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Abstract. Ideally, a model checking tool should successfully tackle state space
explosion for complete system validation, while providing short counterexamples
when an error exists. Techniques such as partial order (p.o.) reduction [1, 2] are
very effective at tackling state space explosion, but do not produce short coun-
terexamples. On the other hand, directed model checking [3, 4] techniques find
short counterexamples, but are prone to state space explosion in the absence of
errors. To the best of our knowledge, there is currently no single technique that
meets both requirements. We present such a technique in this paper.
For a subset of CTL, which we call CETL (Crucial Event Temporal Logic), we
show that there exists a unique minimum set of events in each program trace
whose execution is both necessary and sufficient to lead to an error state. These
events are called “crucial events”. We show how crucial events can be used to
produce short counterexamples, while also providing state space reduction.
We have implemented the techniques presented here as an extension to the model
checker SPIN, called SPICED (Simple PROMELA Interpreter with Crucial Event
Detection). Experimental results are presented.

1 Introduction

Partial order reduction techniques [1, 2] successfully tackle state space explosion, but
tend to produce lengthy error trails [3, 5]. Short error trails greatly reduce debugging ef-
fort. Also, the ability to find errors at shorter depths can make it possible to verify larger
models, by finding the error before the model checker runs out of computational re-
sources. Recently, there has been much interest in the use of heuristic search techniques
to produce short error trails [3, 4]. Heuristic search techniques calculate a cost function
for each outgoing transition from a state, then explore these transitions in the order of
increasing cost. Lower cost transitions are considered to be “closer” to the error state.
However, in the absence of errors, these techniques do not reduce state space explosion
because they only change the order in which nodes are expanded without reducing the
number of nodes to be expanded. While there has been some effort to combine heuristic
search with state space reduction techniques, the combination can interfere with the ef-
ficiency of the individual techniques[5]. To the best of our knowledge, there is currently
no single technique that achieves both objectives - state space reduction for complete
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validation, while narrowing down on error states quickly to produce short error trails.
We present such a technique in this paper.

The set of reachable states in a (Mazurkiewicz) trace [6] of a program forms a
lattice [7]. A lattice is a partial order in which every pair of elements has a unique meet
(infimum) and join (supremum). A property is said to be meet-closed [8] in a trace if,
whenever it holds at any two states in the trace, it also holds at the state given by their
lattice meet. It was shown in [8] that, given a trace and a meet-closed property, there
exists a unique minimum set of events in the trace whose execution is both necessary
and sufficient to reach a state satisfying the property. We call these events crucial events.
Executing crucial events in any order consistent with the dependency relation results in
the same state [2]. Thus, for a single trace, it is sufficient to explore any one interleaving
comprising entirely of crucial events. We call such an interleaving a crucial path. If an
error state exists, any crucial path will lead to it through the fewest possible transitions.
We show how crucial paths can be used to improve the efficiency of explicit-state model
checking, and show how crucial events can be identified.

We identify a subset of CTL, called Crucial Event Temporal Logic (CETL), which
contains only meet-closed formulae. CETL includes the existential until and release
operators of CTL, and allows conjunction. Atomic propositions are limited to process-
local variables. CETL does not allow negation, except for atomic propositions, nor does
it allow disjunction. Despite these limitations, CETL can express many reachability,
safety, liveness and response properties. In fact, of the 131 properties in the BEEM
database [9], which is a large repository of benchmarks for explicit-state model check-
ers, 101 (77%) can be expressed in CETL.

We have implemented a CETL model checker called SPICED (Simple PROMELA
Interpreter with Crucial Event Detection), using the techniques presented here. SPICED
is based on the popular model checker SPIN [10]. We provide experimental results from
a wide range of examples from the BEEM database [9], and from the SPIN distribution
[10]. We ran experiments on 75 different variations (with differences in problem sizes
and the location of errors) of 15 different models from the BEEM database. SPICED
achieved trail reduction greater than 1x in 93% of the cases, greater than 10x in 55% of
the cases, and greater than 100x in 19% of the cases. We completed verification faster
than SPIN (with p.o. reduction) in 44% of the cases, with a 10x reduction in time in 9%
of the cases. For 3 of the 15 models, we were able to verify problem sizes for which
SPIN ran out of resources. We also provide results to show that we achieve state space
reduction comparable to p.o. techniques even in the absence of errors.

Lattice theory has previously been applied to the verification of finite program
traces. A survey of these applications was presented in [11]. In [12], a logic called
RCTL was defined, which included the CTL operators EG, AG and EF . RCTL for-
mulae were shown to be meet-closed, and an efficient verification algorithm for RCTL
formulae was presented. However, these applications were limited to a single finite trace
of a program, and required a partial order (implicit) representation of the state space.
To the best of our knowledge, this paper is the first time these lattice theoretic concepts
have been applied to explicit-state model checking of an entire program.

This paper is organized as follows. Section 2 introduces relevant concepts and nota-
tion. In Section 3, we introduce some CTL operators that preserve meet-closure, define



the logic CETL, and introduce the notion of crucial events. In Section 4, we show how
crucial events can be used for model checking CETL formulae within a single trace of
a program, then extend this to model checking the complete program in Section 5. In
Section 6, we show how crucial events are identified. Experimental results are presented
in Section 7, followed by concluding remarks in Section 8.

