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Abstract. It has been shown that Lattice Linear Predicate (LLP) algorithm
solves many combinatorial optimization problems such as the shortest
path problem, the stable marriage problem and the market clearing price
problem. In this paper, we give an LLP algorithm for the Housing Market
problem. The Housing Market problem is a one-sided matching problem
with n agents and n houses. Each agent has an initial allocation of a
house and a totally ordered preference list of houses. The goal is to
find a matching between agents and houses such that no strict subset of
agents can improve their outcome by exchanging houses with each other
rather than going with the matching. Gale’s celebrated Top Trading
Cycle algorithm to find the matching requires O(n2) time. Our parallel
algorithm has expected time complexity O(n log2 n) with and expected
work complexity of O(n2 logn).

1 Introduction

The housing market problem proposed by Shapley and Scarf [1] is a matching
problem with one-sided preferences. There are n agents and n houses. Each agent
ai initially owns a house hi for i ∈ {1, n} and has a completely ranked list of
houses. There are variations of this problem when the agents do not own any
house initially. In this paper, we focus on the version with the initial endowment
of houses for the agents. The list of preferences of the agents is given by pref [i][k]
which specifies the kth preference of the agent i. Thus, pref [i][1] = j means that
ai prefers hj as his top choice. The goal is to come up with an optimal house
allocation such that each agent has a house and no subset of agents can improve
the satisfaction of agents in this subset by exchanging houses within the subset.
It can be shown that there is a unique such matching called the core for any
housing market. The standard algorithm for this problem is Gale’s Top Trading
Cycle Algorithm that takes O(n2) time. This algorithm is optimal in terms of
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the time complexity since the input size is O(n2). Our interest in this paper is
to design parallel algorithms for this problem.

The housing market problem has been studied by many researchers [1–8].
Possible applications of the housing market problem include: assigning virtual
machines to servers in cloud computers, allocating graduates to trainee positions,
professors to offices, and students to roommates. In this paper, we apply the
Lattice Linear Predicate (LLP) method [9] to give a parallel algorithm for the
housing market problem. This problem has also recently been studied by Zheng
and Garg [10] where it is shown that the problem of verifying that a matching
is a core is in NC, but the problem of computing the core is CC-hard1 The
paper [10] also gives a distributed message-passing algorithm to find the core
with O(n2) messages. In this paper, we focus on computing the core and give
a parallel algorithm for finding the core that is nearly linear in the number of
agents. Our algorithm takes expected O(n log2 n) time and expected O(n2 log n)
work.

Another goal of this paper is to show applications of the Lattice Linear
Predicate (LLP) algorithm for the problem. It has been shown that the Lattice
Linear Predicate (LLP) algorithm solves many combinatorial optimization problems
such as the shortest path problem, the stable marriage problem and the market
clearing price problem [9]. In [11], we show that the LLP algorithm also solves
many dynamic programming problems in parallel. These problems include the
longest subsequence problem, the optimal binary search tree problem, and the
knapsack problem.

The lattice-linear predicate detection method to solve a combinatorial optimization
problem is as follows. The first step is to define a lattice of vectors L such that
each vector is assigned a point in the search space. For the stable matching
problem, the vector corresponds to the assignment of men to women (or equivalently,
the choice number for each man). For the shortest path problem, the vector
assigns a cost to each node. For the housing problem studied in this paper,
the vector corresponds to the assignment of agents to houses. The comparison
operation (≤) is defined on the set of vectors such that the least vector, if
feasible, is the extremal solution of interest. For example, in the stable marriage
problem if each man orders women according to his preferences and every man is
assigned the first woman in the list, then this solution is the man-optimal solution
whenever the assignment is a matching and has no blocking pair. Similarly, in
the shortest path problem, the zero vector would be optimal if it were feasible.
For the housing problem, each agent orders the list of houses in order of its
preference giving us the comparison operator. For two vectors G and H in the
lattice, G ≤ H if and only if each agent prefers the house assigned to them in G
at least as much as the house assigned to them in H.

