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Abstract. Correct distributed programs are hard to write. Not
surprisingly, distributed systems are especially vulnerable to
software faults. Testing and debugging is an important way to
improve the reliability of distributed systems.A distributed de-
bugger equipped with the mechanism to re-execute the traced
computation in a controlled fashion can greatly facilitate the
detection and localization of bugs. This approach gives rise to
a general problem of predicate control, which takes a com-
putation and a safety property specified on the computation
as inputs, and produces a controlled computation, with added
synchronization, that maintains the given safety property as
output. We devise efficient control algorithms for two classes
of useful predicates, namely region predicates and disjunc-
tive predicates. For the former, we prove that the control al-
gorithm is optimal in the sense that it guarantees maximum
concurrency possible in the controlled computation. For the
latter, we prove that our control algorithm generates the least
number of synchronization dependencies and therefore has
optimal message-complexity. Furthermore, we provide a nec-
essary and sufficient condition under which it is possible to
efficiently compute a minimal controlling synchronization for
a general predicate. We also give an algorithm to compute such
a synchronization under the condition provided.

Keywords: Distributed system – Debugging – Software-fault
tolerance – Controlled re-execution – Predicate control

1 Introduction

Inherent non-determinism in distributed programs and pres-
ence of multiple threads of control makes it difficult to write
correct distributed software. Not surprisingly, distributed sys-
tems are especially vulnerable to software faults. Dealing with
software faults requires efforts at multiple levels [22]. Early
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9988225, Texas Education Board Grant ARP-320, an Engineering
Foundation Fellowship, and an IBM grant.

in the software cycle, design methodologies, technologies and
techniques that are aimed at preventing the introduction of
faults into the design can be used (fault prevention). Later, the
implementation can be verified using testing, and the faults
thereby exposed can be removed using debugging (fault re-
moval). In spite of extensive testing and debugging, software
faults may persist even in production quality software. Fault
tolerance can be used as an extra layer of protection to provide
acceptable level of performance and safety at runtime after a
fault becomes active.

Testing and debugging has been widely used for develop-
ing traditional sequential programs. Testing involves executing
the program for a specific input sequence and then validat-
ing the output obtained with respect to the given safety and
liveness properties. On discovering a fault in the computation
during testing phase, the next step is to analyze the computa-
tion to locate the source of the fault using debugging. While
the skill and intuition of the programmer play an important
role in debugging, tools that provide an effective environment
for debugging are indispensable. For example, suppose test-
ing detects a violation of safety property in an execution of a
distributed program. Then a programmer can gain consider-
able insight into the bug that caused the violation by learning
whether the violation occurs irrespective of the order in which
events are executed. In that case, the bug cannot be fixed by
adding or removing synchronization alone. On the other hand,
if it is possible to eliminate all violations (of safety property) by
adding synchronization to the computation, without creating
a deadlock, then too little synchronization is likely to be the
problem. Furthermore, the knowledge of the exact synchro-
nization needed to maintain a safety property can facilitate
the localization of the bug in the program. The problem of
finding a synchronization required to maintain a safety prop-
erty in a computation is referred to as the predicate control
problem [20].

Informally, given a distributed computation and a global
predicate, if it is possible to maintain the predicate, without
violating liveness, by adding synchronization (one or more
synchronization dependencies) to the computation, then the
global predicate is controllable in the distributed computa-
tion. A synchronization dependency involves adding an arrow
from one process execution to another which ensures that the
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Fig. 1. a A computation, and b a controlled computation

execution after the head of the arrow can proceed only after
the execution before the tail has completed; it can be realized
using a control message. We believe that a distributed debug-
ger equipped with predicate control mechanism can prove to
be a valuable tool for a programmer.

Example 1 Figure 1 depicts a computation involving two pro-
cesses, namely p1 and p2. Processes p1 and p2 host boolean
variables x1 and x2 respectively. In the figure circles denote
events; a circle is coloured black if the relevant variable evalu-
ates to true for the corresponding event (e.g., a, c, d). Suppose
the safety property is x1 ∨ x2. Clearly, the consistent cut X
does not satisfy x1 ∨ x2. However, on adding a synchroniza-
tion dependency from event c to event e, it can be ensured that
the predicate x1 ∨ x2 is never falsified. ��
Predicate control has applications in the area of software-fault
tolerance [21] as well. It has been observed that many software
failures, especially those caused by synchronization faults, are
transient in nature and may not recur when the program is re-
executed with the same inputs.A common approach to achiev-
ing software-fault tolerance is based on simply rolling back
the processes to a previous state and then restarting them in
the hope that the transient failure will not recur in the new exe-
cution [6,23]. Methods based on this approach rely on chance
to recover from a transient software failure. However, it is
possible to do better in the special case of synchronization
faults. Instead of leaving the recovery to chance, controlled
re-execution of the traced computation can be used to ensure
that the transient synchronization failure does not occur. A
study by Tarafdar [19] indicates that controlled re-execution
is an effective and desirable method for tolerating race faults.

The research in distributed debugging has focused on
mainly two problems: detecting bugs in a distributed compu-
tation (e.g., [1–3,7,17,18]) and replaying the traced computa-
tion [9,11,14]. In contrast, our approach focuses on adding a
control mechanism to a debugger to allow computations to be
run under added synchronization to satisfy safety constraints.
The predicate control problem was first defined by Tarafdar
and Garg in [20]. They prove that the problem is NP-complete
in general. However, they solve the problem efficiently for
classes of disjunctive predicates and mutual exclusion predi-
cates [20,21]. Besides their work, there is another study [12]
that focuses on controlling global predicates within the class
of conditional elementary restrictions. Unlike our model of a
distributed system, the model in [12] uses an off-line specifi-
cation of pair-wise mutually exclusive states and does not use
causality. Our contributions in this paper are as follows:

• We identify a class of useful global predicates, called re-
gion predicates, for which efficient control algorithms can

be provided. Roughly speaking, a region predicate divides
the state-space of a computation into regions satisfying
two properties. Firstly, the set of consistent cuts that “lie”
in a region forms a lattice. Secondly, each region is convex.
Some examples of region predicates include “conjunction
of local predicates” and “all processes are approximately
synchronized”.

• We present an efficient algorithm to compute the synchro-
nization required to control a region predicate in a com-
putation. We further demonstrate that the synchronization
generated by our algorithm is optimal in the sense that it
eliminates all unsafe executions and no safe execution is
suppressed, thereby guaranteeing maximum concurrency
possible in the controlled computation. The time- and
message-complexities of the algorithm are O(n|E|2) and
O(n|E|), respectively, where n is the number of processes
and E is the set of events in the computation.

• We introduce the notion of admissible sequence of events
and establish that existence of such a sequence is a neces-
sary and sufficient condition for controllability of a predi-
cate in a computation.An admissible sequence gives a total
order on some subset of events in the computation such that
the sequence satisfies four simple properties, which are de-
fined later in the paper. Intuitively, executing the events in
the order specified by the sequence ensures that the given
predicate is never falsified in the computation.

• Using the notion of admissible sequence, we give an
efficient control algorithm for a disjunctive predicate.
The time- and message-complexities of the algorithm are
O(n|T | + |E|) and O(|T |), respectively, where n is the
number of processes, E is the set of events, and T is the set
of true-intervals in the computation. The complexities are
identical to that of Tarafdar and Garg’s algorithm [20]. We
further modify the algorithm to generate a controlling syn-
chronization with the least number of synchronization de-
pendencies, that is, with the optimal message-complexity.
We believe that our approach is more general and can be
extended to find a control strategy for other classes of pred-
icates as well.

• Finally, we provide a necessary and sufficient condition
under which it is possible to efficiently compute a min-
imal controlling synchronization for a general predicate.
We also give an efficient algorithm to compute such a syn-
chronization under the condition provided.

The paper is organized as follows. Section 2 presents our
system model and the notation used in this paper. We define
the problem formally in Sect. 3. In Sect. 4, we introduce the
class of region predicates, provide an efficient algorithm for
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their control, and prove the optimality of the controlling syn-
chronization produced. In Sect. 5, we define the notion of ad-
missible sequence, using which we give an efficient algorithm
for controlling a disjunctive predicate. We further modify the
algorithm to generate a minimum controlling synchronization.
For a general predicate satisfying certain condition, we pro-
vide an efficient algorithm to compute a minimal controlling
synchronization in Sect. 6. Finally, Sect. 7 concludes the paper
and presents directions for future research.

2 Model and notation

In this section we formally describe the model and notation
used in this paper. Our model is based on the Lamport’s
happened-before model [10].

2.1 Distributed computations

We assume an asynchronous distributed system with the set
of processes P = {p1, p2, . . . , pn}. Each process executes
a predefined program. Processes do not share any clock or
memory; they communicate and synchronize with each other
by sending messages over a set of channels. We assume that
channels are reliable, that is, messages are not lost, altered or
spuriously introduced into a channel. We do not assume FIFO
channels.

A local computation of a process is given by a sequence
of events that transforms the initial state of the process into
a final state. At each step, the local state is captured by the
initial state together with the (sub)sequence of events that have
been executed up to that step. Each event is either an internal
event or an external event. An external event could be a send
event or a receive event or both. An event causes the local
state of a process to be updated. Additionally, a send event
causes a message or a set of messages to be sent and a receive
event causes a message or a set of messages to be received. We
assume the presence of fictitious initial events on each process
pi, denoted by ⊥i. The initial event occurs before any other
event on the process and initializes the state of that process.
We denote the last event on process pi, called the final event,
by �i. Let ⊥ and � denote the set of all initial events and final
events, respectively.

Let proc(e) denote the process on which event e occurs.
The predecessor and successor events of e on proc(e) are
denoted by pred(e) and succ(e), respectively, if they exist.
Observe that an initial event does not have a predecessor and
a final event does not have a successor.

We model a distributed computation (or simply a compu-
tation) by an irreflexive partial order on a set of events. We
use 〈E, →〉 to denote a distributed computation with the set of
events E and the partial order →. The partial order → is given
by the Lamport’s happened-before relation (or causality rela-
tion) [10] which is defined as the smallest transitive relation
satisfying the following properties:

1. if events e and f occur on the same process, and e occurred
before f in real time then e happened-before f , and

2. if events e and f correspond to the send and receive, re-
spectively, of a message then e happened-before f .

a b c d
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Fig. 2. An example of a computation

Given a computation 〈E, →〉, we denote the order in which
events are executed on processes by

P→ which is referred to as
process order. Note that the projection of

P→ onto the events
of any single process is a total order. The reflexive closure
of an irreflexive partial order � is represented by � and its
transitive closure is denoted by �+. A run or interleaving of
a computation 〈E, →〉 is some total order on events E that is
consistent with the partial order →. The following example
illustrates the various concepts.

