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Mobile hosts have fundamentally different limitations than stationary hosts. For
example, mobile hosts generally operate on limited battery power and memory re-
sources. Distributed programs executing on the system with mobile hosts therefore
require various modifications to compensate for these factors. In this dissertation,
we present a framework that facilitates developing distributed applications for sys-
tems with mobile hosts.

Radio spectrum is a scarce resource in mobile systems, efficient allocation of
frequency channels is therefore critical for the system performance. The first part
of the dissertation addresses this problem. We present a distributed update-based
algorithm that imposes lower message complexity, while requiring smaller storage
overhead than existing algorithms.

In the second part of the dissertation, we propose an efficient way to imple-
ment causal message ordering in mobile computing systems. Causally ordered mes-
sage delivery is a required property for several distributed applications particularly
those that involve human interactions (such as teleconferencing and collaborative

work).  Our message overhead in wired network is independent of the number of

vi



mobile hosts, therefore, the proposed algorithm is scalable and can easily handle
dynamic change in the number of participating mobile hosts in the system. Our
algorithm, when compared to previous proposals, offers a low unnecessary delay,
low message overhead and optimized handoff cost.

Determining order relationship between events in the computation is a funda-
mental problem in distributed systems with applications in distributed monitoring
and fault-tolerance. Fidge and Mattern’s vector clocks capture the order relation-
ship with vectors of size N in a system with N processes. Due to limited resources
in mobile computing systems, it is natural to ask if this overhead can be reduced.
The third part of the dissertation addresses this problem. We present efficient times-

tamping algorithms suitable for mobile computing systems.
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Chapter 1

Introduction

The emergence of personal digital assistants and handheld personal computers with
communication capabilities has had a significant impact on distributed systems.
These devices provide users freedom to move anywhere under the service area while
retaining network connection via wireless channels. Wireless networks have fun-
damentally different properties than typical wired networks, including higher error
rates, lower bandwidth, nonuniform transmission propagation, increased usage costs,
and increased susceptibility to interference and disconnection. Similarly, mobile de-
vices behave differently and have fundamentally different limitations than stationary
devices. For example, the point of connection to the network of the moving host
is dynamic, and mobile hosts generally operate on limited battery power and mem-
ory resources. Distributed programs that run on the system with mobile devices

therefore require many modifications to compensate for these factors.

1.1 Mobile Network Architectures

The mobile computing system considered in this research consists of two kinds of
processing units: mobile hosts, and mobile support stations. A mobile host (MH)
is a host that can move while retaining its network connections. A mobile sup-

port stations (MSS) is a machine that can communicate directly with mobile hosts.
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Figure 1.1: A mobile computing system.

The coverage area under an MSS is called a cell. Even though cells may physically
overlap, an MH can be directly connected through a wireless channel to at most
one MSS at any given time. An MH can communicate with other MHs and MSSs
only through the MSS to which it is directly connected. All MSSs and communi-
cation paths between them form the wired network. Figure 1.1 illustrates a mobile
computing system.

In this research, we develop a framework that facilitates developing applica-
tions for distributed systems with mobile devices. This framework consists of two
layers: Channel allocation Layer (CL) and Message delivery Layer (ML). We also
present an efficient monitoring system suitable for mobile computing systems with
a large number of mobile hosts. Specifically, we introduce an alternative to wvector

clocks for characterizing causality relationship in distributed systems.

1.2 Channel Allocation

In the first layer, CL, we provide an efficient distributed channel allocation algo-

rithm. Each mobile host can establish communication with other entities of the



network only through its local base station via a wireless channel. Availability of
radio channels, therefore, plays an important role in achieving good system perfor-
mance. A radio channel can be used by any two cells at the same time without
co-channel inteference if the reuse constraint is satisfied. Here, we use the distance
between cells as the reuse constraint.

One simple approach is to have a central controller assign channels to cells so
that there is no interference. Obviously, this centralized solution does not scale well,
and it suffers from a single point of failure. Another approach is to distribute tasks
and responsibilities to each MSS in the system. In this distributed approach, each
MSS exchanges information with its neighbors within the co-channel inteference
range so that it can make a decision about channel allocation in its cell based on its
local knowledge. Therefore, distributed algorithm is more robust and scalable.

We present a distributed algorithm in which each MSS bears an equal amount
of responsibility for channel allocation control. Each cell is required to communi-
cate only with a small subset of its neighbors within the co-channel inteference
range in order to acquire a channel. No responses are ever deferred, therefore, the
communication set up time is relatively small. Moreover, the algorithm is simple to

implement, and requires less storage and message overhead than existing algorithms.

1.3 Message Delivery

The second layer (ML) deals with message ordering in distributed computation
with mobile hosts. A lightweight algorithm ensuring causal message ordering is
presented. Causal message delivery is required in many distributed applications
such as management of replicated data [BJ87, BSS91], resource allocation [RST91],
and multimedia systems [AS95].

Algorithms to implement causal message ordering in systems with static hosts

have been extensively studied. These algorithms, however, require high message and



memory overheads; therefore, they are not suitable for systems with mobile devices.
We propose an algorithm for causal message ordering in which message overhead is
small compared to those for static systems and limited resources on mobile hosts
are efficiently utilized. Moreover, the proposed algorithm is well-suited for dynamic
systems since the size of message overhead is constant, even when the number of

participating mobile hosts varies.

1.4 Causality Tracking

Determining the order of events is an essential problem in distributed systems.
A distributed computation is modeled as a partially ordered set (poset) (E,—)
where E is the set of events in the computation and — is the happened before
relation [Lam?78]. Fidge [Fid89] and Mattern [Mat89] independently introduced
vector clocks to timestamp events such that “happened before” relationship between
any two events can be determined by examining their timestamps. However, vector
clock mechanism does not scale well because it imposes O(N) of local storage on
each process and O(N) message overhead in a system with N processes. Due to
the limited resource on mobile devices and wireless links, the traditional vector
timestamp is not suitable for systems with mobile devices.

We propose an efficient scheme for characterizing “happened before” rela-
tionship in distributed systems. Our first proposal is based on drawing connections
between vector clocks and dimension theory of partially ordered sets. Dimension
provides an encoding scheme (or a timestamping scheme) for a partial order based
on representing it as an intersection of some number of chains. We introduce the
concept of string dimension which leads to a more efficient encoding. In particu-
lar, the number of bits required to encode a poset using strings is smaller than the
number of bits required to encode a poset using chains.

The first lower bound argument on the size of the vector clocks is due to



Charron-Bost [CBMT96]. Her results show that in the worst case the timestamps
may require N-dimensional vector clocks. However, they do not exclude timestamps
which use less than N coordinates for interesting subset of computations on N
processes. Our second proposal is based on this observation. In particular, we show
that timestamping can be done more efficiently in distributed computations that

use synchronous messages.

1.5 Overview of the Dissertation

The rest of this dissertation is organized as follows. Chapters 2 and 3 describe the
channel allocation and message delivery layers, respectively. Chapter 4 provides
our implementation of the two layers, and a simple shared object application. In
Chapter 5, we present an efficient approach to capture causality and concurrency

between events. Finally, we draw conclusions in Chapter 6.



Chapter 2

Channel Allocation Layer

In this chapter, we present an efficient distributed channel allocation algorithm for

mobile systems. The material presented here also appears in [SG99].

2.1 Introduction

The radio spectrum is a scarce resource in mobile communication systems. An
efficient reuse of the radio spectrum allocated to the system is required as the pop-
ulation of mobile users continue to grow at the tremendous rate. Each mobile host
can establish communication with other entities of the network only through its local
base station via a wireless channel. Therefore, availability of radio channels plays an
important role in achieving good system performance. A major prohibiting factor
in radio spectrum reuse is co-channel interference. A radio channel can be reused
by any two cells without co-channel interference if the distance between them is at
least a required value D,,;,. Spectrum reuse efficiency can be increased by making
use of efficient channel assignment techniques.

The radio spectrum is divided into a number of frequency units. If channels
are those units, then each channel is used to support only one call in a cell at a
time. If carriers are used as a unit, then the entire bandwidth of a carrier assigned

to a cell is time-shared by all the calls initiated within the cell. We choose to use



the term channel throughout this chapter.

A channel can be reused in a spatially disjoint cell if reuse constraints are
satisfied. Reuse constraints are conditions used to determine when a channel can be
reused by other cells without causing an interference called co-channel interference.
The reuse constraint we consider is the distance between cells.

To avoid co-channel interference each cell must [DL97]
1. compute the set of available channels,
2. select one channel from the set of available channels, and
3. acquire the selected channel.

The procedure that performs task (1) and (3) is referred to as the channel allocation
algorithm, and the one that performs task (2) referred to as the channel allocation
strategy. Channel allocation strategies have been extensively studied in the con-
text of cellular telephone systems. A comprehensive survey on channel allocation
strategies can be found in [KN96].

Generally, channel allocation strategies can be divided into three different
categories: fixed (FCA), dynamic (DCA), and hybrid (HCA). In FCA, channels
are assigned to each cell according to some fixed reuse pattern so that the co-
channel interference is avoided. This strategy is simple, but it does not adapt to the
changing traffic conditions and user distribution. To overcome these disadvantages,
DCA strategies are introduced. Channels in DCA can be assigned to any calls as
long as there is no co-channel interference. DCA provides traffic adaptability at the
cost of higher complexity. However, DCA is less efficient than FCA under high load
conditions [KN96]. HCA strategy, a mixture of FCA and DCA, is introduced to
overcome this drawback. Channels in HCA are divided into fized and dynamic sets.
Each cell is assigned with a fixed set as in FCA, and these channels are preferred for

use in their respective cells. The dynamic set is shared by all users in the system to



increase flexibility.

There are many different ways to perform task (1) and (3). One simple
approach is to have each cell request a channel from a central controller who will
ensure that the co-channel interference does not occur. This centralized approach
does not scale well, and it has a single point of failure. Another approach is to
distribute tasks and responsibilities to each MSS in the system. In this distributed
approach, each MSS exchanges information with its neighbors within the co-channel
interference range so that it can make a decision about channel allocation in its cell
based on its local knowledge. Therefore, distributed algorithm is more robust and
scalable.

A distributed channel allocation algorithm should aim at minimizing the
channel acquisition delay.! It must also aim at minimizing the amount of information
(size and number of messages) that needs to be exchanged per request. Also, the
algorithm must be able to cope with failures of the components of the network. One
criterion to measure this property is the failure number which measure the number
of cells affected by a faulty support station. Clearly, the goal is to minimize the
failure number of the algorithm.

We present a distributed algorithm in which each MSS bears an equal amount
of responsibility for channel allocation control. Each cell is required to communicate
only with a small subset of its neighbors within the co-channel interference range in
order to acquire a channel. No responses are ever deferred, therefore, the communi-
cation set up time is relatively small. The failure number of the algorithm is kept at
minimum. It is one-half of the size of the interfering neighbors in the system with
the smallest D,y,;,. Moreover, the algorithm is simple to implement, and requires
less storage and message overhead than existing algorithms.

The problem of distributed channel allocation can be viewed as a variant of

!The elapsed time between a cell’s sending a request message and its acquisition of a channel.



distributed mutual exclusion problem, where each channel corresponds to a critical
section. In distributed channel allocation, however, multiple cells can simultaneously
use the same channel (enter a critical section at the same time) if the reuse constraint
is satisfied. Algorithms previously proposed for channel allocation are more or less
based on techniques used in mutual exclusion problems. Next, we briefly describe
them, and compare them in detail with the algorithm presented here in the following
section.

The rest of the chapter is organized as follows. The related work is given
in Section 2.2. Section 2.3 presents notation and definitions that we used in this
chapter. System with the smallest possible D,y is investigated in Section 2.4. The
technique given in Section 2.4 is generalized in Section 2.5. An optimization of
the proposed algorithm is given in Section 2.7. Experimental results are given in

Section 2.8.

2.2 Related Work

Prakash et al. [PSS95] proposed an algorithm based on deferral technique used in
Ricart and Agrawala [RA81]. In this algorithm, each MSS decides which channel
it can use after gathering information from each cell in its interference neighbor-
hood. Each MSS replies with the information containing its channel use if it is not
requesting a channel, or if it is requesting with a larger timestamp than the times-
tamp of the received request. Otherwise, the response is deferred. With all the
received information, the MSS may have to borrow a non-busy channel allocated
to its neighbors. With the permission from each neighbor that owns this channel,
the MSS can transfer the channel and then uses it to support a communication ses-
sion. Otherwise, the MSS must select a new channel to transfer, and repeat another
borrowing procedure. This algorithm will be referred to as PK.

Choy and Singh [CS96] proposed a new borrowing scheme (referred to as



CS) that reduces the number of failed transfers. In this scheme, a randomly se-
lected group of channels is exclusively locked by the MSS before the actual transfer
occurs. Each MSS obtains a lock on the selected group of channels by executing
an existing dining philosophers algorithm [CS95]. This ensures that no two inter-
fering MSSs lock the same group of channels simultaneously. This algorithm also
guarantees that each lock request is eventually granted. The optimum size of the
group varies under different load distributions. It was shown in [CS96] by sim-
ulations that CS significantly outperforms PK when the traffic load is high and
non-uniformly distributed. This is primarily because pessimistic approach acquires
a group of channels, and more requests therefore can be served per each acquisition.
This saves a lot of communication and processing overhead

Both PK and CS fall into the search category according to [DL97] since each
MSS does not maintain the information about the channel use of its neighbors.
When a channel is needed, the MSS searches all neighboring cells to compute the
set of currently available channels. Due to deferring mechanism used to resolve
conflicts, acquisition delay in search algorithms will significantly increase as traffic
in the network grows. In particular, the response of the request message received
by each cell will be deferred even when the cell is requesting a different channel.

Instead of gathering information each time a channel is needed, each MSS
could maintain a set of available? channels by informing cells in its interference
neighborhood each time it acquires and releases a channel. This is called update
scheme [DL97]. A conflict occurs if two cells within each other interference neigh-
borhood concurrently request the same channel. Therefore, to request a channel,
each cell must send a request message to each cell in its interference neighborhood.
The request is successful if each response is a grant message. This is known as the

basic update scheme. This scheme reduces acquisition delay at the expense of higher

2Channels that cells can use without co-channel interference
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message complexity. Algorithms presented in [IC93, IC94] take this approach.

Dong and Lai [DL97] proposed an update algorithm (referred to as DL). They
reduced message complexity by using an inquire-some mutual exclusion model. This
algorithm is designed to work with a class of HCA strategies such that carriers?
assigned to each cell with different priorities. In particular, each cell is initially
given a set of preferred carriers so that they are always selected whenever available
before other carriers. This a priori information about carrier status is referred to as
channel reuse planning. To request a carrier, each cell sends request messages only
to a small subset of its interference neighborhood, depending on the carrier being
requested. Thus, each cell has to maintain a list of cells for each carrier to which
request messages must be sent.

Garg et al. [GPT96] proposed two update algorithms. In the first algorithm,
all MSSs are synchronized such that no two neighboring MSSs choose frequencies at
the same time. This is achieved by using the same synchronization mechanism as
in CS. Each MSS informs its neighbor which channels are selected. The neighbors
are also informed when the channels are released. Again, the response time of this
algorithm is high due to the fact that a cell can be blocked by its neighbors if they
are requesting simultaneously even though the requested channels are different. This
algorithm will be referred to as G-Det. The second algorithm is intended for the
system where the number of channels available to the system is much larger than
the number of channels requested by each cell. In this algorithm (referred to as
G-Ran), a group of channels is randomly picked, and the MSS must ensure that the
selected channels are not currently used by its neighbors. If so, the channels are
dropped. Note that the channels selected in G-Det will never be dropped.

The algorithm presented here (referred to as QB?) uses Maekawa’s technique

[Mae85] to reduce message complexity in the basic update algorithm. Similar to

3 Carrier is the basic unit of resource used in their algorithm.
“QB comes from quorum-based.
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Figure 2.1: Hexagonal Cellular Model

DL, request messages are sent to only a small subset of cells in the interference
neighborhood. However, this subset does not depend on the requested channels.
This algorithm therefore requires less memory space, and is simpler to implement.
Unlike DL, this algorithm can be used with any channel reuse planning. Moreover,
the generalization of the update algorithm to the system where the interfering cells

is more than one hop away is also presented.

2.3 Notation

It is assumed that the allocated radio spectrum is divided into a number of channels.
A unique ID is assigned to each channel. Each cell also has a unique ID represented
by a pair (z,y), the position of cell on a 2-dimensional plane. Each cell ¢ is logi-
cally modelled as a hexagon of radius r; therefore, it has six neighbors, denoted by
E; W;, NE;, NW;, SE;, SW;, according to its direction from 3. Figure 2.1 displays
a cellular network model.

The distance between cells is defined as the distance between the two centers.

If R is the distance between two neighboring cells, then R = v/3r. A channel can

12



be reused in any two cells if the distance between them is at least D,;,. We say
that two cells are in each other’s interference neighborhood if the distance between
them is less than D,,;,. Note that D,,;, must be greater than R.

We also assume that all MSSs are connected and every message sent between
them is eventually received in FIFO order. Each MSS maintains Lamport’s logical
clock [Lam78] so that events at different MSSs are totally ordered.

Given a cell ¢, IN(c) denote the set of all the cells whose distance to c is less

than Dn,.
Definition 1

IN(c) = {c|dist(c,c') < Dpmin}

where dist(c,c’) denotes the distance between ¢ and ¢!. We say that two cells, 1, j,
interfere with each other if the distance between them is less than D,,;,. We also
say that ¢ is in the interference neighborhood of j if i € IN(j).

The goal of any channel allocation algorithm is to ensure that no two in-
terfering cells simultaneously use the same channel. To achieve this goal, any two
requests from two interfering cells must be known to at least one of the arbitrators.
If we assume that cell i obtains a permission from each member of a set S; (request
set) such that S; C IN (%), there must be at least one common cell between a pair of
S; and S; for any two interfering cells 7, j. We refer to this property as the pairwise
non-null intersection property (PN).

We next present a scheme to construct the request set such that PN is

satisfied for a given D, ,p,.

2.4 3-Cell Cluster System

In this system, a channel cannot be reused within the same cell or the neighboring
cells. This is because R < Dpin < V3R. Consequently, there are exactly 6 members

in each cell’s interference neighborhood. To satisfy PN/, we assign to each cell 7 the
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following request set: S; = {i, NW;, SW;, E;}. We call this 1-hop request set. It is
easy to see that the following property can be derived from 1-hop request set. Let

Sij denote S; N S;.

Property 2 For any two interfering cells i, j
o |Sij| =1, and
e j €5 0ori €S

Next we present a distributed channel allocation algorithm for 3-cell cluster system

using 1-hop request set.

2.4.1 The Algorithm

We now provide an informal description of the 3-cell cluster algorithm shown in
Figure 2.2. Let C denote the set of channels shared by each cell in the system. Each
cell ¢ maintains two sets, U, and I.. U, is the set of channels currently used by c.
1. is the set of interfered channels at c. Initially, every channel k € C is available for
use by c¢. A channel becomes an interfered channel for ¢ if it is acquired by a cell in
IN(c).

When a cell needs a channel to support a communication session, it selects a
channel £ from (C — (I, U U,)) based on the underlying channel allocation strategy.
If the underlying strategy is HCA, then channels in the fixed set are used whenever
it is available. To acquire k, a cell sends a request message (REQ(k)) to each cell
in its request set except itself. Once c receives a grant (GRNT(k)) from every cell
in its request set, and if at this moment & does not belong to I., then channel &k can
be used to support a communication session in cell ¢, and is added into U,.. Next, ¢
sends an acquisition message (ACQ(k)) to each cell in its interference neighborhood
except those in its request set to inform about its use of channel k. When a cell d

receives ACQ(k) message, k is added into its set 1.

14



MSS;::

var
I;: the set of interfered channels at i;
U;: the set of used channels at i;
S;: the request set of i;
C: the set of channels shared by all cells;

(A) To support a communication session
MSS; selects a channel k € (C — (I; UU;)), according to the
underlying allocation strategy, and sends a REQ(k) to each cell in S;

(B) Upon receiving a REQ(k) from cell j
MSS; replies with a REJ (k) if either k € U; or
MSS; is also requesting for k£ with a smaller timestamp;
otherwise, it replies with a GRNT (k) and add k into I;

(C) The request for channel k is successful if
C1) Every response is a grant, and
C2) k& I;

(D) Upon the request for channel k is successful
send ACQ(k) to each cell c € IN; — S;
add % in U;

(E) Upon receiving a REJ(k) from j or conditions (C1) and (C2) are false
send a REL(k) to each cell ¢ € S; except j, and execute (A)

(F) Upon a communication session using channel k terminates,
MSS; sends a REL_TERM (k) to each cell in IN;

(G) Upon receiving a REL(k) or REL TERM (k)
remove k from I;

(H) Upon receiving a ACQ(k)
add k into I;

Figure 2.2: The 3-cell Cluster Algorithm
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On receiving a request for channel &, ¢ replies with a reject message (REJ)
if either ¢ is using this channel (k' € U,) or c is also requesting k' with a smaller
timestamp. Otherwise, ¢ replies with a grant message (GRNT), and k' is added
into I.. Note that k' is added into I, immediately after ¢ has granted the request for
k'. When the communication session using k is terminated, c sends a REL_ TERM
message to each cell in IN,.

A cell realizes that its acquisition of channel & is failed when (1) a REJ (k) has
been received, or (2) a grant has been received from each cell in S, but k& € I.. Once
the acquisition of channel k is failed, ¢ sends release messages (REL(k)) to those
cells that have already granted k to c. On receiving REL(k) or REL. TERM(k), k
is removed from I..

Once an acquisition is failed, it means that a conflict has occurred. A conflict
occurs when there are at least two cells in each other’s interference neighborhood

concurrently request the same channel.

