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Abstract

Designing and debugging distributed systems re-
qutres the detection of conditions across the entire
system. As an illustration, monitoring the status of
an application requires detection of termination, and
using virtual time requires the periodic calculation of
the global virtual time. The Generalized Conjunctive
Predicate (GCP) detector offers a method to derive de-
tection algorithms for these and other problems based
on optimizing the base algorithm.

1 Introduction

The problem of detecting global conditions arises in
designing, testing, and debugging of distributed sys-
tems. There have been many approaches to detecting
global conditions, or predicates, as in [1, 2, 3, 6, 9, 10,
12, 13, 17]. Some of these approaches can detect con-
ditions within channels as well as at the processes of
the system. However, these approaches either cannot
perform detection during the computation or cannot
detect a very broad range of predicates. The Gen-
eralized Conjunctive Predicate (GCP) detector algo-
rithm, introduced in [5, 4], can be used to detect the
conjunction of local and channel predicates during the
distributed computation. The approach used by the
GCP method is to collect states for which the local
process predicates are true, and then attempt to find
a group of these states which are part of a consistent
cut. Channel predicates are checked following this.

We will show that the GCP algorithm can be
thought of as a generic algorithm from which other
algorithms can be derived. This is done by optimizing
GCP according to the properties of detection prob-
lems. We will define these properties and the op-
timizations for the GCP algorithm that stem from
them. Then we will demonstrate how to derive al-
gorithms using these optimizations by applying this
approach to two specific detection problems, namely:
termination detection and channel buffer overflow.
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2 Previous work

Snapshot algorithms[l, 8] attempt to find consis-
tent cuts and then determine if the cuts satisfy the
predicate. Because of this, they are suitable only for
stable predicates. The GCP algorithm, however, can
detect stable as well as unstable predicates. GCP also
finds the earliest occurrence of such a predicate, that
is, the first consistent cut which satisfies the pred-
icate. Snapshot algorithms cannot, in general, find
the first occurrence of a predicate. Table 1 compares
the features and complexities of various detection al-
gorithms. CL[1] and M[10] are snapshot algorithms.
FRGTI3] and MC[13] detect the class of linked predi-
cates. MI[12] uses a replay method. GCKMI5] is the
GCP method.

3 The token-GCP algorithm
3.1 Notation

In this paper, we use notation of states, events, and
predicates to illustrate the concepts of GCP. A lower
case letter is used to represent a process or a chan-
nel state and an upper case letter represents a global
state, that is, a collection of one local state from every
process and the corresponding channel states between
these processes. For example, s,t, and u are local pro-
cess states, while G and H are global states or cuts.
We use LP(z), CP(y), and LP(Z) to indicate that a
local predicate is true at state z, a channel predicate
is true for channel state y, and a local predicate is true
for all local states that make up global state Z. For
channel predicates, the channel state is a sequence of
messages, belonging to any set X* (a sequence of mes-
sages). Therefore, CP : ©* — {true, false}, that is,
CP maps a sequence of messages, the channel state,
to true or false.

The ordering of local states are represented using
<, and —. If s < ¢ then s occurs before ¢ on the same
process. The relation s — ¢ holds if and only if one of
the following holds: 1) s < ¢, 2) the action following s
is the send of a message and the action preceding ¢ is
the reception of that message, 3) there exists a state
u such that s — v and u — ¢. Note that when < is
used as a relation for cuts, as in G < H, this means
that each local state in G is equal to or < the state



Predicates # of space detect msg control algorithm
detected msgs reqmnts | latency | order | tag/msg | complexity approach
/process overhead
CL[1] stable 1 & ¢ O(rn) O(m) ar FIFO o(1) O(rn) centralized
CM[2] unstable 1 & ¢ O(k™) O(k™) 0 none o(1) O(k™) centralized
FRGT[3] partially ordered 1 0 O(p) 0 none O(p) O(pm) decentralized
GWI6] unstable conj 1 O(mn) O(m) 0 none* O(n) O(nm?) centralized
M[10] stable 1 & ¢ O(rn) O(m) ar none o(1) O(rn) centralized
MI[12] unstable 1 & ¢ 0 O(m) at FIFO O(n) O(mn?)** centralized
MCJ13] linked 1 O(pn®) O(p) 0 none O(p) O(pn®) centralized
TG[17] relational 1 O(m) O(m) 0 none o(1) o(m?) decentralized
GC[4] unstable conj 1 O(mN) or | O(mn) 0 none* | O(l) or | O(mN) or | decentralized
O(mn) O(n) O(mn?)
GCKM][5] | unstable conj1 & c O(mn) O(mn) 0 none* O(n) O(mn?) decentralized

