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Abstract The second approach to global predicate detection is
based on the construction of the lattice of global states.
Observation of global properties of a distributed program This approach, first presented by Cooper and Marzullo [6],
is required in many applications such as debugging of pro- allows user to detect unstable predicates. However, given
grams and fault-tolerance in distributed systems. | preaen processes each with*relevant” local states, their approach
survey of algorithms for observing various classes of globa requires exploring) (k™) possible global states in the worst
properties. These properties include those possibly tnue i case.
a computation, definitely true in a computation and those  The third approach is based on exploiting the structure
based on the control flow structure of the computation. of the predicatey [13]. This approach, instead of building
the lattice, directly uses the computation to deduce if
became true. The emphasis of this approach is to develop
practical algorithms albeit for special classes of prewisa
In this paper, we present a survey of algorithms that use this
approach.
One of the fundamental problems in development of dis-
tributed software is that no process has access to th_e globad  our Model
state. Consequently, computation of any global predicate o
a function requires a non-trivial programming effort. For
example, consider a distributed debugging system. The de
tection of global predicate arises in implementing the most
basic command of a debugging system:“stop the program
when the predicate is true.” To stop the program, it is
necessary to detect the predicatea non-trivial task ifg

1 Introduction

We assume a loosely-coupled message-passing system
without any shared memory or a global clock. A distributed
program consists aV processes denoted By, P,....Py}
communicating via asynchronous messages. In this paper,
we will be concerned with a single run of a distributed pro-
gram. We assume that no messages are altered or spuriously

requires access to the global state. _ introduced. We do not make any assumptions about FIFO
There have been three approaches in solving the detecy ot re of the channels.

tion of global predicat_es. The first approach is based onthe 5 |ocal stateis the value of all program variables and
global snapshotalgorithm by Chandy and Lamport[3, 2, 21]. hrocessor registers (including the program counter) for a
Their approach requires repeated computation of consl;|stensing|e process. The execution of a process can be viewed

global shapshots of the _computation till the desired pred- ;¢ 5 sequence of local states. We use a causally precedes
icate becomes true. This approach works only for Stablerelation, . between states similar to that of Lamport's

predicates, that is, predicates which do not turn fa_lse ONncecaysally precedes relation between events [17]. This and
they become true. Some examples of stable predicates argner notation used in the paper is summarized in Figure 1.
deadlock and termination. Once a system has terminated Tp¢ causally precedes relation between two staasd

it will stay terminated. The desired predicajemay not  ; can pe formally stated as: — ¢ iff s occurs before in the
be stable and may turn true only between two SUCCessVegame process, or the action followiaig a send of a message

snapshots. and the action precedingis a receive of that message, or
*supported in part by the NSF Grants ECS-9414780, CCR-932054 there exisis a state such thak causally precedes aqdu
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P, Process the problem of detectingossibly ¢ is NP-complete. The

s,tu local states proof of NP-completeness of this problem first presented
G global state in [4] is as follows. The problem is in NP, since a non-
l; local predicate deterministic Turing machine can guess the global state and
— causally precedes relation then verify thatg is indeed true in that global state. To see

I concurrency relation NP-hardness, consider the satisfiability problem on baplea
possibly: (I3 A...l,)  weak conjunctive predicate variableszy, =2, ..., z,,. By defining each process to host a
definitely: (la A ...1,)  strong conjunctive predicate single variable which takes value false and true in two state

n number of conjuncts it is easy to see that a given boolean expresgimtrue iff

m messages per process possibly ¢ is true in the computation.

Even though the problem is NP-complete for general
boolean expressions, there exist efficient algorithmsder s
eral classes af which occur in practice. In this section, we
s. A cutis a collection of local states such that exactly Survey classes gfforwhich efficientalgorithms are known.
one state is included from each process. A cut is called
a consistent cubr a global stateif all states are pairwise 3.1 Conjunctive Predicates
concurrent. The set of all global states form a lattice [19].

