
Deriving Distributed Algorithms from a General PredicateDetectorJ. Roger Mitchell� Vijay K. GargyParallel and Distributed Systems Labhttp://maple.ece.utexas.eduElectrical and Computer Engineering DepartmentThe University of Texas at Austin,Austin, TX 78712AbstractDesigning and debugging distributed systems re-quires the detection of conditions across the entiresystem. As an illustration, monitoring the status ofan application requires detection of termination, andusing virtual time requires the periodic calculation ofthe global virtual time. The Generalized ConjunctivePredicate (GCP) detector o�ers a method to derive de-tection algorithms for these and other problems basedon optimizing the base algorithm.1 IntroductionThe problem of detecting global conditions arises indesigning, testing, and debugging of distributed sys-tems. There have been many approaches to detectingglobal conditions, or predicates, as in [1, 2, 3, 6, 9, 10,12, 13, 17]. Some of these approaches can detect con-ditions within channels as well as at the processes ofthe system. However, these approaches either cannotperform detection during the computation or cannotdetect a very broad range of predicates. The Gen-eralized Conjunctive Predicate (GCP) detector algo-rithm, introduced in [5, 4], can be used to detect theconjunction of local and channel predicates during thedistributed computation. The approach used by theGCP method is to collect states for which the localprocess predicates are true, and then attempt to �nda group of these states which are part of a consistentcut. Channel predicates are checked following this.We will show that the GCP algorithm can bethought of as a generic algorithm from which otheralgorithms can be derived. This is done by optimizingGCP according to the properties of detection prob-lems. We will de�ne these properties and the op-timizations for the GCP algorithm that stem fromthem. Then we will demonstrate how to derive al-gorithms using these optimizations by applying thisapproach to two speci�c detection problems, namely:termination detection and channel bu�er over
ow.�supported in part by MCD and Virginia & Ernest Cockrellfellowshipsysupported in part by the NSF Grant CCR-9110605, a TRWfaculty assistantship award, a General Motors Fellowship, andan IBM grant

2 Previous workSnapshot algorithms[1, 8] attempt to �nd consis-tent cuts and then determine if the cuts satisfy thepredicate. Because of this, they are suitable only forstable predicates. The GCP algorithm, however, candetect stable as well as unstable predicates. GCP also�nds the earliest occurrence of such a predicate, thatis, the �rst consistent cut which satis�es the pred-icate. Snapshot algorithms cannot, in general, �ndthe �rst occurrence of a predicate. Table 1 comparesthe features and complexities of various detection al-gorithms. CL[1] and M[10] are snapshot algorithms.FRGT[3] and MC[13] detect the class of linked predi-cates. MI[12] uses a replay method. GCKM[5] is theGCP method.3 The token-GCP algorithm3.1 NotationIn this paper, we use notation of states, events, andpredicates to illustrate the concepts of GCP. A lowercase letter is used to represent a process or a chan-nel state and an upper case letter represents a globalstate, that is, a collection of one local state from everyprocess and the corresponding channel states betweenthese processes. For example, s; t, and u are local pro-cess states, while G and H are global states or cuts.We use LP (x); CP (y), and LP (Z) to indicate that alocal predicate is true at state x, a channel predicateis true for channel state y, and a local predicate is truefor all local states that make up global state Z. Forchannel predicates, the channel state is a sequence ofmessages, belonging to any set �� (a sequence of mes-sages). Therefore, CP : �� ! ftrue, falseg, that is,CP maps a sequence of messages, the channel state,to true or false.The ordering of local states are represented using�, and !. If s � t then s occurs before t on the sameprocess. The relation s! t holds if and only if one ofthe following holds: 1) s � t, 2) the action following sis the send of a message and the action preceding t isthe reception of that message, 3) there exists a stateu such that s ! u and u ! t. Note that when � isused as a relation for cuts, as in G � H, this meansthat each local state in G is equal to or � the state

