
ConC: A Language for ConcurrentProgrammingVijay K. GargDepartment of Electrical and Computer Engineering,University of Texas, AustinAustin, TX 78712C. V. RamamoorthyComputer Science Division,University of California, BerkeleyBerkeley, CA 94720February 22, 1993AbstractPresent concurrent languages do not support any form of analysis of thecommunication structure of programs. To support high level speci�cation andanalysis of distributed systems, we propose two new constructs- handshakeand unit. The handshake construct is a remote procedure call generalizedfor multiple parties. The unit construct restricts the possible calls to vari-ous handshake procedures, and thereby provides a synchronization mechanism.These constructs are part of a formal model called the Decomposed Petri Net(DPN), which lends itself to automatic analysis. The current system calledConC(Concurrent C) extends "C" for concurrent programming and runs on aSun cluster under Unix 4.2 BSD.Keywords: Concurrent Languages, Petri Nets, Multiple-Party Interaction1 IntroductionConcurrent programs are di�cult to design and the simplest of them can have subtleerrors. These errors arise due to presence of concurrency and generally result in1

violation of a safety or a liveness property. To detect these errors, the system shouldprovide automatic analysis of the communication aspects of a program [26]. Forexample, it should support queries such as - \Is sequence of events <x,y> possible?",and \Is state S reachable?". Such analysis is di�cult in conventional concurrentprogramming language systems because the synchronization aspects of a program areinterwoven with the computational aspects. Also, communication is expressed usinglow level primitives making it harder to write and debug programs. Therefore, wehad two goals in designing the communication primitives - high level speci�cation andanalyzability.In this paper, we propose two new constructs for concurrent programming - hand-shake, a generalization of the remote procedure call, and unit, a communication struc-turing mechanism. We also assume that the language supports guard construct similarto one provided by CSP. A handshake is shared among two or more processes withone of them acting as its master. Each process has a procedure-like interface witha handshake. When all the participating processes call their handshake procedures,the shared handshake body is executed by the master. The unit construct is used torestrict the sequence of possible calls to various handshake procedures and therebyprovide a synchronization mechanism between multiple processes. Thus, a unit canbe viewed as an automaton that speci�es all possible sequences of handshake proce-dures. The handshake and unit constructs form part of a formal model called theDecomposed Petri Net (DPN) Model[12, 15]. The DPN is theoretically equivalent toPetri Nets and all the analysis techniques for Petri nets such as coverability tree[17]and matrix equations[20] are directly applicable to the DPN.In our paradigm, we support separation of concerns by separating computationobjects and control objects. Computation objects are speci�ed in any standard se-quential programming language such as Pascal, C or sequential Ada. They are usedmainly to capture the computation aspects of the system and do not concern them-selves with synchronization. Control objects, on the other hand, are written as units.They specify the computation that is directly related to communication. For exam-ple, synchronization is handled by these objects. They are mechanically analyzablefor most interesting properties as their expressive power is less than Turing machines,(equivalent to Petri nets).The rest of the paper is organized as follows. Section 2 discusses the related workand distinguishing features of our work. Section 3 discusses the constructs. Section 4discusses the implementation of these constructs. Section 5 presents the underlyingformal model behind units. Section 6 discusses the status of the ConC project andfuture research directions. 2

