets.Transitions can be extended with enabling times and/or �ring times and places canbe extended with delaying times. Our model associates time with places. Upon thearrival of a token in a place, a timer (corresponding to the delay de�ned for theplace) is associated with the incoming token. The token cannot participate to theenabling of the output transitions until the timer has elapsed.Figure 2.1 illustrates the basic constructs of Petri nets. A transition withmultiple successors, as in Figure 2.1(a), models the start of concurrent activities.A transition with multiple predecessors, as shown in Figure 2.1(b), indicates thesynchronization of some concurrent activities. An event graph only uses these twoconstructs, which makes it suitable to model only deterministic systems. Since thereis a unique path between two transitions, the behavior of a timed event graph canbe captured by a transition matrix A in which each element Aij corresponds tothe delay to go from transition j to transition i. Therefore, in Equation 2.1, A�vrepresents the earliest �ring times of the transitions in the system.

(a) concurrency (b) synchronization (c) competition (d) merge

timed event graphs

Figure 2.1: Logical constructs in Petri nets.Traditional Petri nets also use the following two constructs. A place withmultiple successors, as shown in Figure 2.1(c), indicates a choice of paths that atoken may follow, thereby allowing the modeling of non-deterministic behaviors.15



A place with multiple predecessors, as in Figure 2.1(d), indicates a return to adeterministic behavior. Obviously, such nets cannot be represented by a transitionmatrix since the path between two transitions may not be unique. Therefore, suchconstructs are not covered by the traditional literature on (max,+) algebra.As an illustration of timed event graph, Figure 2.2 presents the TEG for themanufacturing process example de�ned in Chapter 1. Transition t1 corresponds to
t 1

t 2 t 3
s w

a r

Figure 2.2: Timed event graph of a manufacturing process.the arrival of parts. Transition t2 represents a part leaving the queue, and transitiont3 the completion of a part. As mentioned before, each operation takes a constantamount of time, except for the inter-arrival time (a) and the machine reset time (r).Both of these delays depend on time.2.3 Elements of Lattice TheoryThis section reviews results of lattice theory and their application to �nding whenfunctions have �xed points. This is central to the de�nition of the algorithms ofCofer and Garg [23, 25] that compute extremal controllers for DES. Further detailscan be found in [53].Let (X ;�) be an idempotent, commutative monoid and its naturally inducedpartial order. For any pair (x; y) in X , the least upper bound with respect to theorder (supfx; yg) is equal to x � y. If X is complete, for any set X � X , supX isde�ned by supX = Mx2X x.16



The greatest lower bound or infX is de�ned asinfX = supfz 2 X j z � x8x 2 Xg.X is a complete lattice if supX and infX exist for any X � X . It is easy to verifythat a complete idempotent commutative monoid is also a complete lattice.To introduce the theory related to �xed points, we need to provide the fol-lowing de�nitions.De�nition 2.4 A function f : X ! X is idempotent if8x 2 X : f(x) = f(f(x)).De�nition 2.5 A function f : X ! X is monotone if8x; y 2 X : x � y ) f(x) � f(y).De�nition 2.6 For a complete lattice X , a function f : X ! X is disjunctive if8X � X : f(supX) = supx2Xff(x)g.De�nition 2.7 For a complete lattice X , a function f : X ! X is conjunctive if8X � X : f(infX) = infx2Xff(x)g.We now introduce the notions of dual and co-dual.De�nition 2.8 Consider a complete lattice (X ;�) and a function f : X ! X . Thedisjunctive closure of f , denoted ft, is de�ned byft(x) = Gi�0 f i(x).De�nition 2.9 Consider a complete lattice (X ;�) and a function f : X ! X . Iff is disjunctive then its dual, denoted f?, is de�ned byf?(x) = supfx 2 X j f(x) � yg.If f is conjunctive then its co-dual, denoted f>, is de�ned byf>(x) = inffx 2 X j y � f(x)g.17



As described in [53], DES are often speci�ed by a system of inequations overan underlying lattice of the formffi(x) � gi(x)gi�n. (2.2)The extremal solutions of such equations can be computed using �xed point algo-rithms as shown in the following two theoremsTheorem 2.2 Given the system of inequations 2.2 over a complete lattice (X ;�),let Y = fy 2 X j 8i � n : fi(x) � gi(y)gbe the set of all solutions of the system of inequations. Consider the set of all �xedpoints of functions h1 and h2 de�ned byh1(y) = infff?i (gi(y))g; Y1 = fy 2 X j h1(y) = ygh2(y) = supfg>i (fi(y))g; Y2 = fy 2 X j h2(y) = yg.1. If fi is disjunctive and gi is monotone, for all i � n, then supY 2 Y , supY1 2Y1, and supY = Y1.2. If fi is monotone and gi is disjunctive, for all i � n, then inf Y 2 Y , inf Y2 2Y2, and inf Y = Y2.Under these conditions, the induced functions h1 and h2 are monotone, which guar-antees the existence of supremal and in�mal �xed points. Therefore, when f andg satisfy these conditions, extremal solutions of 2.2 exist and correspond to the ex-tremal �xed points h1 and h2. They can be computed using the following algorithm.Theorem 2.3 Consider the system of inequations 2.2 over a complete lattice (X ;�)and the set Y of all solutions.1. Let fi be disjunctive and gi be monotone. Consider the following iterativecomputation: 18



� y0 = supX� yk+1 = h1(yk)If ym+1 = ym for some m 2 N then ym = supY .2. Let fi be monotone and gi be conjunctive. Consider the following iterativecomputation:� y0 = inf X� yk+1 = h2(yk)If ym+1 = ym for some m 2 N then ym = inf Y .As detailed in [23], the controllability of a set of behaviors for a timed DES isde�ned by an inequation of the form given by (2.2) on the lattice of time sequences.In some cases, the desired behavior is not controllable. However, using Theorems2.2 and 2.3 on the lattice of time sequences, Cofer shows that there exist �xed-pointalgorithms to compute the extremal controllable behaviors. Chapter 6 gives detailson how Cofer's theory can be implemented in the (max,+) algebra of signals. Thenext three chapters describe the (max,+) algebra of signals and how it can be usedto perform timing analyses of timed DES.
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Chapter 3
Periodic Signals
There are two reasons for de�ning a new (max,+) algebra. First, traditional (max,+)models work for systems with constant delays, but not for non-stationary systems(i.e., systems in which delays might change over time). Second, Cofer and Garg havede�ned algorithms for the synthesis of controllers for DES using a (max,+) algebrathat works on in�nite time sequences. The implementation of these algorithmscannot be done unless there exists a �nite representation of in�nite time sequences.This chapter de�nes the concept of periodic signals, where a periodic signal isa �nite representation of an in�nite, periodic time sequence. Periodic signals are alsoused to specify time-varying, yet periodic, delays. This additional use of periodicsignals yields allows the representation of time sequences that are not necessarilynon-decreasing. The reason for this is that periodic delays are time functions thatincreases and decreases periodically. However, the time sequences corresponding toevents of the system under analysis are non-decreasing time sequences. Therefore, interms of events, the expressive power of our algebra is equivalent to non-decreasingformal series with one variable described in [6, 37]. This work was presented in[19, 20, 21] and to a certain extent in [18].
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3.1 In�nite Sequences and DESAs in previous works on (max,+) algebra [6, 37], DES are de�ned by sets of events.Events may mark the start or the synchronization of concurrent activities, or simplythe achievement of signi�cant milestones (such as the completion of a part for ex-ample) in these systems. In any case, each event is completely characterized by theinstants in time of its occurrences. Even though it is not a necessary requirement,time is assumed to take values in the set of natural numbers, rather than the set ofreal numbers. The (in�nite) list of the time instants in the order of occurrences ofan event forms an in�nite sequence of natural numbers, called a time sequence.A time sequence is in general a non-decreasing sequence, i.e., the k + 1thoccurrence of an event cannot happen before the kth occurrence of the same event.Possibly-decreasing sequences can be obtained because of the use of time-varyingdelays in timed event graphs. For example, if the kth token arrives in a place onetime unit before the k + 1th token and the delay values at indices k and k + 1 arefour and two time units respectively, then the output transition of the place will �re�rst for the k+1th token and then for the kth token. This case can be dealt with byre-ordering the sequence associated with that transition, but, for the sake of clarity,this work is restricted to systems that yield only non-decreasing sequences. Thesesystems are also called monotonic systems. They correspond to a �rst-in-�rst-outpolicy being associated with the token queue in places of timed event graphs.In a TEG, if a token is initially present in a given place, it immediatelycontributes to the enabling of the output transition of the place, even if the place'sdelay is not zero. If several tokens are initially present in the same place, they�re one after the other without delays. Their �ring order is inconsequential sincetokens are anonymous. However, these tokens always precede any incoming token.The e�ect of k initial tokens on an input sequence (representing the time of arrivalsof incoming tokens) is to produce an output sequence consisting of a pre�x of k"'s followed by the sequence obtained by applying the delay function to the input21



sequence.Let N be the set of natural numbers, N� = N n f0g, and N = N [f"g (withthe obvious de�nition of N�). Then, a sequence is formally de�ned as follows:De�nition 3.1 (Non-decreasing Sequences)A non-decreasing sequence X is de�ned as a function from N�, the set of indices,to N such that 8k � 1 : X[k + 1] � X[k].Since, for all a 2 N , " � a, this de�nition forbids sequences of the type f"; 1; "; 2; : : :gor of the type f1; 4; 2; 5; : : :g. The only sequences allowed are sequences consistingof a list of "'s followed by a non-decreasing list of natural numbers.In [23], Cofer de�nes a (max,+) algebra on non-decreasing sequences. Hiswork applies to the veri�cation of timing properties as well as the synthesis ofcontrollers for DES. Unfortunately, Cofer's work has not yet been implementedbecause of the impossibility of �nding a �nite representation for arbitrary non-decreasing sequences. However, it is possible to de�ne a �nite representation forcertain classes of non-decreasing sequences (e.g., for sequences exhibiting some typeof periodic pattern).De�nition 3.2 (Periodic Non-decreasing Sequences)A non-decreasing sequence X is periodic if and only if9k 2 N�; C; n 2 N : (8i > n : X[i+ k] = X[i] + C).Observe that periodic sequences can be split into a �nite initial sequence (called atransitory sequence) and an in�nite sequence (representing the periodic part of theoriginal sequence). For example, the sequence f4; 7; 9; 11; 13; : : :g represents eventoccurrences at time four, seven, and every two time units from then on. Although,this sequence is in�nite, it can be represented by an initial �nite sequence f4; 7g and22



an in�nite periodic sequence f9; 11; 13; : : :g. By exploiting these characteristics, itis possible to de�ne a �nite representation of an in�nite, non-decreasing, periodicsequence.3.2 De�nition of Periodic SignalsIt is obvious from the previous discussion on sequences that a periodic signal, beingthe �nite representation of a periodic sequence, consists of two lists representing thetransitory and periodic parts of a sequence. Before, giving a formal de�nition of aperiodic signal, observe that time-varying delays also need to be represented in a�nite manner. Therefore, it seems logical to try to use a common representationfor both event signals (for event sequences) and delay signals (for delay functions).This requires a new de�nition of a periodic sequence (namely, abandoning the mono-tonicity requirement). Assume that Z is the set of integers.De�nition 3.3 (Periodic Sequences)A periodic sequence X is de�ned as a function from N�, the set of indices, to Nsuch that1. 8k � 1 : (X[k] = ")) (8j < k : X[j] = "), and2. 9k 2 N�; n 2 N;C 2 Z : (8i > n : X[i + k] = X[i] + C).This new de�nition guarantees that "'s appear only as a pre�x of a sequence andthat the subsequent sequence of natural numbers can decrease and increase at will.Note that a sequence takes its values in N ; hence, " is the only negative valueallowed in a sequence.Assume that Z = Z [ f"g. Then, the formal de�nition of a periodic signalsis as follows.De�nition 3.4 (Periodic Signals)A signal is de�ned as a tuple (T ;P ) where23



1. T = (ti 2 Z; 1 � i � n) is a �nite list of transitory steps such that81 � k � n : (tk = ")) (8j < k : tj = "),2. P = (pi 2 Z; 1 � i � m) is a �nite list of periodic steps such thatk=mXk=1 pk � 0, and3. any partial sum of consecutive steps (starting with the �rst transitory step) isnon negative.Each (transitory or periodic) step represents the time elapsed between occur-rences of consecutive indices of a same type of events. Therefore, the values of thesequence underlying a signal are obtained by summing steps up to the right index.For example, the sequence X = f4; 7; 9; 11; 13; : : :g, can be represented by the signalx = ((4; 3); (2)).It is easy to verify that to each periodic signal is associated a unique peri-odic sequence. In the rest of this dissertation, such sequence is referred to as theunderlying sequence of a signal. Given a signal x = (T ;P ), the underlying sequenceX of x can be constructed as follows.Let the list L = T:P! (using traditional notations from automata theory).If P is empty, then the list f0g is used instead. X is built as follows:X[0] = 0X[i] = X[i� 1] + L[i] for i � 1The value at index k of a sequence X associated with a signal x can be calculatedusing at most O(m+ n) operations. Indeed,� if k � n, x[k] =Pki=1 ci,� otherwise, x[k] =Pni=1 ci+ q�Pmi=1 pi+Pki=n+qm pi, where q = b(k�n)=mc.24



Note that signals are always represented with symbols in lower case (e.g., x) andtheir underlying sequences are represented by the same symbol in upper case (e.g.,X). This will be the case in the remaining of this dissertation unless indicated so.As in the traditional (max,+) algebra, there is a natural ordering on periodicsignals.De�nition 3.5 (Signal Ordering)For any given periodic signals x and y 2 Zx � y , 8i � 1 : X[i] � Y [i].3.3 Terminology and Spatial RepresentationThe goal of this section is to provide the reader with the basic terminology to followthe technical discussions in the rest of this dissertation. The de�nitions in thissection are widely used to described the algorithms used in the implementation ofthe (max,+) algebra of periodic signals.De�nition 3.6 (Notations)� The function T (x) maps a signal x = (T ;P ) to its transitory sequence T .� The function P (x) maps a signal x = (T ;P ) to its period P .� The slope of a periodic signal x such that P (x) = (p1; : : : ; pm) is de�ned as�(x) = 1m mXi=1 pi.� jLj is a function returning the length of a list L of steps.For example, consider the periodic signal x = ((4; 7); (2; 1; 3)), then� T (x) = (4; 7) and jT (x)j = 2, 25



� P (x) = (2), jP (x)j = 1, and �(x) = 2.Note that, in this work, signals have non-negative slopes since the sum of the ele-ments of the period must be positive or zero.De�nition 3.7 (Sets of Periodic Signals)1. Z is the union of the set of periodic signals as in De�nition 3.4 and the signal" associated with the in�nite sequence f"; "; : : :g.2. N � Z is the set of periodic signals where non-" steps are natural numbers;these signals are called monotonic signals.3. P is the set of periodic signals with a zero slope, i.e., P = fz 2 Z : �(z) = 0g.The set N is the set of periodic signals characterizing events in a DES. These signalsare also called input signals in the rest of this work. The set P is the set of periodicsignals characterizing time-varying delays. These signals are also called delay signalsin the rest of this work. It is easy to verify that the order relation de�ned in theprevious section de�nes only a partial order in Z.The understanding of algorithms presented in subsequent sections is facil-itated by the following two-dimensional representation of periodic signals. Thehorizontal axis represents event indices, while the vertical axis represents time. Fig-ure 3.1 illustrates the representations of two signals: an input signal x = ((2); (1))and a delay signal y = ((1); (2;�2)). The time values for x's occurrences are rep-resented with black dots, and the time values for y's occurrences are representedwith white dots. Observe that x is a monotonic signal, and hence, its occurrencetimes correspond to instants in time. Signal y however is not monotonic since allthe odd-indexed occurrences happen at time four and all even-indexed occurrenceshappen at time six. Therefore, its time values really correspond to the values of thedelay at each index. 26
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eventsFigure 3.1: Space representation of periodic signals.3.4 Canonical FormConsider the signals x = ((2; 3); (1; 3)) and y = ((2); (3; 1)). It is easy to see thatsequences corresponding to these signals are identical. This leads to the followingde�nition.De�nition 3.8 (Equivalence)The signals x and y are equivalent (denoted by x � y) if their sequences X and Yare equal, i.e., 8x; y 2 Z : x � y , X = Y .The following lemma speci�es two basic equivalence properties for signals.These properties form the basis for the de�nition of canonicity. The proof of Theo-rem 3.1 also shows that these properties are the only possible forms of equivalences.The lemma uses the traditional notation of automata theory, i.e., x:y is the list ob-tained by concatenating list x and list y, and xi is the list obtained by concatenatingi lists equal to x. 27