Example 2 Figure 2 depicts a distributed computation involv-
ing two processes, namely p1 and p2. The local computation
of each process advances from left to right as shown in the
figure. The circles represent events and the arrows denote
messages. The local computation of p1 is given by the
sequence a b c d. The event b is a send event, the event f
is a receive event and the event d is an internal event. Here,
⊥1 = a and ⊥2 = e whereas �1 = c and �2 = h. Also,
proc(b) = p1, pred(b) = a and succ(e) = c. The set of events
E = {a, b, c, d, e, f, g, h} and the happened-before order
→ = {(a, b), (b, c), (c, d), (e, f), (f, g), (g, h), (b, f), (g, c)}+.
The process order

P→ is given by {(a, b), (b, c),
(c, d), (e, f), (f, g), (g, h)}+. Finally, a e bfg h c d is a
run of the computation. ��

2.2 Cuts, consistent cuts and frontiers

The state of a distributed system, called the global state, is
given by the collective state of processes. The equivalent no-
tion based on events is called cut and is defined as a subset
of events containing all initial events such that it contains an
event only if its predecessor, if it exists, also belongs to the
subset. Formally,

C is a cut

�
(⊥ ⊆ C) ∧ 〈∀ e : e ∈ C : e /∈ ⊥ ⇒ pred(e) ∈ C〉

The frontier of a cut C is defined as the set of those events
in C whose successors are not in C. Formally,

frontier(C) � { e ∈ C | e /∈ � ⇒ succ(e) /∈ C }
We say that a cut passes through an event if the event is

included in its frontier. Not every cut can occur during sys-
tem execution. A cut is said to be consistent if it contains an
event only if it also contains all events that happened-before
it. Formally,
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C is a consistent cut

�
(C is a cut) ∧ 〈∀ e, f : e → f : f ∈ C ⇒ e ∈ C〉

In particular, only those cuts which are consistent can pos-
sibly occur during an execution. Lastly, two events are consis-
tent if there exists a consistent cut that passes through both the
events, otherwise they are inconsistent. It can be verified that
events e and f are inconsistent if and only if either succ(e)→f
or succ(f) → e. The next example illustrates the various con-
cepts.

Example 3 Consider the computation in Fig. 2. The cut
C = {a, e, f} and D = {a, b, e, f, g}. The cut D is con-
sistent whereas C is not. Here, frontier(C) = {a, f} and
frontier(D) = {b, g}. The events b and f are consistent
whereas events a and f are not. ��

2.3 Global predicates

A global predicate (or simply a predicate) is defined as a
boolean-valued function on variables of processes. Given a
consistent cut, a predicate is evaluated with respect to the state
resulting after executing all events in the cut. If a predicate b
evaluates to true for a consistent cut C, we say that “C satis-
fies b” and denote it by C |= b. A global predicate is local
if it depends on variables of a single process. Note that it is
possible to evaluate a local predicate with respect to an event
on the appropriate process. In case the predicate evaluates to
true, the event is called a true event; otherwise, it is called a
false event. We use e |= b to denote the fact that the event e
satisfies the local predicate b.

A run is called safe with respect to a predicate if every
consistent cut of the run satisfies the predicate; otherwise, the
run is unsafe.

3 Problem statement

We say that two relations R and S interfere if R ∪ S contains
a cycle; otherwise they do not interfere. Now, intuitively, a
predicate is controllable in a computation if it is possible to
make the computation “stricter” such that every consistent
cut of the resulting computation satisfies the predicate. More
precisely, a predicate b is controllable in a computation 〈E, →〉
if there exists a set of synchronization dependencies

S→ such
that (1)

S→ does not interfere with →, that is, (→ ∪ S→) is
acyclic, and (2) every consistent cut of 〈E, �〉, where �=

(→ ∪ S→)
+

, satisfies b [20]. We call the synchronization
S→ as

a controlling synchronization and the computation 〈E, �〉 as
the controlled computation. It can be verified that a predicate
is controllable in a computation if and only if there exists a
safe run of the computation with respect to the predicate [20].
Note that a synchronization dependency from an event e to
an event f means that f cannot be executed until e has been
executed and can be implemented using a control message.

We say that a predicate is invariant in a computation if the
predicate evaluates to true for every consistent cut of the com-
putation. Given a predicate b and a computation 〈E, →〉, we
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Fig. 3. An example of a p-region predicate

use 〈E, →〉 |= controllable :b to denote the fact that b is con-
trollable in 〈E, →〉. The expression 〈E, →〉 |= invariant : b
can be similarly interpreted. Note that the problem of evaluat-
ing controllable : b is only concerned with answering whether
there exists a controlling synchronization for b and not with
actually finding one, in case it exists.

Remark 1 Some of the proofs in this paper are presented in
calculational style often used by Dijkstra in his proofs. As
such, in order to prove a statement of the form “If A holds then
B holds”, sometimes, starting from B, we provide a series of
steps leading up to A; every pair of consecutive steps C and
D either satisfies C ≡ D (read as “C is equivalent to D”) or C
⇐ D (read as “C follows from D”). The latter, in turn, means
that D ⇒ C (read as “D implies C”). ��

4 Controlling region predicates

In this section, we first define the class of region predicates.
We then present an efficient algorithm to compute the synchro-
nization required to control a region predicate in a computa-
tion. We further demonstrate that the synchronization gener-
ated by our algorithm is optimal in the sense that it eliminates
all unsafe executions and no safe execution is suppressed,
thereby guaranteeing maximum concurrency possible in the
controlled computation.

We first define a region predicate with respect to a process,
called p-region predicate. Informally, a p-region predicate par-
titions the set of consistent cuts satisfying the predicate into
a set of regions, one for each event on process p, satisfying
certain properties. Firstly, the set of consistent cuts that “lie”
in a region forms a lattice. In other words, given two con-
sistent cuts that belong to the region, the cuts given by set
intersection and set union also belong to the region. Secondly,
each region is convex1. In other words, a consistent cut that
“lies” between two consistent cuts contained in the region also
belongs to the region. The following example illustrates the
concept of p-region predicate.

Example 4 Consider a distributed computation shown in
Fig. 3 in which processes execute a sequence of (asyn-
chronous) rounds, and the predicate “processes p1 and p2 are

1 Mathematically, a region R is said to be convex if given two
points x and y in R, every point that lies between x and y also
belongs to R. For instance, sphere is convex but donut is not.
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approximately synchronized”. The predicate can be expressed
mathematically as |round1 − round2| � ∆12 with ∆12 set
to 1. Consider the event e on p2 depicted in the figure. Im-
mediately after executing e, the value of round2 is 3. Since
round1 is monotonically non-decreasing, there exist earliest
and latest events on p1, in this case f and u, respectively, such
that the predicate holds. Furthermore, the predicate holds for
every event on p1 that lies between f and u. The region corre-
sponding to e (the shaded area resembling the cross-section of
an hourglass in the figure) is bounded on the left by the least
consistent cut passing through e and f and on the right by the
greatest consistent cut passing through e and u. The consistent
cut C lies in the region whereas the consistent cut D does not.
It can be verified that the region is actually convex and the set
of consistent cuts that belong to the region forms a lattice. ��

A p-region predicate is formally defined as follows:

Definition 1 (p-region predicate) A predicate b is a p-region
predicate if it satisfies the following properties. For each event
e on process p,

• (weak lattice) If two consistent cuts that pass through e
satisfy the predicate then so do the consistent cuts given
by their set intersection and set union. Formally,

(e ∈ frontier(C1) ∩ frontier(C2))∧
(C1 |= b) ∧ (C2 |= b)

⇒
(C1 ∩ C2 |= b) ∧ (C1 ∪ C2 |= b)

• (weak convexity) If two consistent cuts that pass through
e satisfy the predicate then so does the consistent cut that
lies between the two. Formally,

(e ∈ frontier(C1) ∩ frontier(C2)))∧
(C1 |= b) ∧ (C2 |= b) ∧ (C1 ⊆ C ⊆ C2)

⇒
C |= b

We call the two properties “weak” because they are only
satisfied by those consistent cuts that satisfy the predicate and
pass through a given event, and not by all consistent cuts
that satisfy the predicate. (Specifically, the first property is a
weaker version of the property described in [13], namely that
the set of consistent cuts forms a lattice.) Some examples of
pi-region predicates encountered in distributed systems are as
follows:

• any local predicate on pi

• “bounded” number of messages in transit from pi to pj :
sendij − recvij � ∆ij

• “almost” fair resource allocation between pi and pj , when
the system is heavily loaded: |alloci − allocj | � ∆ij

• “bounded” drift between the clocks of pi and pj : |clocki −
clockj | � ∆ij

• pi and pj are “approximately” synchronized: |roundi −
roundj | � ∆ij

• xi < min{yj , yk}, where xi, yj and zk are variables on
pi, pj and pk, respectively, with yj and yk monotonically
non-decreasing.
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Fig. 4. An example to illustrate a non-region predicate

Given two p-region predicates, their conjunction is also a
p-region predicate as established by the next theorem.

Theorem 1 The class of p-region predicates is closed under
conjunction.

The proof of the theorem can be found in the appendix. A
region predicate is a conjunction of p-region predicates with
possibly different p’s. It can be verified that the predicate rep-
resenting termination is actually a region predicate. We next
give an example of a predicate that is not a region predicate.

Example 5 Consider the computation shown in Fig. 4 and the
predicate x1 ∨x2. As shown, X and Z are two consistent cuts
satisfying x1 ∨x2 that pass through the event f on process p2.
The consistent cut Y lies between the cuts X and Z. However,
Y does not satisfy x1 ∨x2. Clearly, the predicate x1 ∨x2 does
not satisfy the weak convexity property and therefore is not a
p2-region predicate. ��

Note that, for each p, true is a p-region predicate. Thus a
region predicate b can be written as conjunction of n pred-
icates such that the ith conjunct, denoted by b(i), is a pi-
region predicate. Given an event e on process pi, we denote
the least consistent cut passing through e that satisfies b(i) by
Cmin(e). Similarly, we denote the greatest consistent cut pass-
ing through e that satisfies b(i) by Cmax(e). If no consistent
cut exists that passes through e and satisfies b(i), then neither
Cmin(e) nor Cmax(e) exists. Trivially, b(i) (and hence b) can-
not be controlled in the computation if Cmin(e) and Cmax(e)
do not exist. However, if there exists at least one consistent
cut passing through e that satisfies b(i) then both Cmin(e) and
Cmax(e) exist and are uniquely defined. This is because, from
the weak lattice property, the set of such consistent cuts forms
a lattice under set containment (⊆) implying that the set has
a minimum (corresponds to Cmin(e)) and a maximum (corre-
sponds to Cmax(e)).