The second step in our method is to define a boolean predicate B that models
the feasibility of the vector. For the stable matching problem, an assignment is
feasible iff it is a matching and there is no blocking pair. For the shortest path

1 The class CC (Comparator Circuits) is the complexity class containing decision
problems which can be solved by comparator circuits of polynomial size.



A Parallel Algorithm for the Housing Market Problem 3

problem, the vector G only gives the lower bound on the cost of a path and there
may not be any path to vertex vi with cost G[i]. To capture that an assignment
is feasible, we define feasibility which requires the notion of a parent. We say that
vi is a parent of vj in G iff there is a direct edge from vi to vj and G[j] is at least
(G[i] +w[i, j]). For the shortest path problem, an assignment is feasible iff every
reachable node except the source node has a parent. For the housing problem,
we say that a housing assignment is feasible if no subset of agents can improve
the satisfaction of agents in this subset by exchanging houses within the subset.
Fig. 1 gives the feasibility predicate for each of these problems.

Problem Feasibility Predicate B

Shortest Path every reachable vertex other than the source has a parent
Stable Marriage the assignment is a matching and there is no blocking pair
Housing market the assignment is a matching and there is no break away coalition

Fig. 1. The Feasibility Predicate for Various Problems

The third step is to show that the feasibility predicate is a lattice-linear
predicate [12, 9]. Lattice-linearity property allows one to search for a feasible
solution efficiently. If any point in the search space is not feasible, it allows one
to make progress towards the optimal feasible solution without any need for
exploring multiple paths in the lattice. Moreover, multiple processes can make
progress towards a feasible solution in a parallel fashion. In a finite distributive
lattice, it is clear that the maximum number of such advancement steps before
one finds the optimal solution or reaches the top element of the lattice is equal
to the height of the lattice. In this paper, we derive a parallel LLP algorithm
that solves the housing market problem using this approach.

This paper is organized as follows. Section 2 gives background on Gale’s Top
Trading Cycle Algorithm and the LLP method. Section 3 applies LLP method
to the unconstrained Housing market problem and derives a high-level parallel
algorithm. Section 4 gives a parallel Las Vegas algorithm for the Housing market
problem.

2 Background

In this section, we cover the background information on Gale’s Top Trading Cycle
Algorithm and the LLP Algorithm [9]. Consider the housing market instance
shown in Fig. 2. There are four agents a1, a2, a3 and a4. Initially, the agent ai
holds the house hi. The preferences of the agents is shown in Fig. 2.

2.1 Gale’s Top Trading Cycle (TTC) Algorithm for Housing Market

The Top Trading Cycle (TTC) algorithm attributed to Gale by Shapley and
Scarf [1] works in stages. At each stage, it has the following steps:
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a1 : h2, h3, h1, h4

a2 : h1, h4, h2, h3

a3 : h1, h2, h4, h3

a4 : h2, h1, h3, h4

Agents’ Preferences

a1 : h1

a2 : h2

a3 : h3

a4 : h4

Initial Allocation

a1 : h2

a2 : h1

a3 : h4

a4 : h3

Matching returned by the TTC algorithm

Fig. 2. Housing Market and the Matching returned by the Top Trading Cycle
Algorithm

Step 1. We construct the top choice directed graph Gt = (A,E) on the set of
agents A as follows. We add a directed edge from agent ai ∈ A to agent aj ∈ A
if aj holds the current top house of ai. Fig. 3 shows the directed graph at the
first stage.

Step 2. Since each node has exactly one outgoing edge in Gt, there is at least
one cycle in the graph (possibly, a self-loop). All cycles are node disjoint. We
find all the cycles in the top trading graph and implement the trade indicated
by the cycles, i.e, each agent which is in any cycle gets its current top house.

Step 3. Remove all agents which get their current top houses and remove all
houses which are assigned to some agent from the preference list of remaining
agents.

The above steps are repeated until each agent is assigned a house. At each
stage, at least one agent is assigned a final house. Thus, this algorithm takes
O(n) stages in the worse case and needs O(n2) computational steps.

a1 a2

a3 a4

Fig. 3. The top choice graph at the first stage.