A local predicateis defined as any boolean-valued for- A weak conjunctive predicate (WCP) is of the form
mula on alocal state. For any proceB, a local predicate  ,,,55ibly © (I3 Alp A ... A l,,) where each; is a predi-
is written asl;. A process can obviously detect a local cate Iocal to a single process. For example, suppose we
predicate on its own. are developing a mutual exclusion algorithm between two

We categorize the properties that we survey in this pa- processes. Lef'S; represent the local predicate that the
per into three classes. The first class of predicates ar@ofth yrocessp; is in the critical section. Then, the WCP for-

form possibly ¢ whereg is any predipate dgfined (.)n.asingle mula possibly : (CS1 A CS,) represents any possibility
global state [6]. The predicafossibly ¢ is true if in the  of yiolation of mutual exclusion for a particular run. As
lattice of global states there is a path from the initial glbb  another example, leRead; (Write;) denote thatP; has
state to the final global state in whighis true in some inter- 5 yead lock (write lock resp.) on a shared data item.
mediate state. The second class of predicates are of the formrnen, possibly : Ready A Write, represents the condi-
definitely ¢. The predicatelefinitely ¢ is true ifg becomes  {jon that P, has a read lock and concurrents has a
true in all paths from the initial state to the final state ia th \yrjte |ock. Note that the interpretation of conjunction is
lattice of global statesPossibly ¢ anddefinitely g roughly  not with respect to time, but with respect to causality. That
correspond to weak and strong predicates in [13]. Possi-is 10ssibly : Read, A Write, may be true even if there is
bly true predicates are useful for detecting bad conditions g jnstant of time in whichP; has the read lock anB, has
such as violation of mutual exclusion, whereas definitely the write lock. An advantage of this interpretation is that
true predicates are useful to verify occurrence of good-pred \wcp algorithms detect even those conditions which may
icates such as commit point on transaction systems. Thenot manifest themselves in a particular execution, but tvhic
third class includes poset bz_;tsed preqllcates that require mo \yoyld show up with different processing speeds. For exam-
than one global state_forthelrevaluat|0n. An gxampl_e isase ple, in a distributed mutual exclusion algorithm it may be
quence of local predicatés — I — ...1,. This predicate  possible that two processes do not access the criticalmegio
is true in an execution if and only if there exists a sequence simyltaneouslgven if they both had permission to enter the
oflocal statess, so, ..., s, sequenced by Lamport's causally  critical regionconcurrently WCP algorithms will detect
precedes relation such thatis true in the local state; for such a scenario.

1 <@ < n. This type of predicate cannot be evaluated on  prom the definitionpossibly : (I Ala A ... Aly) is true

an individual global state. We discuss each of these classes there exists a consistent cut in which all local predisate

next. are true. There can be two approaches to detect a WCP.
We could form consistent cuts and check whetfigra

3 Possibly True Predicates ... Aly) is true in that cut. Alternatively, we could piece
together local states in which the local predicates are true

In a distributed computatiorpossibly ¢ is true if and and check whether the global state so formed is consistent.

only if there exists a consistent global state in whjéhtrue. The second approach has the advantage that it needs to

The method of constructing all global states is, however, examine only those local states in which local predicates ar

prohibitively expensive for most applications. Even when true. Therefore, we follow the second approach.

is a boolean expression, and processes do not communicate, In the second approach of predicate detection, there are

Figure 1. Notation



two main difficulties for efficient detection. First, the&abt  The above algorithm requires the checker process to keep
number of local states in which the local predicate is trug ma queues of vectors for all processes. This may impose unrea-
be quite large. Second, there is a combinatorial explosionsonable space and time requirements for some applications.
if we construct all possible global states by piecing togeth We now discuss a decentralized algorithm first presented in
all local states. For example, even if we have only two states[10]. With each application process, we use a monitor pro-
from each ofu processes, there aré possible global states.  cessM; that maintains the queue of local snapshot®of

We solve the first problem by observing that if two local Further, instead of a checker process, this algorithm uses a
states say andt on the same process are separated only token which carries in it the candidate global state and in-
by internal events, then they are indistinguishable to othe formation sufficient to determine if the global state sagisfi
processes so far as consistency is concerned. That is, ithe WCP. That s, the token contains two vectors. The first
u is a local state on some other process, thga if and vector is labeleds. This vector defines the current candi-
only if ¢|lu. Thus, it is sufficient to consider at most one date cut. IfG[i] has the valué;, then statek from process
local state between two external events. A slightly more P; is part of the current candidate cut. Note that all states
detailed argument shows that it is sufficient to consider at on the candidate cut satisfy local predicates. However, the
most one local state between two send events [13]. Thisstates may not be mutually concurrent (i.e. the candidate cu
observation leads to a significant reduction in complexity may not be a consistent cut). The token is initialized with
since we expect the total number of external events to beVi : G[i] = 0.
much less than the total number of events in a process. The second vector is labeledlor, wherecolor[i] in-