Lemma 3.1 Let T , P , and D be �nite lists. The following properties on signalequivalence hold:1. (T ;P ) � (T ;P j) for any j > 0.2. (T:D;P:D) � (T ;D:P )Proof: Part 1. Observe that the list P! is identical to (P j)!.Part 2. Again, observe that the list L constructed for both signals is identical.Since there are many signal representations of a same sequence, it is naturalto consider whether there is a canonical signal for a sequence. This question isaddressed by the following de�nition.De�nition 3.9 (Canonicity)A signal x = (T ;P ) is called canonical if the following conditions are true.1. There does not exist any positive natural j such that the last j numbers of Tmatch the last j numbers of P .2. There does not exist a list Q and a number i > 1 such that P = Qi.In the previous example, signals x = ((2; 3); (1; 3)) and y = ((2); (3; 1)) areequivalent, but x is not canonical while y is canonical. The following theorem provesthe uniqueness of the canonical form.Theorem 3.1 If x and y are canonical, and x � y, then x = y.Proof: Assume that x and y are two canonical signals that are also equivalent, i.e.,their underlying sequences (X and Y respectively) are equal. Assume also that xand y are di�erent, i.e., T (x) 6= T (y), or P (x) 6= P (y).28



� T (x) 6= T (y)Assume if possible, that one is not a pre�x of the other. This implies that thereexists i such that T (x)[i] 6= T (y)[i]. However, this implies that the sequencesfor x and y are di�erent, which violates the equivalence assumption.Now assume that T (x) is a proper pre�x of T (y). Using the traditional nota-tion of automata theory (i.e., u:v is the concatenation of u and v), the followingreasoning proves that y violates Property 1 in De�nition 3.9. Let � representan empty list.9z 6= � : T (y) = T (x):z ) 9w : P (x) = z:w(because x is canonical)) 9w : P (x)jP (y)j+1 = z:(w:z)jP (y)j:w) 9w : z:P (y)jP (x)j:w = z:(w:z)jP (y)j:w(because x � y)) 9w; v : z:P (y)jP (x)j:w = z:(v:z)jP (x)j:w) 9v : P (y) = v:zThus, according to Property 1 of De�nition 3.9, y is not canonical.� T (x) = T (y)Again, if P (x) and P (y) are not identical, and one of them is not a pre�x ofthe other, then x and y are not equivalent.If one is a pre�x of the other, the equivalence of x and y yields that the signalwith the longer pre�x is not canonical.
Algorithm 3.1 converts a signal to its canonical form. It assumes that signalx is of the form ((t1; : : : ; tn); (p1; : : : ; pm)). The complexity of Algorithm 3.1 is29



O(m+ n) because Step 1 uses a O(n) algorithm that spans the transitory sequenceand Step 2 usesO(m) algorithm. The proof of its correctness is given by the followingtheorem.Theorem 3.2 Algorithm 3.1 returns a canonical signal that is equivalent to itsinput signal.Proof: From Lemma 3.1, each step in Algorithm 3.1 preserves the equivalenceof signals. It remains to be shown that neither Property 1 nor Property 2, fromDe�nition 3.9, is applicable to the signal obtained after the second step. Clearly,Property 2 is not applicable since the algorithm chooses the largest i such thatQi = P (x). Property 1 is also not applicable, because if a non-empty tail of T (x)matches that of Q, then it also matches that of P (x). However, that is not possibleafter Step 1 has been applied.
Algorithm 3.1 Canonize(signal x):f 1. if (cn = pm) thenT(x) := (c1; : : : ; cn�1);P(x) := (cn; p1 : : : ; pm�1);Update values for n, pi's, and ci's;re-iterate Step 1;2. /* Find largest i and Q such that Qi = P */2.1. curr := 1; last := 1;2.2. for i from 2 to jP (x)jif (P(x)[i] = P(x)[curr]) thenif (curr = last) then curr := 1;else increment curr;if (i = jP (x)j) then last := jP (x)j;go to Step 2.3.;else last := i; curr := 1;2.3. restrict P(x) to elements from 1 to last;g 30



Canonization gives an easy method to check if two signals are equivalent: can-onize both signals, and perform a straight comparison of their transitory sequencesand periods.3.5 Homogeneous Periodic SignalsConsider the signals x = ((4; 3); (1; 2)) and y = ((2); (3; 1; 5)). It is di�cult tocompare these signals because their transitory sequences and periods have di�erentlengths. It is easier to compare them by modifying their representations as follows:x = ((4; 3); (1; 2; 1; 2; 1; 2)) and y = ((2; 3); (1; 5; 3; 1; 5; 3)); hence, the following def-inition.De�nition 3.10 (Homogeneous Signals)Two signals x and y are said to be homogeneous to each other ifjT (x)j = jT (y)j and jP (x)j = jP (y)j.Homogenizing two signals can be performed using Algorithm 3.2 describedbelow. The following theorem proves the correctness of Algorithm 3.2 that homog-enizes two signals.Theorem 3.3 1. Algorithm 3.2 returns homogeneous signals that are equivalentto its inputs.2. There does not exist a pair of homogeneous signals equivalent to, and withshorter transitory sequences and shorter periods than the pair of homogeneoussignals returned by Algorithm 3.2.Proof: From Lemma 3.1, each step in Algorithm 3.2 preserves the equivalenceof signals. It remains to be shown that neither Property 1 nor Property 2, fromDe�nition 3.9, can be applied to the signals obtained after the third step whilestill preserving their homogeneity. Clearly, Property 1 is not applicable since T1 is31



Algorithm 3.2 homogenize(signal x,y):f 1. Canonize(x) and canonize(y);/* Assume that T (x) > T (y) */2. Find U and P such that P (y) = U:Pand jT (y):U j = jT (x)j;Set T (y) to T (y):U ;Set P (y) to P:U ;3. k := lcm(jP (x)j,jP (y)j);i := k=jP (x)j;j := k=jP (y)j;Set P (x) to P i(x);Set P (y) to P j(y);gthe transitory sequence of the canonical form of x1 and it remains unchanged byAlgorithm 3.2. Property 2 is also not applicable since the smallest i and j such thatP i(x) = P j(y) is chosen in Step 3.Let n = jT (x)�T (y)j and m = jP (x)�P (y)j. Clearly, Step 1 is of O(m+n)complexity, and Step 2 is of O(n) complexity. Step 3 consists of the following threeoperations:1. the computation of the least common multiple of jP (x)j and jP (y)j (O(m2)complexity),2. the extension of P (x) by a factor of at most jP (y)j (O(m) complexity), and3. the extension of P (y) by a factor of at most jP (x)j (O(m) complexity).Therefore, the complexity of Step 3 is bounded by O(m2), and hence, the �nalcomplexity of Algorithm 3.2 is O(m2 + n).32



3.6 Related WorkThe traditional (max,+) algebra [6, 37] relies on the concept of formal series, whichare related to our de�nition of signals. A formal series is a polynomials = Mn;t2Z s(n; t)
n�twhere s(n; t) = e or ", and 
 (�) spans an index (time) space. A monom 
i�j of aformal series s is equivalent in the signal notation, to stating that the sequence S issuch that S[i] = j.Formal series are a generalization of rational signals, which are polynomialsin 
. Thus, the rational signal equivalent to the formal seriess = Mn;t>0 s(n; t)
n�tis s =Mn>0 tn
n.Furthermore, a series s is said to be periodic, if and only if there exist two poly-nomials p and q and a monomial r such that s = p � qr�. These series are callednon-decreasing ultimately periodic series, and they are equal to rational series inthe Minax[[
; �]] semi-ring. These series are equivalent to periodic signals.For example, consider Example 5.42 in page 264 of [6] which discusses thepossible representation of a rational series a. One of the representations of a isa = p� qr� where p, q and r are as follows:p = e� 2
2 � 3
5 � 4
6 � 6
8 � 7
11q = 8
12(e� 1
2)r = 2
3This polynomial corresponds to the following time sequenceA = f0; 2; 2; 2; 3; 4; 4; 6; 6; 6; 7; 8; 8; 9; 10; 10; 11; 12; 12; : : :g33



which corresponds to the signala = ((0; 2; 0; 0; 1; 1; 0; 2; 0); (0; 1; 1)).Similarly, a signal x such that jT (x)j = n and P (x) = (p1; : : : ; pm) can be convertedinto a rational series by applying the following transformations:p = e� ( nMi=1X[i]
i)q = 
n( mMi=1X[n+ i]
i)r = ( mXi=1 pi)
mApplying these transformations to the signal a = ((0; 2; 0; 0; 11; 0; 2; 0); (0; 1; 1))yields p = e� 0
1 � 2
2 � 2
3 � 2
4 � 3
5 � 4
6 � 4
7 � 6
8 � 6
9q = 
9(6
1 � 7
2 � 8
3)r = 2
3Using the domination rule de�ned in [6], p can be reduced top = e� 2
2 � 3
5 � 4
6 � 6
8.Moreover, qr� = 
9(6
1 � 7
2 � 8
3)(2
3)�= (6
10 � 7
11 � 8
12)(2
3)�= 6
10 � 7
11 � 8
12 � (8
13 � 9
14 � 10
15)(2
3)�= 6
10 � 7
11 � (8
12 � 8
13 � 9
14)(2
3)�(because 8
122
3 = 10
15)= 6
10 � 7
11 � (8
12 � 9
14)(2
3)�(because 8
12 dominates 8
13)= 6
10 � 7
11 � 8
12(e� 1
2)(2
3)�34



Therefore,p� qr� = e� 2
2 � 3
5 � 4
6 � 6
8 � 6
10 � 7
11 � 8
12(e� 1
2)(2
3)�= e� 2
2 � 3
5 � 4
6 � 6
8 � 7
11 � 8
12(e� 1
2)(2
3)�(because 6
8 dominates 6
10)Hence, p� qr� is equal to the formal series a.Though both representations are similar, their e�ciency is quite di�erent. Onone hand, the polynomial representation is more e�cient for signals that containlots of zero steps (since those are omitted). However, this situation does not oftenarise when analyzing real-time systems. Indeed, a common assumption in real-timesystems is that two occurrences of a same event cannot happen at the same time(because they are not distinguishable). Moreover, the presence of zero steps in anevent usually results from the presence of zero steps in an input signal. Since this willnot arise in real-time systems, zero steps are unlikely to appear in our analysis. Onthe other hand, the signal representation can be done using arrays of integers whichis more e�cient that the implementation of a polynomial which requires arrays ofpairs of integers. It is likely that, for the systems under consideration, the polynomialrepresentation will require twice as much space as the signal representation.Some might also question the need to represent the transitory part of asignal. Most of the traditional (max,+) algebra focuses on the periodic regime of asystem by computing eigenvalues, eigenvectors, and cyclicity. This is unfortunatelynot enough for real-time systems where local extremal values are important becausethey can lead to overloads. Predictability in all circumstances is more importantthan knowing the average behavior. Therefore, computing the transitory part isnecessary even though it might be arbitrarily long, especially when the slopes oftwo synchronizing signals are close to each other.There exists a more general class of pseudo-periodic series, called ultimatelygeometric series (see Chapter 5 of [37]). They are equal to rational series in the35



Rmax[[X]] semi-ring. These series can describe time sequences that are not neces-sarily non-decreasing. Although, this feature is important in dynamic programmingor language theory applications, it is not necessary when modeling real-time sys-tems. As shown in the next chapter, in the (max,+) algebra of periodic signals,only delay signals (which speci�es variable delays in systems) exhibit decreasingsubsequences.
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Chapter 4
A (max,+) Algebra of Signals
This chapter describes operations on signals for the algebraic representation ofTEGs. It de�nes a max operation to model synchronization, a backshift operatorto represent the presence of initial tokens, and a delay operation to model delays.The goal is to de�ne a dioid that works for functions (namely, delays andbackshifts) on monotonic, periodic signals. Therefore, this chapter de�nes not onlyfunctions on monotonic, periodic signals, but also operations (maximization andcomposition) on those functions. Since periodic signals are used to model bothinput signals (i.e., the �nite representation of event occurrence sequences de�ned byN ) and delay signals in P (characterizing the delays applied to input signals), theoperations are described for general periodic signals (or Z) when possible.After de�ning the maximization, delay, and backshift operations on periodicsignals, this chapter presents the (max,+) algebra of periodic signals and illustratesit with the manufacturing process example. The chapter concludes by comparingthe complexity of the algorithms presented here with the algorithms de�ned byGaubert in [37]. The algorithms presented in this work appear in [19, 20, 21]
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4.1 Maximization OperationThis section de�nes a maximization operation on periodic signals in Z. This oper-ation can then be used to de�ne a maximization operation on monotonic, periodicsignals in N as well as a maximization operation on delay functions on those signals.The �rst subsection de�nes the operation and presents an algorithm to implementit. Then, properties of the maximization operation are established.4.1.1 De�nition and AlgorithmDe�nition 4.1 (Maximization)Given two signals x and y in Z, the signal z resulting from the maximization (de-noted �) of x and y is de�ned as the pointwise maximization of the underlyingsequences of x and y. I.e., z = x� yis the canonical signal associated with the sequenceZ = fZ[i] = X[i] � Y [i]; i � 1g.The next step is to show that the maximization of two signals in Z resultsin a signal in Z. Without loss of generality, the proof is done on homogeneoussignals. Non-homogeneous signals can always be made homogeneous by using thehomogenize function. Moreover, the closure of the max operation is quite obviousfor signals with equal slope. This is however not the case for signals with di�erentslopes. Intuitively, the next lemma states that, if two periodic signals x and y aresuch that the slope of x is greater than the slope of y, then the signal x� y is equalto x for indices su�ciently large. The signal x is said to eventually dominate signaly. The lemma is best understood once the concept of distance of a periodic step tothe slope of a signal is de�ned.De�nition 4.2 (Distance of a periodic step to a slope)For any periodic signal x, the distance d(i) of a periodic step pi (in P (x)) to the38



slope of x (�(x)) is de�ned as follows:81 � i � m : d(i) = iXk=1 pk � i�(x)Note that the distance of a periodic step to the slope of a signal x canbe positive or negative. A positive (negative) distance indicates that the pointcorresponding to the periodic step in the spatial representation lies above (belowrespectively) a straight line de�ned by the equation x0 + i�(x) where x0 is thelast point of the transitory sequence of x. The next lemma relies on the conceptof distance to compute an upper bound of the index at which a signal e�ectivelydominates another signal. For any periodic signal z, let S(z) be the set of distancesof the periodic steps to the slope of the signal z, i.e.,S(z) = f iXk=1 pk � i�(z); 1 � i � m; pi 2 P (z)g.Lemma 4.1 Let x and y be two homogeneous, periodic signals such that T (x) =(x0), T (y) = (y0), jP (x)j = jP (y)j = m, and �(x) > �(y). Let X and Y be theunderlying sequences of x and y respectively. Then,1. 9N : 8k � N : (X � Y )[k] = X[k],2. x� y is periodic, and3. N � dminS(x)�x0+maxS(y)+y0�(x)��(y) e where S(x) is the set of distances of the periodicsteps of x to its slope.Proof:1. In the space representation, consider the straight line Lx (Ly respectively)passing through the points X[k] (Y [k] respectively) where k � 0 (mod m).Since �(x) > �(y), Lx eventually lies above Ly in the space representation.Furthermore, since the elements of P (x) (P (y) respectively) are �nite, all thepoints of x (y respectively) lie above (below respectively) a straight line L0x39
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eventsFigure 4.1: Illustration of the proof of Lemma 4.1.(L0y respectively) that is parallel to, but below Lx (above Ly respectively).Let N be the abscissa of the intersection point of L0x and L0y. Then, for anyk � dNe, X[k] > Y [k], and therefore, (X � Y )[k] = X[k].2. According to Step 1 of this proof, X�Y is (but for a �nite number of indices)equal to X. Since X is a periodic sequence, this shows that X�Y is a periodicsequence. Therefore, x� y is a periodic signal.3. Observe that the equation of the straight line L0x (L0y respectively) de�ned inStep 1 of this proof is X[k] = x0 �minS(x) + k�(x) (Y [k] = y0+maxS(y) +k�(x) respectively). Therefore, the abscissa of the intersection point of L0x andL0y is given by the following equation:y0 +maxS(y)� x0 +minS(x) = k(�(x) � �(y));hence, the result in Statement 3 of the Lemma.40