2.2 LLP Algorithm

Let L be the lattice of all n-dimensional vectors of reals greater than or equal
to zero vector and less than or equal to a given vector T where the order on the
vectors is defined by the component-wise natural ≤. The lattice is used to model
the search space of the combinatorial optimization problem. The combinatorial
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optimization problem is modeled as finding the minimum element in L that
satisfies a boolean predicate B, where B models feasible (or acceptable) solutions.
We are interested in parallel algorithms to solve the combinatorial optimization
problem with n processes. We will assume that the systems maintains as its state,
the current candidate vector G ∈ L in the search lattice, where G[i] is maintained
at process i. We call G, the global state, and G[i], the state of process i.

Fig. 4 shows a finite poset corresponding to n processes (n equals two in the
figure), and the corresponding lattice of all eleven global states.
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Fig. 4. A poset and its corresponding distributive lattice L

Finding an element in lattice that satisfies the given predicate B, is called
the predicate detection problem. Finding the minimum element that satisfies B
(whenever it exists) is the combinatorial optimization problem. A key concept
in deriving an efficient predicate detection algorithm is that of a forbidden
state. Given a predicate B, and a vector G ∈ L, a state G[j] is forbidden (or
equivalently, the index j is forbidden) if for any vector H ∈ L , where G ≤ H, if
H[j] equals G[j], then B is false for H. Informally, this means that any global
state H ≥ G which satisfies B must be advanced on index j. Formally,

Definition 1 (Forbidden State [12]). Given any distributive lattice L of n-
dimensional vectors of R≥0, and a predicate B, we define forbidden(G, j,B) ≡
∀H ∈ L : G ≤ H : (G[j] = H[j])⇒ ¬B(H).

We define a predicate B to be lattice-linear with respect to a lattice L if for
any global state G, B is false in G implies that G contains a forbidden state.
Formally,

Definition 2 (lattice-linear Predicate [12]). A boolean predicate B is lattice-
linear with respect to a lattice L iff ∀G ∈ L : ¬B(G)⇒ (∃j : forbidden(G, j,B)).

Once we determine j such that forbidden(G, j,B), we also need to determine
how to advance along index j. To that end, we extend the definition of forbidden
as follows.
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Definition 3 (α-forbidden). Let B be any boolean predicate on the lattice L
of all assignment vectors. For any G, j and positive real α > G[j], we define
forbidden(G, j,B, α) iff

∀H ∈ L : H ≥ G : (H[j] < α)⇒ ¬B(H).

Given any lattice-linear predicate B, suppose ¬B(G). This means that G
must be advanced on all indices j such that forbidden(G, j,B). We use a function
α(G, j,B) such that forbidden(G, j,B, α(G, j,B)) holds whenever forbidden(G, j,B)
is true. With the notion of α(G, j,B), we have the Algorithm LLP . The algorithm
LLP has two inputs — the predicate B and the top element of the lattice T . It
returns the least vector G which is less than or equal to T and satisfies B (if it
exists). Whenever B is not true in the current vector G, the algorithm advances
on all forbidden indices j in parallel. This simple parallel algorithm can be used
to solve a large variety of combinatorial optimization problems by instantiating
different forbidden(G, j,B) and α(G, j,B).

ALGORITHM LLP: To find the minimum vector at most T that satisfies B

1 vector function getLeastFeasible(T : vector, B: predicate)
2 var G: vector of reals initially ∀i : G[i] = 0;
3 while ∃j : forbidden(G, j,B) do
4 for all j such that forbidden(G, j,B) in parallel:
5 if (α(G, j,B) > T [j]) then return null;
6 else G[j] := α(G, j,B);
7 endwhile;
8 return G; // the optimal solution

The following Lemma is useful in proving lattice-linearity of predicates.

Lemma 1. [9, 12] Let B be any boolean predicate defined on a lattice L of
vectors.
(a) Let f : L→ R≥0 be any monotone function defined on the lattice L of vectors
of R≥0. Consider the predicate B ≡ G[i] ≥ f(G) for some fixed i. Then, B is
lattice-linear.
(b) If B1 and B2 are lattice-linear then B1 ∧B2 is also lattice-linear.