2 Related WorkAndrews and Schneider[2] classify concurrent languages into three categories. Theshared memory based programming languages assume that variables can be accessedby any process. To guarantee mutual exclusion, constructs such as critical regions andmonitors are used. Example of such languages are Concurrent Pascal, Mesa[19] andModula. The message based programming languages provide send and receive con-structs for communication. Examples of such languages are CSP[16] and PLITS[9].The operation based languages combine aspects of the other two classes. They provideremote procedure call as the primary means of process interaction. Ada, DistributedProcesses[3] and SR[1] fall in this class. Since the handshake extends the remote pro-cedure call for multi-party interaction, it belongs to this class as well. The featuresthat distinguishes the ConC from related e�orts are as follows:(1) Synchronous Communication: We believe that users of the distributed sys-tems should not have to deal with asynchronous communication as it makes theprogram di�cult to debug, prove and analyze. In this respect, we agree with thephilosophy of programming languages such as Ada and CSP, and di�er from PLITS.(2) Multi-Process Interaction: Many applications require interaction betweenmore than two processes and the user can program at high level if such a facility is di-rectly provided by the language. CIRCAL[18], Raddle[10], Multi-way Rendezvous[8],PPSA[24], and Script[11] have also suggested multi-party interaction in one form oranother. CIRCAL, Raddle and PPSA allow synchronization based on matching ofevent names but do not provide a remote procedure call like interface. Script showshow details of multi-process interaction can be hidden but does not provide directsupport for the multi-party interaction. None of them support any form of analysis.(3) Analysis of Interaction: As most errors in concurrent systems arise due to erro-neous speci�cation of process interaction, any analysis of the interaction will greatlyincrease the programmer's productivity. None of the above mentioned languages sup-port the analysis. Such analysis is more common for communication protocols whichis done mainly for speci�cations expressed in State Machines, Petri nets or boundedvariable programming languages[25]. One of the early attempts to incorporate suchanalysis in a full
edged programming language was Path Expressions[5]. Path Pas-cal[6] based on Path expression is, however, a shared memory based language. Alsothe analysis provided by Path Pascal is not as extensive as that provided by ConC.(4) Communication Abstraction Mechanism: Researchers in programming lan-guages have found abstractions a useful mechanism to increase the understandabilityof the software. Consequently, current programming languages provide control ab-straction through loop constructs and procedure calls, and data abstraction throughabstract data types. One of the main functions of an abstraction is to provide onlystructured access to the primitives. For example a control abstraction mechanismseeks to provide a structured use of goto's. Similarly, the complexity of concurrentsoftware has made it necessary that goto's of the communication world (send, re-3

ceive, remote procedure calls etc.) be allowed only in a structured manner. Pathexpressions specify the sequence of procedures that can be made on shared variablesand therefore can be termed as the �rst attempt for providing such a mechanism.Francez and Hailpern[11] were �rst to coin the term and use it in their proposal ofScript. ConC provides structuring of the communication primitives through the unitconstruct.Table 1 summarizes some of the well known concepts that can be shown to bespecial cases of constructs provided in the ConC.Feature Example ConCSynchronous communication CSP handshakeRemote procedure call Ada parametrized handshakeMulti-process interaction Raddle multi-process handshakeAbstraction Mechanism Script unitPath Constraints Path Pascal unit expressionsReachability Petri Nets DPNTable 1: Special Cases of Handshake and Unit Constructs3 Constructs3.1 Handshake constructThe remote procedure call has become one of the most favored communication prim-itive because of its similarity to the local procedure call, a well understood concept.A handshake is a remote procedure call generalized for multiple parties.A handshake consists of the declaration of handshake procedures and a sharedbody. The body is executed by the master only when all handshake procedureshave been called by their respective processes. Thus, handshake can be used as asynchronization point of multiple processes. For illustration, consider the distributedplayers problem. Assume that there are four players who are interested in playingvarious games as shown in Figure 1. Joe is willing to play chess, bridge or poker.Mary is willing to play any of the games while Jack and Bob play only bridge orpoker. Playing a game requires rendezvous between two or more processes. This isachieved by handshake construct as follows:The above example illustrated the use of the handshake construct for synchro-nization. The handshake construct is also useful for communicating data from oneprocess to the other. The handshake procedures may be called with parameters.When the handshake is executed by the master of the handshake, all the parametersare considered available. The body of the handshake can use any of the parametersor its own local variable. As an example, consider the synchronous send provided inthe Unix as a library facility. The handshake description of such a primitive in ConCis shown in Figure 2. It speci�es that when process P1 calls send and P2 calls receive4

handshake bridge;procedure Joe.bridge();procedure Jack.bridge();procedure Bob.bridge();procedure Mary.bridge();beginend ;
Figure 1: Distributed Player Problem

5

handshake syncsend;constMAXLENG = 50;typemessage = array[1..MAXLENG] of char;numbytes = 0..MAXLENG;procedure P1.send(senddata: message; scount: numbytes);procedure P2.receive(var recdata: message; var rcount: numbytes);var i: integer;beginfor i:=1 to scount dorecdata[i] := senddata[i];rcount := scount;end; Figure 2: An Example of a Handshake Speci�cationwith their parameters, the associated body with the handshake is executed by the�rst process named in the handshake (P1). Note that the syntax is symmetric forcaller and callee in contrast to rendezvous in Ada where the callee uses accept andthe caller uses entry procedure call to make a rendezvous. Also note that the syntaxrequires every participant in the process to be explicitly named. We are also assuminga static structure for processes. These restriction are required for the feasibility ofautomatic analysis of the communication structure.We next describe the syntax for the handshake construct using BNF. We use fgto denote zero or more repetitions of the enclosed expression.;a handshake speci�cation<handshake-dcl> ::= handshake id ';' < global-dcl>f<proc-specs>g <local-dcl> <body> ';'; this section speci�es types used in declaring parameters; it also speci�es variables that are owned by the handshake<global-dcl> ::= the usual const, type and var declarations; headers for various procedures which share the body<proc-specs> ::= procedure processid '.' procname (f <param> g) ';'j inform processid ';'<param> ::= [var] id ':' <type> ';'<local-dcl> ::= local variable declaration; the body executed by the master of the handshake<body> := the usual programming language body6