We now turn our attention to the problem of combina- dicates the color for the candidate state from application
torial explosion. Assume that we are considering a global processP;. The color of a state can be either red or green.
state G formed by collecting one local state from each pro- If color[i] = red then the staté&/[i] and all its predecessors
cess. IfG is consistent, we are done. Otherwise, there existhave been eliminated and can never satisfy the WCP. If
s,t € G such thats — t. A crucial observation is that color[i] = green, then there is no state ifi such that7[i]

s — t implies that not onlyG' is inconsistent but also all causally precedes that state. The token is initialized with
global states which include statend any stata following Yi : color[i] = red.

t are inconsistent. In other words, we can eliminate state  The token is sent to monitor procedd; only when

s from our consideration altogether. The only thing that color[i] = red. When it receives the toker/; waits to
remains is the ability to determine whether» ¢. Butthis  receive a new candidate state frdfpnand then checks for
can be easily accomplished using vector clocks [8, 19].  violations of consistency conditions with this new candi-

We are now ready to present a centralized algorithm, adate. This activity is repeated until the candidate stade di
token-based decentralized algorithm and a completely dis-not causally precede any other state on the candidateeut (.
tributed algorithm to detect WCP. the candidate can be labeled green). N&xtexamines the
Centralized Algorithm token to see if any other states violate concurrency. Ifdgin

The centralized algorithm for WCP [13] requires every pro- any j such thatG/[j] causally precedeS[:], then it makes
cess to send its vector clock to a centralized checker psoces color[j] red. Finally, if all states it are green, that i& is
whenever its local predicate becomes true for the first time consistent, thed/; has detected the WCP. Otherwisé;
between two external events by that process. Assumingsendsthetokentoaprocess whose coloris red. Note thatthe
that a process sends or receives at mosnessages, the token can start on any process. Since the entire color vector
checker process will receive at most: such vectors. We is initialized to I’ed, it must eVentUa”y visit eVery pI’OSGH

will assume that the checker process receives vectors from€ast once.

any process in a FIFO order and stores them in a queue. This algorithm require$)(n?m) total work andO (nm)

The checker process can then simply check whether all vecwork per process where: is the number of messages sent
tors at the head of the queue are incomparable. If they areor received by any process ands the number of processes
the checker process has succeeded in finding a consistertver which the predicate is defined.

cut. Otherwise, the checker process can discard any vector One drawback of the single-token WCP detection algo-
which is found to be smaller than some other vector. Sincerithm is that it has no concurrency — a monitor process is
it takes at most comparisons before a vector is discarded active only if it has the token. We can increase the paral-
and there are at mostn vectors, this algorithm requires lelism in the algorithm by using multiple tokens in the sys-
O(n®m) comparisons to determine if the WCP was true in tem. For this we partition the set of monitor processes into
that run. Further, [13] shows that any algorithm based on groups and use one token-algorithm for each group. Once
comparing vector clocks requires at le@tn?m) compar- there are no longer any red states from processes within the
isons. group, the token is returned to a pre-determined procegs (sa
Token-based decentralized Algorithm Py). WhenP, has received all the tokens, it merges the in-