2.4.2 Correctness Proof

Theorem 3 (Safety) No two cells within each other’s interference area concurrently

use the same channel.

Proof: Let there be two cells %, j within each other’s interference area. We show that
1 and j cannot simultaneously use the same channel k. Without loss of generality,
we assume that the timestamp of i’s request is smaller than that of 5. Due to

Property 2, there are only 2 cases to be considered.

e j € 5;: If i is using k, k must be in I; and then j will not be able to use
k unless i releases k. Similarly, if j is using k, then i will receive a REJ
message from j. Therefore, i’s request will fail. If both ¢, j are in the process

of requesting k, ¢ must receive a grant from j since its timestamp is smaller

16



than j’s. Therefore, j’s request will fail even though it receives GRNT (k)

responses from other cells in §);.

e i € §;: If either 4 or j is using k, then the other cannot use k by the same
argument as in the first case. If both ¢ and j are in the process of requesting k,
then j will receive a REJ (k) message from i because i’s timestamp is smaller

than j’s. [

Theorem 4 (Concurrency) The requests of a channel k from any two non-interfering

cells will be granted.

Proof: Consider two non-interfering cells, ¢; and ¢3. Assume that both of them are
requesting for a channel k. There are two cases. (1) S; N Sy = (. In this case, the
request for channel k£ by c; will not fail the request by co. (2) S1 NSy =c3. If 3 is
requesting k with timestamp higher than those of ¢; and ¢y or c3 is not using &, c3

sends grant message to both ¢; and ¢y (step (B)). ]

Theorem 5 (Deadlock freedom) The algorithm is deadlock-free.

Proof: 1In this algorithm, each cell may either reject or grant a request message,

but it never defers its response. Thus, the algorithm is deadlock-free. |

We next prove that livelock never occur in the 3-cell cluster algorithm. We
call an event livelock if more than one cells within each other’s interference neigh-
borhood compete for the same channel, and each one of them fails to acquire the

channel.

Theorem 6 (Progress) A conflict on any channel k is always resolved in such a

way that there is exactly one successful acquisition.
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Proof: We need to prove that if there are x cells within each other’s interference
neighborhood requesting for a channel k, then there will be exactly one cell ¢ suc-
cessfully acquiring k.

Since R < Dpip < \/§R, z can be either 2 or 3. For z = 2, let those two
cells be ¢; and c3. From Property 2, we know that either ¢; will receive the request
message from ¢y or vice versa. From step (B) in the algorithm, we know that there
will be exactly one successful acquisition.

For £ = 3, assume that cells ¢, co,c3 are within each other’s interference
neighborhood and requesting a channel k£ with timestamps %1,t2, t3, respectively.
Without loss of generality, we assume that ¢1 < to < t3. Let p>¢ be an abbreviation
for “a request from p is received by q”. It follows from the configuration of 1-hop
request set that either (1) ¢ I> ¢o, o > ¢3, and ¢3 > ¢, or (2) ¢1 > ¢3, ¢3 > ¢2, and
co > cy.

In (1), c3’s request will be rejected by ¢; since t3 > t1. ¢o’s request will fail
because co receives the request from c¢; which has a lower timestamp. Hence, only
c1’s acquisition will be successful.

In (2), c3’s request will be rejected by co since t3 > t9. c9’s request will be

rejected by c¢1 since to > t1. Again, only ¢;’s acquisition will be successful. ]

2.4.3 Performance Analysis

We now discuss message complexity and acquisition delay incurred by the 3-cell clus-
ter algorithm. Let ng denote the number of request messages sent per acquisition,
and n;; denote the size of IN(c) for each cell c. The number of messages required for
a successful acquisition (excluding ACQ and REL TERM) is 2xngs = 6. For a failed
acquisition, the number of messages required is at most 3 * ns. Therefore, if a cell
has to make m attempts before it finally acquires a channel, the number of messages

required per a channel acquisition is at most 2xn, + 3% ng*(m—1)+ (n;f —ns) +n;p.
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The summation of (n;; —n,) and n; is the total number of ACQ and REL_ TERM
messages. After substituting ns and n;; with 3 and 6, respectively, the number of
messages required is at most 9(m —1)+15. In the basic update scheme [IC93, IC94],
the number of messages required per a channel acquisition is exactly 12(m —1) 4 18.

Let D denote the average communication delay between MSSs. The average
acquisition delay for the algorithm is 2 * m % D. The failure number of the 3-cell
cluster algorithm is 3 since each support station receives request messages from
exactly three neighboring cells.

Message complexity and acquisition delay of the 3-cell cluster algorithm are

the same as DL.

2.5 Generalization

In this section, we present a general scheme to construct a request set for a given
Dyin. We also propose a distributed channel allocation algorithm to use in associ-
ation with those request sets.

Let T‘g denote the set of cells that are j hops away from 7 in the east, north-
west, and southwest directions relative to . The n-hop request set of cell i (denoted

by S}') is defined as follows:
St=iUriu...ur?

Figure 2.3 shows S; and examples of S;; for 2-hop request set. In the previous
section, we have shown that 1-hop request set satisfies PA” when R < Dpin < V3R.
The following lemma shows that 1-hop request set also satisfies PN even when

R < Dyin < 2R.
Lemma 7 The 1-hop request set satisfies PN if R < Dy < 2R
Proof: Since R < Dpin, < 2R, R < dist(c/,c) < 2R for any ¢ € IN(c'). From the

configuration of 1-hop request set, it is easy to see that S. N Sy # 0. [
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Figure 2.3: S; and S;; in 2-hop request set

Theorem 8 For any integer n > 1, the n-hop request set satisfies PN if nR <
Dmin < (’I’L + 1)R

Proof: We prove this theorem by induction on n. The base case is obtained from
Lemma 7. Given cells ¢, ¢’ such that dist(c,c’) < (n + 1)R, we need to show that
S.N Sy # 0. From induction hypothesis, for cell ¢’ such that dist(c,d’) < nR, we
know that S. N Sy # 0.

Let a pair (d,6) represent the position of ¢ relative to ¢, where d is the dis-
tance between ¢ and ¢, and 6 is the angle between the line connecting ¢ and ¢ and
the horizontal axis. Hence, the position of ¢ is (0,0). Given a cell ¢ = (d, ) such
that nR < d < (n + 1)R, the position of cell z € S, N Sy is as follows:

Case (1) d=nR:
(1.1) 6 =0, 27/3, or 47/3
=2>z=c
(1.2) 6 = /3, m, or 5m/3
=T =cC

Case 2) nR<d< (n+1)R:

Cells in this category can be divided into 6 groups. Each group contains

exactly n cells, ¢},...,d,, such that 6; < ... < 6,

e (]

where 6; is the angle of cell ¢}, for i =1,...,n.
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Figure 2.4: Positions of some x € S, N Sy for Dy = 3R.

(2.1) 0< 0 < 7/3,
=1z, =(n—i+1)R,0)
(Figure 2.4 illustrates the positions of z1 and z9 for n = 2).
(2.2) m/3 < 0 < 27/3,
= z; = (iR, 27 /3)
(2.3) 2n/3 <0 <,
=z;=(n—i+1)R,27/3),
(2.4) <0 < 4n/3,
= z; = (iR, 47/3)
(2.5) 4 /3 < 0 < 5m/3,
=z, =((n—1+1)R,47/3)
(2.6) 57/3 < 0 < 2,
= z; = (iR, 0)

According to the n-hop request set, it is easy to see that in each case, x € S,
and x € S.. ]
The following property can be derived from the n-hop request set’s configu-

ration:
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Property 9 For any two interfering cells i, j,

o If |Sij| > 2, then either i € S; or j € S;.

2.5.1 The Generalized Algorithm

We now provide an informal description of the generalized algorithm shown in Fig-
ure 2.5. This algorithm is intended for the system with D,,;, > v3R. In Figure 2.5,
we use * to denote don’t care.

The definition of U; and C here are the same as in Section 2.4. The request
set S; is determined by D,,;,. The set I; is a set of tickets. A ticket is a struct
containing four fields: Status,Cell_id, Ch_id,T'S. Whenever cell ¢ grants a request
of channel k£ with timestamp ¢s from cell j, a ticket (UC, j, k,ts) must be added into
I; (UC for unconfirmed). Status is a boolean variable, and becomes CF (confirmed)
when 7 receives an ACQ(k,ts) from j. An ACQ(k,ts) is sent to each cell in the
interference neighborhood if the acquisition of channel k is successful.

Unlike the previous algorithm, the response of each request can be either
GRNT,C_GRNT, and REJ (Step B). A cell replies with C_GRNT to the request
from cell j for a channel k if it has given at least one grant to another request from
the cell within the interference neighborhood of j with a bigger timestamp. The
1D’s of those cells are also sent along with C_GRNT. A cell replies a channel k’s
request from cell j with GRNT if either it is not using k, or it is not requesting
k with a smaller timestamp, or it never grants the request of k to any cells that
interfere with j before. Otherwise, the cell replies with REJ.

A cell determines if its request is successful by checking all three conditions
given in Step C. If i receives C_GRNT (W, k) from p, it means that the request from
each cell w € W have been granted by p and the request timestamp of w is greater
than that of i. If w € S; or ¢ € Sy, then w will receive ¢’s request or i will receive

w’s request, respectively. In either case, w’s request will be failed given that ¢’s

22



request is not rejected by w. Checking if 1 € Sy, can be done easily by calculating
the distance and direction between ¢ and w.

Once a cell realizes that its request has been rejected, it sends RFE L message
to each cell in its request set except the cell(s) from which REJ message has been
received. After a call has been terminated in cell i, REL_TERM is sent to each cell
in IN;. On receiving ACQ, REL or REL TERM, set I; is updated accordingly.
Note that the algorithm presented in Section 2.4 is a special case of the one presented

here.

2.5.2 Correctness Proof

Theorem 10 (Safety) No two cells within each other’s interference neighborhood

simultaneously use the same channel.

Proof: 'We show that any two cells 7, j within each other’s interference neighborhood
cannot simultaneously use the same channel k. Without loss of any generality,
assume that the timestamp of cell i’s request (¢;) is smaller than that of cell j (¢;).
According to the structure of the request set, there are 3 cases to consider: (1)

|Sijl =1and i€ SjorjesS;. (2)[Si;|=1andi ¢S, and j € S;. (3) |Si;] > 2.
e Case (1): Same as the proof in Theorem 3.

e Case (2): Let ¢ € Sjj. If cell i’s request arrives at ¢ before the request of
j, then 7 will receive GRNT (k) and j will receive REJ(k) from ¢. If cell
j’s request arrives at ¢ before 4, then 7 will receive C_GRNT(j,k) and j will
receive GRNT (k) from ¢. Therefore, i’s request will fail because i ¢ S;.

If 4’s request has been confirmed at ¢ before j’s request arrives, then j’s request
will be rejected by ¢. On the other hand, if j’s request has been confirmed by

¢ before i’s request arrives, then i’s request will be rejected by ¢.
e Case (3): From Property 9, we know that either i € S; or j € S;.
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MSS;::

Var
struct ticket {

Status : boolean (CF or UC)
Cell_id : cell ID

Ch_id : channel ID

TS : timestamp }
I; : a set of ticket
U;, S;,C : as defined in Figure 2.2.

(A) To support a communication session
Al) MSS; selects a channel k from C such that k ¢ U;
and ¢.Ch_id # k,Vt € I,.
(A2) sends a REQ(k) to each cell in S;

(B) Upon receiving a REQ(k) with timestamp T'S from cell j
(B1) MSS; replies with a REJ (k) if
keU,or
MSS; is also requesting for k£ with a smaller timestamp, or
AUC, ', k,ts) € I; : ts < TS and j' € IN(j),or
A(CF,j',k,x) € I; and j' € IN(j)
(B2) MSS; replies with a C_.GRNT (W, k

if W #0, where W = {j'/(UC,j',k,ts) e  Ats >TSANj € IN(j)}
(B3) otherwise, it replies with a GRNT (k) and add (UC, 4, k,TS) into I;

(C) Cell i's request of channel k is successful if

C1) Every response is either a GRNT (k) or C.GRNT(CID,k),and
C2) For each C_.GRNT (W, k) message that cell i receives,

YweW :weS;ori €Sy, and
(C3) AteI;:t.Chid =k

(D) Upon the request of channel k with timestamp ¢ is successful

(D1) cell i sends an ACQ(k) message to each cell in IN;, and
add k in U;

(E) Upon conditions in (C) are false or a REJ(k) has been received
(E1) send a REL(k) to each cell in S; except the one(s)
rejecting the request, and go back to (A)

(F) Upon receipt of ACQ (k) from cell j
(F1) if (UC, j,k,*) € I; then turn UC to CF,
otherwise, add (CF, j, k, %) into I;

(G) Upon receipt of REL(k) or REL . TERM (k) from j
(G1) remove the corresponding ticket from I;

(H) Upon the call using k is terminated
(H1) send REL_.TERM(k) to each cell in IN;

Figure 2.5: The Generalized Algorithm
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- If i € Sj, from Step (B), j’s request will be rejected by 4 since t; < ¢;. If i is
using k, j’s request will be rejected. If j is using k, then k£ must be in [;, and

1 will not select k.

- If j € §5;, i’s request will be granted by j. j'request will fail even though
every response that j receives is either GRNT or C_GRNT since condition
(C3) is failed.

If j is using k, ¢’s request will be rejected. If ¢ is using k, then k£ must be in

I, and j will not select k. |

Theorem 11 (Concurrency) Two requests from two non-interfering cells for the

same channel will be granted.

Proof: Consider any two cells z,y such that ¢ IN(y), and cell z such that z is
in the interference neighborhood of both z and y. Assume that z has granted the
request of channel k£ from z. When cell z receives the request from y, and z is not
using and not requesting a channel k, y’s request will be granted (Step (B)) even

though 3t € I, : t.ChID = k since z ¢ IN(y). [

Theorem 12 (Deadlock freedom) The generalized algorithm is deadlock-free.

Proof: Each cell may either send REJ or GRNT or C_.GRNT, but it never defers

its response. Thus, the algorithm is deadlock-free. |

Later, we will show that livelock is possible in the generalized algorithm.
Specifically, if more than 2 cells within each other’s interference neighborhood re-
quest for the same available channel, it is possible that none of them will succeed.

2.5.3 Performance Analysis

We first describe the performance of the algorithm in term of message complexity

and acquisition delay. Then, we give the comparison with the previous works.
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Let ng, n;, and D be defined as in Section 2.4. If there is no conflict, the
number of messages per channel acquisition is 2 * ng + 2 * n;; which is the sum of
ns REQ messages, ny GRNT or C_.GRNT messages, n;; AC(Q) messages, and n;;
REL_TERM messages. The average delay is 2 * D.

If there are conflicts, and a cell takes m requests before it acquires a channel.
The average delay is 2+ D *m. The number of messages becomes 2% ns+ 3% (m —1) x

ns + 2+ n;s. It is easy to see that the generalized algorithm has n, failure number.

2.6 Discussion

Here the detailed comparison between our algorithm and existing search and update
algorithms is given.

Comparison with search algorithms

As mentioned earlier, search algorithms in general are more likely to suffer from the
high acquisition delay during the high traffic load. In PK, the number of messages
required per acquisition is smaller than that of update algorithms. The exchange
of messages (O(n;s)) is needed only when the currently allocated channels to a cell
are not sufficient to support its call requests. Therefore, under light traffic load,
message exchange is not necessary. However, during the high traffic load, the size
of the response messages is larger than that of update algorithms. This is because
response messages must carry the information about channels being used, allocated,
or transferred in the neighboring cells as opposed to grant or reject in the update
algorithms.

CS also suffers from the high acquisition delay under the high traffic load.
When all the allocated channels in a cell are occupied, messages (O(n;f)) are ex-
changed among the interfering support stations to avoid co-channel interference and
starvation.

In the 3-Cell cluster system, the failure numbers of PK and CS are |[IN(¢)| =
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6. This is because a request message is sent to each interfering neighbor. Simulation
results that compare acquisition delays of our algorithm and search algorithms are
given in the following section.

Comparison with update algorithms

Here, we give a detailed comparison between the proposed algorithm and Garg et
al. In G-Det, a cell has to wait for all its neighbors to select channels in the worst
case scenario [GPT96]. G-Det has failure number |IN(c)|. The synchronization
mechanism used in G-Ran is similar to the one used in QB. Response messages are
never deferred in G-Ran. However, the number of request messages used in QB is
one-half of that used in G-Ran (in the 3-Cell cluster system). It is less than one-half
in the system with arbitrary D,;,. The failure number of G-Ran is |[IN(c)|.

Here, the detailed comparison between QB and DL is as follows.

e The request set used in DL depends on the carrier® being requested. Therefore,
each MSS needs additional memory space to keep a set of cell addresses for
each carrier. On the other hand, each cell in our algorithm is required to
maintain only one request set. Moreover, each cell in DL needs to know I N(c)
for any cell ¢ from which it receives a request message. We only require that
each cell can determine if ¢ € IN(j) and 7 € S; for any cells %,j. Hence, the
memory overhead required in their algorithm is higher than that required in

ours.

®In DL, a carrier is a basic unit of resource allocation , therefore, their ’carrier’ is equivalent to
‘channel’ in our context
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e The number of request messages used in DL is generally smaller than ours.
The following table shows the size of the request set used in their algorithm

and ours for D,,;, = V3R, 2R, V7R, 3R.

Algorithm \ Dy | V3R | 2R | VTR | 3R
DL 3 4 3 3or4
QB 3 13 6 6

Nevertheless, our request messages in the n-hop request set are only sent to
cells at most n hops away in exactly three directions: northwest, southwest,
and east. Therefore, a sender could send only three request messages to its
neighboring cells in those directions, and let each one of them forward the
request message to the next destination. As a result, the routing for our
request messages is simple, and the size of message overhead is smaller since

only the direction and the number of hops are required.

e The failure number of DL is |[IN(c)|. This is because each cell ¢ must respond
to the request message sent from another cell j € IN(c) if j is requesting a

channel 7, the primary channel of c.

e DL algorithm is designed to work with a specific channel reuse pattern. On the
other hand, our algorithm can be used with any dynamic or hybrid allocation

strategies including the one used in their algorithm.

Livelock

In the generalized algorithm, it is possible that £ > 3 cells in each other’s interference
neighborhood request for the same available channel, but none of them will succeed.
We call this livelock since each of these k cells need to make another request attempt
even though there is a channel that can be used without interference. Livelock in

the generalized algorithm can be illustrated by the following scenario. Let there be
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C1
Cq
c3
Figure 2.6: An example of livelock in 1-hop request set

three cells ¢y, co,c3 in the system with D,,;, = 2R request for the same channel k
with timestamps #; < t3 < t3, and these three cells are located in such a pattern
depicted in Figure 2.6. If ¢1’s request arrives at cell ¢4 after c3’s request, then ¢;
will receive a C_.GRNT(3,k). As a result, ¢1’s request will be failed because ¢; ¢ S
and c3 &€ S1. co’s request also fails since it is rejected by c1. c3’s request also fails
even though it is granted by every member of its request set if the receipt of the last
GRNT message occurs between the receipt of REQ and REL messages from co.

Note that this livelock scenario will not occur in our 3-cell cluster algorithm
as shown in Theorem 6. Similarly, the algorithm proposed by Prakash et al. also
suffers from livelock. An example of livelock scenario occurring in Prakash et al.’s
algorithm was given in [CS96].

It will be seen from the experimental result given in the following section
that the possibility for livelock to occur is extremely low. It will be even lower if
a conflict reduction scheme® is applied. Therefore, livelock will have a very small
impact on the performance of the proposed algorithms.

Starvation
In theory, it could occur in every algorithm except the one proposed by Choy and
Singh that some cells may experience consecutive request failures or never be able
to acquire a channel to support a call (even though the channel being requested is

changed every time the cell makes another request attempt). However, as in livelock,

8A scheme that reduces the chance for cells within each other’s interference neighborhood to
select the same channel to request
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the possibility for this to occur is extremely low.

2.7 Enhancement

A common weakness of update-based algorithms is high message complexity due to
acquisition and release messages sent to each cell in the interference neighborhood.
Given a cell ¢, the size of IN(c) grows rapidly as Dy, increases. For instance, if
Dyin = 3R, |IN(c)| = 30. We here propose a scheme to further reduce the number
of messages required in our algorithms at the expense of higher acquisition delay.

We can reduce message complexity in the generalized algorithm by sending
ACQ and REL_ TERM messages only to S, rather than IN(c), and in the 3-cell
cluster algorithm by omitting ACQ messages and sending REL_TERM messages
only to S.. It is easy to see that the modified algorithm still guarantee the safety
property, that is, no two cells within each other’s interference neighborhood will
concurrently use the same channel. However, the number of conflicts will be higher
since now conflicts are not only caused by the propagation delay of messages. With
the proposed scheme, only cells in the request set of a cell ¢ and ¢ itself have
knowledge of channels currently used by c¢. Hence, any cell in IN(¢) — S, can
request for a channel currently used by ¢, and later will be rejected by c. However,
this will rarely occur if the traffic load is relatively low and /or the allocation strategy
reducing the chance of selecting the same channel by interfering cells is applied. We
conduct an experiment to investigate the increase of conflicts caused by this scheme,
and the results are shown in Section 2.8.

As a result, the number of messages required per acquisition in the modified
3-cell cluster algorithm becomes 2ng + 3ng(m — 1) + ng. The number of messages
required per acquisition in the modified generalized algorithm becomes 2n+3ns(m—
1) + ngs + ng.

Since the number of request attempts is likely to be greater than 1 in the
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modified algorithm under the heavy traffic and equal to 1 in the original algorithm,
it is important to calculate the value of m causing the number of messages required
in the modified algorithm exceeds the number of those in the original algorithm with
m = 1. If we let m* denote the value of m when the number of messages required
per acquisition in the modified algorithm is equal to the number of those in the
original algorithm with m = 1.