handshake put-item;procedure sender.send(sdata: integer);procedure bu�er.insert(var bdata: integer);beginbdata := sdata;end;handshake get-item;procedure bu�er.remove(bdata: integer);procedure receiver.receive(var rdata: integer);beginrdata := bdata;end; Figure 3: Handshakes for Bu�ered SendsNow assume that we have a bu�er process available that can store a single message.For simplicity, we assume that the processes are interested in communicating integersonly. The handshake declaration is shown in Figure 3.Sometimes, a process may not want to participate in a handshake in the sense ofsending parameters or receiving results. It may simply be interested in knowing ifthe handshake took place so that it can control some of its other handshakes. Theinform clause can be used for these situations and its use will be illustrated in a laterexample.It may seem that the handshake construct does not promote concurrency as thebody of the handshake is executed by a single process. An alternative constructmay have separate body for each procedure in the handshake in which they canuse input parameters of other procedures. There are two reasons for not choosingthis option. Firstly, for abstraction purposes, we provided the notion of permanentdata with a handshake. The user would have to worry about consistency of thisdata if concurrency was allowed within a handshake. Second, the implementationof distributed handshake would lead to many more messages than required for thecentralized execution.The handshake construct is more suitable for message-based systems. In thesesystems, it is more natural to assume that every object has its caretaker who canaccess and update its state. The caretaker of a object is modeled as the master ofthe handshake in our system. 7

3.2 Unit Speci�cationIn the example of distributed players, players may have di�erent constraints on theirsequence of games. For example, Joe may wish to play only tennis after chess. Sim-ilarly, in the example of bu�ered send, we did not specify the bu�er process. If thebu�er process allowed put-item and get-item in any order, the communication maybe faulty. The bu�er behaves correctly if it satis�es the constraint that a put-itemis always followed by a get-item and vice-versa. As a result, the sender may have towait for the receiver to read the item before it sends another item to the bu�er pro-cess. To express such constraints and therefore provide a high level synchronizationmechanism, we provide the unit construct.To describe all possible sequences of the handshake procedures, we can use aalgebra based model (e.g. regular expressions) or transition based model (e.g. �nitestate machines). The unit construct is a transition oriented model. In Appendix1, we describe an algebra based model called concurrent regular expressions. [15]describes the conversion from one form of speci�cation to the other. It can also beshown that path expressions and COSY expressions are special cases of concurrentregular expressions. The interested reader is referred to [15]. In this paper, we willrestrict the discussion to the transition oriented model.A unit is a directed graph where vertices are called places, and edges betweenthem are labeled by names of handshakes. In addition, there is a concept of tokenswhich may be thought of as residing in places. A handshake can take place only ifthere is a token in the tail vertex (source place) of the handshake. After execution,the token moves to the head vertex (destination place). Figure 4 shows the linguisticand graphical equivalent of a one-frame bu�er. The marking construct is used todescribe the number of tokens at various places. The body of a unit consists ofenumeration of all transitions in the unit. These transitions are arranged on the basisof their source places. A place name, such as avail in the above example, is followedby the description of transitions, each consisting of a handshake name followed bythe destination place.A unit also has the notion of an in�nite number of tokens which are representedby putting a * in the place. Any number of tokens can be added or removed froma *-place without changing it. Figure 5 presents the unbounded bu�er problem inConC.Figure 6 shows the linguistic and graphical equivalent of the constraints imposedby Joe. The BNF for the speci�cation of a unit is as follows:<unit-specs> ::= unit id ';' <marking> begin f <transitions> g end ';'<marking> ::= marking f '[' <placename> ':' <num> ']' g ';'<num> ::= '*' j integer<transitions> ::= placename f > transname placename ; g8