We now give an example of lattice-linear predicates for the scheduling of n
jobs. Each job j requires time tj for completion and has a set of prerequisite jobs,
denoted by pre(j), such that it can be started only after all its prerequisite jobs
have been completed. Our goal is to find the minimum completion time for each
job. We let our lattice L be the set of all possible completion times. A completion
vector G ∈ L is feasible iff Bjobs(G) holds where Bjobs(G) ≡ ∀j : (G[j] ≥
tj) ∧ (∀i ∈ pre(j) : G[j] ≥ G[i] + tj). Bjobs is lattice-linear because if it is false,
then there exists j such that either G[j] < tj or ∃i ∈ pre(j) : G[j] < G[i]+tj . We
claim that forbidden(G, j,Bjobs). Indeed, any vector H ≥ G cannot be feasible
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with G[j] equal to H[j]. The minimum of all vectors that satisfy feasibility
corresponds to the minimum completion time.

As an example of a predicate that is not lattice-linear, consider the predicate
B ≡

∑
j G[j] ≥ 1 defined on the space of two dimensional vectors. Consider the

vector G equal to (0, 0). The vector G does not satisfy B. For B to be lattice-
linear either the first index or the second index should be forbidden. However,
none of the indices are forbidden in (0, 0). The index 0 is not forbidden because
the vector H = (0, 1) is greater than G, has H[0] equal to G[0] but it still satisfies
B. The index 1 is also not forbidden because H = (1, 0) is greater than G, has
H[1] equal to G[1] but it satisfies B.

2.3 Notation

We now go over the notation used in the description of our parallel algorithms.
Fig. 5 shows a parallel algorithm for the job-scheduling problems.

The var section gives the variables of the problem. We have a single variable
G in the example shown in Fig. 5. G is an array of objects such that G[j] is the
state of thread j for a parallel program.

The input section gives all the inputs to the problem. These inputs are
constant in the program and do not change during execution.

The init section is used to initialize the state of the program. All the parts
of the program apply to all values of j. For example, the init section of the job
scheduling program in Fig. 5 specifies that G[j] is initially t[j]. Every thread j
would initialize G[j].

The always section defines additional variables which are derived from G.
The actual implementation of these variables are left to the system. They can
be viewed as macros. We will show its use later.

The LLP algorithm gives the desirable predicate either by using the forbidden
predicate or ensure predicate. The forbidden predicate has an associated advance
clause that specifies howG[j] must be advanced whenever the forbidden predicate
is true. For many problems, it is more convenient to use the complement of the
forbidden predicate. The ensure section specifies the desirable predicates of the
form (G[j] ≥ expr) or (G[j] ≤ expr). The statement ensure G[j] ≥ expr simply
means that whenever thread j finds G[j] to be less than expr; it can advance
G[j] to expr. Since expr may refer to G, just by setting G[j] equal to expr, there
is no guarantee that G[j] continues to be equal to expr — the value of expr
may change because of changes in other components. We use ensure statement
whenever expr is a monotonic function of G and therefore the predicate is lattice-
linear.

3 Applying LLP Algorithm to the Housing Market
Problem

We model the housing market problem as that of predicate detection in a
computation. There are n agents and n houses. Each agent proposes to houses
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Pj : Code for thread j
// common declaration for all the programs below
var G: array[1..n] of 0..maxint;// shared among all threads
input: t[j] : int, pre(j): list of 1..n;
init: G[j] := t[j];

job-scheduling:
forbidden: G[j] < max{G[i] + t[j] | i ∈ pre(j)};

advance: G[j] := max{G[i] + t[j] | i ∈ pre(j)};

job-scheduling:
ensure: G[j] ≥ max{G[i] + t[j] | i ∈ pre(j)};

Fig. 5. LLP Parallel Program for (a) job scheduling problem using forbidden predicate
(b) job scheduling problem using ensure clause

in the decreasing order of preferences. These proposals are considered as events
executed by n processes representing the agents. Thus, we have n events per
process. Each event is labeled as (i, h, k), which corresponds to the agent i
proposing to the house h as his choice number k.