For both 3-cell cluster and generalized algorithms,

m*:g<w—1>+1
3 \ ng

Once the number of request attempts in the modified algorithm is greater than m*,
the modified algorithm is outperformed by the original algorithm in both message
complexity and acquisition delay. For example, m* = 3 when D,,;, = 2R, and

m* = g when Dy,in = V3R.

2.8 Experiments
2.8.1 Comparison with update algorithms

The system under simulation is a wrapped-around layout with 7 x 7 cells. There
are totally 100 channels shared by all 49 cells. Each cell randomly selects a channel
from its available set with the same priority. No special channel selection scheme is
performed to prevent cells in each other’s interference neighborhood request for the
same channel simultaneously. If a request attempt fails, the cell randomly selects
another channel.

We assume that the average one-way communication delay between any two
MSSs is 2 milliseconds. The duration of a communication session during which
a channel is in use is exponentially distributed with mean 120 seconds. Under
spatially uniform traffic distribution, the arrival of channel requests to each cell are

modelled by a Poisson process with rate A\. Under non-uniform traffic distribution,
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the arrival process in each cell can be in either normal or hot state. This model of
non-uniform traffic distribution was also used in [DL97]. The arrival rate in hot state
is 5 times higher than normal state. The period of being in hot and normal state
are exponentially distributed with mean 180 and 1800 sec., respectively. Handoff
calls” and new calls are processed with the same priority.

Each run processes 98,000 calls, but data was collected after 49,000 calls had
been processed in order to eliminate the impact of startup transients. The number
of request attempts (m) for each call is collected, and the average value of m is
calculated for each run. The mean value of five such runs, each with a different
random number seed, corresponds to a single data in the figures.

We run our simulation on two systems: Dy, = v/3R with the 3-cell cluster
algorithm and D,,;;, = 2R with the generalized algorithm. Each system is also run
with the corresponding modified version for comparison with its original counterpart.

Figure 2.7 and 2.8 respectively illustrate the average number of request at-
tempts per call under uniform and non-uniform traffic distributions.

The results demonstrate that the average number of request attempts (m) in
the system using the original algorithm under both uniform and non-uniform traffic
distributions is very close to 1 (even though it appears in the graphs that it is always
1). For comparison purposes, we could assume that the result from DL algorithm
would be similar to the result from our original algorithm. This is because every
cell in their algorithm also informs each cell in its interference neighborhood each
time it acquires a channel.

Under the modified algorithm, m increases as the traffic load grows; the rate
at which m increases in D,,;, = V3R is less than that of D,,;, = 2R. Specifically,
the average number of request attempts of the system with Dy, = V3R exceeds

the limit m* = 1.66 at the higher channel demand than the system with Dy, = 2R

"the ongoing calls which are transferred from one cell to another due to the mobility of MHs
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Figure 2.7: The result for uniform traffic distribution. (a) Dyin = V3R, (b) Dypin =
2R

33



- modified version —— A
original version -+ |

N w H

-
= 00N O w ol 01Ol
T
1

50 100 150 200 250 300 350 400
number of call arrivals per hour per cell

(a)
- modified version .
original version -+ |

average number of request made per call

N w Fa

=
= o0 01w o~ 01Ol
T
1

50 100 150 200 250 300 350 400
number of call arrivals per hour per cell

(b)

average number of request made per call

Figure 2.8: The result for non-uniform traffic distribution. (a) Dyin = V3R, (b)
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(m* = 3). This is because the size of the interference set , IN(c), for each cell ¢
in Dpin = V3R is smaller than D,,;,, = 2R. The number of request attempts in
the uniform traffic distribution increases at the lower rate than that of non-uniform
distribution.

However, this higher acquisition delay can be reduced by allocating to each
cell a set of preferred channels as in the hybrid channel allocation strategy. Note that
preferred channels can only be used in the cell, and are always selected to support
calls whenever available before other channels. Using these preferred channels also
reduces message complexity since no request and response messages are required.
In addition to preferred channels, we can further reduce conflicts by applying the
allocation strategy that prevents interfering cells to select the same channel.

In Figure 2.9 and 2.10, we compare the number of messages used per ac-
quisition in our algorithms with the algorithm proposed by Dong and Lai. Each
point in the graphs of our algorithms is calculated from the corresponding data in
Figure 2.7 and 2.8. For DL, each point is calculated from the formula presented in
[DL97] given that each cell has no preferred channels and the average number of
request attempts per call is 1. The results demonstrate that the modified algorithm
requires less messages than both the original algorithm and DL. It remains lower
until the channel demand reaches the point where the number of request attempts
per call in the modified algorithm is equal to m*.

Recall that the average acquisition delay is 2+ m * D, where D is the average
communication delay between support stations. Therefore, if D is small (which is
true in the existing underlying networks), the impact of the slight increase of m on
the acquisition delay should be negligible. As a result, message complexity in the
update-based algorithms can be reduced at a slight increase in acquisition delay by
using our modified algorithm.

Network controllers can employ our modified algorithm to significantly re-
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duce traffic load in the underlying wired network at a slight cost of acquisition delay.
For example, each cell in the system can initially be set to use the modified algo-
rithm. The heavily loaded cells will be controlled to switch to the original algorithm
when the average number of request attempts m in the cell exceeds a predetermined
threshold. However, this threshold must be less than m* given in Section 2.7. The
controller can also switch any cell back to its initial mode whenever its number of

request attempts falls below the threshold again.

2.8.2 Comparison with search algorithms

Here, we show the results from the simulation comparing the quorum-based algo-
rithm with search algorithm PK.

The experimental setup used here is as follows: There are totally 450 channels
in the system. One-way communication delay is 100 ms. The mean length of each
call is 180 seconds. Only the 3-Cell cluster system is considered. In QB, two channels
are exclusively allocated to each cell. We adopt the following dropping policies. In
QB, calls that require more than 3 request attempts are dropped. In PK, if channel
transfer is required, only one transfer attempt is allowed.

The simulations are performed under uniform and non-uniform traffic distri-
bution. Figure 2.11(a) shows the simulation result when the mean arrival rate varies
from 35 to 60 calls per minute per cell, and the mean call length is 180 secs. The
acquisition delay of QB is rather stable as the traffic load increases. But PK’s ac-
quisition delay increases rapidly as load increases. Figure 2.11(b) shows the results

of the non-uniform traffic distribution.
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Chapter 3

Message Delivery Layer

In this chapter, we present an efficient algorithm implementing causal message or-
dering in the system with mobile hosts. The material presented here also appears

in [SMG99]

3.1 Introduction

Causal message ordering was first proposed by Birman and Joseph [BJ87]. It deals
with the notion of maintaining the same cause and effect relationship that holds
among the send events of messages with the corresponding delivery events. The
cause and effect relationship is also referred to as causal dependency. An event
occurring at a process is causally dependent on every preceding event that has
occurred at that process. Causal dependencies between events on different processes
are established by message communication. Causal dependency can be expressed
using Lamport’s happened before relation [Lam78].

Figure 3.1 shows a violation of causal message ordering in a distributed com-
putation. A computation is called causally ordered if it does not show the effect
that a message is directly (or indirectly) bypassed by a chain of other messages. In
Figure 3.1, m1 is bypassed by a chain of mo, m3, and mg4.

Causal message delivery is required in many distributed applications such
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Figure 3.1: An example of the violation of causal message ordering.

as management of replicated data [BJ87, BSS91], distributed monitoring [BM93],
resource allocation [RST91], distributed shared memory [AHJ91], and multimedia
systems [AS95]. Algorithms to implement causal message ordering in systems with
static hosts have been presented in [KS96, BSS91, MR93, RST91, RV95, SES89].

These algorithms, however, have high communication overhead. The message
overhead of these algorithms is at least ©(N?) integers, where N is the number
of processes in the system. Therefore, they are not scalable for mobile computing
systems with a large number of mobile hosts. The scalability problem is exacerbated
due to limitations of channel bandwidth, memory and energy supply. We propose
an algorithm for causal message ordering in which message overhead does not vary
with the number of processes in the system. Moreover, our algorithm efficiently uses
limited resources provided on mobile hosts.

The rest of the chapter is organized as follows. Related Work is presented
in Section 3.2. Section 3.3 presents the system model and the notation used in
the chapter. Sufficient conditions for causal message ordering in mobile computing
systems are presented in Section 3.4. We present our protocol in Section 3.5. We
compare our protocol with the previous work in Section 3.6. The simulation results

are presented in Section 3.7.
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3.2 Related Work

While ordering of messages in distributed systems with static hosts has received wide
attention, there has been little work on message ordering in mobile systems. Alagar
and Venkatesan [AV94] presented an algorithm that enforces causal ordering among
mobile support stations to achieve causal ordering among mobile hosts. Therefore,
message overhead of this algorithm is reduced to O(n?), where n is the number of
MSSs. However, some messages are delayed since they violate causal ordering in the
MSS’s point of view, even though they do not violate causal ordering in the mobile
host’s point of view. They also proposed a scheme to reduce this extra delay. In this
scheme every physical MSS is partitioned into k logical MSSs. Each MH, entering
a cell of an (physical) MSS, will be allocated to one of the logical MSSs depending
on the load in each logical MSS. Since causal ordering is maintained among logical
MSSs, messages to two MHs that belong to different logical MSSs will not have to
wait for each other even though both MHs are in the same cell. As a result, message
overhead for this scheme is increased to O(k? * n?).

Prakash, Raynal, and Singhal [PRS96] presented an algorithm to implement
causal message ordering in which each message carries information only about its
direct predecessors with respect to each destination process. Message overhead in
their algorithm is relatively low; however, in the worst case, it can still be O(N?)
where N is the number of mobile hosts in the system. Furthermore, the size of their
message overhead varies when the number of participating processes dynamically
changes.

In this chapter, we present an algorithm using the concept introduced by Ala-
gar and Venkatesan. However, we lower the extra delivery delay, and at the same
time maintain the size of message overheads at O(n?). The proposed algorithm is
also well-suited for dynamic systems since the size of message overhead is constant,

even when the number of participating mobile hosts varies. Our handoff algorithm
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(the procedure executed when an MH changes cell) allows the MSS to deliver mes-
sages that it receives for a new MH sooner than Alagar’s handoff algorithm. In their
algorithm, the MSS is not allowed to deliver these messages until it receives from
the previous MSS a control signal indicating that the handoff algorithm has been

complete.

3.3 Notation

Each process (MH or MSS) in a computation generates an execution trace, which
is a finite sequence of local states and events. A state corresponds to the values of
all the variables and the program counter in the process. An event on a process
can be classified into three types: send event (corresponds to send of a message by
a process) , receive event (corresponds to arrival of a message at a process), and
local event (which is not a send or a receive event). A delivery event is a local event
that represents the delivery of a received message to the application or applications
running on that process.

We use H = {hi1,hs,...,hyn, } to denote a set of mobile hosts, and S =
{51,852,...,85n,} to denote a set of mobile support stations. In practice, np > ns.
Also, let H; denote the set of MHs in the cell of MSS S;. A mobile computation
can be illustrated using a graphical representation referred to as concrete diagram.
Figure 3.2 illustrates such a diagram where the horizontal lines represent MH and
MSS processes, with time progressing from left to right. hq is in the cell of Si. ho
and hg are in the cell of S3. A solid arrow represents a message exchanged between
an MH and an MSS process. A dashed arrow represents a message sent from an
MSS process to another MSS process. Filled circles at the base and the head of
an arrow represent send and receive events of that message. A concrete diagram in
which only MH processes are shown is referred to as an abstract diagram.

We denote the sequence of MSSs that an MH h; visits by {Sllg}OSkSH(hl)a
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Figure 3.2: A concrete diagram of a mobile computation.

where n(h;) is the number of times h; switches cell in a computation. Using this
notation, Sh and SL(,”) represent the initial and the final MSSs for h;. Note that
an MH can visit an MSS more than once. For a message m, let m.src and m.dst
denote the source and destination processes. Moreover, m.snd, m.rcv and m.dlv
denote the send event on the source process and the receive and the deliver events
on the destination process respectively. We assume that a message sent to itself is
immediately received by the sending process.

An application message is a message sent by an MH intended for another
MH. Since MHs do not communicate with each other directly, an MH, say hg, first
sends an application message m to its MSS, say S;, which then forwards m to the
MSS, §j, of the destination host, hg. Using our notation, m.src and m.dst denote
the source and the destination hosts respectively of m. In other words, m.src = hy
and m.dst = hg. Furthermore, m.snd denotes the send event of m on h,. Also,
m.rcv and m.dlv denote the receive and delivery events respectively of m on hy.

Let 1 denote the message which S; sends to S; (containing the application
message m along with additional information for ensuring causality), requesting it

to deliver m to hg. Again using our notation, rm.src denotes the MSS of hy; when m
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was sent (in this case S;). Similarly, m.dst denotes the MSS to which S; forwards
m (in this case S;). As before, m.snd denotes the send event of 7 on the support
station S;. Similarly, m.rcv and m.dlv (when m becomes deliverable at S;) denote

the receive and delivery events respectively of /m on ;. Figure 3.3 illustrates our

notation.

| mand hs = m.src

M .snd
\..\: - SI ) ms‘c

\.,\ rﬁ
v m B

: ooy rhdiv s = rh.dst
"'—>~»\_ Py h = mds"

o0 d
m.rcv mdlv

Figure 3.3: A figure illustrating the notation used in the paper.

An event e locally occurred before an event f in mobile host’s view, denoted
by e <5 f, iff e occurred before f in real-time on some mobile host. Similarly, an
event e locally occurred before an event f in mobile support station’s view, denoted
by e <, f, iff e occurred before f in real-time on some mobile support station. Let
—p, and — denote the Lamport’s happened before relation [Lam78] in abstract (on
events on MHs) and concrete diagram (on events on MSSs) respectively. A mobile
computation is causally ordered iff the following property is satisfied for any pair of

application messages, m; and m;, in the system,

(COo) mj.snd —p mj.snd = —(mj.dlv <, m;.div)

. def
For convenience, m; —j m; = m;.snd —p m;.snd.
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3.4 Sufficient Conditions

We next give the sufficient conditions for causally ordered message delivery in a

mobile computation with static hosts.

Theorem 13 : A mobile computation is causally ordered if

(C1) all wireless channels are FIFO,
(C3) messages in the wired network are causally ordered, and

(Cs) each MSS sends out messages in the order they are received.

Proof: The condition C5 can be formally expressed as,
(Cco" mi.snd =, mj.snd = —(mj.dlv < m;.dlv)

We first prove that m;.snd —, mj.snd = m;.snd —, mj.snd. Let ~,
and ~» relate the send and delivery events of the same message in abstract and
concrete views respectively. Observe that due to C; and C3, m;.snd <, mj.snd =
m;.snd <s mj.snd. Moreover, since MHs communicate through MSSs therefore
m;.snd ~p mi.dlv = Mm;.snd ~5 m;.dlv, and m;.dlv <, mj.snd = m;.dlv <
mj.snd. Using induction on the definition of —j, it can be easily proved that
m;.snd —p mj.snd = m;.snd —; mj.snd (any causal chain from m;.snd to mj.snd
is a combination of the three cases). Informally, if there is a causal path from m;
to m; in the abstract diagram then there is a causal path from 1, to m; in the
concrete diagram.

Again, due to Cy, we have mj.dlv <p m;.dlv = mj.dlv <5 m;.dlv. Us-
ing contrapositive, we get —(m;.dlv <, m;.dlv) = —(m;.dlv <, m;.dlv). Thus,
mj.snd —p, mj.snd = mi.snd =, mj.snd = —(m;.dlv <, m;.dlv) = —(mj.dlv <

m;.dlv). In other words, assuming C; and C3, CO' = CO. n

Sufficient conditions given in Theorem 13 were implicitly used in [AV97].

For systems with static hosts, Theorem 13 gives a lightweight protocol for causal
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h2

h3

message ordering. In the extreme case when the entire computation is in a single
cell, causal ordering can be provided by simply using FIFO channels between MHs
and their MSSs.

We now show that Cy, Cs, and C5 are not necessary by a counter-example.
In Figure 3.4, s1 —p s3 and di < d3. Therefore the computation in Figure 3.4 is

causally ordered, although C; and C do not hold.

> ’

di d3
(a) Concrete diagram (b) Abstract diagram

3
\ d2 s3 \ \ d2 \
h3
d1 d3

Figure 3.4: An example to show that Cy, Cs, and C5 are not necessary for CO.

The algorithms presented by Alagar and Venkatesan (AV2 and AV'3) [AV97]
enforce CO’ in order to achieve CO. Their algorithms delay messages that violate
CO' even though they do not violate CO. This can be illustrated in a computation
in Figure 3.5. In this example, message m; does not causally precede ms in the
abstract view, but it does in the concrete view. Under CO’, mg3 is unnecessarily
delayed until m; is deliverable. Our goal is to reduce this unnecessary delay, while

maintaining the message overhead in the wired network close to O(n?2).
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Figure 3.5: Unnecessary delay in AV2.

3.5 Algorithm

AV2 uses a single matrix for all MHs in a cell. This can create false causal depen-
dencies between messages. In order to reduce these false causal dependencies and
hence the unnecessary delay, we propose to use a separate matrix for each MH in
a cell. The next two subsections describe the static and the handoff modules of
our protocol. The static module is executed when an MH is in a particular cell.
The handoff module is executed when an MH moves from one cell to another. We
prove the correctness of both the modules in Section 3.5.3. Section 3.5.4 presents

the condition characterizing the static module.

3.5.1 Static Module

For convenience, we first describe the static module assuming static hosts.
In the next subsection, we describe the handoff module and the modifications that
need to be made to the static module to incorporate mobile hosts.

Our static module is based on the algorithm proposed by Raynal et al
[RSTY1]. For simple exposition of the protocol, we assume that the channels among

the MSSs are FIFO. This assumption can be easily relaxed by implementing FIFO
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var
rcv@ : queue of messages, initially ¢;
cell : array [1..ny] of 2-tuples {(mbl,mss), initially [{0, S¥)]1<k<n,;
lastsent, lastrcvd : array[l..ng] of integers, initially O; T
M : set of matrices (ns x ns), ({Mg | h, € H;}), each initially 0;
ack@ : set of FIFO queues of messages, % ackQy | hi € H;}), each initially ¢;
sndQ : set of FIFO queues of messages, ({sndQy, | b, € H;}), each initially ¢;
canSend : set of boolean variables, ({canSendy, | ht, € H;}), each initially true;
canDeliver : set of boolean variables, ({canDelwery, | hy, € H;}), each initially true;

(A1) On receiving a data message m from hg;
send an acknowledgement to hg;
put m in sndQs;
call process_sndQ(hs);

(A2) On calling process_snd@(hs);
if (canSends) then
while (snd@ # ¢) do
remove m from the head of snd(@,;
let m be destined for hy and S; be cell[d].mss;
lastsent[j] + +;
send (m, My, lastsent[j]) to Sj;
Msgi,j] := lastsent[j];
endwhile;
endif;

(A3) On receiving (m, M, seqno) from Sj;
lastrcvd[j] := seqno;
put (m, M, segno) in rcv@;
call process_revQ();

(A4) On calling process_rcv@;
repeat
forall (m, M, seqno) € rcv@ do
let m be destined for hy;
if (canDeliverq A (Vk :: lastrcvd[k] > M[k,iJ) A
(A (m', M’ seqno’y € rcv@ :: (S sent m' for hg)A
(seqno’ < M[k,4])) ) then
remove {m, M, seqno) from rcv@;
call deliver({m, M, seqno));
endif;
endforall;
until (rev@ = ¢) V (no more messages can be delivered);

(A5) On calling deliver({m, M, seqno));
let m be destined for hy;
put (m, M, seqno) in ackQq;
send m to hg;

(A6) On receiving an acknowledgement from hg;
remove (m, M, seqno) from the head of ackQq and let S; sent m;
Mglj,i] := max{M,[j,i], seqno};
d = max Md, M '

Figure 3.6: The static module for a mobile support station S;
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among MSSs using sequence numbers. We also assume that every MSS knows
about the location of the MHs. For each MH h;, we maintain an ns; X ng matrix
M. M;[i,j] denotes the total number of messages h; knows to have been sent by
S; to §j. Assume that h; is in the cell of S;. In order to reduce the communication
and computation overhead of h;, the matrix M, is stored at S;. In addition, each
S; also maintains two arrays lastsent; and lastrcvd; of size ng. The j** entry of
lastsent;, lastsent;[j], denotes the number of messages sent by S; to S;. Similarly,
the 5™ entry of lastrcvd;, lastrcvd;[j], denotes the number of messages sent by S
that have been received at S;.

Initially, all the entries in the matrices M;, and arrays lastsent; and lastrcvd;
are set to 0. To send a message m to another MH hy, hg first sends the message
to its MSS S;. Assume that hg is in the cell of S;. §; increments lastsent;[j] by
one and then sends (m, M,, lastsent;[j]), denoted by m, to S;. After that, S; sets
M3, j] to lastsent;[j].

S; on receiving (m, M, seqno) from S; meant for hy first checks whether m is
deliverable. m is deliverable if S; has received all the messages on which m causally
depends (lastrcvd;[k] > M[k, j] for all k), and there is no message destined for hq
on which m causally depends which is yet to be delivered to hg (A (m', M', seqno’)
destined for hg sent by Sk yet to be delivered such that segno’ < Mlk,j]). If
so, S; transmits m to hg. If m is not currently deliverable, it is kept in rcv@;
until it becomes deliverable. Like YHH, we do not update My immediately after
delivering m to hg, but we store m in ackQy. When hy receives m, it sends back
an acknowledge message, denoted by ack(m), to S;. On receiving ack(m), S; sets
My[i, 7] to the maximum of its original value and segqno (piggybacked on m). Then
it sets each element in My, to the maximum of its original value and the value of the
corresponding element in M (also piggybacked on m). This prevents any outgoing

message from hgy to become causally dependent on m that is sent before m is received
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by hg. Figure 3.6 gives a more detailed description of the static module.