1 = local predicate
¢ = channel predicate
r = # runs of snapshot

p = size of predicate

* FIFO ordering required to central process.

t = time of program execution

k = maximum # events at a process

n = # processes within predicate
N = # processes in system
m = # send/receive events at a process

** This algorithm requires replay of execution.

Table 1: Comparison of various predicate detection schemes.

on the same process in H, and that at least one local
state in G < a state in H.

We use m,; to represent message ¢. The send
and receive events are represented by m;.send and
mg.recetve. Also, the process on which s occurs is
s.p.

3.2 Overview of the algorithm

The GCP algorithm was originally presented in [5]
which contains a centralized version of the algorithm.
The GCP algorithm in this paper is the token based
algorithm found in [4]. Token-GCP uses a token to de-
termine when all local and channel predicates are true
concurrently. The token contains a possible global cut
in which the desired predicates could be true. This
global cut contains only local states for which the local
predicates are true. If the global cut is also consistent
then all local predicates are true concurrently. If not,
the token is forwarded to any process which violates
the consistency. Once a consistent cut is found, the
channel predicates are checked. If true, then the GCP
is detected.

The channel predicates detected are within the
class called monotonic, and further divided into send
and receive monotonic predicates. A send-monotonic
channel predicate is one which, if false, cannot be
made true by sending more messages on a channel.
The predicate “the channel is empty” is an example
of a send-monotonic predicate, because sending more
messages cannot make this predicate true. A receive-
monotonic channel predicate cannot be made true by
recelving more messages from the channel.

The implementation of GCP is divided into appli-
cation and monitor portions at each process. This
is shown in figure 1. The application process checks
for local predicates and the monitor receives the token
and checks for a consistent cut and then channel pred-
icates. Figure 2 gives a high level overview showing
the application and monitor code. Note that the mon-
itor code is only activated when the token has been

received (there is only one token in GCP). Statement
GCP1 initializes the algorithm and GCP2-3 add a sent
or recelved message to message lists for the applica-
tion. GCP4 detects when the local predicate is true
since the last send or receive. When this occurs the ap-
plication process sends the message list, called a can-
didate, to the monitor, M; (GCP5). The message lists
are then cleared(GCP6). The monitor waits to receive
the GCP token and when it does, begins receiving can-
didates from the application process. GCP7 collects
information from the application about the channels
until a candidate is received with a clock later than
that of the token (GCP8). GCPY checks the token to
see if the new cut is inconsistent because of informa-
tion from another process. This is done by checking
for a token vector clock that is less than the received
candidate clock. If so, then the token is forwarded to
the monitor of that process. Otherwise, GCP10 eval-
uates channel predicates associated with process i. If
all channel predicates are true, the predicate has been
detected and GCP is set to true by GCP11.

3.3 Properties of GCP

Many of GCP’s interesting uses are characterized
by detection of channel predicates. What follows is
a list of properties inherent to different distributed

Figure 1: The application and monitor processes of



Application Process (4;): ordering independent. It should be noted that
(R2) represents a weakening of (R1) and there-