The global state corresponds to the number of proposals made by each of
the agents. Let G[i] be the number of proposals made by the agent i. We will
assume that in the initial state every agent has made his first proposal. Thus,
the initial global state G = [1, 1, .., 1]. We extend the notation of indexing to
subsets J ⊆ [n] such that G[J ] corresponds to the subvector given by indices in
J .

We now model the possibility of reallocation of houses based on any global
state. Recall that pref [i][k] specifies the kth preference of the agent ai. Let
wish(G, i) denote the house that is proposed by ai in the global state G, i.e.,

wish(G, i) = pref [i][G[i]]

A global state G satisfies matching if every agent proposes a different house,
i.e.,

matching(G) ≡ ∀i, j : i 6= j : wish(G, i) 6= wish(G, j).

We generalize matching to refer to a subset of agents rather than the entire
set.

Definition 4 (submatching). Let J ⊆ [n]. Then, submatching(G, J) iff wish(G, J)
is a permutation of indices in J .

Intuitively, if submatching(G, J) holds, then all agents in J can exchange
houses within the subset J .

For any G, it is easy to show that
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Lemma 2. For all G, there always exists a nonempty J such that submatching(G, J).

Proof: Given any G, we can create a directed graph as follows. The set of vertices
is agents and there is an edge from i to j if wish(G, i) = j. There is exactly one
outgoing edge from any vertex in [n] to [n] in this graph. This implies that there
is at least one cycle in this graph (possibly, a self-loop). The indices of agents in
the cycle gives us such a subset J .

We now show that

Lemma 3. submatching(G, J1) and submatching(G, J2) implies that submatching(G, J1∪
J2).

Proof: Any index i ∈ J1 ∪ J2 is mapped to J1 if i ∈ J1 and J2, otherwise.
Hence, there exists the biggest submatching in G. Note that matching(G) is

equivalent to submatching(G, [n]).

Definition 5 (Feasible Global State). A global state G is feasible for the
housing market problem iff it is a matching and for all global states F < G,
there does not exist any submatching which is better in F than in G. Note that
if there exists a submatching J which is better in F than G, then the agents in
J can improve their allocation by just exchanging houses within the subset J .
Formally, let

Bhousing(G) ≡ matching(G)∧(∀F < G : ∀J ⊆ [n] : submatching(F, J)⇒ F [J ] = G[J ]).

We show that Bhousing(G) is a lattice-linear predicate. This result will let
us use the lattice-linear predicate detection algorithm for the housing market
problem.

Theorem 1. The predicate Bhousing(G) is lattice-linear.

Proof: Suppose that ¬Bhousing(G). This implies that either G is not a matching
or it is a matching but there exists a smaller global state F that has a submatching
better than G.

First, consider the case when G is not a matching. Let J be the largest set
such that submatching(G, J). Consider any index i 6∈ J such that wish(G, i) ∈
J . We claim that forbidden(G, i,Bhousing). Let H be any global state greater
than G such that G[i] = H[i]. We consider two cases.

Case 1: H[J ] > G[J ].
Then, from the second conjunct of Bhousing, we know that ¬Bhousing(H) because
submatching(G, J) and H[J ] 6= G[J ].

Case 2: H[J ] = G[J ].
Since wish(H, i) = wish(G, i), wish(G, i) ∈ J , and G[J ] = H[J ], we get that H
is not a matching because the house given by wish(G, i) is also in the wish list
of some agent in J .

Now consider the case when G is a matching but ¬Bhousing(G). This implies

∃F < G : ∃J ⊆ [n] : submatching(F, J) ∧ F [J ] < G[J ]).
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However, the same F will also result in guaranteeing ¬Bhousing(H) for any
H ≥ G.

It is also easy to see from the proof that if an index is part of a submatching,
then it will never become forbidden.