3.5.2 Handoff Module

In order to ensure causally ordered message delivery, some steps have to taken during
handoff after an MH moves from one cell to another. We now describe the handoff
module. Each MH h; maintains a mobility number, mbl;, which is initially set to
0. It is incremented every time a mobile host moves. Intuitively, mbl; denotes the
number of times h; has changed cell. In addition, every MSS maintains an array of
2-tuples, denoted by cell, with an entry for each MH. The ** entry of cell;, cell;]l],
is a 2-tuple (mbl, mss), where the value of cell;[l].mss represents S;’s knowledge of
the location of h; and the value of cell;[].mbl indicates how “current” the knowledge
is.

Consider a scenario when an MH h; moves from the cell of S; to the cell of
Sj. After switching cell, h; increments mbl; and sends register(mbl;, S;) message to
S; to inform S of its presence. Also, h; retransmits the messages to S; for which
it did not receive the acknowledge message from its previous MSS S;. On receiving
register message from hy, S; updates cell;[l] (its local knowledge about the loca-
tion of h;) and sends handoff_begin(h;, mbl;) message to S;. The MSS S;, on receiv-
ing handoff_begin(h;, mbl;) message, updates cell;[l] and sends enable(h;, M;, ackQy)
message to S;. It then broadcasts notify(h;, mbl;, S;) message to all MSSs (except
S; and Sj), and waits for last(h;) message from all the MSSs to which it sent notify
message. Meanwhile, if any message received by S; for h; becomes deliverable, S;
marks it as “old” and forwards it to S;.

On receiving enable(h;, M;, ack@;) message from S;, S; first delivers all the
messages in ack@;. It also updates M; assuming all the messages in ackQ; have
been received at h;. Then S starts sending the application messages on behalf of

hi. S; also delivers all the messages for h; that are marked “old” in the order in
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which the messages arrived. However, messages destined for h; that are not marked
“old” are queued in rcv@);.

An MSS S, on receiving notify(h;, mbl;, S;) message, updates celli[l] and
then sends last(h;) message to S;. Observe that since the channels among all the
MSSs are assumed to be FIFO, after S; receives last(h;) message from Sy there are
no messages in transition destined for h; that are sent by Sy to S;. On receiving
last(h;) message from all the MSSs (to which notify message was sent), S; sends
handoff-over(h;) message to S;. The handoff terminates at S; after S; receives
handoff-over(h;) message. S; can now start delivering messages to h;. Meanwhile,
if S; receives handoff_-begin(h;) message from some other MSS before the current
handoff terminates, S; responds to the message only after the handoff terminates.

Since we do not assume that the messages in the wired network are causally
ordered, it is possible that a message m destined for h; is sent to S; (the old MSS of
h;), whereas its causally preceding message m/, also destined for hy, is sent to S; (the
new MSS of &;). In order to prevent this, an MSS piggybacks additional information
on all the message that contain application messages: messages destined for an MH
(may or may not be marked as “old”) and enable messages. On these messages, an
MSS piggybacks its local knowledge of the location of all the mobile hosts that have
changed their cells since it last communicated with the other MSS. On receiving this
information, the other MSS updates its knowledge of the location of the MHs (its
cell) based on their mobility number. In the worst case, this extra overhead could
be as large as O(ny). In practice, we expect it to be much smaller. Let 4,4 denote
the mean inter-message generation time and %,,,, be the mean inter-switch time for
a MH. Then, the average extra overhead for uniform communication pattern (every
MH has equal probability of sending a message to every other MH) is =~ 0(%@)

Our handoff module is more efficient than the handoff module in AV2 and

AV 3 since we do not require the messages exchanged among the MSSs to be causally
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S;

var
noO f Last : set of integers, ({noO fLasty, | hy, € H;}), each initially 0;
handoff Over : set of boolean variables, ({handoff Overy, | hi, € H;}), each initially true;
handoff @ : set of priority queue of messages, ({handoff Q. | hi, € H}), each initially ¢;

®

(A7) On receiving (register, mbl, S;) from hy;
put (register,mbl, S;) in handoff Q; using mbl as the key;
call process_handoff Q(h;);

(A8) On receiving (handoff-begin, h;, mbl) from S;;
put (handoff-begin, mbl, S;) in handoff Q; using mbl as the key;
call process_handoff Q(h;);

(A9) On receiving {notify, by, mbl, S,) from S;;
if (cell[l].mbl < mbl) then cell[l] := (mbl, S,),
send (last, h;) to Sj;
call process_handoff Q(h;);

(A10) On receiving {enable, hy, M', ackQ', up_cell) from Sy;
forall {(hy,mbl, Sp,) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, Sp);
endforall;
Ml = M';
while (ackQ' # ¢) do
remove (m, M, seqno) from the head of ack@' and let S; sent m;
put (m, M, segno) in ackQ;
send m to hy;
My[j, k] := max{M[j, k], seqno};
| ‘= max Ml7M y
endwhile;
canSend; := true;
call process_sndQ(h;);

(A11) On receiving {last, h;);

noO f Last; + +;

if (noO f Last; = ns — 2) then
canDeliver; := false;
send (handoff-over, ly) to cell[l].mss;
remove h; from H;;
call process_handoff Q(h;);

endif;

(A12) On receiving {handoff_over, h;);
canDeliver; := true;
handoff Over; := true;
process_handoff Q(h;);
process_rcvQ();

Figure 3.7: The handoff module for a mobile support station S;
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S;

(A13) On calling process_handoff Q(hy);
let (type, mbl, S;) be at the head of handoff Q;;
if ((type = register) A (mbl = cell[l].mbl + 1) A (hy & H;)) then
remove the message from the head of handoff Q;;
add h; to H;; S
cellll] := (mbl, S;);
can[SJendl<:= falsZe;
canDeliver; := false;
handoff Over; := false;
send (handoff-begin, by, mbl) to Sj;
else if ((type = handoﬁ-begin&/\ (mbl = cell[l].mbl + 1) A handoff Over;) then
remove the message from the head of handoff Q;;
cell[l] := (mbl, S;),
let up_cell be {{hg, cell[k].mbl, cell[k].mss) | hy, has changed cell since up_cel
was last sent to S;};
send (enable, hy, My, ackQq, up_cell) to Sj;
broadcast (notify, hy, mbl, S;) to S\ {S:,S; };

endif;

(A14) On receiving {(m, M, seqno, old, up_cell);
forall (hg,mbl, S,) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, S,);
endforall;
call deliver({m, M, seqno});

Figure 3.8: The handoff module for a mobile support station S; (contd.)

ordered. Figure 3.7 and Figure 3.8 give a more detailed description of the handoff
module. Figure 3.9 gives the modifications in the static module to incorporate
mobile hosts.

Although we do not mention here but the mobility number has several usages.
For instance, the messages exchanged between a MH and its MSS can also be tagged
with the mobility number of the MH. It can then be used by an MSS to ignore
messages received from an MH after it has sent enable message for that MH to the
new MSS. It can also be used to correctly serialize the handoff procedures for an

MH.

3.5.3 Proof of Correctness

We assume that a message sent to itself is immediately received by the sending

process. Also, enable, notify, last and handoff over messages are delivered as soon
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S; i

(A2") On calling process_sndQ(hs);
if (canSends) then
while (snd@ # ¢) do
remove m from the head of snd@,;
let m be destined for hy and S; be cell[d]mss;
lastsent[j] + +;
let up_cell be {(hg, cell[k].mbl, cell[k].mss) | by has changed cell since
up-cell was last sent to S;};
send (m, Mj, lastsent[j], up_cell) to S;;
Msgi,j] := lastsent[j]:
endwhile;
endif;

(A3’) On receiving (m, M, seqno, up_cell) from S,
forall (hy,mbl,S,) € up_cell do
if (cell[k].mbl < mbl) then cell[k] := (mbl, S,);
endforall;
lastrevd[j] := segno;
put (m, M, segno) in rcv@;
call process_revQ();

(A5’) On calling deliver({m, M, seqno));
let m be destined for hg;
if (cell[d].mss = S;) then
put (m, M, seqno) in ackQq;
send m to hg;

se
let up_cell be {{hg, cell[k].mbl, cell[k].mss) | hy, has changed cell since up_cel
was last sent to cell[d].mss};
d_s]?nd (m, M, seqno, old,up_cell) to cell[d].mss;
endif;

el

(A6’) On receiving an acknowledgement from hg;
remove (m, M, seqno) from the head of ack@, and let S; sent m to S;
Malj, k] := max{M[j, k], seqno};
q := max{My, M };

Figure 3.9: The modification in static module in presence of host movement in
mobile support station S;
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as they are received. The register and handoff-begin messages are delivered once
the corresponding “if” condition is satisfied in (A13). Since the MSS does all the
processing therefore for an application message m, m.rcv = m.dlv.

Note that since MHs are mobile and can change their cell, an application
message m can be delivered to an MH by an MSS other than 7i.dst (either when m
is received as on “old” message or m is in the acknowledgement queue of an enable
message). In fact, m can be received multiple times by its destination MH. We
consider m to be received (delivered) when the destination MH receives (delivers) it
for the first time. Moreover, an application message can be sent multiple times (due
to retransmission by the mobile host on failure to receive acknowledgement). We
treat the retransmitted application message as a different application message and
ignore the application message sent by an MH that is lost when the MH switched
its cell. Here we assume that an MH can detect duplicate application messages
and discard them. In our protocol, apart from the application message m, m also
contains a matrix, denoted by m .M, and a sequence number, denoted by 1m.segno.
For convenience, m.M = m.M and m.seqno = m.seqno. A matrix M; is less than
or equal to Mj, denote by M; < M;, iff (V &, :: M;[k,l] < Mj[k,1]).

Let e be an event on an MSS S;. We use mbl(e) and lastrcvd(e) to denote
the value of the vectors cell[l : ny].mbl and lastrcvd respectively at S; on occurrence
of e. The k" entry of the vector v is denoted by v.k. A vector v; is less than or equal
to a vector v;, denoted by v; < v;, iff (V& :: v;.k < v;.k). We use the same operator
=< to compare the vectors and the matrices. Intuitively, the value cell[k].mss at
S; represents S;’s knowledge of the location of hy and cell[k].mbl indicates how
“recent” the knowledge is. For a message m sent by an MSS, mbl(m) = mbl(m.snd).
For an application message m, mbl(m) = mbl(m). Since for all k, cell[k].mbl is
monotonically non-decreasing for every MSS therefore e <s f = mbl(e) =< mbl(f).

The following lemmas and theorems prove the correctness of both the static
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and the handoff modules. The organization of the proof is as follows. We first
prove Lemma 14-16 that are used in the proof of liveness and safety properties.
Theorem 21 establishes the liveness property of the protocol, namely a message
sent to a mobile host is eventually delivered. We prove the liveness property in
two stages. We first prove that a message m, carrying the application message
m, is eventually delivered at its destination MSS (when m becomes deliverable at
m.dst or deliver(m) is called at m.dst), m.dst (Lemma 20). Using it, we prove that
the application message m is eventually delivered at its destination MH, m.dst.
Theorem 25 establishes the safety property of the protocol, namely the modules
implement causal ordering among mobile hosts.

In the lemmas that follow, let m; and m; be arbitrary application messages.
Let mj.src = hy and m;.dst = hg, and mj.src = hy and mj.dst = hg. Let m;.src =
Sy and m;.dst = S,, and m;.src = Sy and mj.dst = Sy. For convenience, let
mbl(m;).d = r and mbl(m;).d = r'. Note that S¢ = rn,;.dst = S, and S =
mj.dst = S,. Although, both S, and 5S¢ represent identical MSS 77;.dst), we use
Sﬁ when we want to assert that S, is the r + 1** MSS of hyq and argue about the

properties that hold during that time period. This usage is not limited to m;.

3.5.3.1 Preliminary Lemmas

Let —»4 denote the Lamport’s happened before relation in the concrete view with
respect to the messages on which up_cell is piggybacked. Observe that —;C—,. Let
enable(SIl,) denote the enable message sent by SZI, to SIZ, 41 on processing handoff_begin
message from S;f) 41 in the handoff module for h; when h; moves from the cell of Szl)
to the cell of SIlJ L1- Also, let enable(SIl,).M denote the matrix, M;, piggybacked on
: l : l
the enable message. Since S, does not process the handoff_begin message from S, |,
until it receives the handoff over message from ,S'Il,f1 and the protocol piggybacks

up_cell on an enable message therefore,
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(P 3.5.1) p<q = enable(SIl,).snd — enable(S(lI).snd
Also, since M is monotonically non-decreasing, we have

(P 3.5.2) p<q = enable(Szl,).M = enable(S,ll).M
Lemma 14 m;.snd =) mj.snd = m;.seqno < m;.Mu, v]

Proof: 'The proof is by induction on the number of messages, n, involved in the
smallest causal chain (with respect to —) from m;.snd to mj.snd. Let 1;.src = S;
and mj.src = S%, where a = mbl(m;).s and o’ = mbl(m;).s'. Note that S, = S&
and S, = S%.

Base Case (n = 0): In this case, m;.snd <j mj.snd. Observe that hy; = hy
and a’ > a. There are two cases to consider depending on whether h switched its

cell after sending m;.

Case 1 [a' = a]: Tt can be verified from the protocol that as soon as
m; is sent, M, is updated (A2’). Using monotonicity of My, we have m;.seqno <

mj.Mu,v].

Case 2 [¢' > a]: Since S¢ does not send forward any message on
behalf of h; to any MSS after sending the enable message, therefore m;.snd <
enable(S;).snd. Also, SJ, does not forward any message on behalf of hy until
it receives enable(S; _,), therefore enable(S; _,).dlv <, 7hj.snd. Using P 3.5.2,

monotonicity of M; and o’ — 1 > a, we get,
m;.seqno < enable(S;).M[u,v] < enable(Sy _;).Mu,v] < m;j.Mu,v]
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Thus, in any case, m;.seqno < m;.M|u,v].

Induction Step (n > 1): Let my denote the last message in the smallest
causal chain (with respect to —,) from m;.snd to mj.snd. Then, by induction
m;.seqno < my.M|u,v]. Let Sg' be the MSS which first delivered my, to hy. Observe
that o’ > b. Let ack(my) denote the acknowledgement message sent by hy on
receiving my. There are two cases to consider depending on whether hy switched

its cell after receiving (or delivering) my.

Case 1 [a' = b]: Since my.dlv <p m;.snd, therefore ack(my) is re-
ceived at S;f before m;. Moreover, when ack(my) is received, my is at the head of
ackQg (channel between an MH and its MSS is reliable and FIFO). On receiving
ack(my), SZ: updates My to reflect the “delivery” of my, at hg which involves taking
component-wise maximum of my. M and My. Using monotonicity of My, we have

my.-M[u,v] < m;.M[u,v].

Case 2 [d' > b]: Due to the movement of hy, it is possible that
although hgy received my and sent ack(my) to S,f’, S’,‘f’ did not receive ack(my)
before it sends the enable message. Therefore, on receiving the enable message from
Sg', Sg;_l updates My assuming that all the messages in ack@)y have been received
at hy before proceeding further. Using P 3.5.2 and monotonicity of My, we have

my.-Mu,v] < mj.Mu,v].

Thus, in any case, m;.seqno < m;.M[u,v]. Therefore by induction the lemma

holds. n

Lemma 15 m;.seqno < m;.M[u,v] = m;.snd —», m;.snd
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Proof: Assume m;.seqno < m;.M[u,v]. The proof is by construction. We first

prove the following property satisfied by m; and m;,

mj.seqno < m;.M[u,v] = (mj;.snd —¢ mj.snd) V

(Imy, :: (my.seqno < my.M[u,v]) A (y.snd — 4 mj;.snd))

Let 7nj.src = S where o' = mbl(m;).s'.

Observe that m;.seqno > 1 and
My is initially 0. Since My is monotonically non-decreasing, therefore there exists
an MSS where My was updated which made the inequality true. Let Sgl be the first
such MSS in the sequence {Sf’}, and ey be the earliest event on it such that the in-
equality holds just after e;. Note that a’ > b and My is updated only either due to a
message sent by hy or due to a message destined for hy . Let my denote the message
involved in e;. Observe that my # m;. In the former case (the inequality became
true due to a message sent by hy), mg.src = S, and my.dst = S,. Since lastsent
on Sg' is monotonically non-decreasing and m;.seqno < my.seqno, therefore either
m; = my, or m;.snd < mg.snd. Moreover, if a’ = b then rg.snd < 7;.snd, oth-
erwise 7ivy,.snd <5 enable(S,).snd and enable(S%,_,).dlv <, 7 .snd. Using P 3.5.1,
we have m;.snd —, m;j.snd.

In the latter case, as before, if a’ = b then e, <, m;.s7¢c, otherwise e —»s
mj.snd (Mg is not updated at S,‘f' after it sends the enable message). Moreover, it
can be verified from the protocol that 7, was in ackQ when My was updated. Let
my.dst = Sg’ where ¢ = mbl(my).s’. Observe that miy first enters ackQy either at
8¢ on occurrence of 7ivy,.dlv or at Sg;l on being received as an “old” message. After
that, it gets transferred to the next MSS piggybacked on the enable message. Since
the messages containing application message, the messages tagged as “old” and
the enable messages are piggybacked with upcell, therefore 1mg.snd —5 eg. Thus,
Mmy.snd —», mj.snd. There are again two cases to consider. The inequality became

true either due to seqno of my or as a result of taking component-wise maximum
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of mi.M and My . In the first case, my.src = Sy, myg.dst = S, and m;.seqgno <
myg.seqno. Therefore, either m; = my or m;.snd <; Mmg.snd. Combining with
earlier result, we get m;.snd —»4 ™j.snd. Finally, in the second case, m;.seqno <
my.Mu, v].

Thus, (1;.snd =5 mj.snd) V (Imy 2 (my.seqno < my. Mu,v]) A (1hy.snd —
mj.snd)) holds. We can apply the same property to m; and my, since m;.seqno <
mg.-M[u,v]. We claim that at most nj, applications of the property establishes
m;.snd —»4 mj.snd. The proof is by contradiction. Assume the contrary. Then,
there is a chain of messages, mg,,myg,,...my, m; such that 7y, .snd —, Mm;.snd
(—»s is transitive) and [ > my. Using the pigeon-hole principle, we can infer that
at least two messages in the chain are sent by the same MH. Let the messages be
mg, and my,. Also, let ey, and e, be the events used in the proof of the property.
Since both events involve update of the MH matrix, therefore either ey, —s e, or
€k, —s €k, holds which contradicts the choice of e, or ex,. Thus, the lemma holds.

Lemma 16 7;.snd —; mj.snd = mbl(m;) < mbl(m;)

Proof: The lemma can be proved by induction on the number of messages, n,
involved in smallest causal chain (with respect to —;) from 7i;.snd to 1m;.snd. The

proof is straightforward and is left to the reader. [

3.5.3.2 Liveness Property

Lemma 17 Every handoff procedure for a mobile host terminates.

Proof: Let handoff (I, p) denote the handoff procedure between S;, and Szl) 4 for Ay,

when h; moves from the cell of Szl, to the cell of S}) +1- The lemma can be proved
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easily by induction on p, 0 < p < n(hy). [

Let handoﬂ_oveT(S]lJ) denote the handoff-over message sent by SII, to SzlJ 41 in
the handoff module for A;, when h; moves from the cell of Sll, to the cell of SIZ, L1
Since S;), does not process the handoff_begin message from S}, 1 until it receives the

handoff over message from SIlj_l, therefore we have,

(P 3.5.3) p<q = handoﬁ_over(S’;’).snd —s handoﬁ_over(S’é).Snd

A

Let m;.ercvd denote the earliest event on S, such that m;.M[1 : ng,v]
lastrcvd(mi;.ercvd). Observe that (Ve : mj.ercvd <5 e @ mi.M[1 : ngv] <
lastrevd(e)) is true. Intuitively, mi;.ercvd represents the earliest event on S, when
all the messages sent to S, on which m; causally depends (potentially) have been

received at S,,.

Lemma 18 7i;.ercud occurs eventually. Moreover, if S¢ is not the final mobile

support station for hg, i.e. v < n(hg), then m;.ercvd <4 handoff-over(SY).snd.

Proof: Consider a message miy destined for S, such that mig.seqno < m;.M[w,v],
where S, = 1hg.src. We claim that mig is eventually received, i.e. 1hg.rcv oc-
curs eventually. Furthermore, if r < n(hg) then my.rev <, handoff-over(S¢).snd.
Assume S¢ is the final MSS for hy. Since the channels among MSSs are reliable,
therefore miy is received eventually. Otherwise, assume r < n(hg). We have three
cases to consider depending on the source MSS of ;. Let S,, denote the MSS to
whose cell hy moves after leaving the cell of S¢. Let handoff-begin(S2 ;) denote
the handoff-begin message sent by Sf 11 to 5% in the handoff procedure when hy
switches cell. Let notify(S?) represent the notify message broadcast by S? to the
MSSs in the handoff procedure and let last(S,, S¢) denote the corresponding last

message sent by S, to S¢.
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Case 1 [S,, = S,]: In this case, rhg.snd <, handoff-begin(SZ, ).dlv. Assume
the contrary. After processing the handoff_begin message, the value of cell[d].mlb at
Sy becomes r + 1. Thus, mbl(nig).d > r. Using Lemma 15 and Lemma 16, we can
infer that 7 < mbl(m;).d, a contradiction. Since the messages sent to itself are re-

ceived immediately and handoff begin(S% 1) -dlv < handoff over(S%).snd, therefore

g.rev <5 handoff-over(S%).snd.

