ConC: A Language for Concurrent
Programming

Vijay K. Garg
Department of Electrical and Computer Engineering,
University of Texas, Austin

Austin, TX 78712

C. V. Ramamoorthy
Computer Science Division,

University of California, Berkeley
Berkeley, CA 94720

February 22, 1993

Abstract

Present concurrent languages do not support any form of analysis of the
communication structure of programs. To support high level specification and
analysis of distributed systems, we propose two new constructs- handshake
and unit. The handshake construct is a remote procedure call generalized
for multiple parties. The unit construct restricts the possible calls to vari-
ous handshake procedures, and thereby provides a synchronization mechanism.
These constructs are part of a formal model called the Decomposed Petri Net
(DPN), which lends itself to automatic analysis. The current system called
ConC(Concurrent C) extends ”C” for concurrent programming and runs on a
Sun cluster under Unix 4.2 BSD.

Keywords: Concurrent Languages, Petri Nets, Multiple-Party Interaction

1 Introduction

Concurrent programs are difficult to design and the simplest of them can have subtle
errors. These errors arise due to presence of concurrency and generally result in

violation of a safety or a liveness property. To detect these errors, the system should
provide automatic analysis of the communication aspects of a program [26]. For
example, it should support queries such as - “Is sequence of events <x,y> possible?”,
and “Is state S reachable?”. Such analysis is difficult in conventional concurrent
programming language systems because the synchronization aspects of a program are
interwoven with the computational aspects. Also, communication is expressed using
low level primitives making it harder to write and debug programs. Therefore, we
had two goals in designing the communication primitives - high level specification and
analyzability.

In this paper, we propose two new constructs for concurrent programming - hand-
shake, a generalization of the remote procedure call, and unit, a communication struc-
turing mechanism. We also assume that the language supports guard construct similar
to one provided by CSP. A handshake is shared among two or more processes with
one of them acting as its master. Fach process has a procedure-like interface with
a handshake. When all the participating processes call their handshake procedures,
the shared handshake body is executed by the master. The unit construct is used to
restrict the sequence of possible calls to various handshake procedures and thereby
provide a synchronization mechanism between multiple processes. Thus, a unit can
be viewed as an automaton that specifies all possible sequences of handshake proce-
dures. The handshake and unit constructs form part of a formal model called the
Decomposed Petri Net (DPN) Model[12, 15]. The DPN is theoretically equivalent to
Petri Nets and all the analysis techniques for Petri nets such as coverability tree[17]
and matrix equations[20] are directly applicable to the DPN.

In our paradigm, we support separation of concerns by separating computation
objects and control objects. Computation objects are specified in any standard se-
quential programming language such as Pascal, C or sequential Ada. They are used
mainly to capture the computation aspects of the system and do not concern them-
selves with synchronization. Control objects, on the other hand, are written as units.
They specify the computation that is directly related to communication. For exam-
ple, synchronization is handled by these objects. They are mechanically analyzable
for most interesting properties as their expressive power is less than Turing machines,
(equivalent to Petri nets).

The rest of the paper is organized as follows. Section 2 discusses the related work
and distinguishing features of our work. Section 3 discusses the constructs. Section 4
discusses the implementation of these constructs. Section 5 presents the underlying
formal model behind units. Section 6 discusses the status of the ConC project and
future research directions.

2 Related Work

Andrews and Schneider[2] classify concurrent languages into three categories. The
shared memory based programming languages assume that variables can be accessed
by any process. To guarantee mutual exclusion, constructs such as critical regions and
monitors are used. Example of such languages are Concurrent Pascal, Mesa[19] and
Modula. The message based programming languages provide send and receive con-
structs for communication. Examples of such languages are CSP[16] and PLITSI9].
The operation based languages combine aspects of the other two classes. They provide
remote procedure call as the primary means of process interaction. Ada, Distributed
Processes[3] and SR[1] fall in this class. Since the handshake extends the remote pro-
cedure call for multi-party interaction, it belongs to this class as well. The features
that distinguishes the ConC from related efforts are as follows:

(1) Synchronous Communication: We believe that users of the distributed sys-
tems should not have to deal with asynchronous communication as it makes the
program difficult to debug, prove and analyze. In this respect, we agree with the
philosophy of programming languages such as Ada and CSP, and differ from PLITS.
(2) Multi-Process Interaction: Many applications require interaction between
more than two processes and the user can program at high level if such a facility is di-
rectly provided by the language. CIRCAL[18], Raddle[10], Multi-way Rendezvous|8],
PPSA[24], and Script[11] have also suggested multi-party interaction in one form or
another. CIRCAL, Raddle and PPSA allow synchronization based on matching of
event names but do not provide a remote procedure call like interface. Script shows
how details of multi-process interaction can be hidden but does not provide direct
support for the multi-party interaction. None of them support any form of analysis.
(3) Analysis of Interaction: As most errors in concurrent systems arise due to erro-
neous specification of process interaction, any analysis of the interaction will greatly
increase the programmer’s productivity. None of the above mentioned languages sup-
port the analysis. Such analysis is more common for communication protocols which
is done mainly for specifications expressed in State Machines, Petri nets or bounded
variable programming languages[25]. One of the early attempts to incorporate such
analysis in a full fledged programming language was Path Expressions[5]. Path Pas-
cal[6] based on Path expression is, however, a shared memory based language. Also
the analysis provided by Path Pascal is not as extensive as that provided by ConC.

(4) Communication Abstraction Mechanism: Researchers in programming lan-
guages have found abstractions a useful mechanism to increase the understandability
of the software. Consequently, current programming languages provide control ab-
straction through loop constructs and procedure calls, and data abstraction through
abstract data types. One of the main functions of an abstraction is to provide only
structured access to the primitives. For example a control abstraction mechanism
seeks to provide a structured use of goto’s. Similarly, the complexity of concurrent
software has made it necessary that goto’s of the communication world (send, re-

ceive, remote procedure calls etc.) be allowed only in a structured manner. Path
expressions specify the sequence of procedures that can be made on shared variables
and therefore can be termed as the first attempt for providing such a mechanism.
Francez and Hailpern[11] were first to coin the term and use it in their proposal of
Script. ConC provides structuring of the communication primitives through the unit
construct.

Table 1 summarizes some of the well known concepts that can be shown to be
special cases of constructs provided in the ConC.

‘ Feature ‘ Example ‘ ConC ‘
Synchronous communication | CSP handshake
Remote procedure call Ada parametrized handshake
Multi-process interaction Raddle multi-process handshake
Abstraction Mechanism Seript unit
Path Constraints Path Pascal | unit expressions
Reachability Petri Nets | DPN

Table 1: Special Cases of Handshake and Unit Constructs

3 Constructs

3.1 Handshake construct

The remote procedure call has become one of the most favored communication prim-
itive because of its similarity to the local procedure call, a well understood concept.
A handshake is a remote procedure call generalized for multiple parties.

A handshake consists of the declaration of handshake procedures and a shared
body. The body is executed by the master only when all handshake procedures
have been called by their respective processes. Thus, handshake can be used as a
synchronization point of multiple processes. For illustration, consider the distributed
players problem. Assume that there are four players who are interested in playing
various games as shown in Figure 1. Joe is willing to play chess, bridge or poker.
Mary is willing to play any of the games while Jack and Bob play only bridge or
poker. Playing a game requires rendezvous between two or more processes. This is
achieved by handshake construct as follows:

The above example illustrated the use of the handshake construct for synchro-
nization. The handshake construct is also useful for communicating data from one
process to the other. The handshake procedures may be called with parameters.
When the handshake is executed by the master of the handshake, all the parameters
are considered available. The body of the handshake can use any of the parameters
or its own local variable. As an example, consider the synchronous send provided in
the Unix as a library facility. The handshake description of such a primitive in ConC
is shown in Figure 2. It specifies that when process P1 calls send and P2 calls receive

4

handshake bridge;
procedure Joe.bridge();
procedure Jack.bridge();
procedure Bob.bridge();
procedure Mary.bridge();

begin

end ;

Figure 1: Distributed Player Problem

handshake syncsend;
const
MAXLENG = 50;
type
message = array|[l..MAXLENG] of char;
numbytes = 0..MAXLENG;
procedure Pl.send(senddata: message; scount: numbytes);
procedure P2.receive(var recdata: message; var rcount: numbytes);
var i: integer;
begin
for i:=1 to scount do
recdatafi] := senddatali];
rcount := scount;

end;

Figure 2: An Example of a Handshake Specification

with their parameters, the associated body with the handshake is executed by the
first process named in the handshake (P1). Note that the syntax is symmetric for
caller and callee in contrast to rendezvous in Ada where the callee uses accept and
the caller uses entry procedure call to make a rendezvous. Also note that the syntax
requires every participant in the process to be explicitly named. We are also assuming
a static structure for processes. These restriction are required for the feasibility of
automatic analysis of the communication structure.