Figure 4.1 illustrates this proof by displaying the space representation of a signal x(and the associated lines Lx and L0x) with a steeper slope than a signal y (and theassociated lines Ly and L0y). It also shows that N is bounded by the intersection ofL0x and L0y.Theorem 4.1 8x; y 2 Z : x� y 2 ZProof: Without loss of generality, assume that x and y are two homogeneoussignals in Z. If they are not homogeneous, take their homogeneous representations.Assume now that their transitory sequences have n elements, and their periods havem elements. Consider two cases.Case 1 : �(x) = �(y)Since the slope of x and y are equal, the following property holds:8k > n;X[k]� Y [k] = X[k +m]� Y [k +m].Therefore,8k > n; (X[k] � Y [k] = X[k])) (X[k +m]� Y [k +m] = X[k +m]),and similarly,8k > n; (X[k] � Y [k] = Y [k])) (X[k +m]� Y [k +m] = Y [k +m]).Therefore, X � Y is periodic, and so is x� y.Case 2 : �(x) 6= �(y)Without loss of generality, assume that �(x) > �(y). By applying Lemma 4.1to the signals x0 = ((X[n]);P (x)) and y0 = ((Y [n]);P (y)), one can prove thatx0� y0 is a periodic signal, i.e., it consists of a �nite transitory sequence and aperiod. Observe also that, for any k > n,X[k] = X 0[k�n] and Y [k] = Y 0[k�n].41



This proves that the restriction of X � Y to the event indices greater than nis a periodic sequence.Since the restriction of X � Y to event indices less or equal to n is a �nitesequence, this proves that X � Y is a periodic sequence. Therefore, x� y is aperiodic signal.Algorithm 4.1 computes the maximization of two periodic signals. Its cor-rectness is proved in Theorem 4.2 and its complexity is also analyzed.Algorithm 4.1 Maximize(x,y):f 1. Homogenize(x,y);2. If �(x) = �(y) then T (x� y) = T (x)� T (y),and P (x� y) = P (x)� P (y);3. elsif �(x) < �(y) then maximize(y,x);4. else /* let S(i; x) =Pik=1 pk; pi 2 P (x) */xl = minfS(i; x) � i�(x); 1 � i � mg;yu = maxfS(i; y) � i�(y); 1 � i � mg;N = (xl �X[0] + yu + Y [0])=(�(x) � �(y));X[�1] = 0; Y [�1] = 0;for i from 1 to N + n doT (x� y)[i] = ((X[i] � Y [i])�(X[i� 1]� Y [i� 1]);P (x� y) = P (x);5. Canonize(x � y);gTheorem 4.2 Maximize returns the maximization of its two input signals.Proof: The correctness of Step 2 of Maximize follows from Case 1 of the proof ofTheorem 4.1. The correctness of Step 3 and 4 of Maximize follows from Case 2 ofthe proof of Theorem 4.1 and from Statement 3 of Lemma 4.1.42



Let n = jT (x)j � jT (y)j and m = jP (x)j � jP (y)j. The complexity of maximize(x,y)is O(m2 + n+N), where N is de�ned as in Statement 3 of Lemma 4.1.4.1.2 PropertiesLemma 4.2 The maximization of two periodic signals in Z is associative, commu-tative, idempotent, and its identity element is the periodic signal ".Proof: All these properties are trivially derived from the fact that (Z, �) is acommutative, idempotent monoid.Corollary 4.1 (N , �) is a commutative, idempotent monoid.Proof: All there is to prove is that8x; y 2 N : x� y 2 N .Theorem 4.1 already proves that x � y 2 Z. Now consider an index i > 1. Then,by de�nition of �, X[i]� Y [i] � X[i] and X[i]� Y [i] � Y [i].Furthermore, since x and y are in N ,X[i] � X[i � 1] and Y [i] � Y [i� 1].Therefore, X[i]� Y [i] � X[i � 1] and X[i] � Y [i] � Y [i� 1]and X[i]� Y [i] � X[i� 1]� Y [i� 1]which proves that x� y 2 N . 43



Note that the in�nite application of maximization does not necessarily resultin a periodic signal. For example, consider the signal y = ((1); (1)), which spans theset of natural numbers. Its underlying sequence is Y = f1; 2; 3; 4; 5; 6; 7; 8; 9; : : :g.Now, consider the set X of signals xk where the values for the �rst k indices of xk'sunderlying sequence Xk are the sums of the k �rst natural numbers, and the valuesfor the remaining indices are equal to Xk[k], e.g., X1 = f1; 1; : : :g, X2 = f1; 3; 3; : : :g,and X3 = f1; 3; 6; 6; : : :g. Formally, X is de�ned as follows:X = fxk; k � 1 : xk = ((Y [1]; Y [1] + Y [2]; : : : ; kXi=1 Y [i]); (0))g.X is an in�nite set of periodic signals; but the maximization of its elementsLx2X xcorresponds to the sequence f1; 3; 6; 10; 15; 21; : : :g, which cannot be representedwith a periodic signal.4.2 Backshift OperatorIn a TEG, if a token is initially present in a given place, it immediately contributesto the enabling of the output transition of the place, even if the place's delay isnot zero. If several tokens are initially present in the same place, they �re oneafter the other without delays. Their �ring order is inconsequential since tokens areanonymous.The behavior of tokens present in the initial marking of a timed event graphis modeled by a backshift operator, represented by 
. Consider a transition corre-sponding to a speci�c event type. Assume that this transition has one input placethat initially contains k tokens (this can be easily generalized to the case of a tran-sition with multiple input places). Then, the �rst event a�ected by the delay of theinput place has k+1 as an index. The �rst k events depend only on the initial timevalue associated with this particular event type, hence the following de�nition for
. 44



De�nition 4.3 (Backshift)The backshift operator 
 is de�ned as follows:
 : Z ! Zx 7! ysuch that T (y) = ":T (x) and P (y) = P (x) where ":T (x) = ("; t1; : : : ; tn) if T (x) =(t1; : : : ; tn).The presence of k tokens in an input place is modeled by the composition of kbackshift operators, also noted 
k.The main characteristics of the backshift operator are captured in the fol-lowing theorem and lemma.Theorem 4.3 (Properties of 
)1. Z is closed under the backshift operator 
i;8i � 1;2. the backshift operator distributes over the � operator, i.e.,8x; y 2 Z; 
(x � y) = 
(x)� 
(y):Proof:1. The proof for this case is done by recursion.By de�nition, if x is a periodic signal, P (
x) = P (x), and T (
x) = f"g:T (x).Therefore, both P (x) and T (x) are �nite lists, and 
x is a periodic signal.Statement 1 of Theorem 4.3 is true for i = 1.A recursive application of this result proves that Z is closed under �nite appli-cation of 
. Moreover, since the signal corresponding to the sequence f"; "; : : :gis in Z, Z is also closed under an in�nite application of 
.45



2. Let X and Y be the sequences underlying signals x and y.
(X � Y ) = f";X[1] � Y [1];X[2] � Y [2]; : : :g= f";X[1];X[2]; : : :g � f"; Y [1]; Y [2]; : : :g= 
(X) � 
(Y )
Lemma 4.3 (Backshift for delay and input signals)� 8x 2 N : 
(x) 2 N� 8x 2 P : 
(x) 2 PProof: The proof is trivial. It su�ces to notice that 
 a�ects only the " pre�x ofthe transitory sequence of a signal. Therefore, neither the slope nor the values ofthe steps of a signal are changed.
4.3 Periodic Delay FunctionPeriodic delay functions are intended to characterize what numerical value (rep-resenting a timing delay) is added at each index to a periodic input signal. Thefunctions have to be periodic to result in periodic signals. Therefore, it is logical touse the concept of signals to represent them.4.3.1 De�nition and AlgorithmsThis section de�nes and characterizes a function that delays a periodic signal (x 2 Z)based on a delay signal (d 2 P) by performing a pointwise arithmetic addition onthe delays. Such an operation is consistent with taking the Hadamard product(traditionally denoted by �) of two periodic signals in Z (one in Z and the other46



one in P). Classic (max,+) algebras, as in [6, 37], use a Cauchy product (usuallydenoted by 
) rather than the Hadamard product. The Cauchy product performsa sup-convolution on the sequences associated with the events.De�nition 4.4 (Delay)The delay function � is de�ned as follows:� : P � Z ! Z(d; x) 7! �d(x) = d� xwhere d� x is de�ned asT (d� x)[k] = T (x)[k] + T (d)[k] 80 < k � nP (d� x)[k] = P (x)[k] + P (d)[k] 80 < k � m
Note that it is important to de�ne delays that have no " values. Otherwise itmight result in an event occurrence being delayed to �1, which does not make anyphysical sense. For example, consider X = f1; 2; 3; 4; : : :g the sequence underlyingan input signal x and D = f"; 2; 2; 2; : : :g the sequence underlying a delay signal d.Delaying x by d results in the sequence f"; 4; 5; 6; : : :g. The �rst occurrence of theevent went from 1 to �1.It is easy to verify that delays on signals correspond to pointwise additionson sequences. This result can be used to show that the delay of a signal is a signal.For example, to delay the odd-indexed events of the signal x = ((1); (2)) by �ve andits even-indexed events by seven, one can delay x by �d where d = ((5); (2;�2)).Indeed, observe that D = f5; 7; 5; 7; 5; 7; 5; 7; : : :g:Therefore, performing a pointwise delay on the sequences D and X results in adding�ve to the odd-indexed events of X and seven to its even-indexed events.47



Algorithm 4.2 Delay (signal x, signal d): signal yf 1. Homogenize(x,d);2. init := 0;3. for i from 1 to n doif (T (x)[i] = ") thenT (y)[i] := ";if (T (d)[i] 6= ") theninit := init + T (d)[i];elsif (T (d)[i] = ") thenT (y)[i] := T (x)[i];else T (y)[i] := T (x)[i] + T (d)[i] + init;init := 0;4. P(y) := pointwise addition of P(x) and P(d);5. Canonize (y);gAlgorithm 4.2 computes the periodic delay of a signal. Recall that the com-plexity of the homogenize function is O(m2 + n) where m = jP (x)j � jP (d)j andn = jT (x)j � jT (d)j. Steps 2 and 3 is of complexity O(m + n) while Step 4 is ofcomplexity O(m). Since the complexity of the canonize function is O(m + n), thecomplexity of the delay function is O(m2 + n).Lemma 4.4 (Properties)� The composition of two periodic delay functions is commutative, associative,its neutral element is �((0);(0)), and �" is an absorbing element.� Delay functions distribute over the � operatorProof: The proof for all these properties derives from the fact that (Z;max;+) isa dioid. 48



4.4 The (max,+) Algebra of Periodic SignalsThe goal of this section is to de�ne a (max,+) algebra on a set F of functions thatoperate on periodic signals. Informally, the set F is the set of functions obtainedby �nite maximization of functions consisting of the composition of a delay functionwith some backshift function on the set Z of periodic signals.Let D de�ne the set of functions resulting from the composition of a delayfunction and a backshift function. Formally,D = f
i � �d : d 2 P and i � 0gwhere � is the composition of functions (i.e., f �g(x) = g[f(x)]). Each function in Dcan capture the information associated with a place in a TEG. For example, in themanufacturing process example, 
 � �a speci�es that, once the initial token in theplace has been consumed by the downstream transition, a delay function de�ned bythe delay signal a (and backshifted by one) is applied to every token coming intothe place.F is the set of functions that are obtained by a �nite application of max-imization over the elements of D. Thus, for every function f 2 F , there exists a�nite series ffi 2 F ; i � 0g such that, for any signal x 2 Z,� for i > 0, fi(x) = fi�1(x)� gi(x) where gi 2 D, and� f0 2 D.The set F de�nes functions from Z to Z, which characterize the events inthe system. It is to verify using Theorem 4.3 and Lemma 4.4 that1. 8f 2 F ; x; y 2 Z : f(x� y) = f(x)� f(y)2. 8f 2 F : f(") = "The functions �((0);(0)) and 
0 are the same; they correspond to the identity functionon Z, i.e., 8x 2 Z : �((0);(0))(x) = 
0(x) = x.49



Now de�ne an operation � in F such that8f; g 2 F ; x 2 Z : (f � g)(x) = f(x)� g(x).By de�nition of F , the following lemma is true.Lemma 4.5 8f; g 2 F : f � g 2 FIt is trivial to verify that � is commutative, associative, idempotent, and that theneutral element for � in F is �".Now, consider another operator, denoted 
, in F de�ned as follows:8f; g 2 F : f 
 g = g � f .It is easy to verify that 
 is associative and has a neutral element �((0);(0)) =
0. Moreover, 
 is distributive over � (because delay and backshift functions aredistributive over �) and �" is an absorbing element.Therefore, (F ;�;
) is a dioid. It is called the (max,+) algebra of periodicsignals: max and + refer to the fact that � is based on a maximization and 
 isthe composition of delay functions that use the arithmetic addition and backshifts.In the rest of this work, the 
 operator is omitted.Note that the (max,+) algebra is not commutative as demonstrated by thefollowing lemma.Lemma 4.6 (Composition of delays and backshifts)1. the composition of a periodic delay function and the backshift operator is notcommutative;2. the composition of a constant delay function and the backshift operator is com-mutative.
50



Proof:1. Let x = ((1); (2)) be a periodic signal, and �d be a periodic delay functionwhere d = ((3); (1;�1)). Then, on one hand,�d(
(x)) = �d(("; 1); (2)))= (("; 5); (1; 3))),but, on the other hand, 
(�d(x)) = 
((4); (3; 1)))= (("; 4); (3; 1))).Therefore, �d(
(x)) 6= 
(�d(x)).2. Let x be a periodic signal, and �d be a constant delay function.�d(
(x)) = �d((("; t1; : : : ; tn); (p1; : : : ; pm)))= (("; t1 + d; : : : ; tn); (p1; : : : ; pm))= 
((t1 + d; : : : ; tn); (p1; : : : ; pm))= 
(�d(x))
In some cases, it may be desirable to re-order an expression consisting ofdelays and backshifts in such a way that backshifts are applied before the delays.Even though the composition of a delay and a backshift is not commutative, it ispossible to perform such a re-ordering using the following lemma.Lemma 4.7 8d 2 P; x 2 Z : 
�d(x) = �(
d)
(x)51