Case 2 [S, = Sy]: In this case, 7iy.snd <5 handoff-begin(SZ, ,).snd. The
proof is identical to the proof in Case 1. Since the channels are reliable and FIFO,
therefore my.rcv <, handoﬁ_begin(5d+1).rcv. Also, handoﬁ_begin(SfH).rcv s

T

handoff over(S%).snd. Thus, rig.rcv <5 handoff over(S¢).snd.

Case 3 [Sy, € S\ {Sy, Sn}]: Finally, in this case, 1.snd < notify(S%).dlv.
Since the channels are reliable and FIFO, and notify(S%).dlv <, last(Sy, S%).snd,
therefore 7iug.1rcv < last(Sy, S).rev. Also, last(Sy,, SE).rev <, handoff-over(S¢).snd.

Thus, rhy.rev <5 handoff-over(S2).snd.

In any case, fg.rcv <5 handoff-over(S%).snd. Thus, for all mi, destined
for S, such that my.seqno < m;.M|[w,v], where r.src = Sy, we have my.rcv <
handoff-over(S%).snd. Since as soon as a message is received lastrcvd is updated,

therefore 11;.ercvd <, handoff-over(S%).snd. Therefore the lemma holds. ]

Lemma 19 7;.rcv occurs eventually. Moreover, if S¢ is not the final mobile sup-

port station for hq, i.e. 7 < n(hy), then M;.rcv <5 handoff-over(S%).snd.

Proof: The lemma can be proved by doing a case analysis identical to the one in

Lemma 18. The proof is left to the reader. |
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Lemma 20 ; is eventually delivered (at its destination mobile support station S, ).
Moreover, if S is not the final mobile support station for hq, i.e. v < n(hy), then

m;.dlv <4 handoff-over(S%).snd.

Proof: Let M 4 denote the set of messages which contain application messages (not
tagged as “old”) sent by a mobile support station to another mobile support station
to be delivered to the destination mobile hosts. Let M be the set of messages
on which up_cell is piggybacked. We first define a binary relation, C, on M4 as
follows,

riv; C 1y S (hg = ha') A (Sy = Sy) A (rii.seqno < 1ii;.MTu, v])

Observe that M4 C Mg and C C -, (Lemma 15). Also, (Mg, —»s) is a
well-founded set. Thus, we can infer that (M4, ) is also a well-founded set. Let
P.miy be “the lemma holds for mi,”. Assume (¥ miy : miy C m; : P.mig). There are

two cases to consider: r = n(hq) or r < n(hg).

Case 1 [r < n(hg)]: Using Lemma 19, we have
mi.rev <5 handoff over(S%).snd. If S¢ is the initial MSS of hg, i.e. (r = 0),
then canDelivery is true initially. Otherwise, using Lemma 17 we can infer that
handoff over(S%_,).dlv eventually occurs at S¢ after which canDeliver, is set to
true. Moreover, canDelivery remains true until Sf sends the handoff over mes-
sage to S¢, ;. Let canDeliver be the earliest event on S¢ after which canDelivery
is true. Then canDeliver < handoff over(S%).snd. From Lemma 18, we can
conclude that mi;.ercvd <, handoﬁ_over(Sﬂ).snd. Consider my, such that my; C
m;. Using definition of C, Lemma 15 and Lemma 16, we have myg.dst = hg
and mbl(my).d < mbl(m;).d = r. Therefore, using induction hypothesis and

P 3.5.3, we get m.dlv < handoff-over(S%).snd. Observe that after all mes-
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sages My such that m; C m; have been delivered, then the last expression in
the conjunct of the “if” condition in (A4) is never falsified. Let e be the latest
of all the events in {m;.rcv, canDeliver,m;.ercod}U {my.dlv | my C m;}. Then
e <5 handoff-over(S%).snd. After e, the “if” condition in (A4) evaluates to true
for m;, and deliver(m;) is called. Thus, m;.dlv <, handoff over(S¢).snd. Therefore

P.m; holds.

Case 2 [r = n(hg)]: In this case, we have to prove that 7h;.dlv eventually

occurs. The proof is quite similar to but simpler than the proof for Case 1.

Hence by induction, the lemma holds. |

Theorem 21 (liveness) m; is eventually delivered (at its destination mobile host,

ha).

Proof: We first show that m; eventually enters ack@Qg. If S¢ is the final mobile
support station for hy or m;.dlv < handojf_begin(S,‘f).dlv then m,; enters acks, as
soon as m;.dlv occurs. Otherwise, on occurrence of 1m;.dlv, 77i; is sent to Sg 1 where
it is inserted into ack@q on being received. Let S¢, r <t < n(hy) be the MSS such
that hy stays for sufficiently long time in the cell of S{ after m; enters ackQg. Let
Mk be the set of messages that entered ackQq at S¢ (including messages that
were already in ack@q when ackQ@g was transferred to Sf) before m;. Note that the
messages are sent to hy in the order in which they enter ackQq ((A5’) and (A10)).
Moreover, after receiving | M ,.x| acknowledgement messages from hg, m; will be at
the front in ack@Qg. Since the channel between an MH and its MSS is reliable and
FIFO, therefore S{ receives | Mgyqx|™ acknowledgement message from hg if hy does

not switch cell for a sufficiently long time. Thus, m; is delivered at hg. |
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3.5.3.3 Safety Property

Lemma 22 If m; enters ackQq before m; then m;.dlv <, m;.dlv.

Proof: Note that hy = hgy. Let Sf and Sg denote the MSSs that delivered m;
and m; respectively to hy for the first time (¢ and ¢’ exist due to Theorem 21). If
t < t' then it can be easily proved that m;.dlv <, m;.dlv. Therefore, assume ¢ > ¢'.
Observe that in the protocol as soon as a message is inserted in ackQy at Sﬁ, it is
also dispatched to hg ((A5’) and (A10)). Thus, at S%, m; is sent to hy before m;.
Since the channel between an MH and its MSS is FIFO, therefore hy receives m;

before m,;. Hence m;.dlv <, m;.dlv. [ ]

Lemma 23 mbl(m;).d < mbl(m;).d = —(mj.dlv <y m;.dlv)

Proof: If hq # hg then the consequent (and hence the lemma) is trivially true.
Therefore assume hy = hgy. We first prove that mi; enters ackQq before m;. If
mi.dlv <, handoff begin(S%,,).dlv then r7; enters ackQq at S?. Otherwise, on
occurrence of 1;.dlv, m; is sent to S¢ 1 where it is inserted into ackQq as soon as
it is received. Using Lemma 20 and the fact that the channels among MSSs are
FIFO, we can infer that m; is received at S¢, | before handoff-over(S2). Also, from
the protocol we know that mi,; cannot enter ack@q before handoff over(S% ;) is

received. Thus, using P 3.5.3, we can conclude that in any case mi; enters ackQq

before m;. Finally, using Lemma 22, we have m;.dlv <, m;.dlv. |

Lemma 24 (mbl(m;).d = mbl(m;).d) A (m;.snd =, mj.snd) = —(mj.dlv <
m;.dlv)

Proof: If hg # hg then the consequent (and hence the lemma) is trivially true.
Therefore assume hy = hgy. We first prove that m;.dlv <5 m;.dlv. Note that

Sy = Sy. From Lemma 14, we can conclude that m;.seqno < m;.M[u,v]. Observe

66



that m;.ercvd cannot occur before m;.rcv. Moreover, after mj.ercvd occurs, m;
cannot be delivered until m; is delivered. Thus, m;.dlv <, m;.dlv. If S,‘,i is the final
MSS for h, then as soon as m.dlv occurs it is inserted into ack@y. Therefore, 17i; is

inserted into ack(@)y before m;. Otherwise, there are three cases to consider:

Case 1 [fh;.dlv <, mj.dlv <, handoff-begin(S%, ;).dlv]: On occurrence of

m;.dlv (mj.dlv), m; (m;) is inserted into ack@q. Hence m; enters ackQq before mi;.

Case 2 [fh;.dlv <, handoff-begin(S%,,).dlv <, mj.dlv]: On occurrence of
m;.dlv, m; is inserted into ack@q. On processing handoff begin(S¢ 1), ackQq is
piggybacked on the enable(S%) message and sent to SZ, ;. Then, when h;.dlv occurs,
mi; is sent to S¢,; where it enters ackQq. Since the channels among MSSs are reliable

and FIFO, therefore m; enters ackQq before m;.

Case 3 [handoff-begin(S%,,).dlv < mh;.dlv < mj.dlv]: On occurrence of
mi.dlv (rhj.dlv), m; (m; is sent to S¢, | tagged as on “old” message. On receiving

m; (mj), S%,, inserts m; (m;) into ackQq. Since the channels among MSSs are

reliable and FIFO, therefore m; enters ackQy before m;.

In any case, m; enters ackQq before m;. Finally, using Lemma 22, we have

m;.dlv <y mj.dlv. ]

Theorem 25 The protocol implements causal ordering among mobile hosts. In

other words,
mi.snd —p, mj.snd = —(mj.dlv <, m;.div)

Proof: The proof is a straightforward manipulation of the lemmas.
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m;.snd —p mj.snd

= m;.seqno < mj.Mu,v] : Lemma, 14

= my.snd —»; mj;.snd ; Lemma 15

= mbl(m;) = mbl(m;) ; Lemma 16

= mbl(m;).d < mbl(m;).d ; definition of <,
; instantiation

(mbl(m;).d < mbl(m;).d) V (mbl(m;).d = mbl(m;).d) ; definition of <
= (mbl(m;).d < mbl(m;).d) V ((mbl(m;).d = mbl(m;).d) A (m;.snd =y mj.snd))

; use antecedent

= —(mj.dlv <p m;.div) V =(m;.dlv <, m;.dlv) ; Lemma, 23,

; Lemma 24
= =(mj.dlv < m;.dlv) ; idempotence of V
Thus, the theorem holds. |

3.5.4 Characterization of Static Module

Here we state and prove the predicate that characterizes our static module. The

static module in Section 3.5.1 implements,

(CO") (Imy : hy.dst = 1yg.dst : (my.snd s mg.snd) A (mg.snd —p, mj.snd)) =

=(mj.dlv <p my.div) A —(m;.dlv <, Thi.rev),

where e < f iff (e = f) V (e <; f), under the assumption that the channels
among MSSs are FIFO. Moreover, if the channels among MSSs are not FIFO then

it implements,

CO" A (;.snd <5 mj.snd = —(m;.dlv <5 m;.rev))
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. de N n N ~
For convenience, let FO" tef mi.snd <s mj.snd = —(m;.dlv <5 m;.rev).

For the following proofs, we define m;.P for an application message m; as follows,
m;.Plu,v] = max{{my, | (mg.src = Sy) A (my.dst = S,) A (mg.snd —p mj.snd)}},

where max{S} returns the message with the largest seqno in the set S. Also,

max{¢} = L, where L.seqgno =0 and L —, m,.

Lemma 26 For an application message m;, m;. M[u,v] = m;.Plu,v].seqno for all

u and v.

Proof: Using Lemma 14 and definition of m;.P[u,v], we can infer that
m;.Plu,v].seqno < m;.M[u,v] (the inequality trivially holds if m;.Plu,v] = L1).
Assume m;.M[u,v] > m;.Plu,v].seqno. We will derive a contradiction.
Let m;.M[u,v] = n,n > 0. We first prove the following property for the application

message m;,

mi. Mu,v] =n = (Fmy = (((Mg.src = Sy) A (g.dst = S,) A (mg.seqno = n))V
(mg.M[u,v] = n)) A (mg.snd —p, m;.snd))

Let m;.stc = hs. Observe that n > 0 and M, is initially 0. Since My is
monotonically non-decreasing, therefore there exists an event on ;.s7¢c when M,
was updated which made the equality, M;[u,v] = n, true. Let ey be the earliest
event on it such that the equality holds just after e;. Note that M, is updated only
either due to a message sent by hs or due to a message received by hs. Let my
denote the application message involved in e;. Observe that ey < 7;.5nd. In the
former case (the inequality became true due to a message sent by h;), rhy.src = S,
and 1.dst = S,. Moreover, my.seqno = n and my.snd < m;.snd. In the latter
case, there are again two cases to consider. The equality became true either due to

seqno of my or as a result of taking component-wise maximum of my.M and M.
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In the first case, my.src = Sy, Mmy.dst = S, and my.seqno = n. In the second case
my.M[u,v] = n. Moreover, in both cases, m.snd —p, m;.snd.

Thus, the property holds. If the second term of the “V” expression holds
for my, then we can apply the same argument since in that case myg.M[u,v] =
n,n > 0. We claim that at most n;, applications of the property establishes (I my ::
(mg.sre = Sy) A (Mmyg.dst = S,) A (mg.seqgno = n) A (myg.snd —p, mj.snd)). The
proof is by contradiction. Assume the contrary. Then, there is a chain of messages,
My s My, - - - M, M such that my,.snd —p, m;.snd (—, is transitive) and [ > ny,.
Using the pigeon-hole principle, we can infer that at least two messages in the chain
are sent by the same mobile host. Let the messages be my, and my,. Also, let
ek, and eg, be the events used in the proof of the property. Then ey, —s e, or
€k, —s €, holds which contradicts the choice of eg, or ex,. Thus, there exists an
application message my, such that my.src = Sy, mg.dst = S,, mg.seqgno = n and
myg.snd —p, mi.snd. Also, m;.M[u,v] = n = my.seqno > m;.P[u,v].seqno which
contradicts the definition of m;.P[u,v]. Hence m;.M[u,v] = m;.P[u,v].seqno and

the lemma holds. n

Lemma 27 For any two application messages m; and m; such that m;.src = S,

and m;.dst = S, the static module satisfies,

(Imy, : hy.dst = my.dst : (1h.snd s mg.snd) A (my.snd —p mj.snd)) =

m;.seqno < m;.M[u,v]

Proof:
(=)

(A.1) my.snd = mj.snd = mj.seqno < m;.M[u,v]

We prove (A.1) by induction on the number of messages,n, in the causal

chain (with respect to —) from m;.snd to m;.snd.
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Base Case (n = 0): In this case, m;.snd <; mj.snd. On sending
m;, S, sets the (u,v)™ entry of the host matrix to m;.seqno. Since the wireless
channels are FIFO and the host matrix is monotonically non-decreasing, therefore

mj.seqno < m;.M[u,v].

Induction Step (n > 0): Let mj.src = hy. Let m; be the last mes-
sage in the causal chain. Using induction, we get m;.seqno < m;.M|[u,v]. Observe
that m; is delivered to hy before m;j.snd occurs (to create the causal dependency).
Since wireless channels are FIFO and reliable therefore acknowledge message for m;,
ack(my), is received before m;. On receiving ack(my), m;.src sets My to component-
wise maximum of m;.M and M. Hence, we have m;.M[u,v] < m;.M[u,v]. Thus,

m;.seqno < m;.Mlu,v].

Thus, by induction, m;.snd =, mj.snd = m;.seqno < m;.M[u,v].

(A.2) (Imy : y.dst = my.dst : (;.snd < Myg.snd) A (my.snd =, mj.snd)) =

m;.seqno < m;.Mu,v]

Since m;.dst = ry.dst and mm;.snd <, y.snd therefore m;.seqno < my.seqno.
Moreover, since my.snd —p, mj.snd, using (A.1) we have my.seqno < m;.M[u,v].

Combining both the results, we have m;.seqno < m;.M|u,v].

(<)

Assume m;.seqno < m;.M[u,v]. Using Lemma 26, we can infer that there
exists a message my such that m;.seqgno = m;.Mu,v] and my.snd —p mj.snd.
Moreover, m,.src = Sy, m;.dst = S,. Since m;.src = S, = my.src, m;.dst = S, =

my.dst and m;.seqno < mj.Mu,v] = m;.seqno, therefore 1m;.snd <, my.snd. n
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Theorem 28 The static module implements CO" under the assumption that the

channels among mobile support stations are FIFQ.

Proof: Let Xgpr and Xpoor be the set of executions accepted by the proposed
static module and the condition CO" respectively. To prove that the static module
implements CO", we need to show that Xs3; = Xgor i.e. the executions generated
by the static module satisfy the condition CO" and vice versa. For convenience, let
m; — m; def (Imy, : My.dst = my.dst : (m;.snd 5 y.snd) A(my.snd —p, mj.snd)).

Observe that m; — m; = m; —; m;. Therefore — is acyclic.

(B.1) Xcor € Xsy: Consider an execution X that satisfies CO". Let —
denote the Lamport’s “happened before” relation on the set of events (on MHs and
MSSs) in the execution X. Since — is a partial order, it can be extended to some
total order. Let E denote the sequence of events with respect to the total order and
E,, be the prefix of E containing the first n events. We prove that for all n, £, can
be generated by the proposed static module. The proof is by induction on n. For

the purpose of the proof, the events are either deliver or non-deliver events. Note

that the static module controls only the deliver events on mobile support stations.

Base Case (n = 1): Observe that the first event cannot be a deliver

event. Therefore E; can be generated by the static module.

Induction Step (n > 1): Using induction hypothesis, E,_; can be

th event, say ey, is a deliver event on a

generated by the static module. Assume n
mobile support station, say S,, and let m; be the application message involved in
the event. We need to prove that m; is deliverable according to our static module.
Let Mpg denote the set of messages destined for m;.dst that have been received

but not yet delivered at S, just before e, occurs (Mg # ¢ since m; € Mpg). Let
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chann(G,e,) denote the set of messages sent to S, in-transit (sent to S, but not
yet received at S,) in the consistent cut G that includes e,, and Mp be Mg U
chann(G,e,). We first show that m; is minimal in Mp with respect to — (—
is acyclic). Assume the contrary. Let my be the application message such that
myg — m;. Then my € Mpg or my € chann(G,e,). In either case, X does not
satisfy CO", a contradiction. Now we prove that m; is deliverable according to the
proposed static module. We prove the contrapositive, that is, if m; is not deliverable
then it is not minimal in Mp. From the static module, it can be verified that
either (1) lastrcvdy[u] < mi.M[u,v] for some Sy, or (2) there exists an application
message my in rcv@y, destined for m;.dst, such that my.seqno < m;.M|u,v], where
mg.src = Sy. In the first case, (1), using Lemma 26 we can infer that there exists a
message my, such that my.src = S, and rhy.dst = S,. Also, my.seqno < m;.Mlu,v]
and my € chann(G,e,). Using Lemma 27, we have my + m;. In the second case,
(2), my € Mp. Again using Lemma 27, we can conclude that my — m;. In either
case m; is not minimal in Mp, a contradiction. Thus, m; is deliverable according

to the static module.

Therefore, using induction, we can infer that the execution X can be gener-

ated by the static module.

@ Xsv C Xoor: Consider an execution X generated by the static
module. We have to prove that X satisfies CO"”. Let m; and m; be arbitrary
application messages such that m; — m;. If m; and m; are destined for different
MSSs then CO" is trivially satisfied. Hence assume ;.dst = mj.dst. Let m;.src =
Sy and m;.dst = mj.dst = S,. Using Lemma 27, we can conclude that m;.seqno <

mj.M[u,v]. From the protocol it can be verified that when 7;.dlv occurs then

lastrcvd,[u] > mj.Mu,v]. Therefore lastrcvd,[u] > m;.seqno i.e. m;.rcv has

73



already occurred. Thus, we have —(ri;.dlv <, m;.rcv). If m; and m; are destined
for different MHs then the first expression in the consequent of CO” trivially holds.
Therefore assume m;.dst = m;.dst = hgq. Again from the protocol it can be verified
that when ;.dlv occurs then m; is not in rcv@,. Since m; has been received (as
argued before) therefore m;.dlv has already occured at S, (when 7;.dlv occurs).
Moreover, the wireless channels are FIFO and reliable. Thus, we have —(m;.dlv <,

m.dlv). Hence X satisfies CO".

Thus, Xsar = Xcor and the theorem holds. ]

Although we do not prove here but if we relax the FIFO assumption then it
can be easily verified that the static module Section 3.5.1 implements CO” A FO".

3.6 Comparison and Discussion

The proposed static module implements CO"” A FO" which is weaker than CO’
implemented by AV2 (CO" = CO" A FO"). As a result, unnecessary delay in our
protocol is lower than that imposed in AV'2. In the worst case, message overhead in
our protocol is O(n? + ny,) but we expect it to be closer to O(n?) in practice. Our
storage overhead in each MSS is O(k x n2), where k is the number of MHs currently
in the cell of the MSS. Even though this overhead is higher than that of AV2, it
can be easily accommodated by MSSs due to their rich memory resources.

PSR [PRS96] is not suitable for systems where the number of mobile hosts
dynamically changes because the structure of information carried by each message in
their algorithm depends on the number of participating processes. In our protocol,
the structure of the information carried by each message in the wired network does
not vary with the number of MHs in the system. So, our protocol is more suitable for
dynamic systems. PSR, however, incurs no unnecessary delay in message delivery.

We first give a scenario (in Figure 3.10) where YHH does not satisfy liveness
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Figure 3.10: A mobile computation illustrating the liveness problem in YHH.

property. According to YHH, message m4 will be delayed because m4.M|[1,2] >
MH_DELIV5[1]. And since at the time when my4 arrives at Sp, there are no mes-
sages in transit, my4 is delayed indefinitely. The problem can be corrected by us-
ing sequence numbers. The static module in YHH (corrected) [YHH97] satisfies
mj.snd —s mj.snd = =(mj.dlv <p m;.dlv). Their message overhead in the wired
network is O(ng x my). This overhead is higher than ours but lower than AV1.
Their unnecessary delay is strictly lower than AV2. When comparing in terms of
unnecessary delay, their delay is lower than ours in the average case which is ex-
pected because of their higher message overhead. However, there are cases where
our protocol does not impose delivery delay but their protocol does. One can further
reduce the unnecessary delay in YHH using the technique introduced in this paper.
By assigning a matrix of size ny X ny to each host, the condition implemented by

their static module can be weakened to,

(Imy : mi.dst = my.dst : (m;.snd s hg.snd) A (mg.snd —p, mj.snd)) =
—(mj.dlv < m;.div)

Table 3.1 summarizes the comparison between our protocol and the previous

work.
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Well-suited for

Algorithm Message overhead i
dynamic systems

Unnecessary Delay

AV2 O(n?) Yes high
PSR O(n3) No none
YHH O(ns X np) No low
| Our Algorithm | O(n2+mn;) | Yes moderate ‘

ny: the number of mobile hosts
ng: the number of mobile support stations

Table 3.1: Comparison between our algorithm and the previous work.