We next describe the syntax for the handshake construct using BNF. We use {}
to denote zero or more repetitions of the enclosed expression.
;a handshake specification
<handshake-del> ::= handshake id ’;” < global-del>
{<proc-specs>} <local-del> <body> "’}
; this section specifies types used in declaring parameters
; it also specifies variables that are owned by the handshake
<global-del> ::= the usual const, type and var declarations
; headers for various procedures which share the body

<proc-specs> := procedure processid . procname ({ <param> })’}
| inform processid ’;’

<param> = [var | id 7 <type> "y

<local-del> ::= local variable declaration

; the body executed by the master of the handshake
<body> := the usual programming language body

handshake put-item;
procedure sender.send(sdata: integer);
procedure buffer.insert(var bdata: integer);
begin
bdata := sdata;
end;
handshake get-item;
procedure buffer.remove(bdata: integer);
procedure receiver.receive(var rdata: integer);
begin
rdata := bdata;

end;

Figure 3: Handshakes for Buffered Sends

Now assume that we have a buffer process available that can store a single message.
For simplicity, we assume that the processes are interested in communicating integers
only. The handshake declaration is shown in Figure 3.

Sometimes, a process may not want to participate in a handshake in the sense of
sending parameters or receiving results. It may simply be interested in knowing if
the handshake took place so that it can control some of its other handshakes. The
inform clause can be used for these situations and its use will be illustrated in a later
example.

It may seem that the handshake construct does not promote concurrency as the
body of the handshake is executed by a single process. An alternative construct
may have separate body for each procedure in the handshake in which they can
use input parameters of other procedures. There are two reasons for not choosing
this option. Firstly, for abstraction purposes, we provided the notion of permanent
data with a handshake. The user would have to worry about consistency of this
data if concurrency was allowed within a handshake. Second, the implementation
of distributed handshake would lead to many more messages than required for the
centralized execution.

The handshake construct is more suitable for message-based systems. In these
systems, it is more natural to assume that every object has its caretaker who can
access and update its state. The caretaker of a object is modeled as the master of
the handshake in our system.

3.2 Unit Specification

In the example of distributed players, players may have different constraints on their
sequence of games. For example, Joe may wish to play only tennis after chess. Sim-
ilarly, in the example of buffered send, we did not specify the buffer process. If the
buffer process allowed put-item and get-item in any order, the communication may
be faulty. The buffer behaves correctly if it satisfies the constraint that a put-item
is always followed by a get-item and vice-versa. As a result, the sender may have to
wait for the receiver to read the item before it sends another item to the buffer pro-
cess. To express such constraints and therefore provide a high level synchronization
mechanism, we provide the unit construct.

To describe all possible sequences of the handshake procedures, we can use a
algebra based model (e.g. regular expressions) or transition based model (e.g. finite
state machines). The unit construct is a transition oriented model. In Appendix
1, we describe an algebra based model called concurrent regular expressions. [15]
describes the conversion from one form of specification to the other. It can also be
shown that path expressions and COSY expressions are special cases of concurrent
regular expressions. The interested reader is referred to [15]. In this paper, we will
restrict the discussion to the transition oriented model.

A unit is a directed graph where vertices are called places, and edges between
them are labeled by names of handshakes. In addition, there is a concept of tokens
which may be thought of as residing in places. A handshake can take place only if
there is a token in the tail vertex (source place) of the handshake. After execution,
the token moves to the head vertex (destination place). Figure 4 shows the linguistic
and graphical equivalent of a one-frame buffer. The marking construct is used to
describe the number of tokens at various places. The body of a unit consists of
enumeration of all transitions in the unit. These transitions are arranged on the basis
of their source places. A place name, such as avail in the above example, is followed
by the description of transitions, each consisting of a handshake name followed by
the destination place.

A unit also has the notion of an infinite number of tokens which are represented
by putting a * in the place. Any number of tokens can be added or removed from
a *-place without changing it. Figure 5 presents the unbounded buffer problem in
ConC.