Proof: Without loss of generality, this result is proven on homogenized signals.Let x = ((t1; t2; : : : ; tn); (p1; p2; : : : ; pm)) and d = ((u1; u2; : : : ; un); (q1; q2; : : : ; qm)).�(
d)
(x) = �((";u1;u2;:::;un);(q1;q2;:::;qm))[(("; t1; t2; : : : ; tn); (p1; p2; : : : ; pm))]= (("; t1 + u1; t2 + u2; : : : ; tn + un); (p1 + q1; p2 + q2; : : : ; pm + qm))= 
[((t1 + u1; t2 + u2; : : : ; tn + un); (p1 + q1; p2 + q2; : : : ; pm + qm))]= 
[�d(x)]
4.5 Manufacturing Process ExampleThere is now enough information to build an algebraic description of the manu-facturing process example. The place with the delay function a initially containsa token. Therefore, the actual delay associated with this place is a
. The delayfunctions can be de�ned in terms of periodic signals. The constant delays s and wcan be expressed with ((1); (0)) and ((4); (0)) respectively. The periodic delays aand r can be represented by ((7); (�2; 2)) and ((4); (�3; 0; 0; 0; 3)).Let xi denote the occurrence times of event ti. Then, the example is describedby 0BBBB@ x1x2x3 1CCCCA = 0BBBB@ a
 " "s " r
" w " 1CCCCA0BBBB@ x1x2x3 1CCCCA�0BBBB@ v1v2v3 1CCCCAwhere v1 = v2 = v3 = ((0); (0)). Note that the entries of the transition matrix arecompositions of delay and backshift functions as opposed to constant scalar in thetraditional (max,+) algebra.
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4.6 Related WorkAs mentioned before, this work is closely related to Gaubert's work on the traditional(max,+) algebra [37]. This section analyzes the di�erences in the basic operators ofboth algebras.There are no fundamental di�erences between Gaubert's maximization oper-ator and the one presented in this chapter. Both implementations are based on theability to �nd an upper bound to the last index for which two signals of di�erentslopes may intersect. In both algebras, the computation of this upper bound canbe done in O(m + n) where n (m) is the length of the transitory sequence (periodrespectively) of the homogenized signals. Similarly, in both algebras, the computa-tion of a backshifted signal is immediate since it is merely a matter of increasing allindices by the amount of backshift applied to the signal. The de�nition of the delayfunction in the (max,+) algebra of signals di�ers from the one used in traditional(max,+) algebra [6, 37]. This work uses the Hadamard product (denoted by �) overthe delay signals and the input signals. In most traditional (max,+) algebras (e.g.,in [6, 37] what corresponds to the delay operation is de�ned by the Cauchy product(denoted by 
) of two polynomials (i.e., the sup-convolution of two polynomials).Consider two polynomials p and q, then for every l � 0,(p
 q)(l) def= M0�i�l p(i)q(l � i).The advantage of the Hadamard product over the Cauchy product is thatits e�ect on input signals is more intuitive. As an illustrative example, consider thesignal x = ((1); (0; 2)).Its associated time sequence isX = f1; 1; 3; 3; 5; 5; : : :g.53



Using the Hadamard product, delaying the signal x by the delay signald = ((2); (1;�1))yields �d(x) = ((3); (1)),or, as a time sequence, D �X = f3; 4; 5; 6; 7; : : :g.As seen in the previous chapter, the sequence X is represented by the followingpolynomial X = e� 1
1 � 1
2 � 3
3 � 3
4 � 5
5 � : : : ,and the delay sequence is represented by the following polynomialD = e� 2
1 � 3
2 � 2
3 � 3
4 � 2
5 � : : : .Then, D 
X = e �1
1 �1
2 �3
3 �3
4 �5
5 � : : :�2
1 �3
2 �2
3 �3
4 �2
5 � : : :�3
2 �4
3 �3
4 �4
5 � : : :�3
3 �4
4 �3
5 � : : :�5
4 �6
5 � : : :�5
5 � : : :...D 
X = e �2
1 �3
2 �4
3 �5
4 �6
5 � : : :which is equivalent to the following time sequenceD 
X = f2; 3; 4; 5; 6; : : :g.It is easy to verify that D 
X is di�erent from D �X. Moreover, a comparison ofD
X and X would lead to believe that X had been delayed by one for odd indicesand two for even indices. This is not the case for the Hadamard product. In that54



sense, the Hadamard product de�nes delay functions that are more intuitive thanthe ones de�ned by the Cauchy product.The de�nition of the (max,+) algebra of periodic signals is similar to thede�nitions of algebras in Chapter 8 of [40]. What di�ers is the application, andtherefore, the type of functions that constitute the entries of the transition matrix.Gondran and Minoux apply this theory to variations on the problem of �ndingthe shortest path in weighted graphs while the (max,+) algebra is used for timinganalysis as shown in the next chapter.
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Chapter 5
Timing Analysis
Recall that the examples presented in Chapter 1 can be represented by an equationof the form x = Ax� vwhere x is a vector of events, A the transition matrix of the system, and v is a vectorof initial conditions. The least solution of this equation isA�vwhere A� =Mk�0Ak.In the (max,+) algebra of periodic signals this equation is still valid. Moreover,its resolution is critical to any type of timing analysis. In fact, A�v represents theearliest �ring times for the transitions in the timed event graph represented by A.Therefore, A�v is a vector of signals representing the earliest occurrence times forall the events in the system described by A.This chapter describes algorithms that can compute A�v. It is desirable whenpossible to compute A� independently from the initial values of the system. A� char-acterizes the transfer function de�ned by the TEG. However, the feasibility of the56



computation of a transfer function depends on the operators used in the transitionmatrix. In general, A� is easily computable when the operators are commutative.When this is not the case, the computation of A� is in general impossible, especiallyfor systems with many feedback control loops.This chapter presents di�erent approaches to computing A�v based on theavailability of the A� matrix. If all delay signals are constant then a generalizedversion of Jordan's algorithm can be used to compute A� as in [37]. This techniquealso applies to some systems with time-varying delays. When Jordan's algorithm isnot applicable, A�v can be computed using an iterative algorithm [18, 19].The �rst section of this chapter describes, and proves the correctness of, analgorithm to compute expressions of the form(a
)�where a is a delay function. It can be generalized for expressions of the form(a
i)�where i � 1. Moreover, other expressions of the form(a1
i1a2
i2 : : : an
in)�where the aj's are delay functions and the ij's are positive can be reduced to theprevious form by applying rules described in Chapter 4. The second section presentsJordan's algorithm that can be applied to systems with constant delays. The thirdsection investigates solutions for non-stationary systems. It de�nes an algorithm totest the applicability of Jordan's algorithm and an iterative algorithm to computeA�v when Jordan's algorithm is not applicable.5.1 Periodic *-delay FunctionComputing A�v requires the computation of expressions of the form Lk�0(�d
)kwhere �d
 is the composition of the periodic delay function �d and the backshift57



function. Note also that (�d
)k stands for the composition of k factors equal to �d
(i.e., �d
 = 
 � �d). Such an expression is called a periodic *-delay function. Itsabbreviated form is (d
)�, where the delay function is represented only by its delaysignal.De�nition 5.1 (Periodic *-delay Function)A periodic *-delay function (d
)� is de�ned by a periodic delay signal d as follows:(d
)� =Mk�0(�d
)kwhere the slope of d is zero.As mentioned in the previous chapter, maximizing an in�nite number ofperiodic signals does not necessarily yield a periodic signal. However, the peri-odic *-delay function yields a periodic signal which can be proven by showing thatLk�0(�d
)k is equal to the maximization of a �nite set of signals. First, note that,if n is the length of the transitory period of the delay signal d,Mk�0(�d
)k = [k=n�1Mk�0 (�d
)k]� (�d
)n[Mi�0(�d
)i].Therefore, it su�ces to show that a *-delay function yields a periodic signal for adelay signal with only one transitory step (i.e., the underlying sequence of the delayconsists of a periodic sequence). The proof starts by showing that (d
)� can bewritten as the in�nite maximization of periodic signals that have the same period.From now on, de�ne fxi; i > 0g as a family of periodic signals such thatxi = 
i�1((X[i]); (D[i + 1]; : : : ;D[i+m])). (5.1)Lemma 5.1 Let d be a periodic signal such that jT (d)j = 1 and �(d) = 0. Let x beany periodic signal. Then, (d
)�(x) =Mi>0 xiwhere xi is de�ned as in (5.1). 58



Proof: Let G be the underlying sequence of Li>0 xi. Then,8k � 1 : G[k] = kMi=1Xi[k] (because, for all i > k, Xi[k] = ")= kMi=1(X[i] + kXj=i+1D[j]) (by de�nition of the xi)Observe that (X[i]+Pkj=i+1D[j]) is the value at index k of the sequence underlying(�d
)l where l = k� i. Therefore, the underlying sequences of (d
)�(x) andLi>0 xiare equal; hence, the lemma.It is easy to verify that the xi's have the same period, and therefore, the sameslope. The rest of the proof requires to establish two results on the xi's based onthe comparison of their slope and the slope of an input signal.Lemma 5.2 Consider an input signal x such that jT (x)j = n and jP (x)j = m anda delay signald such that jT (d)j = 1, jP (d)j = m, and �(d) = 0. For i > 0, letxi = 
i�1((X[i]); (D[i + 1]; : : : ;D[i+m])). Then, for any i > n and any k > n,1. (�(xi) � �(x))) Xi+m[k]�Xi[k] = Xi[k]2. (�(xi) < �(x))) Xi+m[k]�Xi[k] = Xi+m[k]Proof: As seen in the proof of Lemma 5.1, for any i and k, Xi[k] = X[i] +Pkj=i+1D[j]. Then, for i > n,Xi+m[k]�Xi[k] = X[i+m] + kXj=i+m+1D[j]� (X[i] + kXj=i+1D[j])= X[i+m]�X[i] � j=i+mXj=i+1 D[j]= m[�(x)� �(xi)](because jT (x)j = jT (d)j = m)59



The results in Lemma 5.2 follow directly from this equality.1. if (�(xi) � �(x)) then Xi+m[k]�Xi[k] � 0 and Xi+m[k]�Xi[k] = Xi[k].2. if (�(xi) < �(x)) then Xi+m[k]�Xi[k] > 0 and Xi+m[k]�Xi[k] = Xi+m[k].
Using Lemmas 5.1 and 5.2, it is possible to prove that applying a periodic*-delay function to a periodic signal results in a periodic signal as stated in thefollowing theorem.Theorem 5.1 The signal resulting from the application of a periodic *-delay func-tion to a periodic input signal of zero slope is a periodic signal.Proof: As previously mentioned, the problem can be reduced to proving thatLk�0(�d
)k where d has a single transitory step and a slope equals to zero. Letx be an input periodic signal such that jT (x)j = n and jP (x)j = m). Assume alsothat jP (d)j = m. De�ne fxi; i > 0g as previously. Let D and X be the underlyingsequences of d and x respectively. From Lemma 5.1,(d
)�(x) =Mi>0 xi.As in Lemma 5.2, consider two cases: �(xi) � �(x) and �(xi) < �(x).1. �(xi) � �(x)Using Lemma 5.2, 8p < m :Mi>0 xn+im+p = xn+p,hence, Mi>0 xi = n+mMi=n+1xi.Therefore, according to Theorem 4.1, (d
)�(x) is a periodic signal.60



2. �(xi) < �(x)Let Y be the underlying sequence of (d
)�(x). Because Xi[k] = " for anyi > k, 8k > n+m : Y [k] = kMi=n+1Xi[k].Using Lemma 5.2, 8k > n+m : Y [k] = kMi=k�mXi[k].Since Xi+m[k]�Xi[k] is constant (see proof of Lemma 5.2), Y is periodic and(d
)�(x) is a periodic signal.
Algorithm 5.1 (for computing the *-delay of a periodic signal) derives fromthe proof of Theorem 5.1. Its description is followed by its proof of correctness.Algorithm 5.1 star-delay (signal x, delay d): signal yf 1. Homogenize (x,d);2. Compute �(xi) = 1=mPmi=n+1D[i];3. if (�(xi) � �(x)) theny := Ln+mk=1 xk;4. elseBuild z such thatT(z) := elements from n+ 1 and n+ 2m of Ln+2mk=n+1 xk;P(z) := elements from n+ 2m+ 1 and n+ 3m Ln+3mk=n+m xk;y := Maximize(z,Lnk=1 xk);5. Canonize (y);gLemma 5.3 Algorithm 5.1 computes (d
)�(x).Proof: The correctness of the path consisting of Steps 1,2,3, and 5 of the algorithmis given by the case corresponding to (�(xi) � �(x)) in the proof of Theorem 5.1.61



The correctness of the path consisting of Steps 1,2,4, and 5 of the algorithmis obtained as follows. First, the formula for z is shown to be correct. The casecorresponding to (�(xi) < �(x)) in the proof of Theorem 5.1 shows that the periodof z starts at the latest at index n+ 2m+ 1, hence the formula for T (z) and P (z).Furthermore, since (d
)�(x) = j=nMj=1 xj � (Mk>nxk)and z =Mk>nxk,then, (d
)�(x) = j=nMj=1 xj � z.The complexity of Step 1 is O(m2 + n). The complexity of Step 2 of thealgorithm is O(m). The complexity of Step 3 is O((n +m)(m2 + n + N)) wherem2+n+N is the cost of maximizing two signals. Similarly, the complexity of Step4 of the algorithm is O((n+m)(m2 + n+N)). Finally, the complexity of Step 5 isO(m + n). Therefore, the overall complexity of Algorithm 5.1 is O((n +m)(m2 +n+N)).5.2 Closure Matrices for Systems with Constant DelaysThe closure of matrices of systems with constant delays can be obtained by theapplication of Jordan's algorithm (which is a variant of Gauss's algorithm). Variousimplementations are described in Gondran and Minoux [40].The correctness of this algorithm is well known, and its complexity is O(n3)where n is the number of entries in the transition matrix (which corresponds to thenumber of events in the system). 62



Algorithm 5.2 Jordan (matrix A): matrix A�f 1. A(0) = A;2. For all k = 1; : : : ; n:for all i; j = 1; : : : ; n:A(k)ij = A(k�1)ij �A(k�1)ik (A(k�1)kk )�A(k�1)kj ;3. A� = A(n) � I ;gEven though the transition matrix of a DES is in general sparse, its closurematrix is always quite dense. Therefore, computing the closure matrix might notalways be practical. There are many algorithms that avoid computing the fullclosure matrix. Such algorithms are described in [40].In the manufacturing process example, Jordan's algorithm gives the followingmatrix for A�: A� = 0BBBB@ (a
)� " "(r
w)�s(a
)� (r
w)� (r
w)�r
(wr
)�ws(a
)� (wr
)�w (wr
)� 1CCCCAIt corresponds to the matrix computed by Cofer and Garg, and yieldsx3 = (wr
)�ws(a
)�[0]= (wr
)�ws[((0); (5; 7))]= (wr
)�[((5); (5; 7))]= [((5; 5; 7); (5; 7; 8; 5; 5; 6; 5; 8; 5; 6))]which corresponds to the following in�nite periodic sequence:x3 = f5; 10; 17; 22; 29; 37; 42; 47; 53; 58; 66; 71; 77; : : :g
63



5.3 Closure Matrices for Systems with Time-VaryingDelays5.3.1 Existence of a Transfer FunctionIn general, Jordan's algorithm does not work for systems with time-varying de-lays because the main loop requires the computation of star-delay expressions ofexpressions that can already be the result of star-delay operations. In commuta-tive algebras, this problem is solvable because of the commutativity property (see[40, 37]).The advantage of being able to use Jordan's algorithm is that the solutionof the equation x = Ax� v (5.2)can be computed in two steps:1. use Jordan's algorithm to compute the matrix A�, and2. compute the solution xs = A�v by applying A� to v.In some way, Jordan's algorithm can compute a transfer function of the system (i.e.,A�). Solutions of Equation 5.2 for di�erent initial conditions require only the re-computation of Step 2. This is particularly convenient for complex systems whichcan then be decomposed into sequentially connected components. One, or more,transitions in one component are designated as output transitions and they areconnected to transitions, designated as input transitions, in the next component.The solutions for the output transitions can then be used as initial conditions forthe input transitions for the computations of the solutions in the second component.Other algorithms cannot compute A� by itself. They require the use ofthe vector of initial conditions; they compute A�v rather than A�. Therefore, foreach new vector v of initial condition, A�v needs to be re-computed based on thetransition matrix A. Moreover, some of those algorithms (see Section 8.3 of Chapter64