2 Preliminaries

A finite-state program P is a triple (S, T, s0) where S is a finite set of states, T is a finite
set of operations, and s0 ∈ S is the initial state. The set of transitions that are executable
from a given state s ∈ S is denoted by enabled(s). A transition α ∈ enabled(s)
transforms the state s into a unique state s′, denoted by s′ = α(s). A state s is reachable
in a program P iff it can be reached from s0 by executing only enabled transitions at
each state. The full state space graph of P is a directed graph whose vertices are the
reachable states of P . An edge exists from vertex s to t iff ∃α ∈ enabled(s) such
that t = α(s). A path through the full state space graph consists of a (finite or infinite)
sequence of states. Each path has a corresponding transition sequence, consisting of the
transitions executed along the path.

An independence relation [6, 1] I ⊆ T × T is a symmetric, irreflexive relation
such that (α, β) ∈ I iff for every state s ∈ S, (a) if α ∈ enabled(s), then β ∈
enabled(s) if and only if β ∈ enabled(α(s)), and (b) if α, β ∈ enabled(s), then
(α(β(s)) = β(α(s))). Simply put, the execution of α does not affect the enabledness
of β, and executing α and β in either order results in the same state. We say that α, β
are independent iff (α, β) ∈ I . The dependency relation, D, is the reflexive, symmetric
relation given by D = (T × T ) \ I . The independence relation I partitions the set of
all transition sequences (correspondingly, paths) of a program into equivalence classes
called traces [6]. Given two finite transition sequences u and v, we say that u and v
are trace equivalent, denoted u ≡ v, iff they have the same starting state, and v can be
derived from u by repeatedly commuting adjacent independent transitions.

Trace equivalence for infinite transition sequences is defined with the help of the
relation�. Given two (finite or infinite) transition sequences u and v, u � v iff for each
finite prefix u′ of u, there exists a prefix v′ of v, and some w such that v′ ≡ w, and u′

is a prefix of w. We have u ≡ v iff u � v and v � u.
Each occurrence of a transition in a transition sequence is called an event. For ex-

ample, the transition sequence αβαβ consists of four events. We say that two events
are dependent (correspondingly, independent) iff their corresponding transitions are de-
pendent (independent). Every path of a trace starts from the same state, and consists
of the same set of events. We will use the notation σ = [s, v] to denote a trace with
starting state s, and representative transition sequence v. All paths of a trace have the
same length, and the same final state [6, 1].

The concatenation of a finite trace σ1 = [s, v] with a finite or infinite trace σ2 =
[t, w] is defined when t is also the final state of σ1, and is given by σ1.σ2 = [s, vw]. We
say that σ2 = [s, v] subsumes σ1 = [s, u], denoted σ1 v σ2, iff u � v. If σ1 is finite,
then σ1 v σ3 iff there exists σ2 such that σ3 = σ1.σ2. If σ v σ′, then the reachable
states of σ is a subset of the reachable states of σ′. We say that a trace of a program P



is maximal iff no other trace of P subsumes it. Clearly, the set of maximal traces of a
program contains all its reachable states.

2.1 Traces, Posets and Lattices

A 1-1 correspondence exists between traces and partially ordered sets (posets)[7, 6]. Let
σ = [s, v] be a trace, and E be the set of events in v. We can define a poset (E,→),
where ∀e, f ∈ E : e → f iff (e, f) ∈ D and e occurs before f in v. The relation
→ expresses causal dependence. Every transition sequence of σ is a linearization of
(E,→), and conversely every linearization of this poset is a valid transition sequence
of σ. We will use the notation σ = (E,→) for the poset corresponding to a trace σ.

The same state can be visited multiple times during the execution of a transition
sequence, for example, in the case of a cycle in the state space graph. However, each
occurrence of the state corresponds to a unique prefix of the transition sequence. If
an event e is executed as part of a transition sequence, then the events that causally
precede e must have been executed before e. A subset G ⊆ E of a poset (E,→) is
called a down-set if, whenever f ∈ G, e ∈ E and e → f , we have e ∈ G. In a trace
σ = (E,→), there exists a correspondence between occurrences of states and down-
sets. That is, an occurrence of a state in σ corresponds to executing the set of events
in some down-set of (E,→). Conversely, every state in σ can be reached by executing
the events in some down-set of (E,→). For simplicity of presentation, in this paper we
overload the term “down-set” to mean both a set of events, and an occurrence of a state.

Progress in a computation is measured by the execution of additional events from
the current state. For down-sets G and H of a trace (E,→), G ⊆ H iff H is reachable
from G in the full state space graph. The set of all down-sets of (E,→) forms a lattice
under the ⊆ relation, with the meet and join operations given by set intersection and
union, respectively [13, 7]. That is, ifG andH are down-sets of (E,→), so are (G∩H)
and (G ∪ H). We will use L(σ) to denote the lattice of down-sets of a trace σ. Note
that, while a vertex in the full state space graph corresponds to a program state, a vertex
in L(σ) corresponds to an occurrence of a state. Figure 1 illustrates these concepts.