formation in the tokens to identify a new global cut. Some denote the sequence of all messages received at or before
processes may not satisfy the consistency condition fer thi statet from i to j. Channels have no memory. Hence, the
new cut. If so, a token is sent into each group containing state of a channel is the difference between the set of mes-
such a process. sages sent and the set of messages received. A channel pred-
Distributed Algorithm icate can then be written ashanp(s.Sent[j] — t.Revd[i]).
An even more parallel algorithm can be used as follows. A global predicate formed by the conjunction of local pred-
As in the token based algorithm, each process maintains itgcates and channel predicates is called a Generalized Con-
gueue of local snapshots. Each procBsattempts to color  junctive Predicate (GCP). An example of a GCP is: “all
itself green as follows. Let the local snapshot at the head ofprocesses are passive and all channels are empty,”.
its queue be. The predecessor of this state on any process  We now discuss a centralized algorithm for channel pred-
P; can be determined from the vector clock at the state icates [11]. The key to making our algorithm efficient is to
To color itself green, the process sends mat messages  restrict the channel predicates to a class which welicall
containings.v[j] to all processes’;. On receiving a red  ear. A channel predicate is linear if given any channel state,
message witlk, P; needs to discard all local snapshots in in which the predicate is false, then either sending more
which its local state is less than or equaktoThe algorithm messages without receiving any message is guaranteed to
implicitly terminates when all processes are green andther leave the predicate false, or receiving more messages with-
are no red messages in transit. The termination can beout sending any messages is guaranteed to leave the predi-
detected by any termination detection algorithm such as [7] cate false. For example, consider the condition “the chianne

If the global predicate involves local predicates from all is empty.” If this condition is false, that is, more mes-
processes, then direct dependences instead of vector clockages have been sent than received, it cannot be made true
can be used. This is because a cut which consists of allby sending more messages. As another example, consider
processes in the system is consistent if and only if there isthe predicate, “The channel contains exactly 5 messages”.
no message which is received in the cut but not sent. Thiswhen the channel contains less than 5 messages, receiving
is not true when the cut does not contain all processes -more messages will not make the predicate true. If there
there may be indirect causal precedence between two stateare more than 5 messages in the channel, then sending more
in the cut which goes through a process outside the cut. Itmessages cannot make the predicate true. The channel pred-
is easy to adapt the centralized algorithm, the token basedcate, “the channel has an even number of messages” is not
algorithm, or distributed algorithm to use direct deperen linear. Most channel predicates used in practice are linear
instead of vector clocks [10]. Linearity is an important key to efficient detection of

Another optimization that can be applied to these algo- channel predicates. In any global state in which the préglica
rithms is due to [15]. By piggybacking informationrequired s false, we can be certain of at least one process which
for WCP detection (such asd messages in the distributed must make further progress before the channel predicate
algorithm) with the application messages, one can com-can become true. Furthermore, it can be shown that the first
pletely avoid using any extra messages for predicate detecglobal state satisfying a GCP can be well defined only when

tion. The reader is referred to [15] for detalils. channel predicates are linear [11].
Distributed algorithms for evaluation of global predicate e first discuss a centralized algorithm to detect a GCP.
are also discussed in [25, 18]. The work of detection of the GCP is divided among checker
and non-checker processes. The non-checker processes are
3.2 Channel Predicates used in the computation and have local predicates and chan-

nels with predicates. The checker process is the proceiss tha

Many properties in distributed systems such as termina-determines if these predicates are true in the same global
tion detection and bounding of global virtual time are based state.
on the state of message channels. Therefore, they are not The non-checker processes monitor local predicates.
suitable for specification via weak conjunctive predicates These processes also maintain information about the send
which are based on states of processes only. Conjunctiveand receive channel history for all channels incident tathe
channel predicates are an extension of weak conjunctivethat is, connections to all processes for which they can send
predicates to include states of message channels. or receive messages. The non-checker processes send a

A channel predicatés any boolean function of the state message to the checker process whenever the local predi-
of a channel. We define a channel to be a uni-directional cate becomes true for the first time since the last program
connection between two processes — one process performmessage was sent or received. This message is called a local
all send events and the other all receive events s bedt be snapshot and is of the fornfvector, incsend, increcwhere
states af’; andP;. Lets.Sent[j] denote the sequence ofall vector is the current vector timestamp whilecsend and
messages sent at or before stafeom i to j, andt. Revd]i] increcv are the list of messages sent to and received from



other non-checker processes since the last message fer predt may suffice to deal with the number of messages rather
icate detection was sent. than message themselves.