4.1 Finding a controlling synchronization

In this section, we first derive a necessary and sufficient condi-
tion for a region predicate to be controllable in a computation.
Specifically, we show that for a region predicate, whenever it
is controllable, it is possible to give the smallest controlling
synchronization. The synchronization is smallest in the sense
that it is contained in every other controlling synchronization.
Therefore testing for controllability of a region predicate can
be reduced to testing for existence of the smallest controlling
synchronization. Next, we describe an efficient algorithm to
compute the smallest controlling synchronization in case the
region predicate is indeed controllable.
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Fig. 5. An example to illustrate that a collective synchronization may interfere with the happened-before relation of the computation, even if
the predicate can be controlled

4.1.1 Necessary and sufficient condition

To find a synchronization necessary to control a region predi-
cate in a computation, we first compute synchronizations suffi-
cient to control each of its conjunct (recall that the ith conjunct
corresponds to a pi-region predicate). If it turns out that one or
more of these conjuncts are not controllable then, trivially, the
region predicate itself cannot be controlled. Moreover, in case
synchronizations for various conjuncts do not interfere with
each other and, in addition, the resulting collective synchro-
nization does not interfere with the happened-before relation
of the computation then, clearly, the collective synchronization
constitutes a controlling synchronization for the given region
predicate. Such a guarantee, however, cannot be provided in
general if controlling synchronizations for various conjuncts
are computed independently of each other, even if the predi-
cate is controllable in the computation. This is illustrated by
the following example.

Example 6 Suppose we are interesting in controlling the pred-
icate (x1 ∨ x2) ∧ (x3 ∨ x4) in the computation shown in
Fig. 5(a), where each xi is a boolean variable on process pi. It
can be verified that the arrow from event h to event e con-
stitutes a controlling synchronization for the first conjunct
x1 ∨ x2. Similarly, the arrow from event v to event u con-

stitutes a controlling synchronization for the second conjunct
x3 ∨ x4. However, the collective synchronization given by
{(h, e), (v, u)} interferes with the happened-before relation
of the computation. In other words, it creates a cycle as shown
in Fig. 5(b). The first conjunct has another controlling syn-
chronization, namely the arrow from event f to event g. In this
case, the collective synchronization given by {(f, g), (v, u)}
neither interferes with itself nor with the happened-before re-
lation of the computation, thereby constituting a controlling
synchronization for the predicate (x1 ∨ x2) ∧ (x3 ∨ x4). ��

Now, suppose that the synchronization computed for each
conjunct is smallest in the sense that it is contained in every
possible controlling synchronization for the respective con-
junct. In that case, it can be shown that if it is possible to
control the predicate in the computation then indeed not only
do various synchronizations not interfere with each other but
the resulting collective synchronization does not interfere with
the happened-before relation of the computation as well. In-
tuitively, this is because a controlling synchronization for a
region predicate also acts as a controlling synchronization for
each of its conjunct. We formally define the notion of smallest
controlling synchronization next.
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Definition 2 (smallest controlling synchronization) A con-
trolling synchronization is said to be smallest if it is contained
in every possible controlling synchronization for the predi-
cate. Formally, given a controlling synchronization

S→ for a
predicate b in a computation 〈E, →〉,

S→ is smallest

�
〈∀ �:� extends →:

〈E, �〉 |= invariant : b ≡ � contains
S→〉

The smallest controlling synchronization, whenever it ex-
ists, is uniquely defined. Suppose

S1→ and
S2→ are two smallest

controlling synchronizations for a given computation and re-
gion predicate. Then, from the definition,

S1→⊆ S2→ and
S2→⊆ S1→.

This implies that
S1→ and

S2→ are identical. Of course, the small-
est controlling synchronization may not always exist. As it
happens, the smallest controlling synchronization in fact ex-
ists for a p-region predicate (and therefore also exists for a
region predicate). Thus in order to find a controlling synchro-
nization for a region predicate, from the above discussion, it
suffices to devise an algorithm to compute the smallest con-
trolling synchronization for a p-region predicate.

Consider a computation 〈E, →〉 and a region predicate b.
What does it entail to control the pi-region predicate b(i) in
〈E, →〉 where 1 � i � n? Consider an event e on process
pi. Assume that there is at least one consistent cut that passes
through e and satisfies b(i), which implies that both Cmin(e)
and Cmax(e) exist. As we know, the computation progresses
from the initial consistent cut ⊥ to the final consistent cut
E by executing, one-by-one, the events in E. For b(i) to hold
when it first reaches e, it must be the case that no event in the
frontier of the computation lies before the frontier of Cmin(e).
That is, when e is executed, all other events in the frontier of
Cmin(e) must have already been executed. This entails adding
synchronization dependencies from each event in the frontier
of Cmin(e) that is different from e to e. We denote this syn-

chronization by
e(1)→ and formally define it as follows:

e(1)→ � { (f, e) | f ∈ frontier(Cmin(e)) \ {e} and e /∈ ⊥ }
For an example refer to Fig. 6. Furthermore, for b(i) to

hold as long as the computation stays at e (equivalently, until

1
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round 3

2 3 4 5

C (e)min
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Fig. 7. An illustration of the synchronization
e(2)→ (denoted by dotted

arrows)

the successor of e, if it exists, is executed), the frontier of the
computation cannot advance beyond Cmax(e). That is, the suc-
cessor of any event in the frontier of Cmax(e) that is different
from e, if it exists, cannot be executed until the computation
advances beyond e. This involves adding synchronization de-
pendencies from the successor of e, if it exists, to the successor
of every other event in the frontier of Cmax(e), if it exists. We

denote this synchronization by
e(2)→ and formally define it as

follows:

e(2)→
�

{ (succ(e), succ(f)) |
f ∈ frontier(Cmax(e)) \ {e} and {e, f} ∩ � = ∅ }

For an illustration see Fig. 7. The overall synchronization
needed for controlling b(i) in 〈E, →〉 is given by the union

of ( e(1)→ ∪ e(2)→ ), where e ranges over the events on process pi.
Finally, the synchronization required to control b in 〈E, →〉,
denoted by

S→, is given by:

S→ �
⋃
e∈E

(e(1)→ ∪ e(2)→ ) (1)

For convenience, we use
C→ to denote the transitive closure

of the relation obtained by adding
S→ to →. Formally,

C→ � (→ ∪ S→)
+

(2)

Clearly,
S→ and

C→ exist only if Cmin(e) and Cmax(e) ex-
ist for all events e. The next lemma describes the sufficient
condition under which a region predicate is controllable in a
computation. Informally, this happens when each of its con-
junct is controllable and the collective synchronization neither
interferes with itself nor with the happened-before relation
of the computation—which can be succinctly represented as:
(→ ∪ S→) is acyclic.

Lemma 2 (sufficient condition) If (1) the initial and final
consistent cuts of a computation 〈E, →〉 satisfy a region pred-
icate b, and (2)

C→ defined in (2) exists and is an irreflexive
partial order then b is invariant in 〈E,

C→〉.
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Proof. Consider a consistent cut C of 〈E,
C→〉 and an event e

contained in its frontier. We show that C lies between Cmin(e)
and Cmax(e). We first prove that Cmin(e) ⊆ C. If e ∈ ⊥ then
Cmin(e) = ⊥ because, trivially, ⊥ is the least consistent cut
of 〈E, →〉 that passes through e and ⊥ |= b. Furthermore,
by definition of consistent cut, C ⊇ ⊥. Thus Cmin(e) ⊆ C.
The more interesting case is when e /∈ ⊥. We want to prove
that,

Cmin(e) ⊆ C

≡ { definition of consistent cut and its frontier }
〈∀ f : f ∈ frontier(Cmin(e)) : f ∈ C〉

≡ { by definition, Cmin(e) passes through e }
(e ∈ C) ∧
〈∀ f : f ∈ frontier(Cmin(e)) \ {e} : f ∈ C〉

⇐ { C is a consistent cut of 〈E,
C→〉 }

(e ∈ C) ∧
〈∀ f : f ∈ frontier(Cmin(e)) \ {e} : f

C→ e〉
⇐ { C passes through e }

〈∀ f : f ∈ frontier(Cmin(e)) \ {e} : (f C→ e)〉
⇐ { S→ ⊆ C→ }

〈∀ f : f ∈ frontier(Cmin(e)) \ {e} : (f S→ e)〉
⇐ { e(1)→ ⊆ S→ }

〈∀ f : f ∈ frontier(Cmin(e)) \ {e} : (f e(1)→ e)〉
{ e /∈ ⊥ and definition of

e(1)→ }

Likewise, C ⊆ Cmax(e). Let proc(e) = pi. By defini-
tion, both Cmin(e) and Cmax(e) satisfy b(i). Thus, from the
weak convexity property, C satisfies b(i). Since e was chosen
arbitrarily, for each i, we can infer that C satisfies b(i). This
implies that C satisfies b. ��

The next lemma proves that the synchronization given by
S→ is indeed the smallest controlling synchronization for b in
〈E, →〉. In other words, any other controlling synchronization
for b in 〈E, →〉, if it exists, must contain

S→.

Theorem 3 If a region predicate b is controllable in a com-
putation 〈E, →〉 then the synchronization

S→ defined in (1) is
the smallest controlling synchronization.

Proof. Since b is controllable in 〈E, →〉, there exists an ir-
reflexive partial order � that extends → such that b is invari-
ant in 〈E, �〉. We need to prove that

S→ is contained in �. It

is sufficient to prove that, for each event e, both
e(1)→ and

e(2)→
are contained in �.

We first show that, for each event e, � includes
e(1)→ . Con-

sider an event e, e /∈ ⊥, on process pi. Note that if e ∈ ⊥ then
e(1)→ is an empty set. In the proof we use the notion of the least
consistent cut of 〈E, �〉 that contains e, denoted by Cleast(e).
By definition, Cleast(e) passes through e and an event other
than e belongs to Cleast(e) if and only if it happened-before
e in 〈E, �〉. Formally,

(e ∈ frontier(Cleast(e))) ∧
〈∀ f : f �= e : f ∈ Cleast(e) ≡ f � e〉 (3)

We want to prove that,

e(1)→ ⊆ �

≡ { definition of
e(1)→ }

〈∀ f : f ∈ frontier(Cmin(e)) \ {e} : f � e〉
≡ { using (3) }

〈∀ f : f ∈ frontier(Cmin(e)) \ {e} : f ∈ Cleast(e)〉
⇐ { definition of consistent cut and its frontier }

Cmin(e) ⊆ Cleast(e)

⇐




Cleast(e) is a consistent cut of 〈E, →〉
that passes through e and satisfies b(i) and

Cmin(e) is the least such cut




(Cleast(e) is a consistent cut of 〈E, →〉) ∧
(e ∈ frontier(Cleast(e))) ∧ (Cleast(e) |= b(i))

⇐ { Cleast(e) is a consistent cut of

〈E, �〉 and → ⊆ � }
(e ∈ frontier(Cleast(e))) ∧ (Cleast(e) |= b(i))

⇐ { using (3) }
Cleast(e) |= b(i)

⇐ { b(i) is a conjunct of b }
Cleast(e) |= b

{ since b is invariant in 〈E, �〉, Cleast(e) satisfies b }
Similarly, it can be proved that, for each event e, � in-

cludes
e(2)→ . ��

The necessary condition for a region predicate to be con-
trollable in a computation can now be easily derived.