Figure 6 shows the linguistic and graphical equivalent of the constraints imposed
by Joe. The BNF for the specification of a unit is as follows:

<wunit-specs> ::= unit id ’;” <marking> begin { <transitions> } end ’;’
<marking> ::= marking { [’ <placename> """ <num>"’]" } 7}
<num> =" | integer

<transitions> ::= placename { > transname placename ; }

(* put-item should be followed by a get-item
unit buffercomm;
marking [unavail:1];
begin
unavail
> put-item avail;
avail
> get-item avail;
end;

Figure 4: Unit Specification of a One-frame buffer

(* the receiver must wait for the sender *)
unit buffercomm:;
marking [unavail:*];
begin
unavail
> put-item avail;
avail
> get-item unavail;
end;

Figure 5: An Example of the Unit Specification

unit Joecomm ;
marking [bstate:1];
begin
bstate
> chess cstate;
> tennis tstate;
> bridge bstate;
cstate
> tennis tstate;
tstate
> bridge bstate;

end;

Figure 6: Unit Specification for Joe

10

As another example of these constructs, consider the mutual exclusion between
two processes X and Y. The entire system has four handshakes - plin, plout, p2in,
pZout. plin handshake requires permission from both the processes X and Y but
does not require any parameters from process Y. In fact, the computation object of
process Y need not even call plin. Therefore, we use inform clause for process Y. This
is specified in the handshake declaration of plin. plout, on the other hand, does not
need any coordination from the process Y. The unit construct allows p2in to happen
only if the process X is in a non-critical state. The entire specification of the process
X 1s given in Figure 7.

As another example consider the problem of dining philosophers. This problem,
first posed by Dijkstra, requires an algorithm for philosophers who are sitting on a
circular table. They are five in number and there is a fork between every two of them.
There is a bowl of spaghetti in the center which can be eaten by any philosopher but
its tangled nature requires that he use both his left and right forks. A deadlock free
solution expressed in the ConC constructs is shown in Figure 8. get; ;41 represents
that " philosopher has taken possession of ¢ + 1'* fork. The philosopher; does not
seek possession of ¢ + 1% fork unless he also possesses " fork. Note the simplicity
of the solution due to the availability of synchronous communication. The simplicity
comes because the complexity of implementing synchronous communication is buried
in the handshake construct. Note that if all philosophers express interest in eating
by calling the handshake get; ;41, the underlying implementation may chose any one
of them.

Having stated the solution to dining philosophers problem, we would like to verify
that our solution is indeed deadlock free. Current programming systems typically re-
quire manual analysis for such questions. It is impossible to develop a programming
system that proves the correctness of a general program (because most interesting
properties such as termination are undecidable). Thus, proof systems for various pro-
gramming languages have been developed that facilitate manual proofs of assertions
on the program. On the other hand, models such as finite state machines and Petri
nets (or DPN) may be mechanically analyzable for properties (such as reachability)
but do not capture all possible programs. The unit construct supports a paradigm in
which an object has two parts: Turing-equivalent computation object and Petri-net
equivalent control object.

The unit construct may seem redundant to some readers. There is no analogue of
this construct in most conventional languages such as Ada. In fact, any program that
can be written using non-trivial unit construct can be written without the notion of
unit (i.e. allowing all possible handshakes if participants are ready). However, the
program without unit construct have synchronization aspects of a function intermixed
with computational aspects. For example, the mutual exclusion using just rendezvous
construct (handshake in our case) would be more difficult to program. The unit
construct attempts to separate concerns of computation from synchronization. For
example, the unit construct in mutual exclusion ensures that both pfin and p2in are

11

handshake p1in;
procedure X.p/lin();
inform Y;

begin

end;

handshake p1out;
procedure X.p/lout();

begin

end;

(* communication unit for process X *)
unit mutex];
marking[noncritical:1];
noncritical ;
> plin critical;
> p2in noncritical;
critical ;
> plout noncritical ;
end;
(* internal computation for process X *)
main()
{
int 1;
(* note that, p2in and p2out do not appear in this object *)
for (i=1; i<=10; i++)
{
plin();
(* this is the eritical region *)
plout();

Figure 7: Mutual Exclusion Between Two Processes

12

handshake get; ;14
procedure philosopher;.get; ;11;
inform philosopher;yq ;
begin
end;

unit philunit;;
marking[neutral:1];
neutral
> get; ;41 eating ;
> get;_y,; waiting;
eating
> pul; ;41 neutral;
waiting
> pul;_y ; neutral;
end ;
process philosopher;;
begin
if hungry then begin
getiivi();
eat();
putiivi();
end;

?
end;

Figure 8: A Solution of Dining Philosophers Problem

13

not enabled at the same time.