8 in [40]) require the a priori knowledge of the solution for one of the events inthe system. The next section describes an algorithm that does not require suchknowledge and relies only on the values of the transition matrix A and the vector vof initial conditions.However, Jordan's algorithm can still be used for systems with time-varyingdelays as long as they do not require the application of a star-delay function on a star-delay expression. This is the case for systems with low connectivity (more precisely,for timed event graphs with few interconnecting circuits). Now the question is:how can we identify systems for which Jordan's algorithm work? The solution isquite simple: use Jordan's algorithm. Indeed, Jordan's algorithm can be modi�edto either build the A� matrix when it is possible or to return an error if it is notpossible. Consider the following algorithm:Algorithm 5.3 Modi�ed-Jordan (matrix A): matrix A�f 1. A(0) = A;2. For all k = 1; : : : ; n:if ((A(k�1)kk = e) or (A(k�1)kk = "))2.1 thenfor all i; j = 1; : : : ; n (except for i = j = k):A(k)ij = A(k�1)ij �A(k�1)ik A(k�1)kj ;2.2 else for all i; j = 1; : : : ; n (except for i = j = k):if ((A(k�1)ik = ") or (A(k�1)kj = "))then A(k)ij = A(k�1)ij ;else return null matrix;3. A� = A(n) � I ;gThis algorithm computes A� if it is possible. If this computation involvescomputing the star-delay operation of a star-delay expression, the algorithm stopsand returns a null matrix (meaning that computing A� by itself is impossible). Thecomplexity of the algorithm is still O(n3).65



5.3.2 Computing A�vThe compute-closure algorithm that computes A�v is based on a simple idea: com-pute iterations of x(k+1) = Ax(k) � vuntil the period of the system is reached. The di�cult part is to assess when theperiod has been reached.The termination test is based on the basic assumption that the overall periodof the system is at most the lowest common multiple, say P , of the period of thedelay signals and the input signals. After, say N (where N is an a�ne functionof P ), iterations, Algorithm 5.4 examines the transitory sequences of the obtainedsignals and search for evidences of periods of length P . In a �rst approximation, thealgorithm assumes that a period is uncovered if it �nds two consecutive identicalsequences of length P . The �nal signals are then built by assuming that theirtransitory sequences are the elements preceding the uncovered periods and theirperiods are the ones uncovered by the algorithm.Unfortunately, this type of computation can lead to wrong results. For ex-ample, the algorithm might mistake a temporary repetition of a pattern of length Pfor the period. This may occur because the length of the transitory sequence of thesystem has been underestimated. Therefore, Algorithm 5.4 requires all �nal signalsxf to pass the following simple test:xf = Axf � v.If this �nal test fails, the algorithm requires another round of iterations followed byyet another attempt at discovering the period and so on.The algorithm to uncover a period in a transitory sequence is as follows.Note that the description of the algorithm is for a single signal, and the extensionto a vector of signals is trivial. 66



Algorithm 5.4 compute-closure (matrix A, signal vector v, integer P): signal vector xf 1. x = v;2. x := Ax� v;3. EndTrans := is-period-in-trans (P, x);4. if (EndTrans > 0) then build new signal vector x;else goto Step 3;5. if (Ax� v = x) then return xfelse goto Step 3;g
Algorithm 5.5 is-period-in-trans (integer P, signal d): integer yf 1. curr := 0; found := true;2. for i from 1 to P+1, doif (T(d)[curr+i] 6= T(d)[curr+i+P]) thenfound := false;exit loop;3. if not found and (curr < jT (d)j � 2P ) thencurr := curr + 1;goto Step 2;6. if not found then y = -1;else y = curr - 1;g
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5.4 Related WorkMost of the traditional 
avors of the (max,+) algebra have been de�ned in such away that the algebra is commutative. Therefore, most implementations, even thoughI am aware only of Gaubert's implementation described in [37], can use Jordan'salgorithm to compute the closure of a transition matrix.Now, the question is: can we obtain a commutative algebra by using a poly-nomial representation (as opposed to the signal representation) for a system withtime-varying delays? In order to perform a fair comparison, assume that applying adelay is done by using a method consistent with the Hadamard product, i.e., a point-wise addition at each order of the polynomial. The response to this question is no.The resulting algebra is still not commutative. Here is a simple counter-example.Consider the polynomial x = (1
 � 2
2)� (3
3)(2
)� which expands tox = 1
 � 2
2 � 3
3 � 5
4 � 7
5 � 9
6 � : : : .Consider a delay function d that adds two time units every odd index and one timeunit every even index is used. Applying d �rst yields:�d(x) = 3
 � 3
2 � 5
3 � 6
4 � 9
5 � 10
6 � : : : .Then, applying the backshift operator yields the following �nal result:
[�d(x)] = 3
2 � 3
3 � 5
4 � 6
5 � 9
6 � 10
7 � : : : .Now, apply �rst the backshift operator to x to obtain
(x) = 1
2 � 2
3 � 3
4 � 5
5 � 7
6 � 9
7 � : : : ,and then, apply d, which yields�d(
(x)) = 2
2 � 4
3 � 4
4 � 7
5 � 8
6 � 11
7 � : : : .It is obvious that 
[�d(x)] 6= �d(
(x)). Therefore, this algebra is not commutativeeither. 68



Chapter 6
Controller Synthesis
This chapter shows how the (max,+) algebra can support controller synthesis forDES. The theory is borrowed from the work of Cofer and Garg [23] on supervisorycontrol for real-time, DES. They in turn based their work on the classic work onsupervisory control on �nite state machines. This material was partly covered in[18, 19].The �rst section is devoted to explaining the terminology for the supervisorycontrol problem and to the computation of controllability tests. The second sectiongives the algorithms to synthesize controllers for three types of behavioral speci�-cations: �nite sets of behaviors, ranges of behaviors, and behaviors based on eventseparation times. The last section presents the results of applying the algorithms totwo examples: the cat and mouse example and the manufacturing process examplede�ned in Chapter 1.6.1 Supervisory ControlAs mentioned before, a DES is seen as a set of events. Some of these events arecontrollable in the sense that they can be either disabled or delayed (an event isdisabled if it is delayed forever). An example of a controllable event is the delivery69



of a part in a manufacturing line. The delivery can be delayed to allow other jobsto �nish downstream of the considered point in the line. Obviously, some eventsare uncontrollable in practical systems. For example, a failure in a system is anuncontrollable event. The system can be designed to tolerate failures, but a failurecan never be prevented since it is not under the control of the designer or theoperator.In the framework of the (max,+) algebra of periodic signals, controllableevents can be speci�ed in a diagonal matrix. Consider the square matrix I, ofthe same size (say n) as the transition matrix describing a system, consisting of eelements on its diagonal and " elements everywhere else. For all 1 � i; j � n,Iij = 8><>: e if i = j" otherwiseThis matrix is the identity matrix for the traditional (max,+) algebra. In the(max,+) algebra of signals, a similar matrix can be de�ned by using a zero delayfunction, noted e, and ". Now, consider the following matrix Ic. For all 1 � i; j � n,Icij = 8><>: e if i = j and event xi is controllable" otherwiseThis matrix provides a �lter that eliminates information related to uncontrollableevents.6.1.1 ControllabilityConsider a system described by a transition matrix A (of size n), an initial conditionvector v, and a set of controllable events de�ned by matrix Ic. One controllabilityproblem consists of answering the following question: can the system be slow downas much as possible without causing any event to occur later than some sequenceof execution times de�ned by vector y? This type of speci�cations are found inscheduling problems where tasks have to be synchronized.70



Obviously, the set of acceptable behaviors is de�ned byY = fx 2 Zn : x � yg.Cofer noted that the simplistic solution of delaying the controllable events as muchas allowed by y does not work because the sequence y does not account for thedelays between all events in the system. In fact, Cofer observed that the solution is� to use the speci�cation y to control the controllable events in the system withtheir corresponding control values (Icy) in the speci�cation y, and� to let the system evolve freely to see if the delays caused by the controllableevents on the uncontrollable events may cause the system to step over its upperbound speci�cation y.This is accomplished by computing the following inequation:A�(Icy � v) � y. (6.1)The controlled values of the controllable events (A�Icy) are synchronized with theuncontrolled values obtained for all the events in the system (A�v). The pendant ofthis controllability test for a lower bound speci�cation y isA�(Icy � v) � y. (6.2)Implementing this framework in the (max,+) algebra of periodic signals isstraightforward. Since the initial conditions in the system can be a vector of signals,it su�ces to build a vector of \controlled" initial conditionsv0 = (Icy � v)and to compute A�v0.This result is then compared to the speci�cation y.71



6.2 Synthesis of Extremal ControllersAccording to [23], the controllability of a set of behavior for the timed event graphof a DES is de�ned by the following equation:A�(IcY � v) � Y (6.3)where A� is the star matrix of the transition matrix A (which describes the system),Ic de�nes the controllable events in the system, v is the vector of initial conditionsfor the system, and Y is a set of �nite behavior. Equation 6.3 is the generalizationof Equations 6.1 and 6.2.Sometimes, Equation 6.3 is not satis�ed, which means that the desired be-havior Y is not controllable. Cofer devised algorithms based on �xed point resultsto compute the extremal controllable behaviors for the given system under the spec-i�ed initial conditions. These algorithms are based on the fact that the set of timesequences with the order relation de�ned in Chapter 3 forms a complete lattice.Therefore, Cofer is able to take advantage of the results presented in Theorems 2.2and 2.3 in Chapter 2. The reader is encouraged to read [23] for more details.The results obtained by Cofer are valid for the set of time sequences. How-ever, this work focuses on the set of periodic signals Z. Results established inChapter 4 prove that (Z;�) is not a complete lattice. However, the set of timesequences S corresponding to signals in Z is a subset of the set considered by Cofer.Therefore, Cofer's �xed point algorithms are still usable as long as� they rely on functions that map Z to Z, and� there exist suitable starting points in Z.Note that Cofer shows that in�mal controllable behaviors are not always com-putable. Therefore, the signal implementation focuses only on supremal controllablebehaviors for �nite sets of behaviors, ranges of behaviors, and behaviors de�ned byminimum and maximum event separation times.72



6.2.1 Finite Sets of BehaviorsA speci�cation based on a �nite set of behaviors is de�ned as a set of acceptableperiodic signals Y � Z. The problem is to �nd the greatest superset Y " of Y suchthat if the system is controlled according to a signal in Y ", it results in behaviors(expressed as signals) in Y ". Y " de�nes a supremal set of behaviors that are invariantunder uncontrollable actions.The computation of supremal behaviors for �nite sets of speci�ed behaviorsis based on the use of the function f : S ! S de�ned by A�(Ic(:) � v), which isidempotent. The restriction of this function to the set Z still results in elements ofZ. Therefore, according to [23], the supremal set Y " of controllable behaviors for a�nite set Y of behaviors is given by the following equation:Y " = Y \ fX � Z : A�(IcX � v) � Y g= fx 2 Y : A�(Icx� v) 2 Y g (6.4)This equation is easily computable for systems that admit transfer functions. In-deed, assuming that A� is available, Equation 6.4 can be computed in O(jY jn2)where n is the number of events in the system and jY j is the cardinality of Y . Forother systems, the complexity depends on the speed of convergence of the iterativealgorithm described in Chapter 5.In the case of a �nite set speci�cation, the in�mal set of controllable behaviorsY # is also computable using the following equation:Y # = Y [ fA�(Icx� v);8x 2 Y g (6.5)The complexity of the algorithm computing Y # is similar to the one that computesY ".6.2.2 Ranges of BehaviorsSpeci�cations of intended behaviors for in�nite sets of behaviors are di�cult tohandle. However, Cofer shows that it is possible to do so for ranges of behaviors,73



i.e., behaviors that are greater than or equal to a speci�ed lower bound and lessthan or equal to a speci�ed upper bound. Such sets are de�ned by two behaviorsy1 and y2 as follows: Y = fx 2 Z : y1 � x � y2g.Under some conditions, it is always possible to compute a supremal control-lable speci�cation for an upper bound, i.e., for a set of the formY = fx 2 Z : x � yg.The solution to this problem is given byy" = y ^ supfx 2 Z : A�(Ic(x)� v) � ygwhere ^ de�nes the inf operation. The function A�(Ic(:) � v) is not quite lowersemi-continuous, and therefore, does not �t the lattice framework laid out by Cofer.However, the function A�Ic(:) is lower semi-continuous. Moreover, under the fol-lowing condition y � A�vthen the solution to the supremal controllable behavior problem for an upper boundspeci�cation becomes y" = y ^ supfx 2 Z : A�Ic(x) � yg. (6.6)The computation of supfx 2 Z : A�Ic(x) � yg requires the use of the �xedpoint algorithm described in Part 2 of Theorem 2.3 from Chapter 2. The initialvalue required by this algorithm is usually the sup of the set on which the lattice isde�ned (i.e., S in the work of Cofer). This value is not de�ned in Z. Therefore, thesignal implementation of this algorithm uses the upper bound y of the speci�cationas a starting point.
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6.2.3 Minimum and Maximum Event Separation TimesThis type of speci�cation is intended to guarantee separation times between certainevents in a system. An example of the usefulness of such a speci�cation is found inscheduling problems. For example, one might want to ensure that there are su�cienttimes between arrivals and departures of connecting planes.A minimum event time speci�cation is de�ned by a matrix D of delay func-tions that speci�es separation times between events. If x is the solution of thegeneral equation of the system, i.e.,x = Ax� v,solutions of the inequation Dx � x (6.7)guarantee that the minimum separation times de�ned in D are respected by thesolution x. Therefore, the supremal controllable signal less than a given signal x̂that satis�es the minimum separation times de�ned by Equation 6.7 is given byiterating over the following function:h1(y) = x̂ ^ supfx 2 Z : Dx � yg ^A�(Icy � v) ^ supfx 2 Z : A�Ic � yg. (6.8)The signal x̂ constitutes an acceptable starting point for the iteration.Similarly, maximum event time speci�cations can be de�ned by a matrix Dof delay functions that speci�es separation times between events. If x is the solutionof the general equation of the system, i.e.,x = Ax� v,solutions of the inequation x � Dx (6.9)guarantee that the maximum separation times de�ned in D are respected by thesolution x. Therefore, the supremal controllable signal less than a given signal x̂75



that satis�es the maximum separation times de�ned by Equation 6.9 is given byiterating over the following function:h1(y) = x̂ ^Dy ^A�(Icy � v) ^ supfx 2 Z : A�Ic � yg. (6.10)The signal x̂ also constitutes an acceptable starting point for the iteration.6.3 ExamplesSince this chapter covers the implementation in the (max,+) algebra of a theoreticalframework (the synthesis of controllers for DES) de�ned in [23], then it is illustratedby two examples used by Cofer:1. the manufacturing process example (de�ned in Chapter 1)2. the classic cat and mouse example, the goal of which is to compute a controllerthat keeps a cat chasing a mouse across a house from catching it.6.3.1 Manufacturing ProcessRecall the manufacturing process example used in the previous chapters. The sys-tems is described by the transition matrix A such thatA = 0BBBB@ a
 " "s " r
" w " 1CCCCAwhere the delay functions are de�ned ass = ((1); (0))w = ((4); (0))a = ((7); (�2; 2))r = ((4); (�3; 0; 0; 0; 3))76



Assume that the set of desired speci�cations Y is the set of signals less than or equalto y = 0BBBB@ ((0); (7))((1); (7))((5); (7)) 1CCCCATo determine if Y is controllable, we computeA�(Icy � v) = 0BBBB@ ((0); (5; 7))((1; 7); (7; 7; 7; 8; 6))((5; 7); (7; 7; 7; 8; 6)) 1CCCCAwhich shows that Y is not controllable since ((5; 7); (7; 7; 7; 8; 6)) is not less than orequal to ((5); (7)).As shown by Cofer and Garg, even if a speci�cation is not controllable, acontrollable speci�cation can always be found. Thus, one might wish to computethe greatest superset of behaviors which is invariant under uncontrollable actions.Assume that, this time, the desired behavior Y is speci�ed as a �nite set of behaviors.Then, the supremal controller set is given byfx 2 Y;A�(Icx� v) 2 Y gUsing the tool resulting from the implementation described in Chapter 8, one canshow that if the set Y of speci�cation isY = 8>>>><>>>>:0BBBB@ ((0); (7))((1); (7))((5); (7)) 1CCCCA ;0BBBB@ ((0); (8))((1); (8))((5); (8)) 1CCCCA9>>>>=>>>>; ,then, the supremal controllable subset of Y is8>>>><>>>>:0BBBB@ ((0); (8))((1); (8))((5); (8)) 1CCCCA9>>>>=>>>>; .77