3.7 Performance Evaluation
3.7.1 Simulation Environment

Simulation experiments are conducted for different combinations of message size
and communication patterns. We use 512 bytes for the size of small messages, and
8K — 10K bytes for large messages. Two communication patterns are used in the
simulation: uniform, and nonuniform. Nonuniform pattern is induced by having
odd numbered hosts generate messages at three times the rate of even numbered
hosts. For each application message m, we define MH-to-MH Delay as the elapsed
time between m.snd and m.dlv. Similarly, MSS-to-MSS Delay is the elapsed time
between mm.snd and m.dlv.

The time between generation of successive messages at a mobile host is ex-
ponentially distributed with mean 100 ms. The destination host of each message
is a uniformly distributed random variable. The throughput of a wired channel is
assumed to be 100 Mbps, and the propagation delay in a wired channel is 7 ms.
These two parameters are also used in [AV97]. For a wireless channel, the through-
put and propagation delay are respectively assumed to be 20 Mbps and 0.5 ms. This

throughput of wireless links is supported in European High Performance Radio Lo-
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cal Area Network (HiperLAN). In each run, the ratio of the number of mobile hosts

and support stations is varied from 1 to 150.

3.7.2 Results

We plot the MH-to-MH and MSS-to-MSS delay from our static module against those
from AV2.

Figure 3.11(a) and Figure 3.11(b) present MH-to-MH and MSS-to-MSS de-
lays respectively under uniform communication pattern and small message size. The
result shows that our static module can reduce the MH-to-MH delay by as much as
18.4%, and 20.7% for MSS-to-MSS delay.

Figure 3.12(a) and Figure 3.12(b) present MH-to-MH and MSS-to-MSS de-
lays respectively under uniform communication pattern and large message size. The
result shows that our static module can reduce the MH-to-MH delay by as much as
11.02%, and 18.7% for MSS-to-MSS delay.

Figure 3.13(a) and Figure 3.13(b) present MH-to-MH and MSS-to-MSS de-
lays respectively under nonuniform communication pattern and small message size.
The result shows that our static module can reduce the MH-to-MH delay by as
much as 18.9%, and 20.9% for MSS-to-MSS delay.

Figure 3.14(a) and Figure 3.14(b) present MH-to-MH and MSS-to-MSS de-
lays respectively under nonuniform communication pattern and large message size.
The result shows that our static module can reduce the MH-to-MH delay by as
much as 12.11%, and 19% for MSS-to-MSS delay.
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Figure 3.11: Delay under uniform communication pattern and small message size.
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Chapter 4

Implementation

In this chapter, we describe the implementation of our channel allocation and causal

message delivery layers.

4.1 Overview

We show one can use our proposed framework to build a simple shared object appli-
cation. Our application supports two consistency criteria: Causal Consistency(CC)
and Causal Serializability(C'S) [RTKA96].

Our framework and the application are implemented in C+4 on Sun So-
laris 2.6. Messages exchanged between processes in the framework and the applica-
tion are implemented using BSD Stream Sockets. We use POSIX PThreads when
multi-threaded computation is needed. Graphic User Interface on mobile hosts is
implemented using OSF/Motif Widget. Figure 4.1(a) shows the structure of our
framework on each mobile host and support station.

Each mobile support station is implemented as a server process waiting for
messages sent from other support stations or mobile hosts. Once a message is
received, it is processed and then passed onto the appropriate destination. Each
mobile host is a multi-threaded process. The first thread sleeps until the arrival of

the message. The second thread waits for the input from the user. Our message
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hierarchy are presented in Figure 4.1(b).

The rest of the chapter is organized as follows. The shared object model
we consider is described in Section 4.2. Section 4.3 and Section 4.4 outline Causal
Consistency and Causal Serializability, respectively. We discuss how we implement

our application in Section 4.5.

4.2 Shared Object Model

We consider the system where mobile host processes, M H,, M H,,..., MH, , inter-
acting through a finite set O of shared objects. Each object o € O can be accessed
by a read or a write operation. The write operation assigning the new value v into
object o is denoted w(o)v. The read operation on the object o returning value v is
denoted r(o)v. Each M H; executes transactions. A transaction ¢ is a collection of
read and write operations. Similar to [RTKA96], we assume that within each trans-
action the process first reads shared objects, then executes internal computation,
and finally issues write operations on shared objects. Let R(t) and W (¢) denote the
set of objects read and written, respectively, by transaction £.

Let h; denote the set of transaction executions issued by M H; and —; be
the total order relation on transactions issued by M H;. Thus, a history of a shared

object system is a partial order H = (H,—p) such that:
ot gty if

1. AP, : t1 —; to
2. Jw(z)v,r(o)v such that w(o)v € t; and r(o)v € ty

3. Jtg:t1 <y t3 and t3 <g to

Two transactions #; and 5 are concurrent in H if =(t1 —p t2) and —(t2 =g

t).
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Figure 4.1: (a) Implementation Diagram, (b) Message Hierarchy
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In shared object systems, a consistency criterion defines which is the value
that must be returned to a process when it reads an object. The protocol that
implements a consistency criterion describes how processes have to be synchronized
in order to ensure that they satisfy the consistency criterion. Serializability is one
of the most used consistency criterion in transactional systems. It requires that all
processes have the same sequential view of the computation. This view is defined as
a total order on operations issued by processes and an execution is correct if any read
of an object gets the last value previously written into the object. The word ”last”
refers to the total order of operations defined by the common view. Consequently,
strong synchronization among processes must be used to implement serializability.
This may not be desirable in the system where communication between processes is
not possible all the time (mobile hosts in disconnection mode).

Many applications, that support asynchronous interactions among widely
distributed users, do not require strong consistency from the system. Causal consis-
tency (CC) is the consistency criterion that meets the consistency requirement of
such applications without the strong synchronization among processes. Specifically,
two concurrent write operations can be perceived in different orders by different
processes.

Another consistency criterion, causal serializability (CS), lies between seri-
alizability and CC'. It is strong enough to satisfy a wide range of applications such
as inventory control, distributed dictionaries, or cooperative work [RTKA96]. C'S
is CC plus the following constraint: all transactions writing into the same object
must be perceived by all processes in the same sequential order.

In the following, we will provide the definition and the implementation of

CC and CS.
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Figure 4.2: Causally Consistent History

4.3 Causal Consistency(CC)

CC allows each process to have its own sequential view of the execution H as long
as the individual views preserve the causality relation — . C'C improves autonomy
because the process is not required to agree with the views of others.

History H, shown in Figure 4.2 is only possible in the causally consistent
system. H; consists of four authors, A;, Ay, A3, A4, sharing documents D7 and Ds.
These two documents are written concurrently by A; and As. For example, D
could be the problem description and Dy could be the motivation for the problem.
As shown in the execution, As is able to read the update u; of D; made by A; but
the update us by Ao to Do is not seen by Az even after it reads D;. Author A4 sees
the updates in the reverse order; it can read changes made to Dy by As but not the
updates made by A;. These executions are acceptable because the two documents
are written concurrently and hence neither A3 nor A4 makes any assumptions about
which document will be written first. CC exploits this and allows A3 and A4 to see
these updates in different orders. On the other hand, serializability will not allow
this execution because they require that the execution of all operations should be
serializable. Disallowing such executions, which are acceptable in the application
domain, requires unnecessary and expensive synchronization that is avoided by CC.

We use the protocol presented in [RTKA96] to implement CC in our ap-

plication. When a process executes a transaction, it atomically does the following
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sequence of actions. For each transaction t,
1. reads the value of all objects in R(t).
2. performs the computation not involving shared objects.
3. updates all the objects in W ().

4. causally broadcast update message containing the new value of objects in

W (t).

4.4 Causal Serializability (CS)

With CC, when two update transactions that write into the same object are concur-
rent, they can be ordered differently by two processes in their views of the execution.
This could lead to different final states of the system according to different processes.
CS prevents such a possibility by adding the following constraint to CC. All trans-
actions that update the same object must be perceived in the same order by all
processes. This constraint ensures that, for each object, there is a unique ”last”
value on which all processes agree.

The history shown in Figure 4.3 is causally serializable. This is because each
process has its own sequential view that preserves the causality relation —g. The
view for Py is Ty, Ty, Ty. Po’s view is Ty, Ty, Te, Ty. And Py’s view is Ty, Ty, Te, Tp.
Also, any pair of transaction writing into the same object are ordered in the same
way (T,Ty for  and T, Ty for y) in the view of each process.

We again use the implementation presented in [RTKA96] in our application.
Each shared object is associated with a token. In transaction %, the process must
obtain all the tokens for each object in W (t), and retain these tokens until it has
broadcast the update message. To synchronize the token acquisition process, we

assign a support station as the token coordinator. When a mobile host needs a token

87



Ta
] w(x)0 w(y)O \

P1

Tb

P2 o o

r(x)1r(y)0| Tc
Td

P3 o

rx)or(y)1l| Te

Figure 4.3: Causally Serializable History

for an object, it sends a request via its local support station to the coordinator. The

token will be granted in the first-come first-serve basis.

4.5 The Application

Our application works in the fully replicated environment where all mobile hosts
have copies of all the objects, and the user can choose between causal consistency
or causal serializability. We allow only one operation for each transaction executed
by each mobile host process.

The framework provides the following API for the application.

e read0bj () : It implements read operation, and returns the value of the two

integers.

e writeObj() : It implements write operation on the specified object under

causal consistency criterion.

e seqWriteObj() : It implements write operation on the specified object under

causal serializability criterion.
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The framework also provides the API for move operation. This is to simulate
mobility of mobile hosts. When invoked, the handoff protocol described earlier is

executed.
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Chapter 5

Causality Tracking

In this chapter, we present an efficient way to capture causality and concurrency
between events in mobile computing. The material presented here also appears in

[GS01, GS02].

5.1 Introduction

Determining order relationship between events in a distributed computation is a
fundamental problem with applications in distributed monitoring systems and fault-
tolerance. For example, it is used to provide visualizations of the computation for
debugging in systems such as POET [KBTB97], XPVM [KG95], and Object-Level
Trace [IBM]. It is also used in the area of global property evaluation [Fid89, GW94].
In the area of fault-tolerance, the order relationship is used to determine if a process
is orphan and needs to be rolled back [SY85, DG96].

A distributed computation has been widely modeled as a partially ordered
set (poset) (E,—) where E is the set of events in the computation and — is the
happened before relation [Lam78]. Fidge [Fid89] and Mattern [Mat89] independently
introduced vector clocks to timestamp events such that happened before relationship
between any two events can be determined by examining their timestamps. In

particular, in a distributed computation of N processes, vector timestamps provide
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the following property:
Ve, fe E:e— f < v(e) <v(f)

where v(x) is the N-dimensional vector timestamp of any event z. In other words,
the poset of events is isomorphic to the set of vectors in dimension N. However,
vector clock mechanism does not scale well because it imposes O(N) of local storage
on each process and O(N) message overhead in a system with N processes. Due to
the limited resource on mobile devices and wireless links, it is natural to ask if there
is an alternative mechanism with lower overhead.

Our first proposal is based on drawing connections between vector clocks used
in distributed computing and dimension theory of partially ordered sets [Tro92]. The
dimension of a partially ordered set (poset), first introduced by Dushnik and Miller
[DM41], is defined as the least number of total orders such that the partial order
is the intersection of these total orders. One of the advantages of this concept is
that it provides an encoding scheme (or a timestamping scheme) for a partial order.
If the dimension of a partial order on n elements is k, then each element can be
assigned a code of size klogn such that the ordering between any two elements can
be derived in k comparisons. Essentially, each element is represented by a k-tuple
representing its position in each of the k orders.

We introduce the concept of string dimension which leads to a more efficient
encoding of partial orders. In particular, the lower number of bits is typically re-
quired to encode when using string dimension. We show that the string dimension
of a poset is exactly equal to the dimension of the poset whenever the string di-
mension is at least 2. This establishes a relationship between dimension theory and
vector clock mechanisms which are more like strings. The efficient encoding scheme
resulting from the concept of string is given.

The first lower bound argument on the size of the vector clocks is due to

Charron-Bost [CBMT96]. Her result states that for all N, there exists a computa-
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tion on N processes such that any assignment of events to R* which captures the
happened before relation (and its complement) must have k > N. We use standard
results in dimension theory to derive results about vector clocks. We show that the
theorem by Charron-Bost is a corollary of a result by Dushnik-Miller. Although,
these results show that in the worst case the timestamps may require N-dimensional
vector clocks, they do not exclude timestamps which use less than N coordinates
for interesting subset of computations on N processes.

Our second proposal is based on this observation. We show that timestamp-
ing can be done more efficiently in distributed computations that uses synchronous
messages. It is important to note that vectors of size equal to the string dimen-
sion of the poset are necessary and sufficient for timestamping events. However,
timestamps that are determined using dimension theory cannot be used in an on-
line manner because the knowledge of the entire poset is necessary to determine a
realizer. Further, given a poset, the problem of determining the size of the smallest
realizer is NP-complete [Yan82]. We present both online and offline algorithms for
timestamping in synchronous computations.

This chapter is organized as follows. Related work is presented in Section 5.2.
Section 5.3 provides background on poset and dimension theory. In Section 5.4, we
introduce the concept of string dimension. The efficient encoding scheme resulting
from the concept of string is discussed in Section 5.5. In Section 5.6, we use standard
results in dimension theory to derive results about vector clocks. In Section 5.7, we
show that timestamping can be done more efficiently in distributed computations

that uses synchronous messages.

5.2 Related Work

In the area of dimension theory, Bouchet [Bou84] and Trotter [Tro92] introduced

a generalization of the original dimension by restricting the length of chains used
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in the realizer. This new dimension parameter is called k-dimension (denoted by
dimy (P)), when only the chains of length & are allowed in the realizer of P. Habib-
Huchard-Nourine [HHN95] went further by allowing chains of different length in
the realizer of the poset. They defined a new dimension parameter called encoding
dimension. The encoding dimension of a poset P, denoted by edim(P), is the least
integer ¢ such that ¢t = E:jf [logy ki] and P can be embedded into K; x Ko x ... K,
where K; denotes a chain of length ;.

Different implementations of Fidge [Fid89] and Mattern [Mat89]’s vector
clock have been proposed. Singhal and Kshemkalyani’s [SK92] approach reduces the
amount of data sent over the network. This is possible because of the increase in the
amount of data stored by each process. Fowler and Zwaenepoel [FZ90] proposed
an implementation where each process only keeps direct dependencies on others.
Thus, only one scalar is required to represent a vector clock. However, for capturing
transitive causal relations, it is necessary to recursively trace causal dependencies.
This technique is therefore more suitable for applications where precedence test can
be performed off-line.

Torres-Rojas and Ahamad [TRA96] introduced a class of scalable vector
clocks called Plausible Clocks. It is scalable because it can be implemented using
fixed-length vectors. Plausible Clocks do not characterize causality completely, that
is, they do not guarantee that certain pairs of concurrent events will not be ordered.
As a result, plausible clocks are useful for any application where imposing orderings
on some pairs of concurrent events have no effects on the correctness of the results.
Mutual consistency protocols for shared objects are examples of applications that
can use plausible clocks.

Ward [War00] presented an algorithm to create vector timestamps whose size
can be as small as the dimension of the partial order of execution. The algorithm

incrementally builds a realizer using Rabinovitch and Rival’s Theorem [RR79], and
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then creates timestamp vectors based on that realizer. Therefore, vector timestamps
that have already been assigned to events may have to be changed later. Further, all
timestamps may not be of the same length. This leads to a complicated precedence
test. Moreover, each coordinate is required to be a real number. QOur algorithm
does not suffer from any of these disadvantages.

A hierarchical cluster algorithm for online, centralized timestamp was pre-
sented in [WTO01]. The algorithm is based on the fact that events within a cluster
can only be causally dependent on events outside the cluster through receive events
from transmissions that occurred outside the cluster. The precedence-test method
in this algorithm is O(c) where c is the size of the cluster.

Our proposal generates vector timestamps that completely captures the re-
lations between synchronous messages. We exploit the configuration of the system
topology to reduce the size. The length of our vector clocks is never changed during
the execution of the algorithm. Once the timestamp is assigned, it is never changed.

Our precedence test is therefore straightforward.

5.3 Background
5.3.1 Partially Ordered Sets

A pair (X, P) is called a partially ordered set or poset if X is a set and P is a
reflexive, antisymmetric, and transitive binary relation on X. We call X the ground
set while P is a partial order on X. We write z <y and y > z in P when (z,y) € P.
Also, z <y and y >z in P means z <y in P and z # y.

We use Hasse diagrams' to represent finite posets. If z < y in P, then z
appears lower than y in the diagram.

Let z,y € X with  # y. If either x < y or y < z, we say z and y are

comparable, and write z L y. On the other hand, if neither z < y nor z > y, then

!The formal definition of Hasse diagrams can be found in [DP91].
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a b
a c
d b
c d
¢ d Ly L, S S
Poset Chain Realizer String Realizer

Figure 5.1: A poset (X, P)

we say ¢ and y are incomparable, and write z||y. A poset (X, P) is called chain
if every distinct pair of points from X is comparable in P. Similarly, we call a
poset an antichain if every distinct pair of points from X is incomparable in P. A
point z € X is called a mazimal point (minimal point) if there is no point y € X
with z < y in P (z > y, respectively). We denote the set of all maximal points by
maz(X, P), while min(X, P) denotes the set of all minimal points.

A chain C of a poset (X, P) is a mazimum chain if no other chain contains
more points than C. We use similar definition for mazimum antichain. The height
of the poset P, denoted by height(P), is the number of points in the maximum
chain. Similarly, the width of the poset P, denoted by width(P), is the number
of points in a maximum antichain. We say (X, P) and (Y, Q) are isomorphic, if

there exists a 1 — 1 and onto map f : X — Y so that 1 < zo in P if and only if

f(z1) < f(z2) in Q.

5.3.2 Dimension

A family R = {Li, Lo, ..., L} of linear orders on X is called a chain realizer of a
poset (X,P)if P=NR. z <y € L;NL; if z <y in both L; and L;. We also say
that R realizes (X, P). Figure 5.1 shows a poset (X, P) in which {L;, Ly} realizes
(X, P).

It can be shown [Tro92] that R is a realizer of P iff for every z,y € X with

95



z || y (z incomparable to y) in P, there exists distinct integers ¢,7 with 1 <4,j <t
for which z < y in L; and y < z in L;. In the following, we write z <. y when z < y

in L,

Definition 29 [Tro92] For any poset (X, P), the dimension of (X, P), denoted by
dim(X, P), is the least positive integer t for which there exists a family
R ={Li,Lo,...,Li} of linear extensions of P so that P = NR = N'_, L;.

The dimension of the poset in Figure 5.1 is 2. The concept of dimension
provides us a way to encode a partial order. The elements of a partial order with
dimension ¢ can be encoded with a #-dimensional vector as follows. For any element
z, the vector v, is defined as follows: v;[i] = number of elements less than z in L;,

for 1 <4 < 1. Given code for two elements v, and vy, we have the following order:
(5.1) vy < Uy = Vi:ugli] < vyli]

For example, the code for a and b in the poset in Figure 5.1 is (2,3) and (3,1) based
on the realizer. Based on the code and (5.1), it can be easily determined that a and
b are concurrent. We call the order given by (5.1) the chain order.

The dimension of a poset can be arbitrarily large. Consider a poset (X, P)
where X = {ai1,a9,...,an} U{b1,bo,...,by}, and a; < b; in P if and only if i # j,
for 7,7 = 1,2,...,n. This class of posets is known as the standard example and
denoted by S,. Figure 5.2 shows the diagram for S5. The following Theorem is due
to Dushnik and Miller [DM41].

Theorem 30 [DM41] dim(S,) = n.

Let L; = [a1,---,@i—1,Qi41,---,0n,bi,a4,b1,...,bi—1,bi41,...,by], where a; is the
lowest element, and by, is the highest element in chain L; Then R = {L1, Lo, ..., Ly}

is a realizer of S,,.
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Figure 5.2: S5

5.4 String and String Dimension

In Section 5.3 we saw that classical dimension theory provides lower bounds on the
dimension of vectors when the comparison is based on the chain order. On the other
hand, the vector clocks in distributed computing use vector ordering given by the

following (5.2) which we call vector order.

u<v = Vk:1<k<N:ulk] <uvlk]A
7 :1 <5 <N :ufj] <vff]

(5.2)

Consider a distributed system in which the code of elements is determined in a
decentralized fashion. In this case the relationship between two events may not be
known globally. Thus, if event e happened before f, this relationship may be known
only to a single process. From the perspective of other processes, ¢ and f may be
indistinguishable (for example, when both are internal to the process). This is more
easily captured in the vector order where a vector u is deemed as smaller than vector
v even when u is smaller than v in just one component and same in all the other
components. Since chain order requires that all the coordinates in code of event e
are strictly less than all the respective coordinates in code of event f, it is difficult to
use chain order in a distributed system. In this section, we generalize the concepts
in dimension theory so that the ordering used between codes is identical to (5.2).

We first give the definition of a string.