Lemma 4 (necessary condition) If a region predicate b is
controllable in a computation 〈E, →〉 then (1) the initial and
final consistent cuts of 〈E, →〉 satisfy b, and (2)

C→ defined in
(2) exists and is an irreflexive partial order.

Proof. Since b is controllable in 〈E, →〉, Cmin(e) and
Cmax(e) exist for all events e, which implies that

C→ exists
as well. Furthermore, there exists an irreflexive partial order
� that extends → such that b is invariant in 〈E, �〉. Since
⊥ and E are also the consistent cuts of 〈E, �〉, they satisfy
b. Furthermore, from Theorem 3,

S→ is the smallest control-
ling synchronization implying that � contains

S→. Thus �

contains (→ ∪ S→). Since � is an irreflexive partial order,

(→ ∪ S→)
+

(= C→) is also an irreflexive partial order. ��
Finally, the next theorem combines the previous two lem-

mas and furnishes the necessary and sufficient condition for a
region predicate to be controllable in a computation.

Theorem 5 (necessary and sufficient condition) A region
predicate b is controllable in a computation 〈E, →〉 if and
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only if (1) the initial and final consistent cuts of 〈E, →〉 satisfy
b, and (2)

C→ defined in (2) exists and is an irreflexive partial
order.

It turns out that the controlling synchronization
S→ defined

in (1) is minimal in another sense. It not only eliminates all
unsafe runs of the computation but also does not suppress any
safe run. We call such a synchronization optimal.

Definition 3 (optimal controlling synchronization) We call
a controlling synchronization optimal if it does not suppress
any safe run of the computation. Formally, given a controlling
synchronization

S→ for a predicate b in a computation 〈E, →〉,

S→ is optimal

�
〈∀ � : 〈E, �〉 is a run of 〈E, →〉 :

〈E, �〉 |= invariant : b ≡ 〈E, �〉 is a run

of 〈E,
C→〉〉

where
C→ = (→ ∪ S→)

+
.

In fact, the two aforementioned notions of minimality,
namely the smallest and the optimal controlling synchroniza-
tion, turn out to be identical. We establish their equivalence in
the next theorem.

Theorem 6 (smallest versus optimal) The smallest control-
ling synchronization is also optimal and vice versa.

The proof is given in the appendix. From Theorem 3 and
Theorem 6, we obtain,

Theorem 7 If a region predicate b is controllable in a com-
putation 〈E, →〉 then the synchronization

S→ defined in (1) is
the optimal controlling synchronization.

Theorem 7 implies that the controlling synchronization
S→

defined in (1) is not too restrictive and, in fact, admits the max-
imum possible concurrency in the controlled computation.

4.1.2 Computing Cmin(e) and Cmax(e)

From the earlier discussion, it follows that a controlling syn-
chronization for a region predicate can be easily computed
provided, for each event e, we can efficiently compute Cmin(e)
and Cmax(e), if they exist. To that end, given a p-region pred-
icate b and an event e on process p, we define a predicate be to
be true for a consistent cut if it passes through e and satisfies
b. Formally,

C |= be � (e ∈ frontier(C)) ∧ (C |= b)

It can be verified easily, using the weak lattice property,
that if two consistent cuts satisfy be then so does the consistent
cut given by their set intersection. Chase and Garg [2] call such
predicates linear. Likewise, if two consistent cuts satisfy be

then the consistent cut given by their set union also satisfies
be. Such predicates are called post-linear [2].

Observation 1 The predicate be is linear and post-linear.

The consistent cuts Cmin(e) and Cmax(e) can be reinter-
preted as the least and greatest consistent cut, respectively,
that satisfy be. Chase and Garg [2] also provide algorithms to
find the least consistent cut that satisfies a linear predicate and
the greatest consistent cut that satisfies a post-linear predicate.
Here, we focus on the former and give the basic idea behind
the algorithm. The correctness proof and other details can be
found elsewhere [2]. The algorithm is based on the linearity
property which is defined as follows:

Definition 4 (linearity property [2]) A predicate satisfies the
linearity property if, given a consistent cut that does not satisfy
the predicate, there exists an event in its frontier, called the
forbidden event, such that there does not exist a consistent cut
containing the given consistent cut that satisfies the predicate
and also passes through the forbidden event. Formally, given
a computation 〈E, →〉, a linear predicate b and a consistent
cut C,

C �|= b

⇒
〈∃ f : f ∈ frontier(C) :

〈∀ D : D ⊇ C : D |= b ⇒ succ(f) ∈ D〉〉

It is assumed that, given a linear predicate b, there is an
efficient partial function forbidden b : C(〈E, →〉) −→ E,
where C(〈E, →〉) denote the set of consistent cuts of 〈E, →〉,
that can be used to compute the event f mentioned in the def-
inition of the linearity property. It is hard to provide a general
algorithm to compute the function that works for any linear
predicate. Nevertheless, for the linear predicates encountered
in practice, an efficient algorithm can indeed be given. For
example, for a conjunctive predicate—a conjunction of local
predicates—the forbidden event corresponds to that event in
the cut’s frontier for which the local predicate evaluates to
false. Throughout this paper, we assume that a linear predi-
cate also satisfies the advancing property which guarantees
the existence of an efficient function to compute the forbidden
event.

We now informally describe the algorithm to determine
Cmin(e) for an event e. Starting from the least consistent cut
that passes through e—which basically corresponds to the
Fidge/Mattern’s vector timestamp for e [13,5], the algorithm
scans the computation from left to right adding events to the
cut constructed so far one-by-one, until either the desired con-
sistent cut is reached or all events have been exhausted. At
each step, an event is added to the cut, if at all, because of
one of the following two reasons. First, the cut constructed so
far is not consistent. In that case, its frontier contains events
f and g such that succ(f) → g. Clearly, as long as the com-
putation does not advance beyond f on proc(f), the cut stays
inconsistent. Therefore the next event to be added is given by
succ(f). Second, the cut is consistent but does not satisfy the
region predicate. In that case, the next event to be added is
determined using the linearity property. The time-complexity
of the algorithm is O(n|E|) [2]. The algorithm to compute
Cmax(e), based on the post-linearity property [2], is similar
and has been omitted.
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Input: a computation 〈E, →〉 and a region predicate b

Output: a controlling synchronization for b in 〈E, →〉, if it exists

1 if either ⊥ or E does not satisfy b then

2 exit(“b cannot be controlled in 〈E, →〉”);
endif;

3 for each event e do

4 compute Cmin(e) and Cmax(e);
5 if either Cmin(e) or Cmax(e) does not exist then

6 exit(“b cannot be controlled in 〈E, →〉”);
endfor;

endfor;

7 compute the synchronization
S→ defined in (1);

8 if (→ ∪ S→) is acyclic then

9 exit( S→);
else

10 exit(“b cannot be controlled in 〈E, →〉”);
endif;

Fig. 8. The algorithm ControlRe-
gionPredicate to compute a con-
trolling synchronization for a region
predicate

Figure 8 depicts the algorithm ControlRegionPredicate
for computing a synchronization to control a region predicate
in a computation. The algorithm first tests whether the ini-
tial and final consistent cuts satisfy the region predicate (at
line 1). It then computes Cmin(e) and Cmax(e) for all events e

(at line 4). Finally, it computes
S→ defined in (1) (at line 7) and

checks whether it interferes with → (at line 8). The correctness
of the algorithm follows from Theorem 5. Its time-complexity
analysis is as follows. The time-complexity of executing the
if statement at line 1 is O(n). Each iteration of the for loop
at line 3 has O(n|E|) time-complexity giving the for loop an
overall time-complexity of O(n|E|2). The synchronization at
line 7 can be computed in O(n|E|) time. Finally, the if state-
ment at line 8 can be executed inO(|E|2) time.Thus the overall
time-complexity of the algorithm ControlRegionPredicate is
O(n|E|2). It is easy to see that the message-complexity of the
algorithm is O(n|E|).

5 Controlling disjunctive predicates

In this section, we first introduce the notion of admissible
sequence of events and establish that existence of such a se-
quence is a necessary and sufficient condition for controllabil-
ity of a predicate in a computation. Using the notion of admis-
sible sequence, we then derive an efficient control algorithm
for a disjunctive predicate. We further modify the algorithm
to generate a controlling synchronization with the least num-
ber of synchronization dependencies, that is, with the optimal
message-complexity.

A predicate is said to be disjunctive if it can be expressed as
disjunction of local predicates. Some examples of disjunctive
predicates are:

• at least one server is available: avail1 ∨ avail2 ∨ · · · ∨
availn

• at least one philosopher has no fork: ¬fork1 ∨ ¬fork2 ∨
· · · ∨ ¬forkn

Intuitively, a disjunctive predicate states that at least one lo-
cal condition must be met at all times, or, in other words, a bad

combination of local conditions does not occur. Our algorithm
for computing a controlling synchronization for a disjunctive
predicate utilizes the notion of admissible sequence defined
next.

5.1 Admissible sequences

In this section, we establish that the notion of controllability is
actually identical to the notion of admissible sequence whose
motivation in turn lies in the control algorithm for a disjunctive
predicate. We make the following observation:

Observation 2 A consistent cut satisfies a disjunctive pred-
icate if and only if it contains at least one true event in its
frontier.

Suppose we wish to control a disjunctive predicate in a
computation. As the computation proceeds from the initial
consistent cut to the final consistent cut, from the above ob-
servation it follows that it is both necessary and sufficient to
ensure that throughout there exists at least one true event in
the frontier of the computation. Thus at least one initial event
must be a true event. To start with, one such initial event bears
the responsibility for ensuring that the predicate stays true—
by acting as an anchor—until the burden can be passed on to
some other true event. This transference of burden continues
until the computation reaches the final consistent cut. This is
illustrated by the following example.