(* put-item should be followed by a get-itemunit bu�ercomm;marking [unavail:1];beginunavail> put-item avail;avail> get-item avail;end;
Figure 4: Unit Speci�cation of a One-frame bu�er(* the receiver must wait for the sender *)unit bu�ercomm;marking [unavail:*];beginunavail> put-item avail;avail> get-item unavail;end; Figure 5: An Example of the Unit Speci�cation9

unit Joecomm ;marking [bstate:1];beginbstate> chess cstate;> tennis tstate;> bridge bstate;cstate> tennis tstate;tstate> bridge bstate;end; Figure 6: Unit Speci�cation for Joe
10

As another example of these constructs, consider the mutual exclusion betweentwo processes X and Y. The entire system has four handshakes - p1in, p1out, p2in,p2out. p1in handshake requires permission from both the processes X and Y butdoes not require any parameters from process Y. In fact, the computation object ofprocess Y need not even call p1in. Therefore, we use inform clause for process Y. Thisis speci�ed in the handshake declaration of p1in. p1out, on the other hand, does notneed any coordination from the process Y. The unit construct allows p2in to happenonly if the process X is in a non-critical state. The entire speci�cation of the processX is given in Figure 7.As another example consider the problem of dining philosophers. This problem,�rst posed by Dijkstra, requires an algorithm for philosophers who are sitting on acircular table. They are �ve in number and there is a fork between every two of them.There is a bowl of spaghetti in the center which can be eaten by any philosopher butits tangled nature requires that he use both his left and right forks. A deadlock freesolution expressed in the ConC constructs is shown in Figure 8. geti;i+1 representsthat ith philosopher has taken possession of i+ 1th fork. The philosopheri does notseek possession of i + 1th fork unless he also possesses ith fork. Note the simplicityof the solution due to the availability of synchronous communication. The simplicitycomes because the complexity of implementing synchronous communication is buriedin the handshake construct. Note that if all philosophers express interest in eatingby calling the handshake geti;i+1, the underlying implementation may chose any oneof them.Having stated the solution to dining philosophers problem, we would like to verifythat our solution is indeed deadlock free. Current programming systems typically re-quire manual analysis for such questions. It is impossible to develop a programmingsystem that proves the correctness of a general program (because most interestingproperties such as termination are undecidable). Thus, proof systems for various pro-gramming languages have been developed that facilitate manual proofs of assertionson the program. On the other hand, models such as �nite state machines and Petrinets (or DPN) may be mechanically analyzable for properties (such as reachability)but do not capture all possible programs. The unit construct supports a paradigm inwhich an object has two parts: Turing-equivalent computation object and Petri-netequivalent control object.The unit construct may seem redundant to some readers. There is no analogue ofthis construct in most conventional languages such as Ada. In fact, any program thatcan be written using non-trivial unit construct can be written without the notion ofunit (i.e. allowing all possible handshakes if participants are ready). However, theprogram without unit construct have synchronization aspects of a function intermixedwith computational aspects. For example, the mutual exclusion using just rendezvousconstruct (handshake in our case) would be more di�cult to program. The unitconstruct attempts to separate concerns of computation from synchronization. Forexample, the unit construct in mutual exclusion ensures that both p1in and p2in are11

handshake p1in;procedure X.p1in();inform Y;beginend;handshake p1out;procedure X.p1out();beginend;(* communication unit for process X *)unit mutex1;marking[noncritical:1];noncritical ;> p1in critical;> p2in noncritical;critical ;> p1out noncritical ;end;(* internal computation for process X *)main()f int i;(* note that, p2in and p2out do not appear in this object *)for (i=1; i<=10; i++)f p1in();(* this is the critical region *)p1out();gg Figure 7: Mutual Exclusion Between Two Processes12

handshake geti;i+1procedure philosopheri:geti;i+1;inform philosopheri+1 ;beginend;unit philuniti;marking[neutral:1];neutral> geti;i+1 eating ;> geti�1;i waiting;eating> puti;i+1 neutral;waiting> puti�1;i neutral;end ;process philosopheri;beginif hungry then begingeti;i+1();eat();puti;i+1();end;end; Figure 8: A Solution of Dining Philosophers Problem
13