This theorem gives us the algorithm shown in Fig. 6. Let G be the initial
global state. Let S(G) be the biggest submatching in G. All agents such that
they are not in S(G) and wish a house which are part of S(G) are forbidden
and can move to their next proposal. The algorithm terminates when no agent
is forbidden. This algorithm is a parallel version of the top trading cycle (TTC)
mechanism attributed to Gale in [1].

Algorithm Housing-Market:
var

G: array[1..n] of int initially 1;// every agent starts with the top choice
T = (n, n, ..., n); //maximum number of proposals at ai

always
S(G) = largest J such that submatching(G, J)
forbidden(G, j,B) ≡ (j 6∈ S(G)) ∧ (wish(G, j) ∈ S(G))

while ∃j : forbidden(G, j,B) do
for all j such that forbidden(G, j,B) in parallel:

if (G[j] = T [j]) then return null;
else G[j] := G[j] + 1;

endwhile;
return G; // the optimal solution

Fig. 6. A high-level parallel algorithm to find the optimal house market

We now show that

Theorem 2. There exists at least one feasible global state G such that Bhousing(G).

Proof: Every agent has his own house in the list of preferences. If he ever makes
a proposal to his own house, he forms a submatching. That particular event
is never forbidden because it is a part of a submatching. Hence, lattice-linear
predicate detection algorithm will never mark that event as forbidden. Since
such an event exists for all processes, we are guaranteed to never go beyond this
global state.

The above proof also shows that agents can never be worse-off by participating
in the algorithm. Each agent will either get his own house back or get a house
that he prefers to his own house.
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4 An Efficient Parallel Algorithm for the Housing Market
Problem

We now present an efficient parallel algorithm for the housing market problem.
We note here that [10] gives a distributed algorithm with O(n2) messages for the
housing market problem. In this paper, we focus on computing the core and give
a parallel algorithm for finding the core that is nearly linear in the number of
agents. Our algorithm takes expected O(n log2 n) time and expected O(n2 log n)
work.

By renumbering houses, if necessary, we assume that initially agent ai has the
house hi. We assume that the preference list is provided as two data structures:
prefList and prefPointer. The variable prefList is an array of doubly linked
list such that prefList[i] points to the list of preferences of agent i. As the
algorithm executes, we advance on prefList and the head of the prefList[i]
corresponds to the variable wish for agent ai in Fig. 6.

To facilitate the quick deletion of houses from this list, we also have a data
structure prefPointer. The variable prefPointer is a two dimensional array
such that prefPointer[i][j] points to the node corresponding to house hj in
the doubly-linked list of agent ai. If at any stage in the algorithm, we find out
that the house hj has been permanently allocated to some other agent than
ai, then we need to remove the house hj from the preference list of ai. Since
prefPointer[i][j] points to that node in the doubly linked list prefList[i], we
can delete the house in O(1) time. Due to these deletions, we maintain the
invariant that the head of prefList[i] always corresponds to the top choice of
the agent ai. Note that if the input is given as the two dimensional array pref ,
where pref [i][j] is the top jth choice for the agent ai, then it can be converted
into prefList and prefPointer in O(n) time with O(n) processors.

We keep the array fixed such that fixed[i] indicates that the agent i has
been assigned its final house. If an agent i is fixed, then it can never be forbidden
in Fig. 6. Once all agents are fixed, we get that no agent is forbidden and the
algorithm terminates.

At every iteration, we keep the array inCycle[i] that indicates agents that
are in Top Trading Cycle at that iteration. In Fig. 6, these agents correspond to
S(G) in the global state G. Algorithm LLP-TTC uses a while loop to fix some
number of agents in every iteration. At least one agent is fixed in every iteration,
and therefore there are at most n iterations of the while loop.