Example 7 We want to control the disjunctive predicate x1 ∨
x2 in the computation depicted in Fig. 9. The initial event e
is a true event. Hence, using e as an anchor, the computation
advances from the initial consistent cut C1, shown in Fig. 9(a),
to the consistent cut C2, portrayed in Fig. 9(b). Next, using
the true event f as an anchor, it advances to the consistent
cut C3 as shown in Fig. 9(c). Finally, using the true event g
as an anchor—which is also a final event, it reaches the final
consistent cut C4 as depicted in Fig. 9(d). Since, throughout,
the frontier of the computation passes through at least one true
event, the predicate is never falsified. ��
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Fig. 9. A strategy for controlling a dis-
junctive predicate

A natural question to ask is: “If there are more than one
possible candidates for the next anchor event, which one
should we choose?”. The answer is non-trivial as illustrated
by the following example.

Example 8 Consider the computation shown in Fig. 10. It has
four true events, namely e, f , g and h. After using e as an
anchor, the computation has two possible choices of events
for the next anchor. They are the events f and g. The event h
is unavailable because the computation has to advance beyond
e before it can execute h. Clearly, f is a bad choice for anchor
because once the computation reaches the consistent cut C,
using f as an anchor, neither g nor h can be used as the next
anchor without falsifying the predicate. ��

The notion of admissible sequence attempts to answer the
above question in a more general setting. In the next section,
we formalize the aforementioned algorithm for controlling a
disjunctive predicate using the notion of admissible sequence.
We first define a legal cut as follows:

Definition 5 (legal cut) A consistent cut is legal with respect
to a sequence of events if it contains an event from the sequence
only if it contains all its preceding events from the sequence as
well. Formally, given a consistent cut C and an event si from
a sequence of events s,

si ∈ C ⇒ 〈∀ j : j � i : sj ∈ C〉
Roughly speaking, the notion of legal cut helps to cap-

ture those runs of a computation that respect the order of the
events in a sequence. More precisely, given a sequence of
events, if every consistent cut of a run is legal then the run
and the sequence do not disagree on relative order of any pair
of events and vice versa. We next define the notion of ad-
missible sequence. Informally, every event in an admissible
sequence acts as an anchor in the order given by the sequence.
To be able to do so, the sequence must respect the happened-
before order between events. This constraint is captured by the
agreement property. The continuity property ensures that the
transfer of burden from one event in the sequence to the next
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Fig. 10. An example to illustrate the difficulty in choosing the next
anchor event

occurs “smoothly” in a single step. In other words, the com-
putation does not advance beyond the current anchor event
until it reaches the next anchor event. The weak safety prop-
erty ascertains that, on reaching an anchor event, at least as
long as the computation does not advance beyond the event
the predicate is not falsified. Finally, the boundary condition
captures the fact that the initial and final consistent cuts satisfy
the predicate. Formally,

Definition 6 (admissible sequence) A sequence of events s =
s1s2 · · · sl−1sl is admissible with respect to a predicate b and
a computation 〈E, →〉 if it satisfies the following properties:

• (boundary condition) The sequence starts with an ini-
tial event and ends with a final event of the computation.
Formally,

(s1 ∈ ⊥) ∧ (sl ∈ �)

• (agreement) The sequence respects the partial order (that
is, happened-before relation) of the computation. For-
mally,

〈∀ i, j : i < j : sj �→ si〉
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• (continuity) The successor of each event in the sequence,
if it exists, did not happen-before the next event in the
sequence. Formally,

〈∀ i : si /∈ � : succ(si) �→ si+1〉
• (weak safety) Any consistent cut of the computation that

is legal with respect to the sequence and contains at least
one event from the sequence in its frontier satisfies the
predicate. Formally,

〈∀C : C is legal with respect to s :
(s ∩ frontier(C)) �= ∅ ⇒ C |= b〉

The next example illustrates the notions of legal cut and
admissible sequence (along with the associated properties).

Example 9 Consider the computation depicted in Fig. 11. The
consistent cut C is not legal with respect to the sequence of
events efu v h because it contains u but does not contain f
which occurs before u in the sequence. On the other hand, the
consistent cut D is legal with respect to the same sequence.
The sequence fu v h does not satisfy the boundary condi-
tion because the first event in the sequence, in this case f , is
not an initial event. The sequence egfh does not satisfy the
agreement property because although f happened-before g in
the computation, it occurs after g in the sequence. Finally, the
sequence e g h does not satisfy the continuity property as the
successor of e, namely f , happened-before g, the next event
in the sequence after e. ��

The following theorem proves that existence of an admis-
sible sequence is necessary for a predicate to be controllable
in a computation. Specifically, we prove that any safe run of
a computation constitutes an admissible sequence.

Theorem 8 (necessary condition) If a predicate b can be
controlled in a computation 〈E, →〉 then there exists an ad-
missible sequence with respect to b and 〈E, →〉.

Proof. Since b is controllable in 〈E, →〉, there exists a total
order � that extends → such that b is invariant in 〈E, �〉. Let s
be the sequence of events corresponding to 〈E, �〉. We prove
that s is admissible with respect to b and 〈E, →〉. Clearly, s
satisfies the boundary condition and the agreement property.
We next prove that s satisfies the continuity property. Assume
the contrary. Then,

〈∃ i :: succ(si) → si+1〉
≡ { si → succ(si) }

〈∃ i :: si → succ(si) → si+1〉

⇒
{

succ(si) ∈ s because s corresponds to 〈E, �〉
which is a run of 〈E, →〉

}

〈∃ i, j :: si → sj → si+1〉
⇒ { s satisfies the agreement property }

〈∃ i, j :: i < j < i + 1〉
⇒ { i and j are integers }

a contradiction

e f

g h

u v w

C D

p3

p1

p2

Fig. 11. An example to illustrate the notions of legal cut and admis-
sible sequence

Finally, we show that s satisfies the weak safety property.
Consider a consistent cut C of 〈E, →〉 that is legal with re-
spect to s. We prove that C is also a consistent cut of 〈E, �〉.
Consider events e and f . We have,

{ assumption }
(e � f) ∧ (f ∈ C)

≡ { let e = si and f = sj }
(si � sj) ∧ (sj ∈ C)

⇒ { definition of s }
(i < j) ∧ (sj ∈ C)

⇒ { C is legal with respect to s }
si ∈ C

≡ { si = e }
e ∈ C

Thus C is a consistent cut of 〈E, �〉. Since b is invariant
in 〈E, �〉, C satisfies b. This establishes that s satisfies the
weak safety property. ��

Our next step is to prove that the existence of an admissible
sequence is also a sufficient condition for a predicate to be
controllable in a computation. To achieve that it suffices to
give the synchronization necessary to control the predicate.
Of course the synchronization will depend on the particular
sequence. Observe that not all events in the sequence may be
ordered by the happened-before relation. Thus, to ensure that
they are executed in the order they occur in the sequence, we
need to add synchronization dependencies from an event in the
sequence to all other events that occur later in the sequence.

This synchronization is denoted by
S(1)→ and is formally defined

as follows:
S(1)→ � { (si, sj) | 1 � i < j � n } (4)

For an example please refer to Fig. 12. In the following
lemma we show that if the sequence is admissible, in particular
if it satisfies the agreement property, the above synchronization
does not interfere with the happened-before relation of the

computation. For convenience, we define
C(1)→ as the transitive

closure of → ∪ S(1)→ . Formally,

C(1)→ � (→ ∪ S(1)→ )
+
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Lemma 9 C(1)→ is an irreflexive partial order.

The proof is given in the appendix. After adding the syn-

chronization
S(1)→ to the computation 〈E, →〉, the resulting

computation 〈E,
C(1)→ 〉 retains only those consistent cuts—not

necessarily all—that are legal. From the weak safety property,
a sufficient condition for a legal cut to satisfy the predicate
is that it should contain at least one event from the sequence
in its frontier. To ensure this, given an event in the sequence,
we add a synchronization arrow from the event next to it in
the sequence, if it exists and is on a different process, to its
succeeding event on the process, if it exists. This synchroniza-

tion, denoted by
S(2)→ , ascertains that the computation does not

advance beyond an event in the sequence until it reaches the
next event in the sequence.

S(2)→
�

{ (si+1, succ(si)) |
1 � i < n, si /∈ � and proc(si+1) �= proc(si) } (5)

For an illustration please refer to Fig. 13. In the next lemma
we prove that if the sequence is admissible, in particular if
it satisfies the agreement and continuity properties, then the

above synchronization
S(2)→ does not interfere with

C(1)→ . For

convenience, we define
C(2)→ as the transitive closure of

C(1)→
∪ S(3)→ . Formally,

C(2)→ � (C(1)→ ∪ S(2)→ )
+

Lemma 10 C(2)→ is an irreflexive partial order.

Again, the proof can be found in the appendix. The final
step is to prove that the combined synchronization, given by
S(1)→ ∪ S(2)→ , indeed ensures that the predicate is invariant in the
resulting computation. Specifically, we show that if the se-
quence is admissible then every consistent cut of the resultant
computation satisfies the antecedent of the weak safety prop-
erty. We denote the controlled computation by 〈E,

C→〉, where
C→ is same as

C(2)→ .

Lemma 11 Every consistent cut of 〈E,
C→〉 satisfies b.

Proof. Consider a consistent cut C of 〈E,
C→〉. We first prove

that C is legal with respect to s. Consider events si and sj . We
have,
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Fig. 13. An illustration of the synchronization
S(2)→ (denoted by dotted

arrows)

{ assumption }
(sj ∈ C) ∧ (i < j)

≡ { definition of
S(1)→ }

(sj ∈ C) ∧ (si
S(1)→ sj)

⇒ { S(1)→ ⊆ C→ }
(sj ∈ C) ∧ (si

C→ sj)

⇒ { C is a consistent cut of 〈E,
C→〉 }

si ∈ C

This establishes that C is legal with respect to s. We now
prove that the frontier of C contains at least one event from
s. To that end, we first prove that, for each i, si /∈ � implies
si+1

C→ succ(si). Clearly, if proc(si+1) �= proc(si) then, by

definition of
S(2)→ , si+1

S(2)→ succ(si). Since
S(2)→ ⊆ C→, si+1

C→
succ(si). The more interesting case is when proc(si+1) =
proc(si). Since proc(si) = proc(succ(si)), proc(si+1) =
proc(succ(si)). Then,

{ events on a process are totally ordered by
P→ }

(si+1
P→ succ(si)) ∨ (succ(si)

P→ si+1)

⇒ { P→ ⊆ → }
(si+1 → succ(si)) ∨ (succ(si) → si+1)

⇒
{

since s satisfies the continuity property,

succ(si) �→ si+1

}

si+1 → succ(si)

⇒ { → ⊆ C→ }
si+1

C→ succ(si)

Assume, on the contrary, that the frontier of C does not
contain any event from s. We prove by induction on i that,
for each i, si ∈ C. Clearly, since s satisfies the boundary
condition and ⊥ ⊆ C, s1 ∈ C. We have,

{ induction hypothesis }
si ∈ C

≡
{

since si /∈ frontier(C), succ(si) exists

and it belongs to C

}

succ(si) ∈ C
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Fig. 14. An algorithm to compute a con-
trolling synchronization for a disjunctive
predicate (edges to initial events and from
final events have been omitted)

⇒ { si+1
C→ succ(si) }

(si+1
C→ succ(si)) ∧ (succ(si) ∈ C)

⇒ { C is a consistent cut of 〈E,
C→〉 }

si+1 ∈ C

This establishes that sl ∈ C. Since, since s satisfies
the boundary condition, sl ∈ �. Thus, trivially, sl ∈
frontier(C)—a contradiction. This implies that the frontier
of C contains at least one event from s. Finally, since s satisfies
the weak safety property, C satisfies b. ��

Combining Lemma 9, Lemma 10 and Lemma 11, we ob-
tain,

Theorem 12 (sufficient condition) If there exists an admis-
sible sequence with respect to a predicate b and a computation
〈E, →〉 then b is controllable in 〈E, →〉.