not enabled at the same time.This separation simpli�es the task of programming as the programmer can focusinitially on computational aspects without worrying about the sequences of hand-shakes that should not be allowed. For example, in case of distributed player prob-lem he can postpone the task of checking whether the players play game in the rightorder. The separation of control may help in making the computation object simplerto prove. This is in agreement of the philosophy of Unity[7]. If some safety assertioncan be shown to be true for trivial unit (a unit that allows all handshakes) then itis also going to be true when some sequences are restricted. Since handshakes mayinvolve a single process (such as p1out in mutex algorithm), the unit construct is alsouseful for sequential programming.Alternatively, the facility of unit construct can be viewed as a meta-level controlwhich ensures that the control in the computation object does not violate any globalconstraints.3.3 Guard ConstructFor selective communication, we also assume that the language has the guarded com-mand construct as proposed by Hoare for CSP. A guarded command consists of oneor more <guard, action> pairs. A guard consists of a boolean condition and option-ally a handshake. The handshake is enabled only if the boolean condition is true. Ifan enabled handshake can be executed (participating processes are willing to executethe handshake), the guard is considered true and the statement corresponding to theguard can be executed. The syntax of the guard construct is as follows:< guarded-command > ::= '[' <guard> '->' <statement > ']'<guard>:: <boolean-condition> '&' handshakeidFor an example of guard construct, consider the bu�er process which may com-municate with either the sender or the receiver. Its speci�cation is shown in Figure9.4 ImplementationEach logical process is actually composed of two real processes: computation and con-trol process. The computation process interacts with control process by two means:(1) Simple handshake call: As seen earlier the execution of a handshake may requirethe participation of multiple processes. The computation process sends an enablemessage to the control process whenever it is ready for a particular handshake andwaits for a reply from it. The control process goes through a series of protocol mes-14

process bu�er;int �ndex = 0;int bindex = 1;itemtype bu�array[SIZE];[put-item -> insert(item);�ndex = (�ndex + 1) mod SIZE;bu�array[�ndex] = item;get-item -> remove(bu�array[bindex]);bindex = (bindex + 1) mod SIZE;]end Figure 9: Speci�cation of the Bu�er Processsages with other control processes to agree on the execution of the handshake. If itsucceeds, it tells the computation process to proceed and send the relevant messageto the master of the handshake. If the handshake is not possible because one of theparticipant processes has terminated then the control process sends an error messageto the computation process.(2) Calls from Guard: Since only one handshake is allowed in every guarded state-ment, it can be always be executed if all participant processes are ready for it. Thecomputation process enables all the handshakes that are called from the conditionsof the guarded statements. It then waits for a reply from the control process. Thecontrol process sends to the computation process, the name of the handshake it hascommitted. It is the responsibility of the computation process to execute the hand-shake.4.1 Handshake ConstructFor each handshake the �rst process named is assumed to be its master. The master isresponsible for receiving the value parameters from other processes, executing the codeassociated with the handshake and shipping back the results. Slave processes sendtheir parameters and wait for the results or continue execution if they do not expectany results back. Our prototype assumes that messages do not get lost, duplicatedor corrupted. (It is the job of communication subsystem to guarantee that.)15

4.2 Unit ConstructIt is the responsibility of control object to ensure that handshakes happen only inthe sequences permitted by the unit construct. The control object, however, canexecute only those events that are enabled by the computation object. If a processwas named in the inform clause of handshake the control object can always executethat handshake. For example, X is just in inform clause of p2in and therefore theunit for process X assumes that p2in is always enabled. Otherwise, a handshakes maybe enabled by a handshake call, or from a guard construct. For example, p1in canbe executed by the unit process only if X makes a call to p1in. An example, wheremultiple handshakes may be enabled in computation object is the bu�er process inwhich both put-item and get-item are enabled on execution of the guard.A unit can execute the event if it is enabled by its computation process and itsown structure (i.e. there exists a place with one or more token which has an outgoingedge labeled with that handshake). By our de�nition of handshake all units thathave the handshake must agree on its execution. To arrive at this agreement, theunit processes go through a protocol described in [15]. The protocol ensures that ifsome handshake is executable then the system will not deadlock. It involves invitingprocesses to commit for a handshake and then committing it if all processes agree.4.3 Guard ConstructAs the computation process reaches a guard construct, it evaluates boolean conditionfor all guards. If a guard with just boolean condition is true, then the statement maybe executed, otherwise it sends enable messages for all handshakes named in guardswith their boolean condition true. On receiving the name of the handshake that wasexecuted by the unit process, the computation process can execute the correspondinghandshake and guard.5 DPN: The Underlying ModelTo de�ne a decomposed Petri net, we partition it into multiple units which share itstransitions. Each unit contains some of the places of the original Petri net. Intuitively,the decomposition is such that the tokens within a unit need to synchronize only withtokens in other units. Formally, a DPN (Decomposed Petri Net) D is a tuple (�; U)where� � = a �nite set of symbols called transition alphabet� U= set of units (U1; U2::Un) where each unit is a �ve tuple i.e. Ui = (Pi; Ci;�i; �i; Fi)where:{ Pi is a �nite set of places 16