Now, assume that an upper bound speci�cation ofy = 0BBBB@ ((0); (7))((1); (7))((5); (7)) 1CCCCAhas been de�ned. Then, the supremal controllable speci�cation sequence less thany is given by 0BBBB@ ((0); (7))((1); (7; 7; 7; 6; 8))((5); (7)) 1CCCCAAssume now that part arrivals can be prohibited, i.e., t1 is now the onlycontrollable transition. Consider the matrix D, whereD = 0BBBB@ " " 
 � �((3);(0))" �((0);(0)) "" " �((0);(0)) 1CCCCA ,specifying that the separation time between x3(k � 1) and x1(k) does not exceed 3for any given k. Moreover, assume that the supremal controllable signal of interestis less than x̂ de�ne by 0BBBB@ ((8); (8))((8); (8))((8); (8)) 1CCCCA .Then, the iterations over the function de�ned in (6.10) yields the following result:0BBBB@ ((3); (8))((4); (8))((8); (8)) 1CCCCA .6.3.2 Cat and MouseThe cat and mouse example is a classic example that illustrates control concepts.This version comes from [23]. \Suppose a cat chases a mouse through the three-room house in Figure 6.1. One of the doors can be held shut to prevent the cat from78
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Figure 6.1: The cat and mouse example.entering the next room. The mouse's movement may not be restricted. Initially,the cat and mouse are at opposite ends of room 3. The objective (admittedlyquestionable) is to shut the controllable door at the proper times to keep the catfrom catching the mouse."This problem can be described by the two timed event graphs in Figure 6.2.Event mi (ci respectively) corresponds to the mouse, with a transition matrix calledAm, (cat with a transition matrix called Ac respectively) leaving room i. Only c1 iscontrollable. The mouse starts with an advantage of 8 time units (which correspondsto the time needed by the cat to cross room 1). The whole system is governed byxm = Amxm � vmxc = Acxc � vcwhereAm = 0BBBB@ " " �((3);(0))�((6);(0)) " "" 
 � �((12);(0)) " 1CCCCA and vm = 0BBBB@ ((0); (0))((0); (0))((0); (0)) 1CCCCA , and79
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Figure 6.2: Timed event graphs for the cat and mouse example.Ac = 0BBBB@ " " �((2);(0))�((4);(0)) " "" 
 � �((8);(0)) " 1CCCCA and vc = 0BBBB@ ((0); (0))((0); (0))((8); (0)) 1CCCCA .The uncontrolled system results in the following behaviors:A�mvm = 0BBBB@ ((3); (21))((9); (21))((0); (21)) 1CCCCA and A�cvc = 0BBBB@ ((10); (14))((14); (14))((8); (14)) 1CCCCA .The only controllable transition is c1. Therefore,IcC = 0BBBB@ e " "" " "" " " 1CCCCA .An obvious speci�cation is that the mouse must leave each room before thecat does so that the mouse can stay ahead of the cat. This can be expressed asxm � xc.80



This corresponds to the following lower bound speci�cation Y for the cat:Y = fx 2 Z : xm � xg.unfortunately, this speci�cation cannot be met sinceC�(IcCxm � vc) 62 Y .
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Chapter 7
Non-Deterministic, Real-TimeSystems
The (max,+) algebras de�ned in previous works [6, 25, 37] as well as in this work [21]has shown great potential for analyzing timed event graph models and deterministicreal-time systems. However, the strongest criticism about these approaches is theirfailure to cope with non-deterministic systems. This chapter proposes an extensionof the (max,+) algebra of periodic signals introduced in Chapters 3, 4, and 5 to theanalysis of non-deterministic real-time systems [16, 17].This chapter introduces a hierarchical technique that replaces subnets withnon-deterministic features by single places. The delays associated with these placesare computed in such a manner that they capture the non-deterministic part of thetemporal behavior of a system. The result of this reduction is a deterministic Petrinet that is analyzable using the (max,+) algebra of signals.The chapter starts with a motivating example for extending the currentmodel. The example, originally described in [34], models a system that counter-acts the impact of earthquakes on buildings. The subsequent section describes therole of convolution in capturing non-deterministic temporal information and the re-duction technique needed to deal with non-deterministic constructs in Petri nets.82



Then, the controllability analysis of non-deterministic systems as well as algorithmsnecessary to perform it are described. Finally, the technique is applied to the moti-vating example and related work is discussed.7.1 MotivationThe system described in this section is an example illustrating the need to extendthe (max,+) algebra to include non-deterministic features. The example consistsof an intelligent structural control system initially de�ned in [34] using Modechartfor speci�cation and Temporal CCS for veri�cation. The goal of this system is tocounteract the e�ects of earthquakes on buildings. It computes forces that need tobe applied to a structure to counter its external excitations.The system consists of three interacting components. A sensor monitors thestate of the system (e.g., accelerations and displacement); a controller computesthe appropriate forces needed to counter external excitations of the structure, andan actuator applies these forces to the structure. The algorithm described in [34]is a pulse control algorithm. Pulses are sent to the structure (via the actuator)to control the structure's excitation. The magnitude of each pulse is computedbased on the state variables of the system. The pulse control algorithm providessatisfactory performance if the time between pulses is bounded by T0=8 and T0=2where T0 is the natural period of the structure (in this case, T0 = 290 time units(t.u.)). Moreover, it is required in [34] that 135 t.u. elapse between two consecutivepulse calculations. The goal of the analysis is to ensure that both conditions aremet. Figure 7.1 illustrates the timed Petri net (PN) for the whole system. Timeis associated with places, i.e, a token cannot participate in the enabling of thedownstream transitions of a place until it has spent a minimum amount of time inthat place. For readability, zero delays are omitted in Figure 7.1. Observe thatthe subnet for the controller (area delimited by dotted lines) includes some non-83
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The (max,+) algebra of signals provides an interesting analysis frameworkto analyze the timing behavior of real-time DES that can be modeled by timedevent graphs (TEG) [21, 20]. Unfortunately, TEG belong to a class of deterministictimed PN in which places have exactly one upstream transition and one downstreamtransition. This is not the case in the motivating example and many other practicalreal-time systems. Therefore, this work extends the (max,+) algebra of signals sothat it applies to non-deterministic timed Petri nets (which we call non-deterministictimed event graphs).7.2 Non-Deterministic Timed Event GraphsThis section describes how (max,+) algebra analysis techniques can be extended toa class of timed PNs with non-deterministic constructs.The strategy is quite simple: identify the smallest subnet encompassing thescope of some non-deterministic constructs and replace it by a single place. Thedelay of this place re
ects the possibility of selecting any alternative paths in thereplaced non-deterministic subnet. This is done in two steps. First, reduce eachalternative path to a single place (Section 7.2.2). Second, combine all these \alter-native" places into a single place using some convolution on their delays (Section7.2.3).7.2.1 Model De�nitionThis section de�nes the non-deterministic extension to TEGs. Figure 7.2 represent-ing the intelligent structural control system without the actuator illustrates thesede�nitions.De�nition 7.1 (Balanced Acyclic TEG)A balanced, acyclic TEG, say B, is a TEG without any directed cycles such that85
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Figure 7.2: Non-deterministic TEG for the intelligent control system� B has one source transition (given by sourcetr(B)) and one sink transition(called sinktr(B)), and� any two paths between any two transitions have the same number of tokens.In Figure 7.2, there are two balanced, acyclic TEGs. The �rst one is the path be-tween transitions t11 and t12. The second one is de�ned by the path from transitiont5 to transition t9.De�nition 7.2 (Alternative TEG)An alternative TEG consists of� a source place and a sink place with no initial tokens,� a �nite set B of balanced acyclic TEGs (B = fB1; B2; : : : ; Bng), and� for all Bi 2 B, there are arcs from the source place to sourcetr(Bi) and fromsinktr(Bi) to the sink place.In Figure 7.2, there is one alternative TEG (corresponding to most of the controller)whose sink and source places (shown in bold) are named P and S.86



De�nition 7.3 (Non-Deterministic TEG)A non-deterministic TEG is a PN that can be derived from a TEG by �nite appli-cations of the following rules:� pick a place, and� replace it by an alternative TEG.The Petri net described in Figure 7.2 is a non-deterministic TEG.Observe that the non-deterministic behavior started in the source place ofan alternative TEG ends at its sink place. The absence of connectivity betweenbalanced, acyclic TEGs of a same alternative TEG is motivated by the desire toavoid deadlocks. If a deadlock occurs within an alternative TEG, it results froma deadlock within one of its balanced, acyclic TEGs, and not from interactionsbetween the balanced, acyclic TEGs.7.2.2 Reduction of Balanced Acyclic TEGsThis subsection studies the reduction of TEGs to nets with a single source (sink)transition and a single place with a, possibly, non-zero delay. As described in [21],star-delay operations have to be used to analyze cycles in TEGs. Since the compu-tation of a star-delay operation depends on its input signal, subnets with cycles arenot reducible, hence they are excluded from the de�nition of acyclic TEGs.
a

c

b

x

d

yFigure 7.3: Example of an acyclic TEGConsider an acyclic TEG with a single source transition and a single sinktransition. The structure of this TEG consists of the places, and transitions com-posing the graph as well as the initial tokens present in places. Such a net can be87



completely described by a (max,+) expression consisting of max, delay and back-shift operations. For example, the net displayed in Figure 7.3 can be described bythe following (max,+) expression where x and y are the input and output signalsrespectively and a, b, c, and d are delay signals:y = �d
(�b � �c)�a[x]De�nition 7.4 (Reducibility)An acyclic TEG with a single source transition x and a single sink transition y isreducible if its (max,+) expression can be writteny = �a
i[x] (7.1)where a is a delay and i is a positive integer.The interpretation of y = �a
i[x] is that of a net with a single source transition x,a single sink transition y, and a single place with delay signal a and i initial tokens.Any expression of this form is called a primitive form.Theorem 7.1 Any balanced acyclic TEG is reducible.Proof:First, observe that the composition of two delay operations can be reduced to asingle delay operation, i.e., let d and d0 be two delay signals and x be an inputsignal, �d(�d0 [x]) = �d�d0 [x]where d� d0 = �d[d0].As shown in [20], for any delay signal d and any input signal x,
�d[x] = �(
d)[
(x)].Therefore, the composition of delays and backshift can be reduced to a primitiveform. Also, 8x; y 2 Z; x� y 2 Z, and88



8x; y 2 Z; 
(x� y) = 
(x)� 
(y).Therefore, the composition of delays and backshift as operands of a maximizationcan be reduced to a primitive form as long as the numbers of backshifts in theoperands match.Note that if the numbers of backshifts are di�erent in operands of a maxi-mization, then the expression cannot be reduced to a primitive form. Consider theexpression y = (�a
 � �b)[x]where a and b are two delay signals and x is an input signal. Let A, B, and X bethe underlying sequences of a, b, and x respectively. For k � 2,Y [k] = (A[k] +X[k � 1])� (B[k] +X[k])= (A[k] +X[k � 1]�X[k] +X[k]) �(B[k] +X[k])= ((A[k] +X[k � 1]�X[k]) �B[k]) +X[k]This shows that Y [k] can not be obtained by adding a delay, independent of X, toX[k]. Therefore, this expression is not reducible. For example, if there is an initialtoken in place b, but not in place c, in the acyclic net in Figure 7.3, then the net isnot reducible.7.2.3 Convolution of Primitive FormsThis section assumes that balanced, acyclic TEGs are reduced to single places eachcharacterized by a delay as shown in the previous section.De�ne the cumulative delay C(d; i) at index i of a delay d (with underlyingsequence D) as C(d; i) = iXj=1D[j].89



C(d; i) is the cumulative sum of all the delays incurred after i tokens have passedthrough the place of delay d. The sequence fC(d; 1); C(d; 2); : : :g is called the cu-mulative delay sequence C(d). It is equivalent to the sequence obtained by applyinga delay sequence to a zero input signal. For example, consider the delay signala = ((7); (�2; 2))in the manufacturing example. Its underlying delay sequence isA = f7; 5; 7; 5; 7; 5; : : :g.The associated cumulative sequence is given byC(a) = f7; 12; 19; 24; 31; 36; : : :g.The goal is to eventually replace every alternative TEG by a single place. Thedelay of such a place depends on the cumulative delay sequence within an alternativeTEG. Let d be the delay signal associated with an alternative TEG (consisting oftwo balanced, acyclic TEGs in their primitive forms consisting of delay signals d1and d2) once it has been reduced to a single place. The convolutive sum C(d; i; j),where C(d; i; j) = C(d1; j) +C(d2; i� j),is the cumulative delay at index i when the alternative delay d1 has been selected jtimes while the �rst i tokens passed through the alternative TEG. C(d; i; j) is theresult of applying one of all the possible decision strategies in the place creating thenon-determinism. Obviously, C(d; i) is a function of the C(d; i; j). Since C(d; i; j) isunder a convolutive form, C(d; i) is the result of applying some type of convolutionon the cumulative sums of the delays of the balanced, acyclic TEGs of the alternativeTEG. In fact, Section 7.3 shows that the inf-convolution and the sup-convolution(obtained by taking the inf, and sup respectively, of the C(d; i; j) at each index i) aretwo convolutions that play a critical role in computing the controllability of lowerand upper bound speci�cations. 90



Let � be a commutative, associative operator on integers such that the tra-ditional arithmetic addition distributes over �, e.g., min or max. The operator �de�nes a decision function that determines a path (hence, a delay signal d) in thealternative TEG. The cumulative delay sequence C(d) in the alternative TEG onceit is reduced to the delay d from the alternative delays is de�ned as follows. For anyi � 1, C(d; i) = �ij=1C(d; i; j).The elements D, for i � 1, of the delay sequence D are given by the followingequations: D[1] = C(d; 1)D[i] = C(d; i)� C(d; i� 1), for i > 1The signal d is easily derived from the sequence D as described in [20].For example, the delay signal d1 = ((4); (2;�2)) is associated with the delaysequence D1 = f4; 6; 4; 6; 4; 6; : : :g which yields the cumulative sequenceC(d1) = f4; 10; 14; 20; 24; 30; : : :g.Similarly, the delay sequence corresponding to the delay signal d2 = ((5); (1;�1)) isD2 = f5; 6; 5; 6; 5; 6; : : :g which yields the cumulative sequenceC(d2) = f5; 11; 16; 22; 27; 33; : : :g.The cumulative delay sequence of the signal d corresponding to the inf-convolutionof d1 and d2 is computed by taking the inf-convolution of C(d1) and C(d2). Thus,C(d; 1) = minf4; 5g, C(d; 2) = minf10; 4 + 5; 11g, C(d; 3) = minf14; 10 + 5; 4 +11; 16g, and so on. Therefore, it yieldsC(d) = f4; 9; 14; 19; 24; 29; : : :gwhich corresponds to the delay sequence D = f4; 5; 5; : : :g and the delay signald = ((4; 1); (0)). 91



The fact that the convolution of periodic signals results in a periodic signalneeds to be established. First, de�ne a pure periodic delay signal as a signal whoseunderlying sequence has no transitory subsequence (hence, in the signal form, thelist for the transitory sequence contains only one step).Lemma 7.1 The convolution of two pure periodic delay signals results in a periodicdelay signal.Proof: Let � be a commutative and associative operator such that the traditionalarithmetic addition distributes over �. Without loss of generality, consider twoperiodic signals x and y the periods of which are of the same length m. Recall thatthe sum of the periodic steps of a periodic delay signal is zero. Since x and y arepure periodic signals, they are fully characterized by the �rst m elements of theirunderlying sequence. Let Px =Pmi=1X[i] and Py =Pmi=1 Y [i].As shown above, C(d; k) = �kj=1C(d; k; j).It can be shown that, for any j; k � 1,either, C(d; k +m; j) = C(d; k; j) + Pxor, C(d; k +m; j) = C(d; k; j) + Py.Therefore, C(d; k +m) = C(d; k) + Px � Py. (7.2)Since Px � Py is constant, the cumulative delay sequence C(d) is periodic, and soare the delay sequence D and the signal d.
Theorem 7.2 The convolution of two periodic delay signals results in a periodicdelay signal. 92