Finally, from Theorem 8 and Theorem 12, it follows that,

Theorem 13 (necessary and sufficient condition) It is pos-
sible to control a predicate b in a computation 〈E, →〉 if and
only if there exists an admissible sequence with respect to b
and 〈E, →〉.

Although the motivation for defining the notion of admissi-
ble sequence was to devise a control strategy for a disjunctive
predicate, nevertheless the preceding theorem holds for any
global predicate.

5.2 Finding a controlling synchronization

In this section, we derive an efficient algorithm for controlling
a disjunctive predicate in a computation based on the notion
of admissible sequence discussed in the previous section. The
main idea is to construct a directed graph consisting of only
the true events of the computation and then search for an “ap-
propriate” path in the graph.

Note that, since false is a local predicate of any process,
a disjunctive predicate b can be written as disjunction of n
predicates such that the ith disjunct, denoted by b(i), is a local
predicate of process pi. The algorithm involves constructing
a directed graph G, called the true event graph, as follows:

V(G) � { e | e |= b(i), where pi = proc(e) }
E(G) � { (e, f) |

e, f ∈ V(G), e �= f and e /∈ � ⇒ succ(e) �→ f }

Here,V(G) and E(G) refer to the set of vertices and edges,
respectively, of the graph G. We now define the notion of
permissible path which is almost identical to the notion of
admissible sequence except that a permissible path consists of
true events only and may not satisfy the agreement property.

Definition 7 (permissible path) A path in a true event graph
(TEG) is permissible if it starts with an initial event and ends
with a final event of the computation.

Clearly, a permissible path satisfies the boundary condition
as well as the continuity property. Furthermore, any consistent
cut that contains a true event in its frontier, due to the semantics
of disjunction, satisfies the predicate. Thus, a permissible path
satisfies the weak safety property also. However, a permissible
may not satisfy the agreement property in general. But if a
path besides being permissible is also the shortest one then it
satisfies the agreement property too. This is illustrated by the
following example.

Example 10 The true event graph for the computation shown
in Fig. 14(a) and the disjunctive predicate x1 ∨ x2 is depicted
in Fig. 14(b). The path e g hfu is permissible but does not
satisfy the agreement property because although f happened-
before g in the computation, it occurs after g in the path. The
path e g u is a shortest permissible path. It can be verified that
it indeed satisfies the agreement property. ��
Lemma 14 A shortest permissible path in the true event
graph, if it exists, satisfies the agreement property.

Proof. Assume that the true event graph does contain a per-
missible path. Consider the shortest permissible path s =
s1s2 · · · sl. Assume, on the contrary, that s does not satisfy
the agreement property. Then,

〈∃ i, j : i < j : sj → si〉

⇒
{

sj /∈ ⊥, otherwise sjsj+1 · · · sl is a shorter

permissible path than s

}

〈∃ i, j : i < j : (sj → si) ∧ (sj /∈ ⊥)〉

⇒
{

i � 2, otherwise si ∈ ⊥ implying si → sj ,

thereby creating a cycle in →

}

〈∃ i, j : 2 � i < j : (sj → si) ∧ (sj /∈ ⊥)〉
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⇒
{

since s is a shortest permissible path,

(si−1, sj) /∈ E(G)

}

〈∃ i, j : 2 � i < j :

(succ(si−1) → sj) ∧ (sj → si)〉
⇒ { → is transitive }

〈∃ i : i � 2 : succ(si−1) → si〉
≡ { definition of an edge }

〈∃ i : i � 2 : (si−1, si) /∈ E(G)〉

⇒
{

s is a path implying

〈∀ i : i � 2 : (si−1, si) ∈ E(G)〉

}

a contradiction

This establishes that s satisfies the agreement property. ��
The sufficient condition for a disjunctive predicate to be

controllable in a computation can now be given as follows.

Theorem 15 (sufficient condition) Given a disjunctive pred-
icate b and a computation 〈E, →〉, if there exists a permissible
path in the corresponding true event graph G then b is con-
trollable in 〈E, →〉.

Proof. Assume that G contains a permissible path. Clearly,
each permissible path satisfies the boundary condition, the
continuity property and the weak safety property. From
Lemma 14, a shortest path among all permissible paths—
not necessarily unique—also satisfies the agreement property.
Thus a shortest permissible path in G constitutes an admissible
sequence with respect to b and 〈E, →〉. Using Theorem 13, b
is controllable in 〈E, →〉. ��

We next prove that the existence of a permissible path in the
true event graph is also a necessary condition for a disjunctive
predicate to be controllable in a computation.

Theorem 16 (necessary condition) If a disjunctive predicate
b is controllable in a computation 〈E, →〉 then there exists a
permissible path in the corresponding true event graph G.

Proof. Assume that b is controllable in 〈E, →〉. We induc-
tively construct a path in the graph G that is permissible. Since
b is controllable in 〈E, →〉, there exists a total order � that
extends the partial order → such that b is invariant in 〈E, �〉.
The initial consistent cut of the computation 〈E, �〉, given by
⊥, satisfies b. Thus there exists a true initial event. We call it
s1. Starting from s1, we construct a path s by adding events
to the path constructed as yet until we reach a final event.

Let si denote the last event added to the path so far. If
si is a final event then the path we have assembled so far is
permissible. The more interesting case is when si is not a final
event. Consider the least consistent cut of 〈E, �〉 that contains
succ(si), say Ci. Note that Ci is uniquely defined because the
set of consistent cuts of a computation that contain a given
event forms a lattice [8,13]. Since b is invariant in 〈E, �〉,
Ci satisfies b. Thus the frontier of Ci contains a true event.
We call it si+1. We still have to show that there is an edge
from si to si+1 in the graph G, that is, succ(si) �→ si+1.
By definition of Ci, for each e ∈ Ci, e � succ(si). Since

si+1 ∈ Ci, si+1 � succ(si). Since � is an irreflexive partial
order, succ(si) �� si+1. Thus succ(si) �→ si+1 because
→ ⊆ �.

Finally, we prove that a final event is eventually added to
the path. Assume that si+1 /∈ �. Since si+1 ∈ frontier(C),
succ(si+1) /∈ Ci. By definition of Ci, succ(si+1) ��succ(si).
Since � is a total order, succ(si) � succ(si+1). This implies
that Ci � Ci+1, that is, si+1 is different from every event
already in the path. Thus no event is added to the path being
built more than once, thereby establishing that a final event is
eventually added to the path. ��

From Theorem 15 and Theorem 16, it follows that,

Theorem 17 (necessary and sufficient condition)A disjunc-
tive predicate b is controllable in a computation 〈E, →〉 if and
only if there exists a permissible path in the corresponding true
event graph G.

The true event graph has O(|E|) vertices and O(|E|2)
edges. A shortest permissible path in the graph can be deter-
mined using breadth first search in O(|E|2) time. Thus the
algorithm has an overall time-complexity of O(|E|2). To im-
prove the time-complexity, we attempt to reduce the number
of edges in the graph. To that end, the following observation
proves to be helpful.

Observation 3 If there is an edge from a true event e to a true
event f then there is an edge from every true event that occurs
after e on proc(e) to every true event that occurs before f on
proc(f). Formally,

(e, f) ∈ E(G)
⇒

〈∀ g, h ∈ V(G) : (e P→ g) ∧ (h P→ f) : (g, h) ∈ E(G)〉
It can be verified that, given a true event e and a process p,

if we only put an edge from e to the last true event f on p such
that succ(e) �→ f , in case succ(e) exists, then Theorem 17
still holds. In particular, it can be proved that existence of a
permissible path of length l in the true event graph implies
existence of a permissible path in the “reduced” true event
graph (RTEG) of length at most l. The reduced true event
graph has at most O(n|E|) edges, thereby reducing the time-
complexity to O(n|E|). It can be verified that the message-
complexity of the algorithm is O(|E|).

In order to reduce the time-complexity further, we define
the notion of true-interval—a maximal contiguous sequence
of true event on a process. Rather than find a sequence of true
event that satisfy certain properties, we can find a sequence
of true-intervals satisfying “similar” properties. The details
are left to the reader. This algorithm for computing a con-
trolling synchronization for a disjunctive predicate—based
on true-intervals—has time-complexity of O(n|T | + |E|)
and message-complexity of O(|T |), where T is the set of
true-intervals of the computation, which is same as that of
Tarafdar and Garg’s algorithm [20].

5.3 Finding a minimum controlling synchronization

Now, we modify the above algorithm to compute a minimum
controlling synchronization, that is, a synchronization with the
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least number of dependencies that are not subsumed by the
happened-before relation. Such a synchronization is optimal
in terms of the number of control messages required to realize
it, and has applications when the channel bandwidth is some-
what limited. The main idea is to look for a specific shortest
permissible path in the true event graph instead of any short-
est permissible path. This is achieved by assigning a weight
to each edge and finding a shortest weighted permissible path.
Observe that unlike the smallest controlling synchronization
which is unique a minimum controlling synchronization is not.

To find a minimum controlling synchronization, we take
advantage of the fact that the predicate to be controlled is
disjunctive. As a result, a sequence of true events satisfies a
stronger property than the weak safety property: “a consistent
cut that contains at least one event from the sequence in its
frontier satisfies the predicate”. In particular, the cut is not
required to be legal. Therefore the following holds:

Observation 4 Let s be an admissible sequence with respect
to b and 〈E, →〉. If b is a disjunctive predicate then the syn-

chronization given by
S(2)→ defined in (5) in Sect. 5.1 is sufficient

to control b in 〈E, →〉.