{ Ci is an initial con�guration which is a function from the set of places tononnegative integers N and a special symbol '*'. i.e.,Ci : Pi� > (N Sf�g).The symbol '*' represents an unbounded number of tokens. A place whichhas * tokens is called a *-place.{ �i is a �nite set of transition labels s.t. �i � �.{ �i is a relation between Pi��i and Pi, i.e., �i � (Pi��i)�Pi. �i representsall transition arcs in the unit.{ Fi is a set of �nal places, Fi � Pi.The con�guration of a DPN can change when a transition is �red. A transitionwith label a is said to be enabled if for all units Ui = (Pi; Ci;�i; �i; Fi) such thata 2 �i there exists a transition (pk; a; pl) with Ci(pk) � 1. Informally, a transitiona is enabled if all the units that have a transition labeled a, have at least one placewith non-zero tokens and an outgoing edge labeled a. Thus in Figure 10, get-item isenabled only if both p4 and p5 have tokens. A transition may �re if it is enabled. The�ring will result in a new marking C 0i for all participating units, and is de�ned byC 0i(pk) = Ci(pk)� 1C 0i(pl) = Ci(pl) + 1:A *-place remains the same after addition or deletion of tokens.As an example of a DPN machine, consider the producer consumer problem. TheDPN representation for this problem is shown in Figure 10. The producer producesitems which are kept in a bu�er. The consumer takes these items from the bu�er andconsumes them. The solution requires that the consumer wait if no item exists in thebu�er. The consumer can execute get-item only if there is a token in the place p4.Note how the *-place is used to represent an unbounded number of tokens. Formally,M = (�; U) where � = f produce, put-item, get-item, consume g, U = (U1; U2; U3)where� U1 = (P1;�1; C1; �1; F1); U2 = (P2;�2; C2; �2; F2) U3 = (P3;�3; C3; �3; F3)� P1 = fp1; p2g; P2 = fp3; p4g; P3 = fp5; p6g� �1 = f produce , put-item g, �2 = f put-item , get-item g� C1 = f(p1; 1); (p2; 0)g, C2 = f(p3; �); (p4; 0)g, C3 = f(p5; 1); (p6; 0)g,� �1 = f(p1; produce; p2); (p2; put-item ; p1)g� �2 = f(p3; put-item ; p4); (p4; get-item ; p3)g� �3 = f(p5; get-item ; p6); (p6; consume; p5)g� F1 = fp1g; F2 = fp3g; F3 = fp5g 17

Figure 10: A DPN machine for Producer Consumer ProblemU1 corresponds to the producer, U2 corresponds to the bu�er and U3 to the con-sumer.The above examples illustrate the modeling power of DPN which can easily beseen to be more than �nite state machines and less than Turing machines. [15] showsthat DPN has the same theoretical modeling power as that of Petri nets[22] butit enjoys many more useful properties which facilitate speci�cation and analysis ofdistributed systems.6 Status and Future DirectionsThe current ConC system consists of two sub-systems: ConC translator, and DPNanalyzer. Conc translator generates a set of "C" processes from a ConC program.These processes communicate using the semantics of a synchronous handshake inDPN. The execution of a handshake requires synchronization between multiple pro-cesses similar to that required by a generalized CSP alternative command[4]. [15]describes an algorithm for multi-process synchronous communication. ConC Trans-lator is implemented on SUN workstations with 4.2 BSD. DPN analyzer analyzes agiven DPN for the following type of queries: Is con�guration C1 reachable? Is thereany con�guration with no exits?(potential deadlocks) It is written in Franzlisp andruns on 4.3 BSD.The proposal for the ConC is unique in that it combines aspects from diverselanguages such as CSP, Ada, SCRIPT, Path Pascal, Raddle and SA. The theorycombines aspects from algebraic theory, net theory and formal language theory. Dueto the limited experience with such constructs, we have attempted to keep them assimple as possible by retaining only the essential features. Some of the limitations ofthe current proposal and possible solutions are as follow:18