Predicates # of space detect msg control algorithmdetected msgs reqmnts latency order tag/msg complexity approach/process overheadCL[1] stable l & c O(rn) O(m) �r FIFO O(1) O(rn) centralizedCM[2] unstable l & c O(kn) O(kn) 0 none O(1) O(kn) centralizedFRGT[3] partially ordered l 0 O(p) 0 none O(p) O(pm) decentralizedGW[6] unstable conj l O(mn) O(m) 0 none� O(n) O(nm2) centralizedM[10] stable l & c O(rn) O(m) �r none O(1) O(rn) centralizedMI[12] unstable l & c 0 O(m) �t FIFO O(n) O(mn2)�� centralizedMC[13] linked l O(pn2) O(p) 0 none O(p) O(pn2) centralizedTG[17] relational l O(m) O(m) 0 none O(1) O(m2) decentralizedGC[4] unstable conj l O(mN) or O(mn) 0 none� O(1) or O(mN) or decentralizedO(mn) O(n) O(mn2)GCKM[5] unstable conj l & c O(mn) O(mn) 0 none� O(n) O(mn2) decentralizedl = local predicate t = time of program execution n = # processes within predicatec = channel predicate p = size of predicate N = # processes in systemr = # runs of snapshot k = maximum # events at a process m = # send/receive events at a process� FIFO ordering required to central process. �� This algorithm requires replay of execution.Table 1: Comparison of various predicate detection schemes.on the same process in H, and that at least one localstate in G � a state in H.We use mi to represent message i. The sendand receive events are represented by mi:send andmi:receive. Also, the process on which s occurs iss:p.3.2 Overview of the algorithmThe GCP algorithm was originally presented in [5]which contains a centralized version of the algorithm.The GCP algorithm in this paper is the token basedalgorithm found in [4]. Token-GCP uses a token to de-termine when all local and channel predicates are trueconcurrently. The token contains a possible global cutin which the desired predicates could be true. Thisglobal cut contains only local states for which the localpredicates are true. If the global cut is also consistentthen all local predicates are true concurrently. If not,the token is forwarded to any process which violatesthe consistency. Once a consistent cut is found, thechannel predicates are checked. If true, then the GCPis detected.The channel predicates detected are within theclass called monotonic, and further divided into sendand receive monotonic predicates. A send-monotonicchannel predicate is one which, if false, cannot bemade true by sending more messages on a channel.The predicate \the channel is empty" is an exampleof a send-monotonic predicate, because sending moremessages cannot make this predicate true. A receive-monotonic channel predicate cannot be made true byreceiving more messages from the channel.The implementation of GCP is divided into appli-cation and monitor portions at each process. Thisis shown in �gure 1. The application process checksfor local predicates and the monitor receives the tokenand checks for a consistent cut and then channel pred-icates. Figure 2 gives a high level overview showingthe application and monitor code. Note that the mon-itor code is only activated when the token has been

received (there is only one token in GCP). StatementGCP1 initializes the algorithm and GCP2-3 add a sentor received message to message lists for the applica-tion. GCP4 detects when the local predicate is truesince the last send or receive. When this occurs the ap-plication process sends the message list, called a can-didate, to the monitor,Mi (GCP5). The message listsare then cleared(GCP6). The monitor waits to receivethe GCP token and when it does, begins receiving can-didates from the application process. GCP7 collectsinformation from the application about the channelsuntil a candidate is received with a clock later thanthat of the token (GCP8). GCP9 checks the token tosee if the new cut is inconsistent because of informa-tion from another process. This is done by checkingfor a token vector clock that is less than the receivedcandidate clock. If so, then the token is forwarded tothe monitor of that process. Otherwise, GCP10 eval-uates channel predicates associated with process i. Ifall channel predicates are true, the predicate has beendetected and GCP is set to true by GCP11.3.3 Properties of GCPMany of GCP's interesting uses are characterizedby detection of channel predicates. What follows isa list of properties inherent to di�erent distributed
CandidatesApplication

Monitor

Process j:

CandidatesApplication

Monitor

Process i:

TokenFigure 1: The application and monitor processes ofGCP.