This separation simplifies the task of programming as the programmer can focus
initially on computational aspects without worrying about the sequences of hand-
shakes that should not be allowed. For example, in case of distributed player prob-
lem he can postpone the task of checking whether the players play game in the right
order. The separation of control may help in making the computation object simpler
to prove. This is in agreement of the philosophy of Unity[7]. If some safety assertion
can be shown to be true for trivial unit (a unit that allows all handshakes) then it
is also going to be true when some sequences are restricted. Since handshakes may
involve a single process (such as plout in mutex algorithm), the unit construct is also
useful for sequential programming.

Alternatively, the facility of unit construct can be viewed as a meta-level control
which ensures that the control in the computation object does not violate any global
constraints.

3.3 Guard Construct

For selective communication, we also assume that the language has the guarded com-
mand construct as proposed by Hoare for CSP. A guarded command consists of one
or more <guard, action> pairs. A guard consists of a boolean condition and option-
ally a handshake. The handshake is enabled only if the boolean condition is true. If
an enabled handshake can be executed (participating processes are willing to execute
the handshake), the guard is considered true and the statement corresponding to the
guard can be executed. The syntax of the guard construct is as follows:

< guarded-command > ="’ <guard> ’->’ <statement > |’
<guard>:: <boolean-condition> &’ handshakeid

For an example of guard construct, consider the buffer process which may com-
municate with either the sender or the receiver. Its specification is shown in Figure

9.

4 Implementation

Each logical process is actually composed of two real processes: computation and con-
trol process. The computation process interacts with control process by two means:
(1) Simple handshake call: As seen earlier the execution of a handshake may require
the participation of multiple processes. The computation process sends an enable
message to the control process whenever it is ready for a particular handshake and
waits for a reply from it. The control process goes through a series of protocol mes-

14

process buffer;
int findex = 0;
int bindex = 1;
itemtype buffarray[SIZE];
[
put-item -> insert(item);
findex = (findex + 1) mod SIZE;
buffarray[findex] = item;
get-item -> remove(buffarray[bindex]);

bindex = (bindex + 1) mod SIZE;
]

end

Figure 9: Specification of the Buffer Process

sages with other control processes to agree on the execution of the handshake. If it
succeeds, it tells the computation process to proceed and send the relevant message
to the master of the handshake. If the handshake is not possible because one of the
participant processes has terminated then the control process sends an error message
to the computation process.

(2) Calls from Guard: Since only one handshake is allowed in every guarded state-
ment, it can be always be executed if all participant processes are ready for it. The
computation process enables all the handshakes that are called from the conditions
of the guarded statements. It then waits for a reply from the control process. The
control process sends to the computation process, the name of the handshake it has
committed. It is the responsibility of the computation process to execute the hand-

shake.

4.1 Handshake Construct

For each handshake the first process named is assumed to be its master. The master is
responsible for receiving the value parameters from other processes, executing the code
associated with the handshake and shipping back the results. Slave processes send
their parameters and wait for the results or continue execution if they do not expect
any results back. Our prototype assumes that messages do not get lost, duplicated
or corrupted. (It is the job of communication subsystem to guarantee that.)

15

4.2 Unit Construct

It is the responsibility of control object to ensure that handshakes happen only in
the sequences permitted by the unit construct. The control object, however, can
execute only those events that are enabled by the computation object. If a process
was named in the inform clause of handshake the control object can always execute
that handshake. For example, X is just in inform clause of p2in and therefore the
unit for process X assumes that p2in is always enabled. Otherwise, a handshakes may
be enabled by a handshake call, or from a guard construct. For example, plin can
be executed by the unit process only if X makes a call to plin. An example, where
multiple handshakes may be enabled in computation object is the buffer process in
which both put-item and get-item are enabled on execution of the guard.

A unit can execute the event if it is enabled by its computation process and its
own structure (i.e. there exists a place with one or more token which has an outgoing
edge labeled with that handshake). By our definition of handshake all units that
have the handshake must agree on its execution. To arrive at this agreement, the
unit processes go through a protocol described in [15]. The protocol ensures that if
some handshake is executable then the system will not deadlock. It involves inviting
processes to commit for a handshake and then committing it if all processes agree.

4.3 Guard Construct

As the computation process reaches a guard construct, it evaluates boolean condition
for all guards. If a guard with just boolean condition is true, then the statement may
be executed, otherwise it sends enable messages for all handshakes named in guards
with their boolean condition true. On receiving the name of the handshake that was
executed by the unit process, the computation process can execute the corresponding

handshake and guard.