Initialize_clocks_and_vars(3); GCP1 fore, (R1) = (R2). An example of a predicate
Before send of message m to A; do which satisfies (R2) but not (R1) is “marker in
Add_send_message_in_order(z, m); GCP2 channel”.
Upon receive of message m from A; do
Add_receive_message_in_order(i, m); GCP3 e Global predicates are either stable or unstable.
Upon local predicate_true() do { GCP4 These predicates are made up of local and chan-
send (v, send list, receive list) nel predicates. The global predicate, GP(), can
to M; as candidate GCP5 be written in terms of cuts G and H. Stating that
clear_send_rcv_vars(); GCP6 GP() is stable is equivalent to establishing:
¥ GP(H) A (H <G) = GP(G) (R3)
Monitor Process (M;): e Predicates can be cut consistency independent.
. These predicates can become true in a cut with
Upon receive of token do { messages received but not sent. If G[i] represents
do { the state of process 7 at the cut G, then a consis-
receive candidate from A4, tent cut can be defined as:
Update_send _rcv_of_token(4); GCP7 . g s s .
} until candidate.v[i] > token.v[i] GCP8 C(?n51stent_cut(G) = V3,3 : Glil 7 GlJ] .
If 37 : j # i: token.v[j] < candidate.v[j] Using G and H for cuts, and then consistency
then send_token(j); GCPY independence is equivalent to:
/* Send to M;. */ JdH:CP(H) NLP(H) < 3G:CP(G)A
Else if channel predicates_true(z) GCP10 LP(G) A consistent_cut(G) (R4)
1 then GOP = true. GCPLL (R4) states that a channel and local predicate are

true for some cut H, if and only if there exists a
consistent cut, G, for which both predicates are
true. Termination detection and calculation of
global virtual time are consistency independent

v = vector clock

Figure 2: Application and monitor code at process .

problems.
] ] ] e Channel predicates can be receive monotonic or
programming problems for which the GCP algorithm send monotonic. For example, if a channel pred-
is suited. icate is receive monotonic and is true at state s,

and the messages in the channel at state s are a
prefix of the set of messages at ¢, then the predi-
cate is also true in ¢. This can be stated as:

e Channel predicates can be message content inde-
pendent. Those predicates which are independent
of message content include those that are based
on number or order of messages in a channel. C(s) A s prefix of t = C(t) (R5)

Th t tent ind dent 1 . c e .
¢ _Dproberty message comlent independent 1s An example of receive monotonicity is the chan-

equivalent to:
CP(s) A (|s|=t]) = CP(#) (RY)

where C'P is the channel predicate and s and ¢
are channel states. So, if (R1) holds, then if the
predicate is true at s and the number of messages
at t equals that at s, then the predicate is true at
t. Termination, deadlock, and buffer overflow are
problems with channel predicates that are content
independent.

Channel predicates can be message ordering in-
dependent. This property is equivalent to:

CP(s) A (s~t) = CP(¢) (R2)

where ~ is the relation “is a permutation of.” If
(R2) holds, then if a predicate is true at a state s,
and the messages at s are a permutation of mes-
sages at another state, ¢, then the predicate is true
in ¢ as well. Empty channels, and greater than %
messages in a channel are predicates which are

nel predicate “> k messages in channel.” Send
monotonicity can be written as:

C(s) A tsuflix of s = C(t) (R6)

Following the example for receive monotonicity,
“< k messages in channel” is a send monotonic
channel predicate. As mentioned earlier, the
GCP algorithm can only detect monotonic chan-
nel predicates.

3.4 Classifying detection problems

Knowledge of properties that make up a detection
problem can be exploited for optimizing the GCP al-
gorithm. For example, knowing that a problem is mes-
sage content independent and that this property im-
plies ordering independence, the GCP algorithm can
be optimized so that instead of saving messages sent
and received, only the count of messages sent and re-
celved 1s maintained. Table 2 gives the list of prop-
erties and the optimizations possible when they are
present.



Save only number
of messages

Message content independent

GCP2 =
GCP3 =

Increment_send_count()
Increment _receive_count()

Send and receive lists
not strictly ordered

Message ordering independent

GCP2 = Concatenate_send_messages
GCP3 = Concatenate_receive_messages

Global predicate stable Do not store

previous cuts

GCP7 = receive last candidate

Consistent cuts
not required

Cut consistency independent

GCP8 = } until no more
Delete GCP9
GCP10 =
GCP12 =

channel_predicates_true()
send token based on
channel predicate monotonicity.

Strictly receive monotonic Check only for receive

check for F'; removed from channel_predicates_true()

monotonicity monitor process does not evaluate to Fs
Strictly send monotonic Check only for send check for F, removed from channel predicates_true()
monotonicity monitor process does not evaluate to F..