Application Process (Ai):Initialize clocks and vars(i); GCP1Before send of message m to Aj doAdd send message in order(i;m); GCP2Upon receive of message m from Aj doAdd receive message in order(i;m); GCP3Upon local predicate true() do f GCP4send (v, send list, receive list)to Mi as candidate GCP5clear send rcv vars(); GCP6gMonitor Process (Mi):Upon receive of token do fdo freceive candidate from AiUpdate send rcv of token(i); GCP7g until candidate.v[i] > token.v[i] GCP8If 9j : j 6= i: token.v[j] < candidate.v[j]then send token(j); GCP9/* Send to Mj . */Else if channel predicates true(i) GCP10then GCP = true. GCP11gv = vector clockFigure 2: Application and monitor code at process i.programming problems for which the GCP algorithmis suited.� Channel predicates can be message content inde-pendent. Those predicates which are independentof message content include those that are basedon number or order of messages in a channel.The property message content independent isequivalent to:CP (s) ^ (js j = j t j)) CP (t) (R1)where CP is the channel predicate and s and tare channel states. So, if (R1) holds, then if thepredicate is true at s and the number of messagesat t equals that at s, then the predicate is true att. Termination, deadlock, and bu�er over
ow areproblems with channel predicates that are contentindependent.� Channel predicates can be message ordering in-dependent. This property is equivalent to:CP (s) ^ (s � t)) CP (t) (R2)where � is the relation \is a permutation of." If(R2) holds, then if a predicate is true at a state s,and the messages at s are a permutation of mes-sages at another state, t, then the predicate is truein t as well. Empty channels, and greater than kmessages in a channel are predicates which are

ordering independent. It should be noted that(R2) represents a weakening of (R1) and there-fore, (R1)) (R2). An example of a predicatewhich satis�es (R2) but not (R1) is \marker inchannel".� Global predicates are either stable or unstable.These predicates are made up of local and chan-nel predicates. The global predicate, GP (), canbe written in terms of cuts G andH. Stating thatGP () is stable is equivalent to establishing:GP (H) ^ (H � G)) GP (G) (R3)� Predicates can be cut consistency independent.These predicates can become true in a cut withmessages received but not sent. If G[i] representsthe state of process i at the cut G, then a consis-tent cut can be de�ned as:consistent cut(G) � 8i; j : G[i] 6! G[j]Using G and H for cuts, and then consistencyindependence is equivalent to:9H : CP (H) ^ LP (H) () 9G : CP (G)^LP (G) ^ consistent cut(G) (R4)(R4) states that a channel and local predicate aretrue for some cut H, if and only if there exists aconsistent cut, G, for which both predicates aretrue. Termination detection and calculation ofglobal virtual time are consistency independentproblems.� Channel predicates can be receive monotonic orsend monotonic. For example, if a channel pred-icate is receive monotonic and is true at state s,and the messages in the channel at state s are apre�x of the set of messages at t, then the predi-cate is also true in t. This can be stated as:C(s) ^ s pre�x of t) C(t) (R5)An example of receive monotonicity is the chan-nel predicate \> k messages in channel." Sendmonotonicity can be written as:C(s) ^ t su�x of s) C(t) (R6)Following the example for receive monotonicity,\< k messages in channel" is a send monotonicchannel predicate. As mentioned earlier, theGCP algorithm can only detect monotonic chan-nel predicates.3.4 Classifying detection problemsKnowledge of properties that make up a detectionproblem can be exploited for optimizing the GCP al-gorithm. For example, knowing that a problem is mes-sage content independent and that this property im-plies ordering independence, the GCP algorithm canbe optimized so that instead of saving messages sentand received, only the count of messages sent and re-ceived is maintained. Table 2 gives the list of prop-erties and the optimizations possible when they arepresent.