We say that a formula (property) is meet-closed (correspondingly, join-closed) if,
whenever any two states of a trace σ satisfy the formula, the state corresponding to their
meet (correspondingly, join) in L(σ) also satisfies it. For a down-set G and formula φ,
the notation “G |= φ” means that the state corresponding to G satisfies φ.

Definition 1. Meet-closed [8]: A formula φ is meet-closed iff, for every trace σ of a
program P , ∀G,H ∈ L(σ) : [(G |= φ) ∧ (H |= φ) ⇒ (G ∩H) |= φ].

Definition 2. Join-closed: A formula φ is join-closed iff, for every trace σ of a program
P , ∀G,H ∈ L(σ) : [(G |= φ) ∧ (H |= φ) ⇒ (G ∪H) |= φ].

Definition 3. Regular [14]: A formula φ is regular iff it is meet- and join- closed.

In the next section, we present some CTL operators that preserve meet- and join-closure.
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Fig. 1. (a) The full state space graph of a program P . (b) The poset corresponding to a maximal
trace σ = [s0, β(α1α2α3)

ω]. (c) The lattice L(σ), showing two occurrences of a state t.

3 Meet- and join-closure of CTL operators

We consider concurrent systems, where the system is modeled as a set of processes.
Each process Pi has a set of transitions Ti, and a set of local variables Vi that can only
be changed by transitions in Ti. All the transitions in Ti are pairwise dependent, that is,
if α, β ∈ Ti, then (α, β) ∈ D. A transition in Ti can also change the values of shared
(global) variables. A formula φ is called a process-local state formula iff its truth value
is purely determined by the current values of the local variables Vi of some process Pi.
Theorems 1 and 3 in this section are proved in [15], as well as in the Appendix.

Theorem 1. Process-local state formulae are regular.

The following theorem was proved in [14], using set union and intersection.

Theorem 2. If φ1 and φ2 are regular, then (φ1 ∧ φ2) is regular.

On the other hand, disjunction does not preserve meet-closure [14].
Let πi denote the ith state on the path π. We consider the following CTL operators:

– s |= EG(φ) iff there exists a path π starting from s such that ∀i : i ≥ 0 : πi |= φ.
– s |= E[φ1Uφ2] iff there exists a path π starting from s such that ∃j : j ≥ 0 : πj |=
φ2, and ∀i : i < j : πi |= φ1.

– EF (φ) = E[true U φ]
– E[φ2Rφ1] = E[φ1U(φ1 ∧ φ2)] ∨ EG(φ1)

It can be shown that the existential until operator, E[φ1Uφ2], does not preserve
meet-closure [15]. However, a specific flavor of this operator does, as shown in the
following theorem. In most cases, the system specification makes it equally valid to
check for E[φ1U(φ1 ∧ φ2)] instead of E[φ1Uφ2].

Theorem 3. If φ1 and φ2 are regular, then so are E[φ2Rφ1] and E[φ1U(φ1 ∧ φ2)].



As EF (φ1) = E[true U(true ∧ φ1)], and EG(φ1) = E[false R φ1], and true and
false are trivially regular, we have:

Corollary 1. If φ1 is a regular formula, so are EF (φ1) and EG(φ1).

We define a logic in which every formula is regular, as are all its subformulae.

Definition 4. Crucial Event Temporal Logic (CETL) A CETL formula is one that
can be generated from the following rules:

1. The trivial propositions true and false are CETL formulae.
2. Every process-local state formula is a CETL formula.
3. If φ1 and φ2 are CETL formulae, so are (φ1∧φ2),E[φ2Rφ1], andE[φ1U(φ1∧φ2)].

We now explore the relation between meet-closure and crucial events.

3.1 Crucial events

Let G be any down-set of a trace σ = (E,→). Let φ be some meet-closed formula, and
G 6|= φ. Let G be the set of all φ-satisfying states that are reachable from G in σ. That
is, G = {H ∈ L(σ)|G ⊆ H ∧H |= φ}. Now, G can be an infinite set. Let H be the set
of elements of G that are minimal under ⊆:

H = {H ∈ G|∀H ′ : H ⊂ H ′ ⇒ H ′ 6∈ H} (1)

H is necessarily finite for finite-state programs. We now define K =
⋂

H∈HH . By the
meet-closure of φ, K |= φ. Also, G ⊆ K. That is, K is the unique and well-defined
φ-satisfying state that is reachable from G by executing the fewest events. In particular,
K \G is the minimum set of events that must be executed along any path starting from
G, to reach a φ-satisfying state in σ. The events in K \G are called crucial events [8].

Definition 5. Crucial event: In a trace σ, an event e is said to be crucial from a state
G with respect to a meet-closed formula φ, denoted e ∈ crucial(G,φ, σ) iff:

∀H ∈ L(σ) : (G ⊆ H) ∧ (G 6|= φ) ∧ (H |= φ) ⇒ (e ∈ H \G)

A transition sequence starting fromG and comprising exactly of the events in crucial(G,φ, σ)
gives us the shortest path from G to a φ-satisfying state in σ. Such a path is called a
crucial path. A special case arises whenH = ∅. In this case, we define K = E (the set
of all events), and any maximal path starting from G in L(σ) constitutes a crucial path.
The proof for the following theorem is straightforward.