1. The current design uses explicit naming of processes in the spirit of CSP. Asfor CSP, this may prove restrictive and use of port names may be preferred.We have chosen to keep the initial prototype simple and the future design mayinclude port names.2. The current process allows only synchronous communication primitives. Asyn-chronous message passing can be speci�ed using an extra bu�er process. Wechose to keep synchronous primitives only, as reasoning with asynchronous pro-cesses is error prone and cumbersome.3. The current design also restricts the process structure to be static. This impliesthat unbounded process activation and recursive process activation is not possi-ble. This restriction is a direct consequence of our aim of keeping the constructanalyzable.4. The current design assumes an error free reliable message service. It also doesnot address the issues of process failures, reliability, exception handling andsecurity. Similarly speci�cation of priority and issues arising due to fairnessconcerns are not considered here. The notion of time is also missing in thecurrent design.7 ConclusionsThis paper presents two new constructs, handshake and unit to support distributedcomputation. The handshake construct is a multi-process generalization of the RPC.The unit construct is used to specify the possible sequences of the handshakes andtherefore provide a synchronization mechanism between multiple processes. Theseconstructs unify a large number of concepts such as semaphores, monitors, pathexpressions, input/output, remote procedure call and communication abstraction.These constructs are based on a formal model called the DPN model which is mechan-ically analyzable. The analysis can be done with respect to reachable con�gurationsof a DPN machine and the language accepted by it.8 AcknowledgementsWe are thankful to Prof. F. Bastani, Dr. Y. F. Chen, Mr. S. DeNitto, Prof. D.Ferrari, Mr. M.H. Kim, Mr. P. Leong, Mr. A. Prakash, Mr. S. Shekhar, Mr. Y.Shim, Mr. J.S. Song, Mr. J. Srivastava, Prof. C. J. Stone, Mr. W. Tai and Prof. L.Zadeh for their comments on this work. This work was in part supported by RADCunder contract 1-482427-26979 and in part by ONR under contract N00014-88-K-0408. 19

9 References1. G.R.Andrews, "The Distributed Programming Language SR - Mechanisms, designand implementation", Software Practice and Experience 12, 8 ,Aug 1982, pp 719-7542. G.R.Andrews, F.B.Schneider, "Concepts and Notations for Concurrent Program-ming", Computing Surveys, Vol. 15, No. 1, March 1983, pp 3-43.3. P. Brinch Hansen, "Distributed Processes: A concurrent Programming Concept",Comm. ACM 21, 11, Nov 1978, pp 934-941.4. G.N.Buckley, A.Silberschatz, "An E�ective Implementation for the GeneralizedInput-Output Construct of CSP", ACM transactions on programming languages andsystems (TOPLAS), April 1983.5. R.H.Campbell, A.N.Habermann, "The Speci�cation of Process Synchronizationby Path Expressions", Lecture Notes in Computer Science, vol 16, Springer Verlag,New York 1974, pp 89-102.6. R.H.Campbell, R.B.Kolstad, "Path Expressions in Pascal", Proc. 4th Interna-tional Conference on Software Engineering, Munich, IEEE New York, 1979, pp 212-219.7. K.M.Chandy and J. Misra, "Parallel Program Design", Addison-Wesley, 1988.8. A. Charlesworth, "The Multiway Rendezvous", ACM Trans. on ProgrammingLanguages and Systems, Vol 9, No.2, July 1987, pp 350-366.9. J.A.Feldman, "High Level Programming for Distributed Computing", Comm.ACM 22, 6, June 1979, pp 353-368.10. I.R.Forman, "On the Design of Large Distributed Systems", Proc. InternationalConference on Computer Languages, 1986.11. N.Francez, B.Hailpern, "Script: A Communication Abstraction Mechanism",Proc. of 2nd Symposium on Principles of Distributed Computing, 1983.12. V.K.Garg, Speci�cation and Analysis of Concurrent Systems Using the STOCSmodel, Proc. of Computer Networking Symposium, Washington D.C. 1988.13. V.K.Garg, Analysis of Distributed Systems with many Processes, InternationalConference on Distributed Computing Systems, 1988.14. V.K.Garg, C.V.Ramamoorthy, "High Level Communication Primitives for Con-current Programming", Proc. IEEE International Conference on Computer Lan-guages, Miami, Florida, 1988.15. V.K.Garg, "Speci�cation and Analysis of Distributed Systems with a Large num-ber of Processes", Ph.D. Dissertation, University of California, Berkeley, 1988.16. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Inc., Engle-wood Cli�s, New Jersey 1985.17. R.Karp, and R.Miller, "Parallel Program Schemata", RC-2053, IBM T.J. WatsonResearch Center, Yorktown Heights, New York (April 1968).18. G.J.Milne,"CIRCAL and the Representation of Communication, Concurrencyand Time," ACM TOPLAS, 7(2), pp 270-298, April 1985.19. J.G.Mitchell, W.Maybury, R.Sweet, "Mesa Language Manual, version 5.0" Rep.20