5 DPN: The Underlying Model

To define a decomposed Petri net, we partition it into multiple units which share its
transitions. Each unit contains some of the places of the original Petri net. Intuitively,
the decomposition is such that the tokens within a unit need to synchronize only with
tokens in other units. Formally, a DPN (Decomposed Petri Net) D is a tuple (X, U)
where

e Y = a finite set of symbols called transition alphabet
e U =set of units (Uy, Us..U,,) where each unit is a five tuplei.e. U; = (P, C;, %, 6, F;)

where:

— P, is a finite set of places

16

— (; is an initial configuration which is a function from the set of places to
nonnegative integers NV and a special symbol ™. i.e.,C;: P— > (N U{*}).
The symbol "’ represents an unbounded number of tokens. A place which
has * tokens is called a *-place.

— Y; 1s a finite set of transition labels s.t. X, C 3.

— 6; is a relation between P, x ¥; and P;, i.e., 6; C (P; x ;) X P;. 6, represents
all transition arcs in the unit.

— F; is a set of final places, F; C P;.

The configuration of a DPN can change when a transition is fired. A transition
with label « is said to be enabled if for all units U; = (P, C;, ¥, 6;, F;) such that
a € Y; there exists a transition (pg,a,p;) with C;(pr) > 1. Informally, a transition
a is enabled if all the units that have a transition labeled a, have at least one place
with non-zero tokens and an outgoing edge labeled a. Thus in Figure 10, get-item is
enabled only if both p; and ps; have tokens. A transition may fire if it is enabled. The
firing will result in a new marking C/ for all participating units, and is defined by
Ci(pe) = Ci(pe) — 1
Ci(p) = Ci(pr) + 1.

A *-place remains the same after addition or deletion of tokens.

As an example of a DPN machine, consider the producer consumer problem. The
DPN representation for this problem is shown in Figure 10. The producer produces
items which are kept in a buffer. The consumer takes these items from the buffer and
consumes them. The solution requires that the consumer wait if no item exists in the
buffer. The consumer can execute get-item only if there is a token in the place p4.
Note how the *-place is used to represent an unbounded number of tokens. Formally,
M = (X,U) where ¥ = { produce, put-item, get-item, consume }, U = (Uy,Us, Us)
where

o Uy =(P1,%1,C1, 01, F1), Uy = (P, X5, C, 09, Fy) Us = (Ps, X5, Cs, 05, F5)
o Pr={p1,p2}, Po = {ps, s}, P = {ps, pe}

o Xy = { produce , put-item }, Xy = { put-item , gel-item }

o Cv={(p1,1),(p2,0)}, C2 = {(p3, %), (p1,0)}, €5 = {(ps, 1), (ps, 0)},

o 61 = {(p1, produce, py), (p2, put-item ,p1)}

o 6y = {(ps, put-item ,ps), (pa, get-item , p3)}

o 63 = {(ps, get-item ,ps), (ps, consume, ps)}

o I ={pi}, o= {ps}, s = {ps}

17

Figure 10: A DPN machine for Producer Consumer Problem

U; corresponds to the producer, U, corresponds to the buffer and Us to the con-
sumer.

The above examples illustrate the modeling power of DPN which can easily be
seen to be more than finite state machines and less than Turing machines. [15] shows
that DPN has the same theoretical modeling power as that of Petri nets[22] but
it enjoys many more useful properties which facilitate specification and analysis of
distributed systems.

6 Status and Future Directions

The current ConC system consists of two sub-systems: ConC' translator, and DPN
analyzer. Conc translator generates a set of 7C” processes from a ConC program.
These processes communicate using the semantics of a synchronous handshake in
DPN. The execution of a handshake requires synchronization between multiple pro-
cesses similar to that required by a generalized CSP alternative command[4]. [15]
describes an algorithm for multi-process synchronous communication. ConC Trans-
lator is implemented on SUN workstations with 4.2 BSD. DPN analyzer analyzes a
given DPN for the following type of queries: Is configuration C1 reachable? Is there
any configuration with no exits?(potential deadlocks) It is written in Franzlisp and
runs on 4.3 BSD.

The proposal for the ConC is unique in that it combines aspects from diverse
languages such as CSP, Ada, SCRIPT, Path Pascal, Raddle and SA. The theory
combines aspects from algebraic theory, net theory and formal language theory. Due
to the limited experience with such constructs, we have attempted to keep them as
simple as possible by retaining only the essential features. Some of the limitations of
the current proposal and possible solutions are as follow:

18

7

The current design uses explicit naming of processes in the spirit of CSP. As
for CSP, this may prove restrictive and use of port names may be preferred.
We have chosen to keep the initial prototype simple and the future design may
include port names.