The checker process is responsible for searching for a
consistent cut that satisfies the GCP. Its pursuit of this cut3.3 Relational Predicates
can be most easily described as considering a sequence of
candidate cuts. If the candidate cut either is not a coniste So far, we have discussed only those predicates which

cut, or does not satisfy some term of the GCP (local predicatecap pe written as boolean expression of local predicates.
ora channel predicate), the checker can efficiently eliteina  Now consider the predicate; + 2 +. ..+ zn < k) Where
one of the states along the cut. The eliminated state cam NeVe, s are variables on different processes arig a constant.

be part of a consistent cut that satisfies the GCP. The checkefs predicate callectlational predicatecannot be written
can then advance the cut by considering the successor to ongg 5conciseboolean expression of local predicates.

of the eliminated states on the cut. If the checkerfindsacut pgjational predicates are useful for detecting global con-
for which no state can be eliminated, then that cut satisfiesjitions such as loss of tokens and violations of a limited
the GCP and the detection algorithm halts. resource. For example, consider a system in which there
The algorithm can also be decentralized based on ideasgre k; tokens indicating availability of: resources. lfr;
discussed for WCP algorithm. For example, we briefly genotesthe number of tokens at procBsghenY_. z; < k
discuss a decentralized algorithm based on the idea of gndicates loss of one or more tokens. As another example,
token. Each process is responsible for keeping its queueconsider a server which can handle at mbstonnections
of local snapshots. As in the WCP algorithm, the token at a time. Client processé$ have variables; which indi-
moves from one process to another till a consistent cut iscates the number of connections it has with the server. The
found. Each processis also responsible for checking Channepredicate(zi x; > k) indicates a potential error.

the sender to do so, the receiver for any channel sends thezYEl + &2 + ... + @, < k), can be stated formally as:

list of messages (or the list of message sequence numbers
_received along the channel upto the state which is indic_ated 3G : consistertts) : Z sim; < k
in the token. The sender evaluates the channel predicate
only when it has received this list from the receiver. If any
channel predicate is found false, then either the sender or We now discuss an algorithm first presented in [4]. We
the receiver can be colored red. The GCP is detected bydetect this predicate by computing
the token if all states in its cut are green. A more detailed
description of this algorithm and its proof of correctneas c minG : consisterti?) : Z 8.
be found in [11]. e

We note here that if a predicate is stable, then either the ) )
approach outlined above, or Chandy and Lamport's algo- @nd then comparing this value to the constant
rithm can be used for predicate detection. We now argue We transform the poset into a flow graph such that the
that even for stable predicates it is advantageous to use théhax-flow in the graph is equal to the min-value of the poset.
general algorithm shown here. First, in many applications The resulting flow graph is obtained as follows. The vertex
(such as debugging), it is desirable to compute the leastset of the graph includes all local states and two additional
global state which satisfies some given predicate. The snaphodes called source and sink. The edge set is given below.
shot algorithms cannot be used for this purpose. Second,
the snapshot algorithm may result in excessive overhead
depending upon the frequency of snapshots. A process in
Chandy and Lamport’s algorithm is forced to take a local
shapshot upon receiving a marker even if it knows that the
global snapshot that includes its local snapshot cannet sat
isfy the predicate being detected. For example, suppose tha
the property being detected is termination. Clearly, ife-pr
cess is not terminated then the entire system could not have
terminated. In this case, computation of the global snapsho

s;€G

e First, we add edges from te®urceto all initial states
s with the capacity.

e Forany two statesandt such thak immediately pre-
cedesd, we add an edge between them with capacity
S.T.

e We add edges from all final statego thesink with
the capacity.z.

is a wasted effort. e For any two states andt such that a message is sent
We also note here that the algorithm for GCP can be immediately afters which is received before, we
optimized by exploiting specific properties of the channel first identify the successor tg says’. We then add

predicate. Forexample, to check whether a channelis empty an edge front to s’ with capacityco.



Note that the cut off has finite value if and only if the cut  containings. We calls a forbidden state 7. It is easy to
is a consistent cut . We relate a cut in the flow graphto  see that weak conjunctive predicates are linear. Lineafity

a cut in the poset as follows: If edgeconnects vertices a predicate can be exploited for a simple detection algorith
andt in G, and ife is part of the cut of flow graplt, then If the predicate is false along a cut, then at least one siate i
the state correspondingads part of the cut in posef. The that cut is forbidden and can be discarded.

min-value of a posef is equal to the min cut of its flow In another approach, Stoller and Schneider [22] combine
graphG. Garg and Waldecker's algorithm with that of Cooper and

Based on the above result, a checker based algorithm cafmMarzullo to detect predicates of the form
be devised as follows. First, the sequence of states from
each process is reduced by replacing the subsequence of Aj @i (@1, -wk), 1)
states between any two message events with a single state.