Proof: The proof is similar to the proof of Lemma 7.1. Let � be a commutative andassociative operator such that the traditional arithmetic addition distributes over �.Assume, without loss of generality, that the signals, say x and y, are homogeneous,i.e., the lengths of their transitory sequence are equal (to n) and the lengths of theirperiod are also equal (to m). An algorithm to homogenize signals is given in [20].It can be shown that, for any index k > 2n +m, the equality (7.2), in theproof of Theorem 7.2, holds again. Therefore, the value of the �-convolution of xand y at index k is periodic for any k > 2n+m.
7.3 Controllability AnalysisUsing the (max,+) algebra framework, the controllability of a system can be an-alyzed. A controllable event is de�ned to be an event whose occurrences can bedelayed (but not hastened). An uncontrollable event is an event that cannot behastened nor directly delayed. The only means of delaying an uncontrollable eventis to delay a controllable event that causes the delay of the uncontrollable event.Controllable events can be speci�ed using a diagonal matrix Ic (of equal size to thetransition matrix) in which diagonal elements are either " when the event is uncon-trollable or e when the event is controllable. The remaining elements of Ic are equalto ". If y is a vector of signals de�ning the control signals for all events in asystem, Icy de�nes the valid control signals (a control signal is valid if it applies toa controllable event). Moreover, if A is the transition matrix of the system and vthe initial �ring times for every transition, then A�(Icy � v) represents the earliestoccurrence times of the events when the system is under the control law de�ned byIc and y. Thus, if y is a vector of signals specifying the desired timing behavior ofthe events in the system, one can compute the controllability of y with respect to93



the system de�ned by the matrices A and Ic and the initial vector v by comparingthe value of A�(Icy � v) to y.7.3.1 Lower and Upper Bound Speci�cationsAssume that y is a vector de�ning a lower bound speci�cation, i.e., the occurrencetimes of the events in the system are greater or equal to y. Then,A�(Icy � v) � yis a controllability test for the lower bound speci�cation y.Denote the inf-convolution operator by u. Since u provides the smallestvalue of all the possible convolutions, it is trivial to show that, for any convolutionoperator �, A��(Icy � v) � A�u(Icy � v)where A� is the transition matrix resulting from applying � to the delays of thenon-deterministic subnet. Therefore, a lower bound speci�cation y is controllable,if A�u(Icy � v) � y.The convolution t de�ned by the sup operator can also be used to com-pute the controllability of an upper bound speci�cation. Given an upper boundspeci�cation y, A�t(Icy � v) � y.7.4 ImplementationThe goal is to automate all phases of the analysis process. Therefore the prototypefor the (max,+) algebra of signals is extending with algorithms to compute convolu-tion operations on delay signals, an algorithm to reduce a single input-single output,acyclic TEG to a single delay, and an algorithm to check the reducibility of a subnet94



7.4.1 Convolution OperationsIt is easy to derive from the proof of Lemma 7.1 that the length of the period ofthe signal resulting from the convolution of two pure periodic signals is the lowestcommon multiple of the lengths of their period. Moreover, the length of the tran-sitory sequence is bounded by the size of the period, hence the algorithm in Figure7.4 where m is the common length of the periods of the two input signals, and transand prev are integer arrays of size m. The function convolutivesum takes for inputsconvolution(signal x,y): signal zf 1. previous := 0; cumul := 0;2. for i from 1 to 2m docurrent := convolutivesum(x,y,i) - previous;if (i � m)trans[i] := current - cumul;cumul += trans[i];if (i > m)per[i] := current - cumul;cumul += per[i];previous += current;3. z := (trans;per); gFigure 7.4: Algorithm for the convolution of periodic signalstwo periodic signals and an index. It computes the convolutive sums of the signalsat the speci�ed index. The complexity of convolutivesum is O(k) where k is a givenindex. Therefore, the complexity of convolution is O(m2).Using results from the proof of Theorem 7.2, the convolution algorithm can bemodi�ed to handle any periodic delay signal without changing its overall complexity:make trans an integer array of size 2n, per an integer array of size m, and change thetests of both if statements to re
ect those new bounds. Still, the modi�ed algorithmdoes not handle the presence of initial tokens in balanced, acyclic TEGs.Assume that there are two balanced, acyclic TEGs corresponding to twosignals x and y of underlying sequences X and Y respectively that contain nx and95



ny initial tokens respectively. It is obvious that the �rst nx + ny steps of the signalz corresponding to the convolution of x and y have to result from the convolutionof the �rst nx steps of x and the �rst ny steps of y. The remaining steps can becomputed by replacing the �rst nx steps of x by their sum and respectively the�rst ny steps of y by their sum, and by computing the convolution of the modi�edsignals.7.4.2 Reducibility of Balanced, Acyclic TEGsThere are two important steps in the reduction of balanced, acyclic TEGs to singleplaces. First, one needs to check if the subnets are reducible (i.e., no loops and abalanced number of tokens in concurrent paths). Second, the reduction itself hasto take place. This can be performed by using the algebraic simpli�cation rulesdiscussed in Section 7.2.2. The following algorithm checks the reducibility of abalanced, acyclic TEG.Detecting the presence of a cycle within a subnet is an easy operation thatcan be performed in O(jV j + jEj) operations using a depth-�rst search algorithm.E is the set of edges in the subnet, and V is the set of vertices. Detecting anunbalanced number of tokens in concurrent activities can also be performed usinga depth-�rst search algorithm (with O(jV j+ jEj)) complexity) given in Figure 7.5.The idea is as follows. Consider the weighted, directed graph where� the vertices are the transitions of the acyclic TEG,� there is an arc from a vertex to another if there is a place connecting thecorresponding transitions in the TEG, and� the weight w(a) of that arc a is the number of tokens initially present in thatplace.Assume that Cnt is an array of integers, whose elements are initialized to -1, indexedby the vertices of the graph. De�ne the function w : V � V ! N (where N is the96



set of natural number) that associates its weight to an arc. Algorithm 7.5 startsreducible(vertex u, int tokens): booleanf 1. if (Cnt[u] = �1)then Cnt[u] := tokens;for each vertex v successor of u doif not reducible(v, Cnt[u]+w(u,v));then return FALSE;2. if (Cnt[u] 6= tokens)then return FALSE;3. return TRUE;g Figure 7.5: Algorithm for checking reducibilitywith the source transition and 0 as arguments.7.5 ExampleThis section applies this analysis technique to the intelligent structural control sys-tem example de�ned in [34]. The goal is to verify that the time between controlpulses is bounded by T0=8 and T0=2 where T0 is 290 t.u. and that consecutivecalculations of the actuator values are separated by at least 135 t.u.Figure 7.2 illustrates the non-deterministic TEG for the sensor and the con-troller. The actuator needs to synchronize with the controller. However, the timingconstraints in the actuator net are such that it cannot a�ect the behavior of thecontroller. Therefore, the actuator does not need to be modeled when analyzingthe timing of the sensor and the controller. This makes all the balanced, acyclicTEGs reducible. Note that all timing values are integer constants that correspondto constant signals. The constant c corresponds to the signal ((c); (0)). Intervalsrepresent ranges of possible delays.The balanced, acyclic TEG for the calculation of the pulse can be reduced97



to a single place with a cumulative delay ranging from 55 to 60 t.u. However, theresulting PN is still not analyzable. The alternative TEG must be replaced by asingle place whose delay d is the result of some convolution operation on the delaysin the balanced, acyclic TEGs. This operation yields the reduced TEG in Figure7.6.
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Figure 7.6: Reduced TEG for the intelligent structural control systemUsing the inf- and sup-convolutions to compute lower and upper bounds onthe timing behavior in the alternative TEG, d is found to be bounded by((20); (0)) � d � ((25; 35); (0))which yields ((0; 85); (65)) � t06 � ((0; 130); (75)).The lower bound (((0; 85); (65))) corresponds to a decision function in place S thatalways selects t11 as its downstream transition. Since the goal is to generate pulses,t5 should be selected at some point in time. Therefore, inf-convolution is not adesirable decision function in S. Moreover, the upper bound (((0; 130); (75))) showsthat the constant selection of t5 as the output of S results in a separation timebetween calculations as low as 75, which violates the initial requirements. Clearly,deciding the output of S requires some control.Computing a decision function for S cannot be done automatically in thiscase. However, one can observe that the sum of the minimum cycling time in the98



updating cycle (65) and the minimum cycling time in the pulse calculation cycle (70)is 135. Therefore, a decision function alternating between the updating cycle (65to 70 t.u. because of the synchronization with the sensor cycle) and the calculationcycle (70 to 75 t.u.) of the controller should result in a separation time of at least135 t.u. between successive pulse calculations. Let u and c be the delay signals (andU and C their underlying sequences) in the updating cycle and the calculation cyclerespectively of the controller. De�ne delay d such that its underlying sequence D isas follows: 8i > 0 : D[i] = 8><>: U [(i+ 1)=2] if i is oddC[i=2] otherwiseThen, d 2 [((20); (35;�35)); ((25); (35;�35))]which yields the following bounds on D:f20; 55; 20; 55; : : :g � D � f25; 60; 25; 60; : : :g.Using the new de�nition of delay d, this results in((0; 120); (35; 100)) � t06 � ((0; 130); (40; 105))Passes through the calculation loop correspond to the even-indexed events. There-fore, the separation time between two calculations is always greater than or equalto 135.Figure 7.7 illustrates the TEG for the actuator. The synchronization betweenthe controller and the actuator is handled as follows: the actuator is modeled as astand-alone TEG and its synchronization with the controller via a non-zero initialvalue for transition x3. In general, initial values are constant, and therefore, theyimpact only the �rst values of the event signals. However, as shown in [21] andSection 7.3, non-constant initial values serve as synchronization points at all indicesin the event signals. An initial value v for an event signal x guarantees that x � v.Therefore, making the signal corresponding to transition t8 the initial value for99
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[25,30]Figure 7.7: Event graph for the actuator of the intelligent structural control systemtransition x3 actually enforces the synchronization between the controller and theactuator. Let A be the transition matrix of the actuator subnet. Let the initialvector v be such that v[0] = v[1] = v[2] = e and v[3] = t8. Then, the event signalsfor xi (i = 0; : : : 3) are given by A�v.The value of transition t8 can be computed from the value of transition t06.Let T8 be the underlying sequence corresponding to transition t8. Then,8i > 0 : T8[i] = T 06[2i]� 5.This result yields x1 = [((75); (135)); ((80); (145))]which can be used to check the correctness of the system. Given that X1 is theunderlying sequence of signal x1, the system is correct if the following inequation isveri�ed: 8i > 0 : T0=8 � X1[i+ 1]�X1[i] � T0=2.Since T0 = 290, the inequation becomes8i > 0 : 37 � X1[i+ 1]�X1[i] � 145.Observe that the value X1[i + 1] � X1[i] is the value of the elements (or steps) inthe period and transitory sequence of signal x1. Therefore, the proof of correctnessis reduced to verifying that the value of any step in signal x1 is between 37 and 145,which is the case. 100



7.6 Related WorkIn [24], Cofer already tried to apply his (max,+) algebra of in�nite sequences tonon-deterministic, timed Petri nets. His e�ort focused on variable routing eventgraphs in which places are allowed to have many successors under some restrictions.First, the function allocating tokens to the successors of a given place has to bedeterministic. Second, places with multiple successors are not allowed within cycles.The work described in this chapter lifts those two restrictions, and thus, facilitatesthe analysis of non-deterministic systems.This technique applies to a class of real-time systems that are also analyzableby well-known modeling tools such as Modechart [50, 51], HyTech [47], timed au-tomata [46, 4], Uppaal [56], KRONOS [33], SCR [44, 43], CSR [39], PARAGON [8]and other techniques based on temporal logics. There are two main advantages tothe (max,+) algebra of signals over these existing techniques. First, unlike existingtechniques, the (max,+) algebra of signals does not require the construction of largestate spaces to prove timing properties. For example in Modechart, a state consistsof a combination of the active modes at a given time and the values of the globalvariables at that time. This potentially leads to large graphs with sizes that areusually reduced by pruning based on the timing constraints in the modeled system.In the (max,+) algebra, the behavioral information of a system is captured by N�Nclosure matrices where N is the number of events in the modeled system. Thesematrices, which are built using an O(N3) algorithm, contain the necessary infor-mation to compute all time occurrences of all the events in the system. Moreover,this technique tolerates system decomposition which can further reduce the cost ofthe analysis [20]. These features make the (max,+) algebra of signals less prone tostate explosion than other traditional techniques. Second, the analysis techniquesavailable in the (max,+) algebra of signals include algorithms to compute optimalcontrollers for real-time DES as seen in Chapter 6. Similar work can be done usingsymbolic methods within the framework of timed automata [5]. However, we are101



not aware of any e�cient implementation of that work yet.Disadvantages of the (max,+)algebra of signals include its limitation to sys-tems in which events are eventually periodic. Sporadic events can be handled in amanner similar to the way sporadic tasks are handled in scheduling algorithms forperiodic tasks; the timing behavior of a sporadic event has to be bound by peri-odic signals. Note also that HyTech, SCR, and timed automata have been appliedto the veri�cation of hybrid systems, which is not possible at this time with thistechnique.
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Chapter 8
Implementation
The algorithms presented in this dissertation have been implemented in C++. Thecode was compiled on di�erent UNIX workstations (SUN-SPARC, -UltraSPARC,IBM RS6000, and PCs running linux) using the Gnu C++ compiler.This chapter summarizes the implementation e�orts. First, the structuralorganization of the software is described. Data structures, and their relationships,are discussed. The second section presents the command line interface for the soft-ware. It lists the available commands. Finally, an example of the inputs and outputsof the manufacturing process example is given.8.1 ClassesThe implementation of the algorithms depends on four classes: integer array, signal,expression, and matrix. The signal class implements the data structure, and itsmanipulation, for periodic signals. The expression class allows the de�nition offunctions operating on signals. The matrix class implements matrices of expressionsand the related algorithms.There is no inheritance among these classes, but there are some hierarchicaldependencies as shown in Figure 8.1. The integer array class is used by all other103
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Figure 8.1: Hierarchy of classes for the implementation.classes. The signal class is used by the expression and matrix classes. The expressionclass is used only by the matrix class.The integer array class is a classic implementation of arrays of integers. Themain philosophy behind it is that dynamic memory allocation must be minimized.Therefore, if the size of an array has to increase (because some new elements arebeing added), then the current allocated memory is released and new dynamic mem-ory is requested. However, if the size of the array decreases, then the memory isnot deallocated. The actual array then occupied only parts of the already allocateddynamic memory. This solution requires that the size of the array, the size of theallocated dynamic memory and the pointer to the dynamic memory be membersof the class. There is a method that forces the release of the dynamic memory ifneeded.The signal class is not much more complicated. Basically a signal is imple-mented with two integer arrays (one for the transitory sequence and one for theperiod) and a counter of "'s. Indeed, "'s have no integer values (since " = �1).Moreover, they can appear only as pre�xes of the transitory sequence. Therefore,only the number of "'s needs to be kept. Note that the transitory sequence is reallyde�ned by the number of "'s and one of the integer arrays.The expression class allows the de�nition of ", backshift, delay, star delayfunctions (which represent basic expressions) and their manipulation via maximiza-104



tion and composition. Expressions involving more than one functions are calledcomplex expressions. To cope with the di�erent types of expressions, the class re-quires the following members: a type indicating the type of the expression (e.g.,delay, backshift, or maximization), a label, the value of the associated signal ifneeded, and an array of pointers to expressions and its size.The members of the matrix class are the expected ones: two integers de�ningthe size of the matrix and an array of arrays of expressions. The main methods ofthis class are the implementations of Jordan's algorithm and the iterative algorithmto compute A�v (see Chapter 5).8.2 User InterfaceSince the intent was to build a prototype to validate the approach rather thanbuilding a commercial software, the implementation relies on a simple commandline user interface. This interface consists of an interpreted shell (created using Lexand Yacc). The tool accepts commands from standard input and prints results onstandard output. Obviously, �les can be used via the Unix re-direction commands.Given the following notations� 'e' stands for ((0); (0))� 'E' stands for "� 'Y' stands for 
� '+' stands for �� '.' stands for 
here is the grammar accepted by the interpreter.command-list: command;j command; command-list105