Although the synchronization dependencies given by
S(1)→

can be omitted, the sequence is still required to satisfy the
agreement property. This is to ensure that the synchronization
S(2)→ does not interfere with the happened-before relation of the
computation. To count the number of synchronization depen-

dencies in
S(2)→ that are not covered by →, we assign weight to

each edge as follows:

w(e, f) �
{

(0, 1) : if f → succ(e)
(1, 1) : otherwise

Two weights are added by summing their respective com-
ponents and are compared using lexicographic comparison.
As before in the case of true event graph, a shortest permis-
sible path in the weighted true event graph not only satisfies
the boundary condition, the continuity property and the weak
safety property but also satisfies the agreement property.

Lemma 18 A shortest permissible path in the weighted true
event graph, if it exists, satisfies the agreement property.

The proof is similar to the proof of Lemma 14 and can
be found in the appendix. For a path s with weight w(s), let
wf (s) denote the first entry of the tuple w(s). The rank of a
weighted true event graph G, denoted by rank(G), is given
by,

rank(G) �




⊥ : if there is no permissible path in G
wf (s) : s is a shortest weighted

permissible path in G

Intuitively, the rank gives the cardinality of minimum con-
trolling synchronization. We now show that rank behaves in
a “continuous” fashion by proving that adding a single syn-
chronization dependency to a computation cannot reduce the
rank of its weighted true event graph substantially. Consider a
computation 〈E, �〉 such that (1) � extends →, and (2) the

two computations 〈E, →〉 and 〈E, �〉 differ by at most one
message. Formally,

〈∃ e, f :: � = (→ ∪ (e, f)+)〉
Let H be the weighted true event graph corresponding to

b and 〈E, �〉.

Lemma 19 (bounded reduction) If b is controllable in
〈E, �〉 then rank(G) is at most one more than rank(H).

Proof. Since 〈E, �〉 |= controllable : b, by virtue of The-
orem 16, there exists a permissible path in H . Consider a
shortest permissible path in H , say s = s1s2 · · · sl. For con-
venience, letwG andwH be the weight functions for the graphs
G and H , respectively. Since → ⊆ �, succ(e) �� f implies
succ(e) �→ f . Thus each edge of H is also an edge of G which
implies that s is a path in G. The following can be easily
verified.

rank(G) � wG
f (s) (6)

rank(H) = wH
f (s) (7)

〈∀ e, f : (e, f) ∈ E(H) : wG(e, f) = (0, 1)〉
⇒ (8)

wH(e, f) = (0, 1)

We first prove that wG
f (s) − wH

f (s) � 1. Assume the
contrary. Thus, from (8), there exist at least two distinct edges
in the path s such that their weight in G is (1, 1) but in H is
(0, 1). Let the edges be (si, si+1) and (sj , sj+1), where i �= j.
Equivalently,

si+1 �→ succ(si) and sj+1 �→ succ(sj) (9)

si+1 � succ(si) and sj+1 � succ(sj) (10)

Let the additional message in 〈E, �〉 be from e to f . From
(9) and (10), we can deduce that there exists a path from si+1
to succ(si) in 〈E, �〉 that involves the message from e to f .
Likewise, there exists a path from sj+1 to succ(sj) in 〈E, �〉
that involves the message from e to f . Then,

si+1 � e and f � succ(si) (11)

sj+1 � e and f � succ(sj) (12)

Without loss of generality, assume that i < j. Two possible
cases arise depending on whether there is an edge from si to
sj+1 in H . We have,

Case 1: (si, sj+1) /∈ E(H)

{ definition of an edge }
succ(si) � sj+1

⇒ { using (12) }
succ(si) � e

⇒ { using (11) }
f � e

⇒ { definition of � implies e � f }
a contradiction
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Fig. 15. An example to illustrate I

In the second case, when there is an edge from si to sj+1,
from (11) and (12), sj+1 � succ(si). Thus wH(si, sj+1) =
(0, 1) implying that the path s1s2 · · · sisj+1 · · · sl is permis-
sible in H and has smaller weight than s—a contradiction.
Thus,

wG
f (s) − wH

f (s) � 1 (13)

Finally,

{ using (6) }
rank(G) � wG

f (s)

≡ { using (13) }
rank(G) � wH

f (s) + 1

≡ { using (7) }
rank(G) � rank(H) + 1

This establishes the lemma. ��
Now, assume that rank(G) �= 0. Let RCH denote the

subset of true events that are reachable from some initial true
event in the weighted true event graph G via edges with weight
(0, 1) only. Since rank(G) �= 0, RCH does not contain any
final event; if otherwise, there is a path from an initial event
to a final event via edges with weight (0, 1) only, thereby
forcing rank(G) to be zero. For each process pi, we identify
an interval of contiguous events on pi that we denote by Ii.
The first event of Ii, denoted by Ii.lo, is given by the successor
of the last event on pi that belongs to RCH. In case there is no
such event, Ii.lo is set to ⊥i, the initial event on pi. The last
event of Ii, denoted by Ii.hi, is given by the earliest event on
pi that did not occur before Ii.lo such that its successor, if it
exists, is a true event. Clearly, Ii is non-empty and all events
in Ii are false events. For convenience,

I �
⋃

1�i�n

Ii

I.lo � { Ii.lo | 1 � i � n }
I.hi � { Ii.hi | 1 � i � n }

succ(I.hi) � { succ(e) | e ∈ I.hi and e /∈ � }
The following example illustrates the aforementioned con-

cepts.

Example 11 Consider the computation portrayed in Fig. 15(a)
and the disjunctive predicate x1 ∨x2 ∨x3. The corresponding
weighted true event graph is depicted in Fig. 15(b). The incom-
ing edges to the initial event e and the outgoing edges from the
final event g have been omitted for obvious reasons. All edges
except the edges (e, x) and (x, y) have weight (1, 1). For clar-
ity, we have only labeled those edges that have weight (0, 1)
because they are fewer in number. Thus the set RCH is given
by {e, x, y}. Further, I1.lo = succ(e) = f , I2.lo = ⊥2 = u
and I3.lo = succ(y) = z. Also, I1.hi = f , I2.hi = v and
I3.hi = �3 = z. Finally, succ(I) = {succ(f), succ(v)} =
{g, w}. The shaded region in Fig. 15(a) corresponds to the
space spanned by the events of I. ��

Observe that if all events in the frontier of a consistent cut
belong to I then the cut will not satisfy the given disjunctive
predicate.We make two observations about the set succ(I.hi).
First, all events in the set are true events. Second, no event in
the set belongs to RCH. The following lemma proves that the
computation must contain a consistent cut that does not satisfy
the disjunctive predicate.

Lemma 20 If the rank of a weighted true event graph is not
zero then there exists a consistent cut of the computation that
does not satisfy the disjunctive predicate.

Proof. Our approach is to add enough synchronization depen-
dencies to the computation 〈E, →〉, without creating any dead-
lock (or cycle), to obtain another computation, say 〈E, �〉,
that satisfies the required property. Specifically, we show that
the computation 〈E, �〉 contains a consistent cut whose fron-
tier is completely contained in I. Since all events in I are false
events, we obtain the desired result. The required set of de-
pendencies, denoted by

I→, is given by,
I→ � { (e, f) | e ∈ I.lo and f ∈ succ(I.hi) }

We first prove that adding dependencies from
I→ to → does

not create any cycle. Consider a path e
I→ f→g

I→ h (events e,
f , g and h need not all be distinct, that is, an event or a sequence
of events may be repeated in the path). By definition of

I→,
f ∈ succ(I.hi) and g ∈ I.lo. Clearly, f /∈ ⊥. This implies
that g /∈ ⊥; if otherwise, g → f , thereby creating a cycle in
→. Thus pred(g) exists. Furthermore, both f and pred(g) are
true events such that pred(g) ∈ RCH but f /∈ RCH. Note,
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however, that f → succ(pred(g))(= g) implying that there
is an edge from pred(g) to f with weight (0, 1). Thus f is
reachable from an initial event via edges with weight (0, 1)
only because pred(g) ∈ RCH and w(pred(g), f) = (0, 1).
This implies that f belongs to RCH—a contradiction. Thus
there is no path in → ∪ I→ of the form e

I→ f → g
I→ h,

thereby ensuring that → ∪ I→ is acyclic.

Now,�= (→ ∪ I→)
+

. Consider the least consistent cut of
〈E, �〉, say Cleast((I.lo)), that contains I.lo. By definition
of Cleast((I.lo)), we have,

〈∀ e :: e ∈ Cleast((I.lo)) ⇒ 〈∃ f : f ∈ I.lo : e � f〉〉(14)

We prove that the frontier of Cleast((I.lo)) lies wholly
within I. To that end, it suffices to show that Cleast((I.lo))
does not contain any event from succ(I.hi). Assume the con-
trary. Then,

〈∃ e : e ∈ succ(I.hi) : e ∈ Cleast((I.lo))〉
⇒ { using (14) }

〈∃ e, f : (e ∈ succ(I.hi)) ∧ (f ∈ I.lo) : e � f〉
⇒ { by definition of

I→, f
I→ e and

I→ ⊆ � }
〈∃ e, f : (e ∈ succ(I.hi)) ∧ (f ∈ I.lo) :

(e � f) ∧ (f � e)〉
⇒ { � is an irreflexive partial order }

a contradiction

This establishes the lemma. ��

The necessary and sufficient condition for the rank of a
weighted true event graph to be zero can now be furnished
easily.

Theorem 21 The rank of a weighted true event graph is zero
if and only if the disjunctive predicate is invariant in the com-
putation. Formally,

〈E, →〉 |= invariant : b ⇐⇒ rank(G) = 0

Proof. We use the ping-pong argument to prove the theorem.

(⇒) Follows from Lemma 20.

(⇐) From Lemma 18, a shortest permissible path, say s—
which exists because rank(G) �= ⊥—corresponds to an ad-
missible sequence of events with respect to b and 〈E, →〉.

Since b is a disjunctive predicate, by Observation 4,
S(2)→ is

sufficient to control b in 〈E, →〉. Let
C→= (→ ∪ S(2)→ )

+
. By

definition of controllability, b is invariant in 〈E,
C→〉. Further-

more, by definition of the weight function,
S(2)→ ⊆ → which

implies that
C→ = →. ��

We now present the main result of this section.

Theorem 22 (minimum controlling synchronization) A
shortest permissible path in the weighted true event graph, if it
exists, corresponds to a minimum controlling synchronization
for the disjunctive predicate in the given computation.