The value ofz; for this new state is defined as the minimum Where®() is a predicate with variables;;, from different
of ; over the original states. Second, each process locallyProcesses. Thati®() is a predicate made up of conditions

maintains the direct dependence relation for each statsh Ea spread across multiple processes. An example of a predicate

process creates a local snapshot for every state, congisgtin - '" t,h's form 'S(_xl = x2) A (x3 > 1), whereuy, -y Lq A
the value ofz; and the direct dependence information. The variables on different processes. For any predicate defined

local snapshots are sent to a checker process which forms theSind équation 1, they defindized sets the set of variables
flow-graph. The checker then runs a max-flow algorithm to such that on fixing these variables, the predicate reduces to

find the min cut. Ifthis value is less thanthen the bounded 2 WCP. In our example, if we fix; = 4 andzs = 6_’ we
sum predicate is detected. get(4 = z2) A (x3 > 6) which a WCP. By evaluating all

There are other approaches possible for relational predi-WC,P prec_iicqtes obtained b.y _using all _possible values of the
cates. In [24], we discuss relational global predicatestvhi variables in fixed set, the original predicate can be detiecte

have the form{z1+xz2 > k), wherez; andz; are integer val-
ues at processdy andP in a system ofV processes. The 4 Definitely True Predicates
algorithm is fully decentralized, runs concurrently witret
target program, uses constant size message tags (four inte- We now discuss detection of predicates of the form
gers), and generates one debug message for each message#efinitely ¢. Intuitively, definitely ¢ is true wheng is
ceived byP; andP,. The results have been generalized to an true for all possible observations of that execution. We wil
algebra D, %, x) where % and are binary operatorsindo-  restrict our attention to strong conjunctive predicateSR$
mainD, % is commutative, associative and idempotent, and in which g of the formi; Alo A. . . 1,,. For example, suppose
* distributes over %. In this algebra we can calculate value we were testing a commit protocol. L&eady; denote the
of the expressiofw; %v; %...%wv,,) where{vy, vz, ...v;,, } is local predicate that the process is ready to commit. If
the set which contains the valuemfx z, in each consistent  the transaction was committed, then for all possible obser-
cut. Forexample ifD, %, ) = (Integersmin, +) thenwe  vations, there was a certain point in the execution when all
could calculate the minimum value of + z, over all global processes were ready to commit. By detecting the SCP for-
states. muladefinitely (Ready; A Readys . . . A Ready,,) existence
In [24], we present another special case of relational pred-of such a point can be verified. The key concept in detecting

icates. Here we assume thatare boolean variables. Such SCP’s is that of overlapping intervals. Latandl, be two
predicates are useful, for example, in detecting violatibn  sequences of contiguous states such that local predigates
k-mutual exclusion. In this case, even though the predicateandi, are true inl; and I, respectively. We say thdi and
r1 + 22.. + T, > k can be written as a disjunction of con- 1, overlap if the lower end point af; causally precedes the
junctive predicates, it is not efficient to do so since theee a  higher endpoint off, and vice-versa. An important result

Z conjuncts in the boolean expression. Our algorithm is is that the SCP is true iff there exist intervals in which loca
predicates are true such that any pair of these intervals ove
lap. The proof of this result can be found in [14]. Based on
this condition, algorithms to detect SCP can be developed
in a manner similar to detection of WCP.

based on finding an anti-chain of sizén the poset of states
in which the boolean predicate is true.

3.4 General Possibly true Predicates

The concept ofinearity of channel predicates has been 5 Poset based Predicates
generalized to apply for any general predicate in [4]. A
predicate is defined to be linear if its falsehood onany dloba  The predicates we have discussed so far are based on
stateG implies that there exists at least one staite G such formulas defined on a single cut. Informally, these pred-
that the predicate is also false for any global stte> G icates capture violation of safety properties. Many useful



properties require evaluation of formulas on a sequence of Regular patterns can be extended to include patterns on

cuts. rooted directed acyclic graphs (dag) which are subposets
of the original poset. A linear sequence of states is a spe-
5.1 Sequences of Local Predicates cial case of a rooted dag, hence regular patterns are a bpecia

case of regular dag patterns. Many program behaviors which
could be easily described by regular dag patterns cannot be
described with existing mechanisms. This is true even for
fundamental behaviors such as data scattering, data €ollec
tion, and barrier synchronization. Moreover, detection of
rooted dag patterns is inherently efficient due to the struc-
tural similarities between the specified dag pattern and the