CSL-79-3, Xerox Palo Alto Research Center, April 1979.20. T. Murata, "Modeling and Analysis of Concurrent Systems", in book Handbookof Software Engineering, ed. C.R.Vick and C.V.Ramamoorthy, Publ.Van NostrandReinhold, pp 39-63, 1984.21. R.M. Needham,A.J.Herbert, "The Cambridge Distributed Computing System",Publ. Addison-Wesley Publishing Company, 1984.22. J. Peterson, Petri-Net Theory and Modeling of Systems, Prentice Hall, Inc., En-glewood Cli�s, New Jersey 1981.23. S.Ramesh, "Programming with Shared Actions: A methodology for developingDistributed Programs", Ph.D. Dissertation, IIT Bombay, India, June, 1986.24. S.Ramesh, "An E�cient Implementation of CSP with Output Guards", Proc. ofInternational Conference on Distributed Computing, 1987.25. C.A.Sunshine,"Survey of Protocol De�nition and Veri�cation Techniques", Proc.of the Computer Network Protocols Symposium, Liege, Belgium, 1978.26. R.N. Taylor, "A General-Purpose Algorithm for Analyzing Concurrent Pro-grams", Communications of the ACM, 26(5) pp 362-376, 1983.10 Appendix 1: Concurrent Regular Expres-sionsSince regular expressions specify the computation of essentially a sequential �nitestate machine, they are not very suitable for expressing the languages of the con-current systems. To specify the trace of a concurrent system, we have proposed anextension of regular expressions (r.e.) called concurrent regular expressions (c.r.e.).Recall that an r.e. over an alphabet � is de�ned as follows:1) Any a that belongs to � is an r.e.2) If A and B are r.e., then so are A.B (concatenation), A+B (or) and A* (Kleeneclosure).For example, consider two sets A and B as follows:A = fabg and B = fbagthen A+B = fab; bag; A:B = fabbag; A� = f�; ab; abab; ababab; :::ga � b + b � a; abb; ab+ ba are some other examples of regular expressions. To de�neconcurrent operations, it is especially useful to be able to specify the interleavingof two sequences. With this motivation, we de�ne a operator called interleaving,denoted by jj. For the sets A and B as de�ned above AjjB = fabba; abab; baab; babagNote that similar to AjjB, we also get a set AjjA = faabb; ababg. We denote AjjAby A(2). We use parentheses in the power to distinguish it from the traditional useof the power i.e. A2 = A:A. With this notation, it becomes useful to ask if there isan analogue of a Kleene-Closure for interleaving operator. Indeed, it is very useful to21

de�ne, what we call ��Kleene closure of a set A, denoted by A� as follows:A� = [i=0A(i)In the above example, A� = fwjw 2 (a; b)�;#a0s >= #b0s for any pre�x ,#a0s =#b0sgNote the di�erence between ordinary closure and the � closure. Also note that the �closure can not be expressed using ordinary r.e. operators.To provide synchronization, we de�ne a composition operator denoted by []. In-tuitively, this operator ensures that all events that belong to two sets occur simulta-neously. Or more formally, A[]B = fwjw=�A 2 A;w=�B 2 Bgwhere w=�A represents the string w restricted to symbols in �A.In our example, A[]B = � as there cannot be any string that satis�es event sequencesof both A and B. This corresponds to a deadlock where A waits for B to take actiona and B waits for A to take the action b. Consider another set C = facg. ThenA[]C = fabc; acbg. With these additional operators, we de�ne a concurrent regularexpressions (c.r.e.) over an alphabet � as follows:1) Any a that belongs to � is a regular expression (r.e.). If A and B are r.e., then soare A.B (concatenation), A+B (or), A* (Kleene closure).2) A regular expression is also a unit expression. If A and B are unit expressions,then so are AjjB and A�.3) if A1; A2::An are unit expressions then A1[]A2[]::[]An is a concurrent regular ex-pression.[Garg 88d] shows that there exists a 1-1 correspondence between the languageexpressible as the DPN and concurrent regular expressions.
22