Theorem 4. Let H be as defined in (1). If H 6= ∅, then a crucial path for φ starting
from G cannot contain a cycle.

Recall that a down-set is an occurrence of a state. Suppose the down-set G is an
occurrence of the state s. Executing the events in crucial(G,φ, σ) from s will lead
to a φ-satisfying state in the full state space graph. The state s can have multiple oc-
currences in σ (for example, in Figure 1(c), the state t occurs multiple times in σ2).
Let G′ be another down-set of σ that is also an occurrence of s. It is easy to see that



crucial(G,φ, σ) = crucial(G′, φ, σ). Thus, every occurrence of s in σ has the same

set of crucial events w.r.t. φ. Based on this observation, we define crucial(s, φ, σ)
def
≡

crucial(G,φ, σ), where G is any down-set of σ that is an occurrence of s.
The complexity of identifying the exact set of events that constitutes crucial(s, φ, σ)

for a given CETL formula φ is an open problem. However, we can identify a subset of
crucial(s, φ, σ) in most cases, as we shall see in Section 6.

If G is a down-set of L(σ), and H is an immediate successor of G in L(σ), we
denote this by G . H . Formally, if G,H ∈ L(σ), and ∃e 6∈ G, and H = G ∪ {e}, then
G . H . The notation G D H means (G . H) ∨ (G = H). The following lemmas are
used in the proofs presented in Sections 4.1 and 4.2, and are proved in [15].

Lemma 1. For a trace σ and C,D,F ∈ L(σ), if C.F andD ⊆ F , then (C∩D)DD.

Lemma 2. For a trace σ and C,D,F ∈ L(σ), if F .C and F ⊆ D, thenDD(C∪D).

We now show how the concepts presented so far can be used to prune the state space
while model checking CETL formulae. In particular, we show that it is sufficient to
explore only crucial paths in order to verify a CETL formula. For better presentation,
we start with the problem of verifying a CETL formula on a single trace of a program.
We will consider CETL model checking for the complete program in Section 5.

4 Model checking CETL in a program trace

The approach we present here can be used to enhance any local CTL model checking
algorithm, such as ALMC [16]. A local model checking algorithm starts from an initial
program state and performs a state space exploration using either depth-first or breadth-
first search. In this section, we show that rather than exploring all enabled events from
a state, it is sufficient to explore only a subset of these events in order to verify a CETL
formula in a given trace. This explored subset is called an “ample set” [1]. The ample
set chosen at a state s while verifying a CETL formula φ is denoted by ample(s, φ). In
the non-reduced (baseline) case, ample(s, φ) = enabled(s).

4.1 E[φ1U(φ1 ∧ φ2)]

Let G0 be some down-set of σ that satisfies E[φ1U(φ1∧φ2)]. Let π be the correspond-
ing witness path with πl = H as its final state. Then, ∀j : 0 ≤ j ≤ l : πj |= φ1, and
H |= (φ1 ∧ φ2). Let J be the set of all down-sets of σ that are reachable from G0, are
minimal under ⊆ (this ensures that J is finite), and satisfy (φ1 ∧ φ2). Define:

G =
⋂

J∈J
J (2)

Since (φ1 ∧ φ2) is regular, G |= (φ1 ∧ φ2).

Theorem 5. There exists a path from G0 to G such that every state along the path
satisfies φ1.
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Fig. 2. Example illustrating the construction of Theorem 5

Proof. We will construct a path λ from G0 to G, consisting entirely of φ1-satisfying
states. We construct this path backwards, starting from λk = G, towards λ0 = G0.

We show that, if λi |= φ1 for any 1 ≤ i ≤ k, there exists a G′ . λi such that
G′ |= φ1. We can then extend λ with λi−1 = G′, and proceed with our construction.
For the base case, we have λk = G, and G |= φ1.

Let 1 ≤ j ≤ l be the least j such that λi ⊆ πj . First, we show that such a j must
exist. Recall that πl = H , and λi ⊆ G ⊆ H . Therefore, for some j ≤ l, λi ⊆ πj .
Also, π0 = λ0 = G0, so ∀i : i ≥ 1 : λi 6⊆ π0. Therefore, j ≥ 1. Since j is the least
such, we have λi 6⊆ πj−1. So, we have πj−1 . πj , and λi ⊆ πj . From Lemma 1, this
implies (λi ∩ πj−1) D λi. We cannot have (λi ∩ πj−1) = λi, because this would imply
λi ⊆ πj−1, which is a contradiction. Therefore, (λi∩πj−1).λi. SetG′ = (λi∩πj−1).
Since λi |= φ1, and πj−1 |= φ1, by the meet-closure of φ1, G′ |= φ1. ut

Theorem 5 tells us that if G0 |= E[φ1U(φ1 ∧φ2)], then a crucial path for (φ1 ∧φ2)
can act as a witness. SinceG0 |= φ1, and every state along the witness path satisfies φ1,
it is easy to see that crucial(G0, (φ1 ∧ φ2), σ) = crucial(G0, φ2, σ). The following
theorem shows how we can construct this path “forward”, that is, starting from G0.