[16] extended the sequence of local predicates tatbmic . .
. . program under test. An algorithm for detecting dag patterns
sequence of local predicatesn this class, occurrences of .
can be found in [12].

local predicates can be forbidden between adjacent predi-
cates in a sequence of local predicates. The example give .
above for linked predicates could be expanded to include:%'2 Poset Logic
“local predicater; never occurs in between local predicates ) ) ) )
I; andl;,+". Each local predicate can belong to a different So far we have discussed predicates which are either
process in the computation. This can be further generalized?@5€d on a single global state or a sequence of local states.

to detect interval-constrained sequencegiobalpredicates ~ Chiou and Korfhage [5] discuss a method of combining
as shown in [1]. This approach, however, requires traversalconcurrency with sequencing. This has been generalized to
of the lattice of the global states. a recursive logic called RCL in [23]. A formula in RCL

The work on sequence of predicates has also been geni-S evaluated on a poset. One can think of a formula as a
eralized to detect any regular pattern of local predicates boolean f_unct|on whose argument is a.pOSEt' The rules for
[12]. A regular pattern is defined as a regular expres- corys?r_uctmgwellformedformulasare given by the syntacti
sion of local predicates. For exampleg*r is true in a definitions shown below:
computation if there exists a sequence of consecutive local

An early work in this area is by Miller and Choi who
discuss detection of a sequence of local predicates [20]. An
example is a predicale — [, that becomes true when there
are two states; ands; such that; is true in states, > is
true in states, ands; — s2. Hurfin, Plouzeau and Raynal

states(si, sz, ..., s,) such thatp is true insy, ¢ is true in f o= S|fAf
$2,...,8,_1, andr is true ins,,. Note that the states in the
sequence need not belong to the same process — two states S = g1 9(N)S | (NS

are consecutive if they are adjacent in the same process or
one sends a message and the other receives it.
The algorithm for detecting regular patterns is very ef-

ficient. First the regular expression is converted into a de- £ is a conjunction of these sequences. The sympolsid

terministic finite state machine. Assume that thererare : .
states in the state machine. To avoid any confusion we refer<<>> are used for weak and strong sequencing respectively.

to the states of the distributed computation as local states A cut g weakly precedes if 't. lies in the 03“53' past of
this section. Now with each local stateve keep a boolean h. A cutg strongly precedes iff every state ing causally
bit string X [1..m] such thatX[i] is 1 iff the stateX[i] can precides every St‘;ﬂﬁ‘“ ded it has the 1

be reached by traversing a sequence of local states that ends When 'S is fully expanded, 'Itt aswrt] € orrll”n
in s. Observe that it is sufficient to give the update rules for 9£)9(f)g .- ..g(f>g (ora sequencr(]e W I«)gc'n en Zuc
X because if any of the final stafé[i] becomes 1, then the a sequence s true on a poset, then epaorresponas o

o an antichain. The regions in between these antichains are
regular pattern has been detected. The boolean s¥ifip . .
. Lo . . subposets upon which thfes in the sequence are evaluated.
is easy to obtain given the boolean strings for its predexess

states. For example, it [i] is true in the predecessor local An efficient algorithm to detect any formula in RCL is given

state, local predicatg is true in the current local state and in [23]

the finite state machine moves from stéf¢i] to X[j] on o o ]

label p, then X [j] is set to 1 in the current local state. To 6 Applications to distributed debugging

ensure that any local state has accesX tof predecessor

local states, the bit strings are piggybacked with messages The debugging of a program generally consists of two
Thus, this algorithm detects a regular pattern with no addi- steps: stopping the program when an unexpected condition
tional messages. Existing messages are tagged with a fixethappens, and then inspecting the program state. When the
number of bits independent of the number of processes inprogram is distributed, the debugger should be able to de-
the system. tect the global condition. Most algorithms described i thi

The basic component of a formula is a weak conjunctive
predicate which is represented by the terminal symjpol
The symbolS is a sequence of WCP formulas. The symbol
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