Message content independent Save only number GCP2 = Increment send count()of messages GCP3 = Increment receive count()Message ordering independent Send and receive lists GCP2 = Concatenate send messagesnot strictly ordered GCP3 = Concatenate receive messagesGlobal predicate stable Do not store GCP7 = receive last candidateprevious cutsCut consistency independent Consistent cuts GCP8 = g until no morenot required Delete GCP9GCP10 = channel predicates true()GCP12 = send token based onchannel predicate monotonicity.Strictly receive monotonic Check only for receive check for Fs removed from channel predicates true()monotonicity monitor process does not evaluate to FsStrictly send monotonic Check only for send check for Fr removed from channel predicates true()monotonicity monitor process does not evaluate to FrTable 2: Optimizations for properties of predicatesThe standard GCP algorithm saves messages in anychannel to message lists by concatenating. For detec-tion problems which are message ordering indepen-dent, any method of appending to the message listscan be used. Generally, a method will be chosen whichis most e�cient for the condition to be detected.A look at the table shows that for monotonicity thechange to the algorithm is to remove values to whichthe function channel predicates true() can evaluate to.This function determines whether channel predicatesare true. Any that are not are set to Fs or Fr indicat-ing that the predicate is false and is currently send-monotonic or receive-monotonic respectively. Predi-cates that are not strictly send or receive monotoniccan evaluate to Fs or Fr indicating that candidateswith more sends or receives should be considered.1In this paper, the problems of termination detectionand channel bu�er over
ow are implemented. Otherdetection problems for which the GCP algorithm issuitable include global virtual time > k, system widedeadlock, loss of token, too many marker colors, vio-lation of FIFO, and channel underutilization.Knowing the properties for a given problem willallow us to optimize the GCP algorithm in each case.4 GCP for Termination DetectionTermination detection is a standard problem in dis-tributed computing. For this problem, an idle processcan be de�ned as:A process, if idle, remains idle until it re-ceives a message. (T1)Termination detection, then, usually involves checkingthat the following holds:1Some predicates are dynamically monotonic, that is, thesepredicates can be send or receive monotonic based upon theirevaluation. For example, the predicate \the channel containssix messages" is send-monotonic if there are greater than sixmessages in the channel and receive-monotonic if there are lessthan six messages.

All processes are idle and there are no mes-sages in the channels. (T2)It is not di�cult to see that if (T1) holds and (T2)becomes true then the system is terminated and willremain terminated until some message is sent fromoutside the system. Because of this, termination is astable property and satis�es (R3). The channel pred-icate is also content, order, and can be shown to becut consistency independent. Obviously, detection ofempty channels only requires knowledge of the num-ber of messages in the channel, without concern fortheir order. So, (R1) is satis�ed which implies (R2) aswell.Let sij and rij be the number of sends and receivesfrom i to j respectively. Since a channel is empty whenthe number of sends equals receives on that channel,^i;j:i 6=j sij = rij () all channels empty (1)So, to use GCP for termination detection requires thatthe local and channel predicates be de�ned as:ith process's local predicate � process i idleChannel i; j predicate � sij = rijThe states where sij and rij are measured are ondi�erent processes. However, consistency of thesestates is not a concern. Equation 1 is true indepen-dent of whether or not these two variables are mea-sured when processes i and j are concurrent. Thisis because sij and rij are strictly increasing. In fact,when sij does equal rij, the two will be concurrent.The GCP algorithm, though, does perform predicatedetection using consistent cuts. We will look at opti-mizing GCP so that consistent cuts are not used.The GCP optimization would be removal of thecheck for consistency. There is, however, another im-provement that can be made with this approach andit involves an approach �rst presented by Mattern inhis vector counting algorithm [11]. Let G[i] representthe state of Pi at the cut and let:

G[i]:r = # of messages rcvd by Pi at the cut.G[j]:s[i] = # of sent messages from Pj to Pi.G[j]:R[j] = history of messages received at ifrom j at the cut.G[i]:S[j] = history of messages sent from jto i at the cut.A theorem can be written that relates the numberof receives at a process to the number of send to thatprocess.Theorem 4.1 Given (T1) and 8i : G[i] = idle:8i; j : G[i]:r =Pj G[j]:s[i] ()8i; j : G[i]:R[j] = G[j]:S[i]:That is, for all i, the number of messages recordedas received by i at the cut equals the sum of sends toi by all other processes, if and only if for all chan-nels, the set of messages sent is equivalent to the setof messages received (or equivalently, the channels areempty).Proof: See the technical report for this paper or Mat-tern's paper [11]. 2So, theorem 2.1 says that if 8i : G[i]:r =Pj G[j]:s[i] is true for any cut, then the channels areempty. In addition, 8i; j : G[i]:R[j] = G[j]:S[i] is true,and the cut is consistent. Because of this, the require-ment for cut consistency independence, (R4), holds fortermination detection, and in this case, G = H.Now termination detection can be implementedwith its properties: message content, message order-ing, and cut consistency independence. Using the op-timization in table 2 to implement the changes associ-ated with these properties gives the algorithm in �g-ure 3. Note that the channel predicate on any channelfrom process i to process j is Rj = Pk Skj , as de-scribed above. The variables r and sj , as speci�edabove, are maintained by Ai, while Rj and Sij arecontained in the token.5 GCP for detection of channel bu�erover
owThe problem of monitoring channel bu�ers is to de-tect when too many messages have been sent withoutbeing received. The reason would be to detect a senderthat has violated the limit on the maximum numberof messages to send before an acknowledgement fromthe receiver.Note that the channel predicate is message contentand ordering independent. It is also receive monotonicbecause we are detecting \#messages > k". The localpredicates used here would be set to TRUE. To useGCP requires that the local and channel predicatesbe de�ned as:ith process's local predicate � TRUEChannel i; j predicate � sij � rij > kwhere sij and rij are send and receive counts. Un-like termination detection, the channel predicate does

Application Process (Ai):Initialize clocks and vars(i);Before send of message m to Aj doIncrement send count(i, j);/* send countj++ */Upon receive of message m from Aj doIncrement receive count(i, j);/* receive count++ */Upon local predicate true() do f/* Is application process idle? */send (v, all send countj, receive count) toMi as candidateclear send rcv vars();/* clear receive count & all send countj . */gMonitor Process (Mi):Upon receive of token do fdo freceive candidate from AiUpdate send rcv of token(i);g until no more candidates;If channel predicates true(i)/* If NOT true, token sentto another monitor. */then GCP = true.else send token based on channel monotonicity;gFigure 3: GCP at Pi optimized for terminationdetectionrequire a consistent cut. This is because if inconsis-tency were allowed, a cut may be found in which thenumber of messages detected in the channel is greaterthan that of any consistent cut. The inconsistent cutshown in �gure 4 detects �ve messages in the channelfrom i to j when actually a consistent cut will recordat most three.Because detection of channel bu�er over
ow is mes-sage content and ordering independent, as well as re-ceive monotonic, the optimizations for these can beimplemented in the GCP algorithm. Because the lo-cal predicate is TRUE, this check is eliminated in theGCP application code so that a candidate is sent to
ack

j

i

ack
ack

inconsistent cutFigure 4: An example of an inconsistent cut whichwould incorrectly detect > 3 messages.

Application Process (Ai):Initialize clocks and vars(i);Before send of message m to Aj doIncrement send count(i, j);/* send countj++ */Upon receive of message m from Aj doIncrement receive count(i, j);/* receive counti++ */Upon local predicate true() do f/* Local predicate always true; check �rst
ag. */send (v, all send countj , all receive countj) toMi as candidateclear send rcv vars();/* clear all receive countj and send countj . */gMonitor Process (Mi):Upon receive of token do fdo freceive candidate from AiUpdate send rcv of token(i);g until candidate.v[i] > token.v[i]If 9j : j 6= i: token.v[j] < candidate.v[j]then send token to Mj .Else if channel predicates true(i)then GCP = true.gFigure 5: GCP at process i for channel capacity usage.the monitor after every send and receive. Implement-ing these changes gives the algorithm in �gure 5.6 ConclusionsWe have given properties of distributed detectionproblems and shown how to use these properties tooptimize the GCP algorithm for distributed systems.Therefore, GCP can be thought of as a base algorithmfrom which algorithms for many standard problemscan be derived. These optimizations can be performedfor unstable as well as stable predicates, which allowsfor a broader range of problems. In addition, the opti-mized GCP algorithms will detect the �rst occurrenceof any predicate.References[1] K. Chandy, and L. Lamport, \Distributed Snap-shots: Determining Global States of DistributedSystems," ACM Transactions on Computer Sys-tems, Vol. 3, No 1, pp 63-75, February, 1985.[2] R. Cooper and K. Marzullo, \Consistent De-tection of Global Predicates," Proc. of theACM/ONR Workshop on Parallel and Dis-tributed Debugging, Santa Cruz, California, pp.163 { 173, May 1991.[3] E. Fromentin, M. Raynal, V. K. Garg, and A.Tomlinson, \On the Fly Testing of Regular Pat-terns in Distributed Computations," Proceedings