Theorem 6. To construct the path of Theorem 5, starting from G0, at each state H we
execute a single enabled event α such that α ∈ crucial(H,φ2, σ), and H ∪{α} |= φ1.

Proof. LetG be as in (2). From Theorem 5, there exists some path λ such that λ0 = G0,
λk = G, and ∀j : 0 ≤ j ≤ k : λj |= φ1. We need to show that we can construct such a
path by choosing, at each state, any crucial event that leads to a φ1-satisfying successor.

Clearly, if every event along our path is crucial for φ2, then our path will lead to G.
We need to show that at any stateH along our constructed path, there exists a successor
J such that J |= φ1. To begin with, H = G0. Of course, our construction ends when
H = G, so any H for which a successor needs to be found must be a strict subset of G.

Let 0 ≤ i < k be the greatest i such that λi ⊆ H . We first show that such an i
exists. Note that λ0 = G0 ⊆ H . Thus, for some i ≥ 0 : λi ⊆ H . Also, λk = G, and
H ⊂ G. Therefore, λk 6⊆ H , so i < k. Since i is the greatest such, we have λi+1 6⊆ H .
Now, λi . λi+1, and λi ⊆ H . By Lemma 2, H D (λi+1 ∪H). If H = (λi+1 ∪H), then
λi+1 ⊆ H , which is a contradiction. Therefore, H . (λi+1 ∪H). Also, H |= φ1, and
λi+1 |= φ1, so by the join-closure of φ1, λi+1 ∪H |= φ1. Hence, J = λi+1 ∪H is the
required successor for H . ut



4.2 E[φ2Rφ1]

Recall that E[φ2Rφ1]
def
≡ E[φ1U(φ1 ∧ φ2)] ∨ EG(φ1). Theorem 6 showed how to

construct a witness for G0 |= E[φ1U(φ1 ∧ φ2)]. The following theorem shows how to
construct a witness for G0 |= EG(φ1).

Theorem 7. Let G0 ∈ L(σ) such that G0 |= EG(φ1) in σ. We can construct a witness
path as follows. Starting from G0, at each state H , we execute a single enabled event α
such that H ∪ {α} |= φ1.

Proof. We simply need to show that, for every state H on the constructed path, there
exists a φ1-satisfying successor state. The proof is similar to that of Theorem 6. ut

Theorems 6 and 7 show that, given a formula φ of the form E[φ1U(φ1 ∧ φ2)] or
E[φ2Rφ1], and a trace σ = [s, v], we can decide if s |= φ by exploring only ample sets
satisfying the following condition:
(C0) If ample(s, φ) 6= enabled(s), then ample(s, φ) = {α}, whereα ∈ crucial(s, φ2, σ),
and α(s) |= φ1.

5 Model checking CETL formulae in a program

Let φ be a CETL formula of the formE[φ1U(φ1∧φ2)] orE[φ2Rφ1]. We now consider
the problem of deciding whether a given state s satisfies φ in a program. In this case,
we need to explore a crucial path for every maximal program trace starting from s. That
is, for every maximal trace σ starting from s, ample(s, φ) must contain some event
from crucial(s, φ2, σ). In [1], it was shown that if ample(s, φ) satisfies the following
condition (C1), then it contains a successor for each maximal trace starting from s.

(C1) Along every path starting from s in the full state space graph, a transition that
is dependent on a transition from ample(s, φ) cannot be executed without a transition
from ample(s, φ) occurring first.

Theorem 8. [1] If ample(s, φ) satisfies condition (C1), then for every maximal trace
σ starting from s, there exists some α ∈ ample(s, φ) such that [s, α] v σ.

By Theorem 8, an ample set satisfying condition (C1) will generate some successor for
each maximal trace starting from s. We now need to ensure that each event in the ample
set is crucial in every trace to which it belongs.

Definition 6. Universally crucial event: An event α is said to be universally crucial
from a state s for a meet-closed formula φ2, denoted α ∈ ucrucial(s, φ2), iff for every
trace σ such that [s, α] v σ, α ∈ crucial(s, φ2, σ).

The following is a straightforward extension of condition (C0) from Section 4.
(C2) If ample(s, φ) 6= enabled(s), then for eachα ∈ ample(s, φ),α ∈ ucrucial(s, φ2)

and α(s) |= φ1.
The following theorem is proved in [15], and in the Appendix.

Theorem 9. To determine whether s |= φ, it is sufficient to explore ample sets satisfy-
ing (C1) and (C2).



To construct an ample set satisfying (C1) and (C2), we need to identify a subset of
enabled(s) that satisfies these conditions. Condition (C1) is used in p.o. reduction [1],
and we use the techniques from [17] to construct a subset of enabled(s) that satisfies
(C1). Condition (C2) requires us to identify a subset of enabled(s) that consists of uni-
versally crucial events. We now show how universally crucial events can be identified.