Each iteration has four steps. In the first step, we initialize inCycle to be false
by default. In the second step (function markRoots) we use symmetry breaking
via randomization and pointer jumping to mark one node called root in every
cycle as belonging to a cycle. The reader is referred to [13] for symmetry breaking
and pointer jumping. During the process of pointer jumping, we also construct
a tree rooted at a vertex such that it consists of all the nodes in the cycle. In
the third step (function informTree), we inform all the agents that are in some
rooted tree that they are in a cycle. In the fourth step, we fix all the agents that
are in cycles and remove their houses from prefList. This step corresponds to
advancing G in Fig. 6.
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ALGORITHM LLP-TTC: Parallel LLP Top Trading Cycle Algorithm

1 // By renumbering houses, ensure that initially agent ai is assigned house hi

2 var
3 prefList:array[1..n] of list initially ∀i : prefList[i] has preferences for ai;
4 prefPointer:array[1..n, 1..n] of pointer to the node in prefList;
5 fixed: array[1..n] of booean initially ∀i : fixed[i] = false;
6 inCycle: array[1..n] of booean initially ∀i : inCycle[i] = false;
7 children: array[1..n] of set of nodes that ai traversed initially {};
8 while (∃i : ¬fixed[i])
9 // Step 1: initialize inCycle

10 forall i : ¬fixed[i] in parallel do: inCycle[i] := false;
11 // Step 2: Mark one node in every cycle as the root
12 markRoots();
13 // Step 3: inform all the agents in any rooted tree that they are in a cycle
14 informTree();
15 // Step 4: Now delete all the agents that are in cycle
16 forall i : ¬fixed[i] ∧ inCycle[i], j : ¬[fixed[j] ∧ ¬inCycle[j] in parallel do
17 delete the node prefPointer[j][i] from the linked list prefList[j];
18 forall i : ¬fixed[i] ∧ inCycle[i] in parallel do
19 fixed[i] := true;
20 endwhile
21 return prefList; //prefList[i] points to the house assigned to the agent ai

The function markRoots uses variable active to denote agents that are active.
Initially, all agents are active. The variable succ[i] is used to point to the next
active agent. Initially, succ[i] points to the agent who has the top choice house
of agent i. The variable done[i] indicates whether a cycle has been discovered
in the subgraph that agent i is pointing to. Once, a cycle has been discovered
then any active agent knows that it cannot be part of any cycle and it becomes
inactive.

The function markRoots uses a while loop at line 5 to run while there is any
active node. Every active agent flips a coin at line 7. If its own coin is a head and
its successor gets a tail, then this agent becomes inactive at line 9. It is clear that
two consecutive agents can never become inactive in the same round because we
require an agent to get “head” and its successor to get “tail” to become inactive.
It is also clear that the number of active agents is reduced by a constant fraction
in every round of coin toss in expectation. Thus, the outer while loop at line 5
is executed expected O(log n) times.

If an agent is active, it traverses its succ pointer till it reaches the next active
node. This is done using the while loop at line 11. This traversal has a length of
one or zero because there cannot be two consecutive inactive agents due to the
rule of becoming active.

If agent i reaches itself as the next active node at line 15, it marks inCycle
to be true. It also sets done[i] to be true so that any active node j that points
to i knows that a cycle has been found and that the node j can stop looking for
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the cycle. If the successor of the node is different, then we check if the successor
is done. If the successor is done, then this node is not part of the cycle and
can therefore make itself inactive and also mark itself as done. Since all agents
execute the statements in forall in parallel, we get that the function markRoots()
has parallel expected time complexity of O(log n). Also, for every cycle in the
graph, there is exactly one node that sets its inCycle to be true.

The function informTree uses variable rootSet to initially include all the roots
found in the function markRoots. Once all the nodes in any rooted tree have been
informed, the root is deleted from the rootSet. To inform agents in the tree, we
follow the usual method of broadcasting a value from the root to its children.
To detect that all agents in the tree have been notified, we let any subtree that
has finished informing its subtree to leave the tree by deleting itself from the
children set of its parent. If the agent is a root, then it deletes itself from the
rootSet. Once all roots have deleted themselves, the function terminates. Since
the height of any tree is expected to be O(log n) and the number of children of
any node is also O(log n), we get that the algorithm takes O(log2 n) time.