of the 23rd Int. Conference on Parallel Process-ing, Pennsylvania State University, August 1994.[4] V. K. Garg, C. Chase, \Distributed Algorithmsfor Detecting Conjunctive Predicates," TechnicalReport ECE-PDS-1994-003, ECE Dept, Univer-sity of Texas at Austin, 1994.[5] V. K. Garg, C. Chase, R. Kilgore, J. R. Mitchell,\Detecting Conjunctive Channel Predicates ina Distributed Programming Environment," Pro-ceedings of the Hawaii International Conferenceon System Sciences, Maui, Hawaii, Vol 2, January1995, pp. 232-241.[6] V. K. Garg, and B. Waldecker, \Detection ofWeak Unstable Predicates in Distributed Pro-grams," IEEE Transactions on Parallel and Dis-tributed Systems, Vol. 5, No. 3, March 1994, pp.299-307.[7] L. Lamport, \Time, Clocks, and the Orderingof Events in a Distributed System," Communi-cations of the ACM, vol. 21, no. 7, pp. 558-565,July 1978.[8] T. H. Lai, T. H. Yang, \On Distributed Snap-shots," Global States and Time in DistributedSystems, pp. 23-26, IEEE Computer SocietyPress, Los Alamitos, CA 1994.[9] L. Lamport, \Time, Clocks, and the Orderingof Events in a Distributed System," Communi-cations of the ACM, vol. 21, no. 7, pp. 558-565,July 1978.[10] F. Mattern, \Virtual time and global states ofdistributed systems," Parallel and Distributed Al-gorithms: Proceedings of the International Work-shop on Parallel and Distributed Algorithms, El-sevier Science Publishers B. V., 1989, pp. 215{226.[11] F. Mattern, \Algorithms for distributed termi-nation detection," Distributed Computing, 2:161-175, 1987.[12] Y. Manabe, and M. Imase, \Global Conditionsin Debugging Distributed Programs," Journal ofParallel and Distributed Computing, Vol. 15, pp.62-69, 1992.[13] B. P. Miller and J. Choi, \Breakpoints and Halt-ing in Distributed Programs," Proceedings ofthe 8th International Conference on DistributedComputing Systems, San Jose, California, June1988, pp. 316{323.[14] J. Misra, \Detecting Termination of DistributedComputation Using Markers," Proc. of the 2ndannual ACM Symposium on Principles of DC ,Aug, 1983, pp. 290-294.[15] R. Schwartz and F. Mattern, \Detecting CausalRelationships in Distributed Computations: InSearch of the Holy Grail," SFB124-15/92, De-partment of Computer Science, University ofKaiserslautern, Germany, December 1992.[16] M. Spezialetti and P. Kearns, \E�cient Dis-tributed Snapshots," Proceedings of the 6th In-ternational Conference on Distributed ComputingSystems,, 1986, pp. 382-388.[17] A.I. Tomlinson and V. K. Garg, \Detecting Re-lational Global Predicates in Distributed Sys-tems," Proc. 3rd ACM/ONR Workshop on Par-allel and Distributed Debugging, San Diego, Cal-ifornia, May 1993, pp. 21{31.