6 Identifying universally crucial events

In the previous section, we derived the conditions for ample(s, φ), where φ is a CETL
formula of the form E[φ1U(φ1 ∧ φ2)] or E[φ2Rφ1]. Note that our construction of a
witness path for s |= φ ends with success when we encounter a state which satisfies
φ2. Therefore, we are only interested in constructing ample sets for states at which φ2

does not hold. That is, we are interested in ucrucial(s, φ2) when s 6|= φ2. The problem
of identifying ucrucial(s, φ2) for a general CETL formula φ2 remains open. In this
section, we identify some cases for which we can determine universally crucial events.
Recall that Ti is the set of transitions of process Pi.

Theorem 10. If φ2 is a process-local state formula in processPi, then Ti∩enabled(s) ⊆
ucrucial(s, φ2).

Proof. Only transitions in Ti can change the truth value of φ2. Therefore, we must
execute some transition in Ti from s in order to reach a state in which φ2 holds. Recall
that transitions from the same process are pairwise-dependent. That is, if α, β ∈ Ti ∩
enabled(s), then (α, β) ∈ D. Therefore, each transition in Ti ∩ enabled(s) gives rise
to a different trace. Therefore, each event α ∈ Ti ∩ enabled(s) is crucial in every trace
that subsumes [s, α]. Thus, Ti ∩ enabled(s) ⊆ ucrucial(s, φ). ut
The proof of the following theorem is straightforward.

Theorem 11. Let φ2 = ψ1 ∧ ψ2. If s 6|= ψ1 then ucrucial(s, ψ1) ⊆ ucrucial(s, φ2),
else ucrucial(s, ψ2) ⊆ ucrucial(s, φ2).

Finally, we consider the case where φ2 uses the temporal operators of CETL.

Theorem 12. Let φ2 be of the form E[ψ1U(ψ1 ∧ ψ2)] or E[ψ2Rψ1]. If s 6|= ψ1, then
ucrucial(s, ψ1) ⊆ ucrucial(s, φ2). Else, if s |= ψ1 and ¬ψ1 is meet-closed, then
ucrucial(s,¬ψ1) ⊆ ucrucial(s, φ2).

Proof. We consider the two cases separately.

– Case 1: s 6|= ψ1. Any state that satisfies φ2 must also satisfy ψ1. Therefore, we first
need to execute the minimum set of events that will lead to a state satisfying ψ1.
Hence, ucrucial(s, ψ1) ⊆ ucrucial(s, φ2).

– Case 2: s |= ψ1. Recall that s 6|= φ2, and we are interested in reaching a state
that satisfies φ2. Assume there exists a state t, reachable from s, that satisfies φ2.
Let w be a witness for t |= φ2. Then, along every path v from s to t, there must
exist some state s′ such that s′ 6|= ψ1. If not, then v.w would have been a witness
for s |= φ2. Thus, in order to reach a state that satisfies φ2, it is necessary to go
through some state that satisfies ¬ψ1. If ¬ψ1 is meet-closed, then the execution of
the events in ucrucial(s,¬ψ1) is necessary to reach a state satisfying ¬ψ1. There-
fore, ucrucial(s,¬ψ1) ⊆ ucrucial(s, φ2).



7 Implementation and experimental Results

We have implemented our approach as an extension to the SPIN model checker [10],
called SPICED (Simple PROMELA Interpreter with Crucial Event Detection). Our im-
plementation incorporates the ample set selection techniques presented in this paper
into ALMC [16], a local CTL model checking algorithm based on depth-first search.
The complete algorithm can be found in [16], as well as in the technical report version
of this paper [15]. Our implementation of SPICED, along with detailed experimental
results, is available at: http://maple.ece.utexas.edu/spiced.

We ran SPICED against a large set of examples from the BEEM database [9], which
contains PROMELA (the input language for SPIN) models with errors injected into
them, and lists the properties to be verified on these models. All experiments were
performed on a 1-cpu 2.8 GHz Intel Pentium 4 machine with 512 MB RAM, running
Red Hat Enterprise Linux WS Rel 4.

Table 1 shows the results for the largest problem sizes, for each of the verified mod-
els. A comprehensive list of results is available from our website:
http://maple.ece.utexas.edu/spiced. In our experiments, SPICED pro-
duced error trails that were >10x shorter in 55% of the cases and >100x shorter in
19% of the cases. For 44% of the cases, SPICED completed verification faster than
SPIN, with >10x reduction in time in 9% of the cases. Although CETL is a branching-
time logic, in these examples, the properties were in LTL ∩ CETL, so the error trails
were non-branching. The error trails were produced in the same format as those of
SPIN’s, and can be examined using SPIN’s guided simulation feature. For SPIN, never
claims were used for the verification of LTL properties, and simple assert() statements
were used for reachability detection. For SPICED, the CETL formulae were specified a
separate file, and fed directly as input to our model checking algorithm.

Table 2 shows the state space reduction achieved by SPICED, compared to SPIN
with p.o. reduction, in the absence of errors. The examples in Table 2 are from the SPIN
distribution [10], and have previously been used to showcase the effectiveness of p.o.
reduction [18]. For SPIN, no LTL properties were specified during verification, which is
optimal for maximizing the effectiveness of p.o. reduction. Since our algorithm is based
on choosing crucial events, it requires the specification of a property. For each exam-
ple, we chose a property that is never satisfied in the program, and forces exhaustive
validation. Our results show state space reduction comparable to p.o. techniques.