Definition 31 (string) A poset (X, P) is a string if and only if 3f : X — N (the
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set of natural numbers) such that Vz,y € X : z <y iff f(z) < f(y)

The set of elements in a string which have the same f value is called a knot.
For example, a poset (X, P) where X = {a,b,¢,d} and P = {(a,b), (a,c), (a,d), (b,d),
(c,d)} is a string because we can assign f(a) = 0, f(b) = f(c) = 1, and f(d) = 2.
Here, b and ¢ are in the same knot. The difference between a chain and a string
is that a chain requires existence of a one-to-one mapping such that z < y iff
f(x) < f(y). For strings, we drop the requirement of the function to be one-to-
one. We represent a finite string by the sequence of knots in the string. Thus, P is
equivalent to the string {(a), (b,c), (d)}.

A chain is a string in which every knot is of size 1. An anti-chain is also
a string with exactly one knot. Note that a string drops the distinction between
elements which have the same order relationship with all other elements. Thus, two
elements = and y have the same code f(z) = f(y) iff for any element z, (1) z < z
iff y < 2z, and (2) z < z iff z < y. This is a more natural concept for ordered sets.

A string gives more efficient encoding of the partial order than the use of
chains. At an extreme, the range of f may be finite even when the domain of f is
infinite. For example, the following order {all even numbers} < {all odd numbers}
on natural numbers can be encoded by assigning 0 to all even numbers and 1 to all
odd numbers. Such a poset cannot be assigned codes using the classical dimension
theory.

We write x <; y if x <y in string s, and ¢ <5 y if £ < y in string s.

Definition 32 (String Realizer) For any poset (X, P), a set of strings S is called

a string realizer iff Ve,y € X : x <y in P if and only if
1. VseS :z<;y, and

2.7HeS x < y.
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The definition of less-than relation between two elements in the poset based on the
strings is identical to the less-than relation as used in vector clocks. This is one of
the motivation for defining string realizer in the above manner. A string realizer for

the poset in Fig. 5.1 is given by two strings

§1 = {(C)’ (da a’)’ (b)} 82 = {(d’ b)7 (Cv a)}

There are two important differences between definitions of string realizers
and chain realizers. First, if R is a chain realizer of a poset P, then P is simply the
intersection of linear extensions in R. This is not true for a string realizer (see Fig.
5.1). Secondly, all the total orders in R preserve P, i.e., z < y in P implies that
z < y in all chains in R. This is not true for string realizer. For example, d < a
in poset P of Fig. 5.1, but (d,a) appears as a knot in the string s;. We are only
guaranteed that a will not appear lower than d in any string - they may appear in
the same knot.

Now, analogous to the dimension we define

Definition 33 (String Dimension) For any poset (X, P), the string dimension
of (X, P), denoted by sdim(X, P), is the size of the smallest set of strings S such
that S is a string realizer for (X, P).

Example 1 Consider the standard example S,. The following function f can be

used to create a string realizer of Sp,. For all k,i =1,2,...,n,

0 ifk i

1 otherwise

frla;) =

0 ifk=1
fe(bi) =
1 otherwise
For example,
a1 = (1,0,0,...,0), b =(0,1,1,...,1)

as = (0,1,0,...,0), by=(1,0,1,...,1)
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In this example, the length of each string is 2 and thus each element requires
only n bits for encoding. If we use classical dimension based on total orders, each

element would require n x logn bits.

Example 2 Consider the poset (X, P) as follows.
X = {0,{a},{b},{a,b},{a,c},{a,b,c}}
P={(A,B)e XxX:ACB).

A string realizer for the poset can be obtained as follows. For each set A € X,
we use a bit vector representation of the set A. Thus, {a,c} is represented by (1,0,1)
and the set {a,b} is represented by (1,1,0). This representation gives us a string

realizer with three strings such that every string has ezactly two knots.

We now establish the relationship between string dimension and chain di-
mension. It may appear, at first, that the string dimension of a poset may be much
smaller than the chain dimension. However, this is not the case as shown by the

following result.

Theorem 34 (Equivalence Theorem) For any poset (X, P) such that sdim(X, P)
1s greater than 1,

sdim(X, P) = dim(X, P)

Proof: There are two cases.

sdim(P) < dim(P).

It is sufficient to show that for any chain realizer of size k, there exists a
string realizer of equal or smaller size. Given a chain realizer C, we construct the
string realizer as follows. Each chain is simply viewed as a string. Our obligation
is to show that the order generated from the string realizer is the same as the one
based on chain realizer (recall that the definition of less than for string realizer is

different from less than in a chain realizer.) In this proof, let z — y <= Vs € S:
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r<gy N HES:x<;y. It is sufficient to show that x <y <= z — y. First, we

show that z <y = z—y.

<y VeeC:z <.y
VseS:x <3y

VseS:z <,y NHeES: <y

A

=Yy

Next, we show that =(z < y) = —(z — y). There are two cases.

case A: y<zx y+—z (From case I)
—(z = y)
case B: x|y (z<y) AN ~(y<z)
JeeCiz<,y ANdeC:y<gzx
JseSix<sy AN ReSy<px

“(y—=z) A (T y)

L O R

—(z = y)

dim(P) < sdim(P).

Given a string realizer of P, S, we construct the corresponding chain realizer.
We achieve this by untying knots of the string to form a chain.

First consider the case when two elements = and y belong to the same knot
in all strings. We will combine these elements into one element say z. After finding
the chain realizer of the new set, we replace z with  and y. Further, in one chain we
keep z less than y and in another chain we keep y less than . Observe that we can
do this because there are at least two chains due to our assumption of sdim(P) > 2.

Now assume that there are no two elements as in the first case. Consider
any knot {z1,%2,...,2n} in any string s;. Now we determine for all pairs (z;, z;)

of the elements in the knot.

1. (VseS—{s1}:2; <szj) A (Tt e S—{s1}:z; < zj), then we get z; < z;.

or
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Figure 5.3: An example of untying mechanism.

2. If3s,t € S — {s1} : (x5 <s zj) N (z; <t x;), then we get z; || z;.

Then, we can untie this knot by performing the topological sort. By repeating this

process, all knots on s; can be untied, and we obtain the chain. |

Figure 5.3 shows an example of this untying mechanism. Since d and e appear
in the same knot in all strings, we first combine d and e into one element f. As a
result we get strings in Figure 5.3(C). We then untie the knot (c, f) by keeping ¢
less than f in s; and untie the knot (a,b) in so by keeping a less than b. We now
have the chain order. Now we replace f by d and e, keeping d less than e in s; and

e less than d in sy to get the chains in Figure 5.3(D).

5.5 Encoding Partial Orders

The concept of string realizer has the advantage over chain realizer that it gen-
erally requires less number of bits to encode a partial order using string realizer.
Formally, consider the following problem. Given a partial order (X, P), define a
coding function code : X — {0,1}* and a binary relation < on codes such that
Vez,y € X :z <yin P <= code(z) < code(y). Note that the order relation may
be any arbitrary order (not necessarily vector order). The only requirement is that

it can only use the bits in code(z) and code(y) to determine the order. It is clear
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that any partial order can be coded using log(n) +n bits per element as follows. For
every element, we store a binary array of size n. Further, each element is assigned a
unique index into the array. Let index(z) be the index of z in 1..n and z.v be the n
bit array for element z. Then, we determine the order between z and y as follows.
z < y iff (z.v]indez(y)] < y.v[index(z)]).

Using dimension theory, partial orders of lower dimensions can be encoded
much more succinctly. If a partial order has dimension k, then it can be encoded
using k * log(n) bits. However, when the dimension is large (as for the standard
example), this method may take up to n/2 x log(n) bits per element.

String realizers typically result in a lower number of bits for encoding. From
Theorem 34, we know that for coding purposes, the total number of coordinates
based on total orders and strings are the same. The difference lies in the number
of bits required to code a single coordinate. Given a string realizer R. If R has
k strings each of length less than or equal to [/, then (X, P) can be coded using
k x log(l) bits. [ is clearly less than or equal to |X|. Depending upon the structure
of the poset, log(l) may be much smaller than log(n) as seen for the case of the
standard example.

In general, we have the following result.

Theorem 35 Every partial order (X, P) onn > 2 elements can be encoded using a

string realizer in at most log(height(P) + 1) x width(P) bits.

Proof: For convenience, let w = width(P). We use Dilworth’s chain covering
theorem which states that (X, P) can be partitioned into w chains C1, Co, ..., Cy,.
We then use the transitively reduced diagram of (X, P) with w processes as given by
the chain decomposition. Further, we use Fidge and Mattern’s algorithm to assign
vector timestamp for each event when the poset diagram is viewed as a computation.

These vector timestamps determine a string realizer with w coordinates such that

103



no coordinate is greater than height(P) + 1. [

There is a small change in application of Fidge and Mattern’s algorithm in
above construction. Their algorithm assumes that initial events of all processes are

incomparable and assigns the initial event at process ¢ a vector timestamp as follows:

Vj:j#iv[j]=0;
v[i] = 1;

In our construction (in the proof of Theorem 35), all the initial events of
chains may not be incomparable. To solve this problem, it is sufficient to add a
special initial event for each chain whose smallest event is not a minimal event in
the partial order. For example, consider the poset in Figure 5.4. This poset can
be decomposed into three chains {a,b,c},{d,e}, and {f,g}. However, d is not a
minimal element of the poset. Hence, to apply Fidge and Mattern’s algorithm we
may assume an event smaller than d which is incomparable to a and f in Process 2
with vector clock equal to (0,1,0). Then, to compute the vector at d, we compute
the maximum of vectors for a, f and (0,1,0). Thus, the vector clock for all events
can be derived as
v(e) = (3,0,0);v(e) = (2,2,1);0(g) = (1,1,2);

v(b) = (2,0,0);v(d) = (1,1,1);v(f) = (0,0,1);
v(a) = (1,0,0)
This results in the following string realizer:
51 ={(f),(a,d,g),(b,e), (c)},
s ={(a, f,b,0),(d, 9), (e)}, and
s3 = {(a,b,¢), (d,e, f), (9)}-
Observe that some strings may be longer than others and we need not use

the same number of bits to encode positions in all the strings. The total number of
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Figure 5.4: A Poset and its String Realizer

bits required for a realizer with ¢ strings is

1=t

> [log(length(s:)]

i=1

We note here that Bouchet [Bou84] and Trotter [Tro92] introduced a gen-
eralization of the original dimension by restricting the length of chains used in the
realizer. This new dimension parameter is called k-dimension (denoted by dimy(P)),
when only the chains of length k are allowed in the realizer of P.

The k-dimension of P, k > 2, is the smallest positive integer ¢ for which P
is isomorphic to a subposet of K? (ie. K! is the product of ¢ chains of length k).
Therefore, the 2-dimension is the size of the smallest hypercube in which P can be
embedded.

Obviously [HHN95],

One interesting question is to determine the smallest integer k, 2 < k < |P|, such
that dim(P) = dimy(P). Habib-Huchard-Nourine [HHN95] went further by allowing
chains of different length in the realizer of the poset. They defined a new dimension
parameter called encoding dimension as follows.

The encoding dimension of a poset P, denoted by edim(P), is the least
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integer ¢ such that ¢t = ZE{’ [logy k;] and P can be embedded into K x Ko x ... K,
where K; denotes a chain of length ;.

It is shown in [HHN95] that when P is an antichain, then edim(P) = 2log |P|.
This is equal to the number of bits required in the Dushnik-Miller’s dimension.
However, by using string realizers, we can use only one bit to encode each element
in an antichain.

A key distinguishing feature of our work is that we allow order equivalent
elements to have the same code. This is more natural concept for posets. Further,
it allows hierarchical representation of orders. Two elements may have the same
code at one level, but different at the other level when they are not distinguishable
at coarser granularity but can be distinguished with finer granularity of the order.
For example, in a distributed computation, all internal events between two external

events may be assigned the same code at the coarser level of granularity.

5.6 Lower Bound on Dimension of Vector Clocks

As we have mentioned before, the definition of a string realizer is identical to the
definition for vector clocks in distributed systems. A distributed computation on
N processes can be modeled as a poset of events (E,—) of width N. Fidge and
Mattern’s vector clocks are simply string realizers of the poset (E, —). For example,
consider the poset in Fig. 5.3 which has width two. We can view it as a computation
on two processes, the first process executes events a, b and d in that order, and the
second process executes ¢ and e in that order. By viewing b and c¢ as send events

received at e and d respectively, we get the following vector clocks for all events:
v(a) = (1,0);0(b) = (2,0);v(d) = (3,1);

v(c) = (0,1);v(e) = (2,2)
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This corresponds to two strings

81 = {(C)a (a)a (ba 6), (d)} and sy = {(a',b)a (C, d), (e)}

This is a different string realizer than shown in Figure 5.3, but has the same
dimension.

Now that we have established equivalence of dimension and string dimension
for non-string posets, we can use existing results from dimension theory to prove
results on dimension of vector clocks.

We first consider lower bounds on the (string) dimension of vector clocks.
Charron-Bost [CB91] has shown that we require at least N-dimensional vector
timestamps to capture concurrency in the distributed computation consisting of N
processes. The proof is by constructing a computation in which any timestamping
scheme with less than N coordinates is not able to capture concurrency accurately.

The following proof uses dimension theory and our equivalence theorem.

Theorem 36 For every N, there exists a distributed computation (E,—) on N
processes such that any assignment from E to N'* that captures concurrency relation

on E has k> N.

Proof: The result is trivially true for N equal to 1. For any N > 2, consider the
standard example Sy shown in Figure 5.2. Define a; and b(; moq n)+1 t0 be on process
P;. This computation is on N processes. By Dushnik and Miller’s Theorem, this
poset has dimension N. From Theorem 34, the computation has string dimension
also equal to N. Any assignment from E to N that captures concurrency relation,
results in a string realizer with k strings. Since the string dimension is IV, it follows

that £ > N. ]

Although this result proves that there cannot be a uniform timestamping
mechanism of less than N coordinates, it does not exclude timestamping mechanism

which may use less than N coordinates for a particular computation.
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As an extreme example, consider a system of N processes, where N > 3.
Assume that processes do not send any messages to each other. We can timestamp
each event j on process i by the vector v;(j) = (i,n —1,j). It is easy to see that this

timestamping mechanism captures concurrency relation accurately?.

5.7 Efficient Vector Timestamps for Synchronous Computations

In this section, we show that timestamping can be done more efficiently in dis-
tributed computations that use synchronous messages. A message is called syn-
chronous when the send is blocking, i.e., the sender waits for the message to be
delivered by the receiver before executing further. Synchronous communication
is widely supported in many programming languages and standards such as CSP
[Hoa85], Ada Rendezvous, and synchronous Remote Procedure Calls (RPC). While
programming using asynchronous communication allows higher degree of parallelism
and is less prone to deadlocks, algorithms using synchronous message-passing are
easier to develop and verify. Also, the implementation of asynchronous communi-
cation requires buffer management and flow control mechanisms. Implementation
of synchronous messages requires that the sender wait for an acknowledgment from
the receiver before executing further.

A computation that uses only synchronous messages is called a synchronous
computation. It can be shown that a computation is synchronous if it is possible to
timestamp send and receive events with integers in such a way that (1) timestamps
increase within each process and (2) the sending and the receiving events associated
with each message have the same timestamp. Therefore, the time diagram of the
computation can be drawn such that all messages arrows are vertical [CBMT96]
(see Figure 5.5).

Determining the order of messages is crucial in observing distributed systems.

%In fact, this partial order can be encoded using vector clocks of dimension 2.
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Figure 5.5: A synchronous computation with 4 processes.

We write e < f when event e occurs before f in a process. Here, we define the
order among synchronous messages. The set of messages M in a given synchronous
computation forms a poset M = (M, ), where — is the transitive closure of >

defined as follows.

myi.send < my.send , Or
my.send < mo.receive , Or
mi1 D> mo < {
mi.receive < mo.send , Or
{ mi.recetve < mo.receive

We say mq synchronously precedes mo when mi — mso. And when we have m; —
mg > ... — my, we say that there is a synchronous chain of size k from my to my.
We denote m;||mge when my % mg and mg 4 my.

In the example given in Figure 5.5, m1||ma, m1 > ms, mg — mg, and ms
ms. There is a synchronous chain between m1 and ms of size 4.

To perform precedence-test based on synchronously-precede relation, we need
a timestamping mechanism that assigns a vector to each message m (or equivalently,
the send and the receive event). Let v(m) denote the vector assigned to message m.

Our goal is to assign timestamps that satisfies the following property,

(5.3) my — me <= v(my) < v(ms)
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Given any two vectors u and v of size t, we define the relation < as follows.

Vik:1<k<t:ulk] <v[k] A
Jj:1<j <t:ulj] <v[j]

(5.4) U< v =

We call the relation given in Equation (5.4) vector order.
From Equations (5.3) and (5.4), one can determine if m; — mg by checking
whether v(m1) < v(mg). If v(m1) is not less than v(mg) and v(mg) is not less than

v(my1), then we know that m;||mao.

5.7.1 Online Algorithm

We now give an algorithm to assign v(m) for a message m such that Equation (5.3)
is satisfied. Whereas FM vectors are based on the idea of assigning one component
for each process, our algorithm assigns one component to each edge group. We first

define the notion of edge decomposition and edge group.

5.7.1.1 Edge Decomposition

The communication topology of a synchronous system that consists of N pro-
cesses, Pi,..., Py, can be viewed as an undirected graph G = (V, E) where V =
{P1,..., Py}, and (P;, P;) € E when P; and P; can communicate directly. Fig-
ure 5.6(a) gives the communication topology of a system in which every process can
communicate directly with each other. Figure 5.6(b) gives the communication topol-
ogy of another system in which not every pair of processes communicate directly
with each other.

Some particular topologies that will be useful to us are the star and the

triangle topologies defined below.

Definition 37 (Star) An undirected graph G = (V, E) is a star if there exists a
verter x € V such that all edges in E are incident to x. We call such a star as

rooted at node x.
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@ (b)

Figure 5.6: Examples of the communication topologies. (a) The system where every
process can communicate directly with each other. (b) The system where not every
pair of processes communicate directly with each other.

Definition 38 (Triangle) An undirected graph G = (V, E) is a triangle if |E| = 3,
and these three edges form a triangle. We denote a triangle by a triple such as

(z,y,z) denoting its endpoints.

The star and triangle topologies are useful because messages in a synchronous

computation with these topologies are always totally ordered.

Lemma 39 The message sets for all synchronous computations in a system with
G = (V,E) as the communication topology are totally ordered if and only if G is a

star or a triangle.

Proof: Given any two messages in a star topology, there is always one process
(the center of the star) which is a participant (a sender or a receiver) in both the
messages. Since all message events within a process are totally ordered it follows that
both these messages are comparable. The similar argument holds for the triangle
topology.

Conversely, assume that the graph is not a star or a triangle. This implies
that there exists two distinct edges (P;, P;) and (P, P;) such that none of their
endpoints is common. Consider a synchronous computation in which P; sends a
synchronous message to P; and P} sends a synchronous message to P, concurrently.

These messages are concurrent and hence the message set is not totally ordered.
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Note that the above Lemma does not claim that message set cannot be totally
ordered for a topology that is neither a star nor a triangle. It only claims that for
every such topology there exists a synchronous computation in which messages do
not form a total order.

Now based on the definitions of star and triangle graphs, we are ready to

define the edge decomposition of G.

Definition 40 (Edge Decomposition) Let G = (V, E) be communication topol-
ogy of a synchronous system. A partition of the edge set, {E1, Eo,...,Eq}, is called
an edge decomposition of G if E = Ey U EsU, ... ,UE, such that

1. Vi,j:ENE; =0, and
2. Vi : (V, E;) is either a star or a triangle.

We refer to each E; in the edge decomposition as an edge group. In our
algorithm, we will assign one component of the vector for every edge group. Note
that there is possibly more than one decomposition for a topology. Our goal is to get
the smallest possible decomposition. Consider a fully-connected system consisting
of N processes. The first decomposition consists of N — 3 stars and 1 triangle.
The second decomposition consists of N — 1 stars. Figure 5.7 presents the two
decompositions of a fully-connected system with 5 processes.

The complete graph is the worst case for edge decomposition, resulting in N —
3 stars and 1 triangle. In general, the number of edge groups may be much smaller
than N — 2. Given a tree-based synchronous system consisting of 20 processes,
Figure 5.8 shows how to decompose edges into three edge groups E;, E;, and Ej3
where each group is a star.

We will discuss techniques for edge decomposition that minimize the number

of edge groups in Section 5.7.1.3.
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(a) (b)
Figure 5.7: Edge decompositions of the fully-connected system with 5 processes.

(a) The first decomposition consisting of 2 stars and 1 triangle. (b) The second
decomposition consisting of 4 stars.

Figure 5.8: A tree-based computation with 20 processes.

5.7.1.2 Algorithm

Each process maintains a vector of size d, where d is the size of the edge decom-
position. We assume that information about edge decomposition is known by all
processes in the system.

The online algorithm is presented in Figure 5.9. Due to the implementation
of synchronous message ordering [MG95], we assume that for each message sent
from P; to Pj, there exists an acknowledgement sent from P; to F;. Essentially,
to timestamp each message, the sender and the receiver must first exchange their
vector clocks. Then, each process computes the component-wise maximum between
the local vector and the vector received (Line (5) and (9)). Finally, both the sender
and the receiver increment the g** element of their vectors where the channel that
the message is sent belongs to the g** group in the edge decomposition (Line (6)
and (10)). The resulting vector clock is the timestamp of this message.

Figure 5.10 shows a sample execution of the proposed algorithm on a fully-
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P ::
var

v; : array[l..d] of integers, initially O;
ED : edge decomposition,({E1, ..., Eq});

(01) On sending m to Pj;
(02) send(m,v;) to Pj;

(03) On receiving (m,v) from Pj;
( ) send acknowledgement(v;) to P;;
Yk : v;[k] = maz(vi[k], v][k]):

v;[g]++ where edge (i, j) € Ej;
) Timestamp of m is v;;
(0 )
0
i
(11)

On receiving acknowledgement(v) of m from P;;
VE : vi[k] = maz(v[k], v[k]);
vi[g]++ where edge (1, j) € Ej;
Timestamp of m is v;;

6
(07
8
9
0
1

Figure 5.9: The Online Algorithm.