The current process allows only synchronous communication primitives. Asyn-
chronous message passing can be specified using an extra buffer process. We
chose to keep synchronous primitives only, as reasoning with asynchronous pro-
cesses is error prone and cumbersome.

The current design also restricts the process structure to be static. This implies
that unbounded process activation and recursive process activation is not possi-
ble. This restriction is a direct consequence of our aim of keeping the construct
analyzable.

The current design assumes an error free reliable message service. It also does
not address the issues of process failures, reliability, exception handling and
security. Similarly specification of priority and issues arising due to fairness
concerns are not considered here. The notion of time is also missing in the
current design.

Conclusions

This paper presents two new constructs, handshake and unit to support distributed
computation. The handshake construct is a multi-process generalization of the RPC.
The unit construct is used to specify the possible sequences of the handshakes and

therefore provide a synchronization mechanism between multiple processes. These

constructs unify a large number of concepts such as semaphores, monitors, path

expressions, input/output, remote procedure call and communication abstraction.
These constructs are based on a formal model called the DPN model which is mechan-
ically analyzable. The analysis can be done with respect to reachable configurations

of a DPN machine and the language accepted by it.

8

Acknowledgements

We are thankful to Prof. F. Bastani, Dr. Y. F. Chen, Mr. S. DeNitto, Prof. D.
Ferrari, Mr. M.H. Kim, Mr. P. Leong, Mr. A. Prakash, Mr. S. Shekhar, Mr. Y.
Shim, Mr. J.S. Song, Mr. J. Srivastava, Prof. C. J. Stone, Mr. W. Tai and Prof. L.
Zadeh for their comments on this work. This work was in part supported by RADC
under contract 1-482427-26979 and in part by ONR under contract N00014-88-K-

0408.

19

9 References

1. G.R.Andrews, "The Distributed Programming Language SR - Mechanisms, design
and implementation”, Software Practice and Experience 12, 8 ;/Aug 1982, pp 719-754
2. G.R.Andrews, F.B.Schneider, ”Concepts and Notations for Concurrent Program-
ming”, Computing Surveys, Vol. 15, No. 1, March 1983, pp 3-43.

3. P. Brinch Hansen, ”Distributed Processes: A concurrent Programming Concept”,
Comm. ACM 21, 11, Nov 1978, pp 934-941.

4. G.N.Buckley, A.Silberschatz, ”An Effective Implementation for the Generalized
Input-Output Construct of CSP”,; ACM transactions on programming languages and
systems (TOPLAS), April 1983.

5. R.H.Campbell, A.N.Habermann, "The Specification of Process Synchronization
by Path Expressions”, Lecture Notes in Computer Science, vol 16, Springer Verlag,
New York 1974, pp 89-102.

6. R.H.Campbell, R.B.Kolstad, "Path Expressions in Pascal”, Proc. 4th Interna-
tional Conference on Software Engineering, Munich, IEEE New York, 1979, pp 212-
219.

7. K.M.Chandy and J. Misra, ”Parallel Program Design”, Addison-Wesley, 1988.

8. A. Charlesworth, "The Multiway Rendezvous”, ACM Trans. on Programming
Languages and Systems, Vol 9, No.2, July 1987, pp 350-366.

9. J.A.Feldman, "High Level Programming for Distributed Computing”, Comm.
ACM 22, 6, June 1979, pp 353-368.

10. I.R.Forman, ”On the Design of Large Distributed Systems”, Proc. International
Conference on Computer Languages, 1986.

11. N.Francez, B.Hailpern, ”Script: A Communication Abstraction Mechanism”,
Proc. of 2nd Symposium on Principles of Distributed Computing, 1983.

12. V.K.Garg, Specification and Analysis of Concurrent Systems Using the STOCS
model, Proc. of Computer Networking Symposium, Washington D.C. 1988.

13. V.K.Garg, Analysis of Distributed Systems with many Processes, International
Conference on Distributed Computing Systems, 1988.

14. V.K.Garg, C.V.Ramamoorthy, "High Level Communication Primitives for Con-
current Programming”, Proc. IEEE International Conference on Computer Lan-
guages, Miami, Florida, 1988.

15. V.K.Garg, "Specification and Analysis of Distributed Systems with a Large num-
ber of Processes”, Ph.D. Dissertation, University of California, Berkeley, 1988.

16. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey 1985.

17. R.Karp, and R.Miller, ”Parallel Program Schemata”, RC-2053, IBM T.J. Watson
Research Center, Yorktown Heights, New York (April 1968).