8 Conclusions and future work

We have presented a model checking technique that produces short error trails, while
achieving state space reduction. Experimental results confirm that our approach can
significantly outperform SPIN in the presence of errors, while providing state space
reduction comparable to partial order techniques. The effectiveness of our approach
depends on the ability to identify crucial events. We have shown how crucial events can
be identified in some cases. The problem of finding crucial events for a general CETL
formula is a direction for future research.



Model Tool Time
(sec)

States Memory
(MB)

Formula Trail length

phils.7
SPICED 0.01 15 3.15 EF (P0.req ∧ EG(!P0.grant)) 6

SPIN **Could not complete** ¬�(req0 ⇒ ♦grant0) -

szymanski.9
SPICED 0.02 256 3.15 EF (P0.wait ∧ EG(!P0.cs)) 43

SPIN **Could not complete** ¬�(wait0 ⇒ ♦cs0) -

fischer.18
SPICED 0.02 28 3.15 EF (P0.wait ∧ EG(!P0.cs)) 19

SPIN **Could not complete** ¬�(wait0 ⇒ ♦cs0) -

mcs.5
SPICED 0.09 30227 4.89 EF (P0.wait ∧ EG(!P0.cs)) 14

SPIN 0.03 2821 2.72 ¬�(wait0 ⇒ ♦cs0) 5646

anderson.7
SPICED 0.03 65387 7.03 EF (P0.wait ∧ EG(!P0.cs)) 82

SPIN 0.13 15692 6.63 ¬�(wait0 ⇒ ♦cs0) 31389

peterson.7
SPICED 0.09 29080 4.89 EF (P0.wait ∧ EG(!P0.cs)) 159

SPIN 0.1 9992 9.93 ¬�(wait0 ⇒ ♦cs0) 19984

lamport.7
SPICED 0.06 6850 3.45 EF (P0.wait ∧ EG(!P0.cs)) 30

SPIN 0.02 665 2.62 ¬�(wait0 ⇒ ♦cs0) 1330

at.7
SPICED 0.02 19 3.15 EF (P0.wait ∧ EG(!P0.cs)) 11

SPIN 0.01 182 2.62 ¬�(wait0 ⇒ ♦cs0) 370

bakery.6
SPICED 0.01 69 3.15 EF (P0.wait ∧ EG(!P0.cs)) 46

SPIN 0.02 896 2.62 ¬�(wait0 ⇒ ♦cs0) 856

gear.2
SPICED 0.03 4185 3.13 EF (Clutch.err open) 5056

SPIN 0.13 22386 5.5 local assert() 19396

needham.4
SPICED 0.01 27 2.72 EF (init0.fin ∧ resp0.fin) 15

SPIN 0.04 4003 3.03 ¬♦(init fin ∧ resp fin) 52

msmie.2
SPICED 0.02 83 2.72 EF (P0.wait ∧ EG(!P0.cs)) 63

SPIN 0.01 370 2.62 ¬Box(wait0 ⇒ ♦cs0) 214

loyd.2
SPICED 0.19 50931 9.24 EF (Check.done) 52597

SPIN 0.63 166133 17.61 local assert() 84418

driving phils.4
SPICED 0.01 212 3.15 EF (P0.req ∧ EG(!P0.grant)) 123

SPIN 0.01 85 2.62 ¬�(req0 ⇒ ♦grant0) 170

Table 1. Trail reduction with SPICED, compared to SPIN with p.o. reduction.
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A Appendix

A.1 Proof of Theorem 1

Let σ = [s, v] be a trace, and φ a process-local state formula defined on the local
variables of process Pj . Since no two transitions from Pj are independent, no two tran-
sitions from Pj can commute with each other. So, the events from Pj must occur in the
same sequence in every path of σ. Let vj be the restriction of v to events from Pj , i.e.,
vj is obtained from v by deleting all events from processes other than Pj . Let G and
H be any two down-sets of σ such that G |= φ and H |= φ. Let u and w be any two
transition sequences leading, respectively, from s to G and s to H in L(σ). Then, both
uj and wj (derived in a similar fashion as vj from v) are prefixes of vj . Thus, either uj

is a prefix of wj , or wj is a prefix of uj .
WLOG, say uj is a prefix of wj . Let u′ be any transition sequence from s to (G ∩

H) in L(σ). Clearly, u′j can only contain events that are common to both uj and wj .
Now, uj is a prefix of wj . Therefore, u′j contains the same events as uj , and since all
transitions from Pj must occur in the same sequence in all paths, u′j = uj . Since the
truth value of φ is determined purely by events from process Pj , and G |= φ, we have
(G ∩H) |= φ.