I31

(1,0,0)
I32

(1,11) 1,22

P

(0,0,1) (1,1,3)
Py

(0,0,2)

P

Figure 5.10: A synchronous computation with 5 processes, and its edge decomposi-
tion.

connected system with 5 processes. Edge decomposition consists of 2 stars (F; and
E,) and 1 triangle (Es3). For example, message sent from P, to Ps is timestamped
(1,1,1) because the channel between P, and Pj is in edge group E», and the local
vector on P, and P5 before transmission are (1,0,0) and (0,0, 1), respectively.
Next, we prove that our online algorithm creates vector timestamps for mes-
sages in synchronous systems such that these timestamps encode poset (M, +>). The

channel in which a message m,, is sent through must be a member of a group in the
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edge decomposition. We use e(m;) to denote the index of the group to which this

channel belongs in the edge decomposition.
Lemma 41 m;||m; = e(m;) # e(m;)

Proof: Let ci(resp.cj) be an edge in the topology graph G that corresponds to the
channel on which m; (resp. my) is sent. Since m;||m;, from Lemma 39, all messages
in an edge group are totally ordered, we get that ¢; and ¢; must belong to different

edge groups. Therefore, e(m;) # e(m;). [
Theorem 42 Given an edge decomposition of a synchronous system, the algorithm
in Figure 5.9 timestamps messages such that m; — mg <= v(my) < v(mg)

Proof: First, we show that m; — mg = v(m1) < v(msz). Since vector clocks are
exchanged between the sender and the receiver, and the component-wise maximum
is computed between the received vector and the local vector, it is easy to see that

if m; synchronously precedes mo, then v(m1) < v(msg). We now claim that
(5.5) m1 — my = v(mq)[e(msg)] < v(mg)[e(ms2)]

This is true because before the vector is assigned to msg, v(mg)[e(ms)] is
incremented. Thus, we have my — mgy = v(my) < v(mg).

We now show the converse,
m1 A mg = —(v(my) < v(mg))
Due to the definition of vector order, it is sufficient to show that
my v my = v(mg)le(m1)] < v(mi)le(mi)]

We do a case analysis.
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(Case 1: mg — mq)

From Equation (5.5), by changing roles of m; and myg, we get that v(mg)[e(m1)] <
v(ma)le(ma)].

(Case 2: my||m2)

We prove by induction on k, the size of the longest synchronous chain from a minimal
message in the poset (M, +—) to mo. A message m is minimal if there is no message
m' in the computation such that m' — m.

(Base: k = 1) mgy is a minimal message.

From Lemma 41 and m1||m2, e(m1) # e(m2). Since myo is a minimal message
by the initial assignment of the vector clock, both sender and the receiver have 0
as the component for e(m;) and the componentwise maximum also results in 0 for
e(my). Further, since e(m) # e(ms) the component for e(m;) is not incremented.
Hence, v(mz)[e(m1)] = 0.

We now claim that v(mq)[e(m1)] > 1. This is true because we increment the
component for e(m;) before assigning the timestamp for m;. Since the value of all
entries are at least 0, it will be at least 1 after the increment operation.

From, v(mg)[e(m1)] = 0 and v(m1)[e(m1)] > 1, we get that v(mz)[e(m1)] <
v(m1)[e(m1)].

(Induction: k£ > 1)

Let m3 be any message such that mg > my. We know that my A ms,

otherwise m1 — mo. By induction hypothesis,

m1 > m3 = v(ma)[e(mi)] < v(mi)le(mi)]

To obtain v(my), the sender and receiver of mo exchange timestamps of any
immediately preceding message (if any). We also know that the e(mq)" compo-
nent of vectors from both the sender and receiver are less than v(mq)[e(m;)] due
to induction hypothesis. Hence, it stays less after the component-wise maximum.

Further, since e(m;) # e(mg) the component for e(m;) is not incremented. Hence,

116



v(mg)[e(ma)] < v(ma)e(m1)]. u

Given an edge decomposition of size d, our online algorithm has O(d) message

and space overhead.

5.7.1.3 Good Edge Decompositions

As discussed in Section 5.7.1.2, the overhead of our algorithm is crucially dependent
upon the size of the edge decomposition. Let a(G) denote the size of a smallest
edge decomposition (note that there may be multiple edge decomposition of the
same size). In our edge decomposition, we decompose the graph into stars and
triangles. If we restricted ourselves to decomposing the edge set only in stars then

the problem is identical to that of vertex cover.

Definition 43 (Vertex Cover [CLR89]) A vertex cover of an undirected graph
G = (V,E) is a subset V! CV such that if (u,v) is an edge of G, then either u € V'
orv €V’ (or both)

We can now provide a bound for the size of the vector clocks based on the

vertex cover.

Theorem 44 Let G = (V, E) be communication topology of a synchronous system.
Let B(G) be the size of the optimal vertex cover of G. Then vector clocks of size

min(B(G), N — 2) is sufficient to timestamp messages.

Proof: From the definition of vertex cover, every edge is incident to some vertex in
the vertex cover. For every edge we assign some vertex in the vertex cover. If some
edge has both the endpoints in the vertex cover, then we arbitrarily choose one.
By the definition of vertex cover problem, all edges are partitioned in this manner
into stars. When 8(G) = N — 1, we can simply use trivial edge decomposition of

N — 3 stars and one triangle. Thus, there exists an edge decomposition of size at
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most min(B(G), N —2). From Theorem 42, we know that with this edge decomposi-
tion, the online algorithm generates vector timestamps that capture synchronously

precede relation between messages. |

Since vertex cover does not use triangles in edge decomposition, it is natural
to ask how bad can a pure star decomposition be compared to star and triangle

decomposition. We claim that
B(G) <2 a(G)

This bound holds because any decomposition of the graph into stars and
triangles can be converted into a decomposition purely of stars by decomposing
every triangle into two stars. The above bound is tight in general because if the
graph consisted of just ¢ disjoint triangles, then a(G) =t and B(G) = 2t.

Since the problem of obtaining minimum vertex cover is NP-hard [GJ79], it
is unlikely that there exists an optimal algorithm for edge decomposition of a general
graph. We now present an algorithm that returns an edge decomposition which is
at most twice the size of the optimal edge decomposition. Further, our algorithm
returns an optimal edge decomposition when the graph is acyclic.

The algorithm is shown in Figure 5.11. It works by repeatedly deleting stars
and triangles from the graph. The main while loop in line (02) has three steps
inside. The first step chooses any node which has degree 1, say  which is connected
to node y. It outputs a star rooted at y. When no nodes of degree 1 are left, the
algorithm goes to the second step.

In the second step, the algorithm checks if there is a triangle (z,y, z) such
that there are no edges in F' which are incident to = or y other than those in the
triangle. There may be other edges incident to z, but the degree of nodes z and y
is exactly 2. Once all such triangles have been output, the algorithm goes to step

three.

118



In the third step, the algorithm chooses an edge (z,y) with the largest number
of adjacent edges. If there is more than one such edge, it chooses any one of them.
Now it outputs two stars one rooted at z and the other rooted at y. After the third
step, the algorithm goes back to the while loop to check if all edges have been

accounted for.

Input: Undirected graph G = (V, E);
Output : edge decomposition,({E1,. .., Eq}); // Each E; is either a star or a triangle

01) F:=E;
02) while F # ( do

//First Step:

03 while there exists a node z such that degree(z) =1 do
04 Let (z,y) be the edge of F incident to z;
05 output the star rooted at y and all incident edges to y;
06 remove from F all edges incident on y;
07 endwhile;
//Second Step:
(08) while there exists a triangle (z,y, z) with degree(z) = degree(y) = 2 do
09 output triangle (z,y,2) ;
10 remove from F’ the edges in the triangle;
11 endwhile
//Third Step:
212 Let (z,y) be an edge of F' with largest number of edges adjacent to it;
13 output the star rooted at y and all incident edges to y;

14 output the star rooted at z and all incident edges to x except (z,y);
15 remove from F’ all edges incident on z or y;

(16) endwhile;

Figure 5.11: Approximation algorithm for edge decomposition.

Figure 5.12 shows the operation of our edge decomposition algorithm on the
communication topology shown in Figure 5.6(b). Using our decomposition algo-
rithm, we decompose the topology in Figure 5.6(b) into 5 stars and 1 triangle. It is
easy to see that the optimal decomposition consists of only 4 stars and 1 triangle.

The algorithm has time complexity of O(|V'||E|) because in every step, the
identification of the edge (Line (4), (8), and (12)) can be done in O(|E|) time, which

results in deletion of all edges incident on at least one vertex.
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Figure 5.12: A sample run of the proposed decomposition algorithm. (a) The input
topology. (b) In the first step, the algorithm outputs 2 stars. There are 7 edges
remaining. (c¢) In the second step, the algorithm outputs a triangle (c,d,e). There
are 4 edges remaining. (d) In the third step, two stars are output. Edge (j, k) is
remaining. (e) The execution loops back to the first step again and edge (j, k) is
output. The program exits. (f) The optimal edge decomposition consists of 4 stars
and 1 triangle.
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The following theorem shows that the algorithm produces an edge decom-
position with a ratio bound of 2. The ratio bound is the ratio between the size of
the edge decomposition produced by the algorithm and the size of the optimal edge

decomposition.

Theorem 45 The algorithm in Figure 5.11 produces an edge decomposition with

the approzimation ratio bound of 2.

Proof:  The algorithm creates edge groups in the first step (Lines (3)-(7)), the
second step (Lines (8)-(11)) or the third step (Lines (12)-(15)). For every creation
of an edge group, we identify an edge and include it in a set H. In the first step, we
use the edge (x,y) the lone edge incident to z and put in the set H. In the second
step, we use the edge (z,y) from the triangle and put it in H. Finally, for step 3,
we put the edge chosen in line 12 in H. It is easy to verify that no two edges in H
are incident to a common vertex. This is because any time we choose an edge in
any of the steps, all adjacent edges are deleted from F'. Since no two edges have any
vertex in common, edges in H must all be in distinct edge groups in the optimal
edge decomposition. However, the size of edge decomposition produced is at most

twice the size of H. n

Note that in the above proof we have not used the fact that in step 3, we
choose an edge with the largest number of adjacent edges. The correctness and the
approximation ratio is independent of that choice. However, by deleting as large
number of edges as possible in each step, one would expect to have a smaller edge
decomposition.

We now show that the above algorithm outputs optimal edge decomposition

for acyclic graphs.

Theorem 46 The algorithm in Figure 5.11 produces an optimal edge decomposition

for acyclic graphs.
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Proof: First note that an acyclic graph can have only stars as edge groups. Further,
when the algorithm is applied to an acyclic graph all the edges will be deleted in
the while loop of the first step. In other words, if we take a forest (an acyclic graph
is equivalent to a forest or a collection of trees) and repeatedly delete all edges that
are adjacent or one hop away from the leaves then we will eventually delete all the
edges.

Thus, the set H constructed in the proof of Theorem 45 consists of edges
added only in step 1. Since we add exactly one edge group for every edge added to
H, the optimality follows. |

While the size of the vector for the fully-connected system is still O(N), the
vector size of the system with tree-based topology may not grow considerably. In
particular, if the number of processes in the system increases without changing the
size of its edge decomposition, the size of our vector clocks is constant. This has
a significant impact because tree is a popular structure used as a communication

topology for distributed computing systems.

Example 3 (An Edge Decomposition for Mobile Systems) Let us consider
a client-server based mobile system shown in Figure 5.18 where (1) mobile hosts can

only communicate with their local support stations and (2) all interactions in the

system are through synchronous RPC or RMI [BB95, CKRH00, DSKF*00].

In this case, the communication topology can be decomposed with one star
rooted at each server because there is no direct communication between mobile
hosts and all support stations are fully connected. Thus, it is sufficient to use vector
clocks of size equal to the number of support stations to timestamp messages in the

system.
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| Il Vobile Support Station

O Mobile Host
Figure 5.13: A Mobile Computing System.

5.7.2 Offline Algorithm

We present an offline timestamping algorithm which takes a completed computation
as an input and assigns a vector timestamp for each message in the given compu-
tation. Our offline algorithm is based on applying dimension theory to the poset
formed by messages in the synchronous computations. The offline algorithm is

based on the result of the following theorem.

Theorem 47 Given a poset (M,—) formed by messages in a synchronous com-
putation with N processes, vector clocks of size L%J can be used to encode poset

(M, ).

Proof: For any subset L C M such that |L| > [Z], there exists m;,m; € L : m;
m; or m; — m;. This is because each message involves two processes. From a set
of [%J + 1 messages, there must be at least two messages that share a common
process. Hence, the size of the longest antichain of (M,+) (or width(M,—)) is at

most L%J
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Due to Dilworth’s theorem [Dil50], for any poset P, dim(P) < width(P).

Hence, dim(M,—) < | ¥ ]. ]

As a result from Theorem 47, we get the offline algorithm as shown in Fig-

ure 5.14.
From a given poset M,
(1) Let w be the width of poset M. From Theorem 47, w < | ¥ .
w
(2) Construct a set of linear extensions, {L1, Lo, ..., Ly}, such that () L; = M.

=1
(The procedure for constructing this linear realizer can be found in [Tro92])
(3) Timestamp each message m with V,,,
where V,,,[i] = the number of elements less than m in L;.

Figure 5.14: Offline Algorithm.

As an example, if we use offline algorithm to timestamp messages in the
computation shown in Figure 5.10, 2-dimensional vectors are sufficient to capture

concurrency as shown in Figure 5.15.

5.7.3 Timestamping Events in Synchronous Computations

We here show how to extend our algorithms to capture happened before relation-
ship between internal events. So far, we had focused our attention on timestamping

send/receive (external) events in synchronous systems. We now show how to ex-

(2.0)

(3.2

0,1) 45 | 54

(1.3)

5

Figure 5.15: A sample run of the offline algorithm.
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tend our algorithm to timestamp internal events such that the resulting timestamps
capture Lamport’s happened before relation.

For simple exposition, let us first assume that we have exactly one internal
event between any two external events. Later we show how this algorithm can be
extended easily to handle the general case. Recall that for each synchronous message
m sent from a process P; to another process P;, there is an acknowledgement sent
from P; to P;. It is important to note that happened before relation between events
uses messages and their acknowledgements as well.

We now give the timestamping algorithm for internal events. Each event e
is assigned with a tuple (prev(e), succ(e)) where prev(e) is the timestamp of the
message immediately prior to e, and succ(e) is the timestamp of the message im-
mediately after e. If there is no message before e, prev(e) is a zero vector (denoted
by 0). If there is no message after e, succ(e) is a vector where all elements are oo.
Observe that an internal event can be assigned a timestamp only after the process
knows the timestamp of the message after e.

In the following, we show that the proposed timestamps capture causal rela-

tionship between events in the synchronous systems. That is,
e = [ <= succ(e) < prev(f)

where — denotes Lamport’s happened before relation. We say that there is a causal
chain of size k between e; and e, when e; — e3 — ... — eg.

We now ready to prove the property of the proposed timestamp algorithm.
Theorem 48 e — f <= succ(e) < prev(f)
Proof: First, we have to prove that
(5.6) e = [ = succ(e) < prev(f)

If e and f are on the same process then the result is trivially true. Otherwise,

since e — f, there must be a causal chain between e and f. If m, is the message

125



immediately after e, and m; is the message immediately before f, we know that
me — my or m, = my. From Theorem 42, succ(e) < prev(f).

Conversely, we have to prove that succ(e) < prev(f) = e — f. We know
that the vector timestamp of m, is less than or equal to that of m;. From the
property of message timestamps (Theorem 42), we get that me — m f Or Me = Mmyf.
From the definition of —, there must be a causal chain from e to f formed by either

the application messages or the acknowledgements or both. |

If there are more than one internal event between any two external events,
the timestamp for each internal event becomes a triple (prev(e), succ(e), c(e)), where
c(e) is the value of counter; an integer maintained by each process P;. Initially,
counter; is zero, and is reset to zero whenever a new external event occurs in P;.
Further, counter; is incremented for each occurrence of an internal event. It is easy

to verify that the new timestamps satisfy the following property.

succ(e) < prev(f) ,or
c(e) < c(f) and (prev(e) = prev(f)) and (succ(e) = succ(f))

e~ f —

5.7.4 Multicast Communication

So far, we had assumed that the system under consideration uses only point-to-point
communication. Here, we discuss how we can use the proposed online algorithm in
the system supporting multicast communication.

In this case, the communication topology becomes an undirected hypergraph.
Each hyperedge connects a subset of vertices that belong to the same multicast
group. Note that two hyperedges corresponding to two different multicast groups
are adjacent if these two multicast groups share at least one member. Given a
hyperedge decomposition, we can run the online algorithm in Figure 5.9 to gen-
erate timestamps that capture synchronously-precede relation between messages.

Theorem 42 is applicable even when edges are hyperedges.
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Chapter 6

Conclusions and Future Work

We have presented a framework that help developing distributed applications for
systems with mobile devices. This framework consists of two service layers: channel
allocation and causal message delivery. We also introduced an efficient algorithm to
timestamp events in the system. These timestamps accurately captures happened
before relation.

In the channel allocation layer, we have proposed an efficient distributed
algorithm for channel allocation based on the update approach. Quorum is employed
to reduce message complexity from the basic update algorithm. This algorithm also
requires less storage overhead than the existing algorithm using the same technique.
The member of our request set for each cell is fixed, not dependent upon the channel
being requested. For nR < Dy, < (n+ 1)R, only 3n request messages are sent
to cells at most n hops away. Furthermore, the response to each request message
is sent back to the requesting cell without deferring. Therefore, this algorithm is
suitable for applications requiring real-time response. Our algorithm can be used
with any dynamic or hybrid channel allocation strategies. As a result, the algorithm
adapts well to the dynamic change of the traffic load.

We also proposed a scheme to further reduce message complexity of our orig-

inal algorithms at the expense of higher acquisition delay. The simulation is con-
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ducted to investigate how fast the number of request attempts in the modified algo-
rithms increases as the channel demand grows in both uniform and non-uniform dis-
tributions. From the experimental results, the average number of request attempts
in the quorum algorithms with acquisition messages is relatively small. Therefore, it
is reasonable to conclude that the effect of livelock and starvation can be negligible.
The average number of request attempts in the modified quorum algorithm exceeds
the point where the modified algorithm is outperformed by the original one at the
very high channel demand. Therefore, a combination of the original and modified
algorithms can be used to fine-tune mobile network throughput while reducing traf-
fic load on the underlying wired network. Finally, the simulation results show that
the acquisition delay of the quorum-based algorithm is significantly lower than that
of search algorithms (PK and CS). An interesting future direction is to find update
algorithms that do not suffer from livelock and starvation.

In the causal message delivery layer, we introduced a protocol that main-
tains the low message overhead while reducing unnecessary delivery delay imposed
by Alagar and Venkatesan. Unlike [PRS96] and [YHH97], our proposed protocol is
scalable and suitable for dynamic systems. It is scalable because message overhead
does not depend on the number of mobile hosts. And it is suitable for dynamic
systems because it is easy to adapt to the changes in the number of participating
mobile hosts. Delivery delay is reduced at the cost of higher storage space required
on each MSS. However, this can be accommodated by static hosts due to their rich
storage resources. Unlike [AV94], our handoff protocol does not require causal order-
ing among application messages and messages sent as part of the handoff protocol.
This further reduces the unnecessary delay in our protocol.

In addition to correctness proofs for static and handoff protocols, we also
present the condition implemented by our static module. The conditions imple-

mented by [AV94] and [YHH97] are also provided. Simulation results show that for
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small messages, our protocol can reduce the end-to-end delay by as much as 18.9%,
and by as much as 12.11% for large messages. In the future, as the throughput of
wireless links keeps increasing, the reduction of the end-to-end delay achieved by our
protocol will also be higher. Finally, we provide a case where the protocol presented
in [YHH97] does not satisfy liveness property, that is, it is possible that a message
is delayed indefinitely.

In the second layer, we only consider point-to-point communication. There-
fore, an interesting future work is to extend the proposed algorithm to broadcast
and multicast environments.

We implemented the framework and built a simple distributed application
based on shared object model. In this application, the user can choose between
the two consistency criteria; causal consistency and causal serializability. The im-
plementation of these two consistency criteria relies upon causal message delivery
provided in the framework.

For causality tracking, we introduced a new class of posets called string
and define the notions of string realizer and string dimension. We showed that for
distributed computing applications, these concepts are more natural than the cor-
responding classical concepts based on chains. In general, string encoding of partial
orders is more efficient than chain encoding and easier to obtain in a distributed
environment. We also established that the string dimension of a poset is the same
as the chain dimension for any poset that is not a string.

We showed that vector clocks of size less than N can be used to characterize
relationship between messages in synchronous computations with N processes. This
message precedence has applications in visualization of distributed computations.

In the online algorithm, tracking of relationship between messages is per-
formed while the computation is executing. The size of vector clocks is equal to

the size of edge decomposition of the communication topology of the system. For
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systems with tree-based topology, the size of the vector is equal to the size of vertex
cover of the topology. In the offline algorithm, the size of our vector clocks is at
most |4 ] for the system with N processes.

We have presented an algorithm that returns an edge decomposition which is
at most twice the size of the optimal edge decomposition. However, this approxima-
tion algorithm produces an optimal edge decomposition when the graph is acyclic.
Since the problem of obtaining minimum vertex cover is NP-hard, it still remains an
open question whether there exists an polynomial-time algorithm that returns an
optimal edge decomposition. It is also interesting to extend the proposed algorithm
to cope with the dynamic change of the system topology.

We have shown how to extend our offline algorithm to timestamp internal
events in synchronous systems. This algorithm uses interval order to compare any
two timestamps. These timestamps capture Lamport’s happened before relation

between events.
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