ALGORITHM markRoots: Function markRoots for the Parallel LLP Top
Trading Cycle Algorithm

1 function markRoots()
2 succ: array[1..n] of 1..n initially ∀i : succ[i] = prefList[i].head(); //successor

of ai which is active
3 active: array[1..n] of booean initially ∀i : active[i] = true;
4 done: array[1..n] of booean initially ∀i : done[i] = false;

5 while (∃i : active[i])
6 forall i : ¬fixed[i] ∧ active[i] in parallel do
7 coin[i] := “head” or “tail” // based on the flip of a coin
8 if (coin[i] = “head”) ∧ (coin[succ[i]] = “tail”) then
9 active[i] := false;

10 else // node i is active
11 while ¬active[succ[i]] do
12 children[i] := children[i] ∪ succ[i]
13 succ[i] := succ[succ[i]]
14 endwhile
15 if (succ[i] = i) // found a cycle
16 done[i] := true
17 inCycle[i] := true
18 active[i] := false
19 else if done[succ[i]] then
20 active[i] := false
21 done[i] := true
22 endforall
23 endwhile
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ALGORITHM informTree: Function informTree for the Parallel LLP Top
Trading Cycle Algorithm

1 function informTree()
2 informed: array[1..n] of booean initially ∀i : informed[i] = false;
3 parent: array[1..n] of 1..n initially ∀i : parent[i] = i;
4 rootSet: set of 1..n initially {i | inCycle[i]}
5 while (rootSet 6= {}) do
6 forall i : ¬fixed[i] in parallel do
7 if (inCycle[i] ∧ ¬informed[i]) then
8 informed[i] := true
9 for (j ∈ children[i]) do

10 inCycle[j] := true
11 parent[j] := i
12 endfor
13 if (inCycle[i] ∧ informed[i] ∧ (children[i] = {})) then
14 if (parent[i] = i) then rootSet.remove(i);
15 else children[parent[i]] := children[parent[i]]− {i}
16 endforall
17 endwhile

We first show the correctness of the parallel algorithm LLP-TTC.

Theorem 3. The algorithm LLP-TTC returns the core of the housing market
problem.

Proof: It is sufficient to show that the algorithm LLP-TTC finds all top trading
cycles in each iteration. Consider any top trading cycle of size 1 at node i. The
function markRoot can never mark node i in the cycle as inactive due to the
requirement of the coin turning at node i as head and its successor, itself, as tail.
Furthermore, since succ[i] equals i, node i is marked as inCycle. Now, consider
any top trading cycle of size k > 1. Since we require the successor of the node
to have a different toss to turn inactive, all nodes cannot turn inactive. The
active nodes keep the inactive nodes following it as its children. After every coin
toss, the length of the cycle for active nodes is expected to shrink by a constant
factor. Hence, in expected O(log n) coin tosses, the cycle reduces to size 1 and
the former case applies.

Now consider any node i that is not in any top trading cycle. Since our graph
is functional (every vertex has out-degree exactly one), node i leads to a cycle by
following the succ edge. By previous discussion in O(log n) expected time, one
of the nodes in that cycle, say j will set inCycle[j] and done[j] to be true. Since
any path of active nodes reduces by a constant factor, in O(log n) expected time
node i will point to a node that is done and will also mark itself as done.

The function informTree simply sets the variable inCycle of all nodes in
the cycle to be true. Finally, step 4 removes all houses and agents that are in
any cycle and thus implements the top trading cycle mechanism.

We now analyze the time and work complexity of LLP-TTC.
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Theorem 4. LLP-TTC takes expected O(n log2 n) time and expected O(n2 log n)
work.

Proof: Since every functional graph has at least one cycle, there exists at least
one new node that finds itself in a cycle in every iteration of the while loop.
Hence, there are at most n iterations of the while loop. In each iteration, Step
1 takes O(1) time and O(n) work. Step 2 takes expected O(log n) time and
expected O(n log n) work. Step 3 takes O(log2 n) time and O(n) work. Let αk be
the number of agents that are fixed in the kth iteration of the while loop. Step
4 takes O(αk) time and O(nαk) work. Adding up over all iterations, we get the
desired time and work complexity.
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