Table 2: Optimizations for properties of predicates

The standard GCP algorithm saves messages in any
channel to message lists by concatenating. For detec-
tion problems which are message ordering indepen-
dent, any method of appending to the message lists
can be used. Generally, a method will be chosen which
is most efficient for the condition to be detected.

A look at the table shows that for monotonicity the
change to the algorithm is to remove values to which
the function channel predicates_true() can evaluate to.
This function determines whether channel predicates
are true. Any that are not are set to Fs or F. indicat-
ing that the predicate is false and is currently send-
monotonic or receive-monotonic respectively. Predi-
cates that are not strictly send or receive monotonic
can evaluate to F; or F, indicating that candidates
with more sends or receives should be considered.!

In this paper, the problems of termination detection
and channel buffer overflow are implemented. Other
detection problems for which the GCP algorithm is
suitable include global virtual time > k, system wide
deadlock, loss of token, too many marker colors, vio-
lation of FIFO, and channel underutilization.

Knowing the properties for a given problem will
allow us to optimize the GCP algorithm in each case.

4 GCP for Termination Detection

Termination detection is a standard problem in dis-
tributed computing. For this problem, an idle process
can be defined as:

A process, if idle, remains idle until it re-
celves a message. (T1)

Termination detection, then, usually involves checking
that the following holds:

! Some predicates are dynamically monotonic, that is, these
predicates can be send or receive monotonic based upon their
evaluation. For example, the predicate “the channel contains
six messages” is send-monotonic if there are greater than six
messages in the channel and receive-monotonic if there are less
than six messages.

All processes are idle and there are no mes-
sages in the channels. (T2)

It is not difficult to see that if (T1) holds and (T2)
becomes true then the system is terminated and will
remain terminated until some message is sent from
outside the system. Because of this, termination is a
stable property and satisfies (R3). The channel pred-
icate is also content, order, and can be shown to be
cut consistency independent. Obviously, detection of
empty channels only requires knowledge of the num-
ber of messages in the channel, without concern for
their order. So, (R1) is satisfied which implies (R2) as
well.

Let s;; and 7;; be the number of sends and receives
from ¢ to j respectively. Since a channel is empty when
the number of sends equals receives on that channel,

/\ 8;; = riy; <= all channels empty (1)
4,73 #]

So, to use GCP for termination detection requires that
the local and channel predicates be defined as:

ith process’s local predicate = process 7 idle
Channel ¢, j predicate = s;; = ry;

The states where s;; and r;; are measured are on
different processes. However, consistency of these
states is not a concern. Equation 1 is true indepen-
dent of whether or not these two variables are mea-
sured when processes ¢ and j are concurrent. This
is because s;; and r;; are strictly increasing. In fact,
when s;; does equal r;;, the two will be concurrent.
The GCP algorithm, though, does perform predicate
detection using consistent cuts. We will look at opti-
mizing GCP so that consistent cuts are not used.

The GCP optimization would be removal of the
check for consistency. There is, however, another im-
provement that can be made with this approach and
it involves an approach first presented by Mattern in
his vector counting algorithm [11]. Let G[é] represent
the state of P; at the cut and let:



G[z] r = # of messages rcvd by P; at the cut.
G[j]-s[i] = # of sent messages from P; to F;.
G[j]-R[j] = history of messages received at 4

from j at the cut.

G[i].S[j] = history of messages sent from j

to 7 at the cut.

A theorem can be written that relates the number
of receives at a process to the number of send to that
process.

Theorem 4.1 Given (T1) and Vi: G[i| = idle:
Vi, j: Glil.r =32, Gjl.sli] —
Vi, 7 : G[i].R[j] = G[j]-S[z]-

That s, for all i, the number of messages recorded
as received by 1 at the cut equals the sum of sends to
1 by all other processes, if and only if for all chan-
nels, the set of messages sent is equivalent to the set
of messages received (or equivalently, the channels are
empty).