command: compute-expressionj def-signalj def-expressionj def-matrixj def-matrix-eltj def-vectorj def-specj def-supremalj compute-starj displayingj control-specj quitdef-signal: signal Name = signalsignal: Name j e j E j ( transitory ; period )transitory: ( val-list )val-list: epsilon-listj epsilon-list , num-listj num-listepsilon-list: E j epsilon-list , Eperiod: () j ( num-list )106



num-list: Number j num-list , Numberdef-expression: expression Name = expressionexpression: simple-expj ( expression )j expression + expressionj expression . expressionj expression *simple-exp: Name j E j Y j e j delay signalcompute-expression: compute expression ( signal )def-matrix: matrix Name matrixmatrix: = simple-matrixsimple-matrix: Mnamej E [ Number ]j e [ Number ]j closure ( Name )def-matrix-elt: Name [ index ] = expressionindex: Number j Number , Numberdef-vector: vector Name vector107



vector: = simple-vector j [ Number ]simple-vector: Vname j E [ Number ] j e [ Number ]compute-star: solve Name = Mname . Vnamedisplaying: display signal Namej display expression Namej display matrix Namej display vector Namej display speci�cation Namecontrol-spec: controllable period control-mode Vname wrt Mname Namedef-supremal: supremal Name = supremal-testsupremal-test: Sname period wrt Mname simple-vectorcontrol-mode: lower j upperdef-spec: speci�cation Sname = def-spec-typedef-spec-type: set def-setj range [ Vname , Vname ]j single Vnamej separation Mnamej Sname 108



def-set: f set-list gset-list: Vname j set-list , Vname
8.3 ExampleThis section gives the commands for the manufacturing process example. Here arethe commands to de�ne the matrix. Note that the indices in the matrix start atzero (because of C++).expression a = delay ((7);(-2,2));expression w = delay ((4);(0));expression s = delay ((1);(0));expression r = delay ((4);(-3,0,0,0,3));matrix A[3];A[0,0] = a.Y;A[1,0] = s;A[2,1] = w;A[1,2] = r.Y;display matrix A;yieldingaY E Es E rYE w EThe following commands were used to compute the closure matrix of thetransition matrix using Jordan's algorithm. Its application to a vector describing theinitial conditions of the DES computes the least solution of the equation x = Ax�v.109



matrix Astar = closure (A);vector V = e[3];solve X = Astar.V;display vector X;yieldingX[0] = ((0);(5,7))X[1] = ((1,5,7);(5,7,8,5,5,6,5,8,5,6))X[2] = ((5,5,7);(5,7,8,5,5,6,5,8,5,6))The following commands de�ne an upper bound speci�cation y such thaty = 0BBBB@ ((0); (7))((1); (7))((5); (7)) 1CCCCAAll that is needed to de�ne an upper bound speci�cation is a vector (y in this case).This can be done using the following commands:expression y0 = delay ((0);(7));expression y1 = delay ((1);(7));expression y2 = delay ((5);(7));vector y[3];y[0] = y0; y[1] = y1; y[2] = y2;The controllability of the manufacturing process (with respect to the upperbound speci�cation y given that only Event t2 is controllable) can then be computedusing the following command:controllable (1) upper y wrt Astar V;This command returns false which indicates that the upper bound speci�cation yis not controllable. One can verify that the upper bound speci�cation de�ned byz = A�y is controllable by verifying that the following commands return true.110



solve z = Astar.y;controllable (1) upper z wrt Astar V;As an illustration for the computation of supremal controllers, consider a setof two behaviors de�ned by the two following vectors y0 and y1:y0 = y = 0BBBB@ ((0); (7))((1); (7))((5); (7)) 1CCCCA and y1 = 0BBBB@ ((0); (8))((1); (8))((5); (8)) 1CCCCA .This speci�cation assumes that all events are controllable. The following commandsde�ne the speci�cation and compute its supremal set for A� and v:specification y = set y0, y1;supremal S = y (0,1,2) wrt Astar V;The last command computes the set S of supremal controllers. In this case, Sconsists of only one element and can be displayed as follows:display specification S;which yieldsS = This finite signal set specification has 1 element.Element 0:0= ((0);(8))1= ((1);(8))2= ((5);(8))It is easy to verify that this element is controllable.8.4 PerformanceThe bulk of the work during the analysis of a system is the computation of A�. Forthe manufacturing process example (which has only three transitions and four delay111



functions), the computation of A� was done in 0.02 seconds on a Sun UltraSparc 140workstation. This processing time seems to grow exponentially with the number oftransitions (or events) in the system. This was shown by the following experiment.The manufacturing process example is progressively extended as follows. Thegoal is to augment the number of transitions. To do so, the subnet between tran-sitions t2 and t3 (which de�nes a cycle) is duplicated and the duplicate (consistingof two transition called t4 and t5) is connected to the original TEG in a sequentialmanner (i.e., t3 is connected to t4 with a null delay represented by the signal e).Figure 8.2 illustrates the extension process.
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consisting of t4 and t5. Then the solutions for t4 and t5 are given by0B@ x4x5 1CA = A�10B@ v4 � x3v5 1CA .This calculation process can be repeated for every step of the expansion to obtainall solutions. In the experiment, this results in a linear increase in computationtime rather than an exponential increase. Thus, for the expanded system with 21transitions, the computation time can at least be reduced from 5.83 to 0.2 seconds.
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Chapter 9
Conclusions
This dissertation de�nes and implements the (max,+) algebra of periodic signals.This modeling framework based on the theory of exotic algebras (more particularly,the (max,+) algebra) can be applied to the analysis of timed discrete event systems.The core of the work has consisted of� creating a �nite representation, called periodic signals, for in�nite, periodictime sequences;� de�ning a (max,+) algebra based on maximization, backshift and time-varyingdelay operations on periodic signals;� de�ning and implementing algorithms to perform these operations;� de�ning and implementing algorithms to compute solutions of equations onthe algebra;� de�ning a framework within which non-deterministic features can be handled.Moreover, this work has proved to be successful in implementing techniquesto synthesize controllers for discrete event systems. Indeed, the C++ implementa-tion of the (max,+) algebra of periodic signals not only facilitates the timing analysis115



of discrete event systems but also the synthesis of extremal controllable speci�ca-tion, where controlling a system is seen as delaying its temporal behavior to �t agiven speci�cation. This part of the work constitutes a validation of the techniquesde�ned by Cofer in [23].The next two sections elaborate on the major contributions of this disserta-tion and on future directions.9.1 Major ContributionsPrevious work in this area has focused on deterministic discrete event systems withconstant delays. This work extends the current state of the art to include:� systems with delays that can vary according to a periodic pattern over time,and� systems that exhibit some non-determinism.9.1.1 A (max,+) Algebra for Time-Varying Discrete Event SystemsUntil this work, the (max,+) algebra had been applied to timed discrete event sys-tems in which delays were constant, i.e., the duration of an activity (in the absenceof synchronization) between two events was constant over time. This dissertationincreases the application domain of the (max,+) algebra to include timed discreteevent systems in which delays can vary over time.The �rst di�culty in de�ning a computable (max,+) algebra for time-varyingdiscrete event systems is that the time sequences characterizing the events of asystem must have a �nite representation. To this end, time-varying delays in the(max,+) algebra of signals are restricted to functions that are eventually periodic.This means that delays are completely de�ned by two �nite lists of delay values.The �rst one consists of values that do not follow any particular pattern. They areapplied only once (during what is called a transitory phase). The second list de�nes116



a pattern of delay values that is repeated over time; this corresponds to the periodicphase of the delay. For example, if the periodic part of a delay consists of the twoconsecutive delay values two and three, then the in�nite sequence f2; 3; 2; 3; 2; 3; : : :gdescribes the delay values applied during the periodic phase.Another di�culty, and major di�erence with the traditional (max,+) algebra,is that time-varying delays result in the de�nition of a non-commutative algebra.Expressions in the (max,+) algebra of signals consist of compositions of delay func-tions and backshift functions where a backshift function changes the time value ateach index. Because delay values may be di�erent at each index, delay functionsand backshift functions are not commutative; hence, the (max,+) algebra is notcommutative. This means that the algorithms used in the traditional (max,+) al-gebra to compute the closure matrix of the transition matrix of a system no longerapply in the (max,+) algebra of signals. Therefore, this dissertation de�nes a new�xed-point algorithm that computes closure matrices for time-varying discrete eventsystems based on their initial conditions.9.1.2 A (max,+)-based Framework for Non-Deterministic DiscreteEvent SystemsThe main criticism about the (max,+) algebra is that it applies only to deterministicsystems. Unfortunately, many models, especially for real-time systems, exhibit non-deterministic behaviors. Therefore, this dissertation de�nes a hierarchical modelingframework within which the (max,+) algebra of signals can be applied to non-deterministic models.Given the constraints of the (max,+) algebra, it has been necessary to restrictthe type of non-determinism allowed in models. In essence, the impact of each non-deterministic part of a system has to be contained within an independent subnet thatcan be reduced to a single place. The delay of this place is the result of a convolutionoperation on the delays in each of the paths in the current non-deterministic part.117



This dissertation shows that, among all the convolution operations that canbe used, two types of convolution play a special role. The inf-convolution computesthe earliest possible �ring times in the non-deterministic part, and hence, it must beused to compute the earliest �ring times in the whole system. Similarly, given someassumptions (enabling and �ring times are always zero) on the Petri net model thatrepresents a system, the sup-convolution must be used to compute the latest �ringtimes in the whole system.Finally, decision functions can be used to impose some speci�c behavior inthe non-deterministic parts as long as they result in periodic delays. This featurewas illustrated in this dissertation with an example of a non-deterministic real-timesystem.9.2 Future WorkThere are two key elements to the adoption of a technology by both the researchand the industrial communities. These elements are scalability and applicability. Ifa technology does not scale, chances are that it will not be used in real settings.Similarly, a technology that works only for narrow domains does not have a broadappeal and probably will not be pursued.The next subsections explore future directions that address these concerns forthe (max,+) algebra of signals. First, the scalability issue is addressed by the nexttwo subsections. The applicability issue is addressed by the remaining subsections.9.2.1 ComposabilityThe scalability of the (max,+) algebra of signals depends on its ability to decom-pose large problems into small subproblems, solve these subproblems, and derive ageneral solution based on the solutions of the subproblems. This is known as thecomposability problem.The dissertation shows that sequential composability is already possible. The118



timed event graph of a system can be abstracted into an acyclic graph that describesthe sequential relationships amongst strongly connected components. Each one ofthese components (or groups of connected components) can be considered subprob-lems of the general problem. They can be described by small transition matriceswhich can be solved independently.Unfortunately, in some cases, these small components cannot be solved inde-pendently because their resolution depends on an initial condition. In such a case,components at the root of the acyclic graph can be solved �rst, and their solutionscan be propagated as initial conditions to other subproblems. This compositionalgorithm is not optimum, but it allows for a certain degree of parallelism. A sub-problem s can be solved independently from another subproblem s0 if s0 is not anancestor of s in the acyclic graph.Other improvements could be derived from the body of work on Petri netdecomposition. There has been a fair amount of work that looks at decomposingPetri nets into subnets in such a way that a property is preserved by the decomposi-tion. Besides the work on decomposing stochastic Petri nets, the following referencesde�ne interesting decomposition techniques [12, 13, 14, 22, 48].In any case, the potential gain obtained by using composability can easily benegated by the inability to compute transfer functions for subproblems. The nextsection explores future work in this area.9.2.2 Transfer FunctionsComputing transfer functions for any system is critical to the future of this tech-nology. The ability of computing the closure matrix A� regardless of the initialconditions is invaluable for the following reasons:� it speeds up the computation of solutions for di�erent initial conditions;� it allows to decompose complex systems into separately analyzable compo-nents, which is critical for the analysis of realistic models;119



� it reduces the complexity of the controllability test and the synthesis of con-trollers for the speci�cations described in this work;� it allows to determine if two systems are performing the same function.Therefore, future directions should primarily focus on means of computing A� forany given system.The main obstacle to computing transfer functions in the (max,+) algebraof signals is the non-commutativity of the algebra. It prevents the simpli�cation ofexpressions at states (transitions in this case) that are part of a chain of more thanone cycles. Therefore, it seems that the solution to this problem is either to de�netime-dependent delays for which the (max,+) algebra of signals is commutative(which is highly unlikely) or to �nd a way of breaking cycles without changing thetiming behavior of a net.First, the net transformations considered in the previous sections should bestudied to see if they can help in this particular problem. It might not be thecase, unless they result in nets with fewer cycles. A more promising approach isbased on net transformations that can preserve the temporal behavior of systems.These transformations could concentrate on parts of the graph with a high degreeof connectivity and break some feedback loops by introducing additional places andtransitions.9.2.3 Extension of the Framework for Non-Deterministic SystemsMost criticisms about techniques based on exotic algebras (like the (max,+) algebra)is that they work only for deterministic systems. Unfortunately, many systemsexhibit non-deterministic features. Therefore, another area of interest is to continueinvestigating the possibility of including non-deterministic constructs in timed eventgraphs.The key in this endeavor is to be able to abstract a deterministic net froma non-deterministic net without losing the non-deterministic timing information.120



The abstracted net has to be a deterministic net so that it can be represented by atransition matrix. The reduction technique used to abstract the deterministic modelhas to capture the timing information contained in the non-deterministic part of thesystem so that it can be automatically folded into the solution for the abstracteddeterministic model.9.2.4 Property Veri�cationThe automatic veri�cation of real-time properties is also an area that can be im-proved to increase the appeal of this technology. The problem can be formulated asfollows.De�nition 9.1 (Property veri�cation)Given a set of signals that de�ne the earliest �ring times of all the transitions ina timed event graph modeling a system, how can one express and verify timingconstraints?First, note that the function giving the time values of a signal in the (max,+)algebra of signals is similar to the occurrence function used in Real Time Logic (RTL)[49]. Indeed, the ith index of the sequence X underlying a signal x (i.e., X[i]) isequivalent to the ith occurrence of the event represented by the signal x (denoted by@(x; i) in RTL). Therefore, it is tempting to use RTL to specify timing properties.RTL is an attractive solution because it is a fairly simple speci�cation lan-guage. RTL is a �rst-order logic to reason about real-time systems [49, 52]. Unlikeother temporal logics for real-time systems, RTL has no modal operators. RTL for-mulas rely on universal and existential quanti�ers (8 and 9), logical connectives (_,^, :, and )), simple arithmetic operators (+ and �) and relational operators (<,�, =, �, and >) in the set of integers to reason about events in a real-time systems.There however are some di�erences between the (max,+) algebra of signals and themodel underlying RTL. 121



First, the transitory sequence of a signal may start with a sequence of "values, which are not de�ned in RTL. However, the presence of " in a signal is ingeneral a by-product of the initial conditions of a TEG. Moreover, "'s appear onlyin temporary results when computing (max,+) expressions, and never in the �nalresults describing the signals generated by a TEG.Second, the de�nition of a signal violates the second axiom (which requiresthat two distinct occurrences cannot happen at the same instant of time) associatedwith occurrence functions in RTL. A signal is not necessarily monotonic, meaningthat it is possible to have a signal x such that there exist two indices i < j for whichX[i] � X[j]. Therefore, either the (max,+) algebra of signals needs to be restrictedto strictly monotonic signals or the semantic of RTL needs to be modi�ed.Once the semantical di�erences between RTL and the (max,+) algebra ofsignals are resolved, an algorithm needs to be de�ned to verify real-time properties.At this time, it seems very likely that, even though the state space in the (max,+)algebra of signals is �nite, the class of properties that can be automatically veri�edis the same as the ones in Modechart [50]. This class includes expressions containingliterals of the form: e1 + c � e2where e1 and e2 are occurrence functions and c is a constant integer. This classincludes properties such as minimum and maximum separation time properties.Note that Chapter 6 explains how such properties can be veri�ed using the (max,+)algebra of signals.This only constitutes an example of what has to be done in this area. How-ever, it once again underlines the criticality of being able to compute transfer func-tions since they facilitate the computation of the controllability criterion.
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