Similarly, let w′ be some transition sequence from s to (G ∪ H) in L(σ). By a
similar argument as above, we can show that w′j = wj , hence (G ∪H) |= φ. ut

A.2 Proof of Theorem 3

We show that E[φ2Rφ1] is regular, for regular φ1 and φ2. Let G,H ∈ L(σ) be two
down-sets such that G |= E[φ2Rφ1] and H |= E[φ2Rφ1]. Then, both G and H must
satisfy φ1. Then, by the meet-closure of φ1, (G ∩H) |= φ1. Also, by the join-closure
of φ1, (G ∪H) |= φ1. Recall that E[φ2Rφ1] = E[φ1U(φ1 ∧ φ2)] ∨ EG(φ1).

– Case 1: Both G and H satisfy E[φ1U(φ1 ∧ φ2)]. In the lattice L(σ), there exist
finite paths π and ρ, starting from G and H respectively, such that πend |= φ2 and
ρend |= φ2, where πend and ρend are the final states on π and ρ, respectively. From
the meet- and join-closure of φ2, (πend ∩ ρend) |= φ2, and (πend ∪ ρend) |= φ2.
We can construct a path λ starting from (G ∩H) as follows:

λ = G ∩H,G ∩ ρ1, G ∩ ρ2, ..., G ∩ ρend, π1 ∩ ρend, π2 ∩ ρend, ..., πend ∩ ρend

From the properties of set intersection, for each i, λi can either be the same as λi−1

or contain one additional event. Eliminating consecutive identical down-sets, we
get a valid path in which for each i, λi contains one event more than λi−1. From
the meet-closure of φ1, it follows that λ is a witness forE[φ1U(φ1∧φ2)]. Similarly,
we can construct ν starting from (G ∪H):

ν = G ∪H,G ∪ ρ1, G ∪ ρ2, ..., G ∪ ρend, π1 ∪ ρend, π2 ∪ ρend, ..., πend ∪ ρend

From the properties of set union, for each i, either νi can be the same as νi−1,
or contain one additional event. Eliminating consecutive identical down-sets, one
obtains a valid path. From the join-closure of φ1, it follows that ν is a witness for
E[φ1U(φ1 ∧ φ2)].



– Case 2: Either G or H satisfies EG(φ1). WLOG, let G |= EG(φ1). Let π be a
witness path starting from G, and v be its corresponding transition sequence. We
first show that there exists a finite k ≥ 0 such that H ⊆ πk. Let s be the starting
state of σ. Let u and w be transition sequences leading, respectively, from s to G
and s to H in L(σ). Since G |= EG(φ1), u.v is a maximal transition sequence
of σ, i.e., σ = [s, u.v]. Therefore, w � u.v. By the definition of �, there exists a
finite prefix u′ of u.v such that u′ ≡ w′ and w is a prefix of w′. Let K be the final
state of the transition sequence u′. Recall that H is the final state of the sequence
w. Then, we have H ⊆ K. Now, K can occur either before or after G in the path
corresponding to u.v. In either case, K ⊆ πk for some finite k ≥ 0.
We use the above property to construct a path λ starting from (G ∩H):

λ = G ∩H,π1 ∩H,π2 ∩H, ...., (πk ∩H = H)

Eliminating consecutive identical down-sets, λ becomes a valid path. Since π is a
witness for G |= EG(φ1), every state along π satisfies φ1. Also, H |= φ1. Thus,
by the meet-closure of φ1, every state on ρ satisfies φ1. Let ρ be the witness path
forE[φ2Rφ1] starting fromH . Then, the required witness path forE[φ2Rφ1] from
(G ∩H) is given by λ.ρ.
To demonstrate join-closure, we construct the following path ν starting from (G ∪
H):

ν = G ∪H,π1 ∪H,π2 ∪H, ....

Removing consecutive identical down-sets, ν becomes a valid path. From the join-
closure of φ1, it follows that ν is a witness path for (G ∪H) |= EG(φ1).

The proof that E[φ1U(φ1 ∧ φ2)] is regular is the same as Case 1 above. ut

A.3 Proof of Theorem 9

It is straightforward to see that exploring only ample sets cannot produce a false witness.
We show the other direction, namely, if s |= φ then exploring only ample sets satisfying
conditions (C1) and (C2) is sufficient for finding a witness. Let s |= φ. Then, either
s |= E[φ1U(φ1 ∧ φ2)], or s |= EG(φ1).

– Case 1: s |= E[φ1U(φ1 ∧ φ2)]. Then, there exists a witness for s |= φ in
some maximal program trace, say σ = [s, v]. By Theorem 8, ample(s, φ) con-
tains some successor event, say α, which belongs to the trace σ. By condition (C2),
α ∈ ucrucial(s, φ2), which implies that α ∈ crucial(s, φ2, σ). Also by condition
(C2), α(s) |= φ1. We execute the event α from s, then repeat the same construction
from the state α(s). Thus, we construct the witness path described in Theorem 6,
by only executing events from ample sets satisfying conditions (C1) and (C2).

– Case 2: s 6|= E[φ1U(φ1∧φ2)] and s |= EG(φ1). Again, there exists some maximal
program trace σ = [s, v], which contains a witness path for s |= φ. By condition
(C1), ample(s, φ) contains some α such that [s, α] v σ. By (C2), α(s) |= φ1. We
execute α from s, then continue the same construction from the state α(s). This
constructs a witness path for EG(φ1) as described in Theorem 7.

ut