18. G.J.Milne,” CIRCAL and the Representation of Communication, Concurrency
and Time,” ACM TOPLAS, 7(2), pp 270-298, April 1985.

19. J.G.Mitchell, W.Maybury, R.Sweet, "Mesa Language Manual, version 5.0” Rep.

20

CSL-79-3, Xerox Palo Alto Research Center, April 1979.

20. T. Murata, "Modeling and Analysis of Concurrent Systems”, in book Handbook
of Software Engineering, ed. C.R.Vick and C.V.Ramamoorthy, Publ.Van Nostrand
Reinhold, pp 39-63, 1984.

21. R.M. Needham ,A.J.Herbert, ”The Cambridge Distributed Computing System”,
Publ. Addison-Wesley Publishing Company, 1984.

22. J. Peterson, Petri-Net Theory and Modeling of Systems, Prentice Hall, Inc., En-
glewood Cliffs, New Jersey 1981.

23. S.Ramesh, "Programming with Shared Actions: A methodology for developing
Distributed Programs”, Ph.D. Dissertation, II'T Bombay, India, June, 1986.

24. S.Ramesh, ” An Efficient Implementation of CSP with Output Guards”, Proc. of
International Conference on Distributed Computing, 1987.

25. C.A.Sunshine,”Survey of Protocol Definition and Verification Techniques”, Proc.
of the Computer Network Protocols Symposium, Liege, Belgium, 1978.

26. R.N. Taylor, 7A General-Purpose Algorithm for Analyzing Concurrent Pro-
grams”, Communications of the ACM, 26(5) pp 362-376, 1983.

10 Appendix 1: Concurrent Regular Expres-
sions

Since regular expressions specify the computation of essentially a sequential finite
state machine, they are not very suitable for expressing the languages of the con-
current systems. To specify the trace of a concurrent system, we have proposed an
extension of regular expressions (r.e.) called concurrent regular expressions (c.r.e.).
Recall that an r.e. over an alphabet X is defined as follows:

1) Any a that belongs to ¥ is an r.e.

2) If A and B are r.e., then so are A.B (concatenation), A+B (or) and A* (Kleene

closure).

For example, consider two sets A and B as follows:
A ={ab} and B = {ba}
then A+ B = {ab,ba}, A.B = {abba}, Ax = {¢, ab, abab, ababab, ...}
a* b+ bxa,abb ab+ ba are some other examples of regular expressions. To define
concurrent operations, it is especially useful to be able to specify the interleaving
of two sequences. With this motivation, we define a operator called interleaving,
denoted by ||. For the sets A and B as defined above A||B = {abba, abab, baab, baba}
Note that similar to A|| B, we also get a set A||A = {aabb, abab}. We denote A||A
by A®). We use parentheses in the power to distinguish it from the traditional use
of the power i.e. A2 = A.A. With this notation, it becomes useful to ask if there is
an analogue of a Kleene-Closure for interleaving operator. Indeed, it is very useful to

21

define, what we call @ — Kleene closure of a set A, denoted by A* as follows:

A% = U;_o AW

In the above example, A* = {w|w € (a, b)*, #a's >= #U's for any prefix ,#da's =
s}

Note the difference between ordinary closure and the « closure. Also note that the «
closure can not be expressed using ordinary r.e. operators.

To provide synchronization, we define a composition operator denoted by []. In-
tuitively, this operator ensures that all events that belong to two sets occur simulta-
neously. Or more formally, A[|B = {w|w/¥4 € A,w/¥p € B}
where w/Y 4 represents the string w restricted to symbols in X 4.

In our example, A[|B = ¢ as there cannot be any string that satisfies event sequences
of both A and B. This corresponds to a deadlock where A waits for B to take action
a and B waits for A to take the action b. Consider another set C' = {ac}. Then
A[]C = {abc,acb}. With these additional operators, we define a concurrent regular
expressions (c.r.e.) over an alphabet ¥ as follows:

1) Any a that belongs to ¥ is a regular expression (r.e.). If A and B are r.e., then so
are A.B (concatenation), A4+B (or), A* (Kleene closure).

2) A regular expression is also a unit expression. If A and B are unit expressions,
then so are A||B and A°.

3) if A1, As..A,, are unit expressions then A;[]Ay[]..[]A, is a concurrent regular ex-
pression.

[Garg 88d] shows that there exists a 1-1 correspondence between the language
expressible as the DPN and concurrent regular expressions.

22