Proof: See the technical report for this paper or Mat-
tern’s paper [11]. O

So, theorem 2.1 says that if V: Glilr =
>_; Glj]-s[1] is true for any cut, then the channels are
empty. In addition, Vi, 5 : G[i].R[j] = G[j].S[7] is true,
and the cut is consistent. Because of this, the require-
ment for cut consistency independence, (R4), holds for
termination detection, and in this case, G = H.

Now termination detection can be implemented
with its properties: message content, message order-
ing, and cut consistency independence. Using the op-
timization in table 2 to implement the changes associ-
ated with these properties gives the algorithm in fig-
ure 3. Note that the channel predicate on any channel
from process i to process j 1s R; = >, Skj, as de-
scribed above. The variables » and s;, as specified
above, are maintained by A;, while R; and S;; are
contained in the token.

5 GOCP for detection of channel buffer

overflow

The problem of monitoring channel buffers is to de-
tect when too many messages have been sent without
being received. The reason would be to detect a sender
that has violated the limit on the maximum number
of messages to send before an acknowledgement from
the receiver.

Note that the channel predicate is message content
and ordering independent. It is also receive monotonic
because we are detecting “#£ messages > k”. The local
predicates used here would be set to TRUE. To use
GCP requires that the local and channel predicates
be defined as:

ith process’s local predicate = TRUE

Channel ¢, j predicate = s;; —r;; > k

where s;; and r;; are send and receive counts. Un-
like termination detection, the channel predicate does

Application Process (4;):

Initialize clocks_and _vars(¢);
Before send of message m to A; do
Increment_send_count(z, 5);
/* send_count; ++ *
Upon receive of message m from A; do
Increment._receive_count(z, 7);
/* recetve_count+—+ *
Upon local predicate_true() do {
/* Is application process idle? */
send (v, all send_count;, receive_count) to
M; as candidate
clear_send_rcv_vars();
/* clear receive_count & all send_count;. */

}
Monitor Process (M;):

Upon receive of token do {

do {
receive candidate from A;
Update_send_rcv_of_token(4);
} until no more candidates;

If channel _predicates_true(z)
/* If NOT true, token sent

to another monitor. */

then GCP = true.

else send token based on channel monotonicity;

GCP at P, optimized for termination
detection

Figure 3:

require a consistent cut. This is because if inconsis-
tency were allowed, a cut may be found in which the
number of messages detected in the channel is greater
than that of any consistent cut. The inconsistent cut
shown in figure 4 detects five messages in the channel
from 7 to 7 when actually a consistent cut will record
at most three.

Because detection of channel buffer overflow is mes-
sage content and ordering independent, as well as re-
ceive monotonic, the optimizations for these can be
implemented in the GCP algorithm. Because the lo-
cal predicate is TRUE, this check is eliminated in the
GCP application code so that a candidate is sent to

S,

inconsistent cut

Figure 4: An example of an inconsistent cut which
would incorrectly detect > 3 messages.



Application Process (4;):

Initialize clocks_and _vars(¢);
Before send of message m to A; do
Increment_send_count(z, 5);
/* send_count; ++ */
Upon receive of message m from A; do
Increment_receive_count(, 5);
/* receive_count; ++ *
Upon local predicate_true() do {
/* Local predicate always true; check firstflag. */
send (v, all send_count;, all receive_count;) to
M; as candidate
clear_send_rcv_vars();
/* clear all receive_count; and send_count;. */

}
Monitor Process (M;):

Upon receive of token do {

do {
receive candidate from A;
Update_send_rcv_of_token(z);
} until candidate.v|[i] > token.v[i]

If 35 : j # 4 token.v[j] < candidate.v][j]
then send token to M;.

Else if channel predicates_true(z)
then GCP = true.

Figure b: GCP at process 7 for channel capacity usage.

the monitor after every send and receive. Implement-
ing these changes gives the algorithm in figure 5.

6 Conclusions

We have given properties of distributed detection
problems and shown how to use these properties to
optimize the GCP algorithm for distributed systems.
Therefore, GCP can be thought of as a base algorithm
from which algorithms for many standard problems
can be derived. These optimizations can be performed
for unstable as well as stable predicates, which allows
for a broader range of problems. In addition, the opti-
mized GCP algorithms will detect the first occurrence
of any predicate.
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