The proof is straightforward and can be found in the ap-
pendix. The algorithm to compute a minimum controlling
synchronization has O(|E|2) time-complexity because the
weighted true event graph has O(|E|) vertices, O(|E|2) edges,
and a shortest permissible path in the graph can be determined
using Dijkstra’s shortest path algorithm [4] in O(|E|2) time.

6 Controlling general predicates

In the previous sections, we present efficient algorithms to
find controlling synchronizations for region predicates and
disjunctive predicates. For the former, we give an algorithm to
generate the optimal controlling synchronization. For the lat-
ter, we give an algorithm to generate a minimum controlling
synchronization. In this section, we provide a necessary and
sufficient condition under which it is possible to efficiently
compute a minimal controlling synchronization for a general
predicate, and also give an algorithm to compute such a syn-
chronization. First, we show that if controllable : b can be
evaluated efficiently (to “yes” or “no”) then there is an effi-
cient algorithm to compute a controlling synchronization for
b and vice versa.

Theorem 23 There exists a polynomial-time algorithm for
computing a controlling synchronization for a predicate b, if it
exists, if and only if there exists a polynomial-time algorithm
for evaluating controllable : b.

Proof. We use the ping-pong argument to prove the theorem.

(if) Suppose there is a polynomial-time algorithm for eval-
uating controllable : b. Evidently, if controllable : b is false
then no controlling synchronization exists for b. However, if
controllable : b is true, then a controlling synchronization for
b can be computed as follows. Add synchronization arrows
to the computation repeatedly until there are no pair of con-
current events left (that is, all events are totally ordered). Of
course, at each step, an arrow is added in such a manner that
b remains controllable in the resulting computation. The algo-
rithm is described in Fig. 16. The correctness of the algorithm
follows from the following observations. Suppose 〈E, →〉 is a
computation such that b is controllable in 〈E, →〉. For a pair of

concurrent events (e, f), let
(e, f)→ denote the irreflexive partial

order of the computation obtained by adding a synchronization
arrow from e to f . Then, b is controllable in either 〈E,

(e, f)→ 〉
or 〈E,

(f, e)→ 〉 (lines 5-10). Formally,

〈E, →〉 |= controllable : b

≡
(〈E,

(e, f)→ 〉 |= controllable : b) ∨
(〈E,

(f, e)→ 〉 |= controllable : b)

Also, if 〈E, →〉 does not contain any pair of concurrent
events—terminating condition for the while loop—then b is
invariant in 〈E, →〉. Formally,

〈E, →〉 |= controllable : b ≡ 〈E, →〉 |= invariant : b
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Input: (1) a computation 〈E, →〉, (2) a predicate b, and
(3) an efficient algorithm to evaluate controllable : b

Output: a controlling synchronization for b, if it exists

1 if 〈E, →〉 �|= controllable : b then

2 exit(“no controlling synchronization exists for b”);
else

3
S→ := ∅;

4
C→ := →;

5 while there exist events e and f such that e ‖ f in
C→ do

6 � :=
C→ ∪{(e, f)})

+
;

7 if 〈E, �〉 |= controllable : b then
// add a synchronization arrow from e to f

8
S→ := S→ ∪{(e, f)};

else
// add a synchronization arrow from f to e

9
S→ := S→ ∪{(f, e)};

endif;
// add the transitive dependencies and compute the resulting computation

10
C→ := (→ ∪ S→)

+
;

endwhile;

11 exit( S→);
endif;

Fig. 16. The algorithm FindCon-
tSync to compute a controlling syn-
chronization

This implies that, when the while loop terminates, b is invariant
in the resultant computation.

(only if) Suppose there is a polynomial-time algorithm for
finding a controlling synchronization for b, whenever it ex-
ists. Clearly, controllable : b is false if the algorithm reports
that no controlling synchronization exists for b. On the other
hand, if the algorithm manages to find at least one controlling
synchronization, then controllable : b is true. ��

The algorithm FindContSync produces a controlling syn-
chronization that is too restrictive in the sense that it inhibits
any concurrency whatsoever in the controlled computation
whereas we want to retain as much concurrency as possi-
ble. To determine a controlling synchronization that permits
greater concurrency in the controlled computation, it turns out
that we should be able to evaluate a predicate not only under
controllable modality efficiently but also under invariant
modality efficiently. To that end, we first define the notion of
minimal controlling synchronization.

Definition 8 (minimal controlling synchronization) A con-
trolling synchronization is said to be minimal if it is not
possible to remove any synchronization dependency from the
corresponding controlled computation while still maintaining
the predicate (as invariant). Formally, given a controlling syn-
chronization

S→ for a predicate b in a computation 〈E, →〉,

S→ is minimal

�
〈∀ � : → ⊆ � ⊆ C→ :

〈E, �〉 |= invariant : b ≡ � = C→〉

where
C→= (→ ∪ S→)

+
.

Observe that minimal controlling synchronization exists
for a predicate whenever the predicate is controllable, but
it may not be uniquely defined. Now, we show that if both
controllable : b and invariant : b can be evaluated efficiently
(to “yes” or “no”) then there is an efficient algorithm to com-
pute a minimal controlling synchronization for b and vice
versa.

Theorem 24 There exists a polynomial-time algorithm for
computing a minimal controlling synchronization for a pred-
icate b, if it exists, if and only if there exist polynomial-time
algorithms for evaluating controllable : b and invariant : b.

Proof. We use the ping-pong argument to establish the theo-
rem.

(if) Suppose there are polynomial-time algorithms for eval-
uating b under both controllable and invariant modalities.
Clearly, if controllable : b is false then no controlling syn-
chronization exists for b. On the other hand, if controllable : b
holds then a minimal controlling synchronization can be de-
termined as follows. First, determine a controlling synchro-
nization for b using the algorithm FindContSync in Fig. 16
and compute the corresponding controlled computation. The
resultant computation may contain unnecessary synchroniza-
tion dependencies and therefore may be too restrictive. Next,
repeatedly remove synchronization dependencies from the
controlled computation in such a way that b remains invariant
in the resulting computation. To test for the invariance of b,
the algorithm for evaluating invariant : b efficiently can be
used. The algorithm is described in detail in Fig. 17.

(only if) Suppose there is a polynomial-time algorithm for
finding a minimal controlling synchronization for b, when-



126 N. Mittal, V.K. Garg

Input: (1) a computation 〈E, →〉, (2) a predicate b, and
(3) efficient algorithms to evaluate controllable : b and invariant : b

Output: a minimal controlling synchronization for b, if it exists

if 〈E, →〉 �|= controllable : b then
exit(“no controlling synchronization exists for b”);

else
S→ := compute a controlling synchronization for b;
C→ := (→ ∪ S→)

+
;

done := false;

// remove unnecessary synchronization arrows from C→
while not(done) do

found := false;

// test whether it is possible to remove a synchronization arrow from
C→ while

// guaranteeing that b remains invariant in the resulting computation

for each pair of events (e, f) such that e ‖ f in → but e
C→ f do

// remove the synchronization arrow from e to f

� := ( C→ \ {(e, f)})
+

;

if (� �= C→) and // is the resulting computation different?
〈E, �〉 |= invariant : b then // is b is still invariant?

C→ := �; // remove the synchronization arrow
found := true;
break; // quit the for loop

endif;
endfor;
if not(found) then // it is not possible to remove any

done := true; // synchronization arrow
endif;

endwhile;
S→ := C→ \ →;

exit( S→);
endif;

Fig. 17. The algorithm FindMinl-
ContSync to compute a minimal
controlling synchronization

ever it exists. Clearly, controllable : b holds if the algorithm
is able to find a minimal controlling synchronization and vice
versa. Moreover, invariant : b holds if and only if the syn-
chronization produced by the algorithm is empty. ��

For a linear predicate b, Sen and Garg [16] give O(n2|E|)
algorithms for evaluating controllable : b and invariant : b in
a computation, where n is the number of processes and E is
the set of events. Using Theorem 24, it is, therefore, possible
to efficiently compute a minimal controlling synchronization
for a linear predicate.

7 Conclusion and future work

A distributed debugger equipped with the mechanism to re-
execute a traced computation under control, with added syn-
chronization, can greatly facilitate the detection and localiza-
tion of bugs. For software-fault tolerance, in the case of syn-
chronization faults, instead of relying on chance controlled
re-execution can be used to avoid a fault in a deterministic
manner. In this paper, we provide control algorithms for two
useful classes of predicates, namely region predicates and dis-
junctive predicates. For the former, we demonstrate that the
control algorithm is optimal in the sense that it guarantees

maximum concurrency possible in the controlled computa-
tion. For the latter, we give a control algorithm with optimal
message-complexity that generates the least number of syn-
chronization dependencies. Also, for a general predicate sat-
isfying certain condition, we provide an efficient algorithm to
compute a minimal controlling synchronization.

It is possible to generalize the notion of admissible se-
quence of events to the notion of admissible sequence of
sub-frontiers; a sub-frontier is a subset of mutually consistent
events or, in other words, there is at least one consistent cut that
passes through all the events in the sub-frontier. An interesting
question is: “Can this generalized notion be used to derive an
efficient control algorithm for the class of k-local disjunctive
predicates with k > 1?” A k-local disjunctive predicate is
a disjunction of k-local predicates, where a k-local predicate
depends on variables of at most k processes.

The control algorithms presented is this paper are central-
ized in nature. They assume that every process sends infor-
mation about its events, as they are generated, to a central
daemon. The daemon then collects the information from all
processes, builds the trace and, when needed, computes the
synchronization. We are currently working on developing dis-
tributed control algorithms for region predicates and disjunc-
tive predicates.
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A Omitted proofs

Proof for Theorem 1. We have to prove that if b1 and b2 are p-
region predicates then so is b1 ∧ b2. We first prove that b1 ∧ b2
satisfies the weak lattice property. Consider consistent cuts C1
and C2 passing through an event e on process p that satisfy
b1 ∧ b2. By semantics of conjunction, both C1 and C2 satisfy
b1 as well as b2. Applying the weak lattice property twice,
we obtain C1 ∩ C2 satisfies b1 and b2. Again, by semantics
of conjunction, C1 ∩ C2 satisfies b1 ∧ b2. Likewise, C1 ∪ C2
satisfies b1∧b2. Thus b1∧b2 satisfies the weak lattice property.

We now prove that b1 ∧ b2 satisfies the weak convexity
property. Consider consistent cuts C1 and C2 passing through
e that satisfy b1 ∧ b2 and let C be any consistent cut that
lies between the two. By semantics of conjunction, both C1
and C2 satisfy b1 as well as b2. Applying the weak convexity
property twice, we obtain C satisfies b1 and b2. This implies
that C satisfies b1 ∧ b2. Therefore b1 ∧ b2 satisfies the weak
convexity property. ��

Proof for Theorem 6. Consider a controlling synchronization
S→ for a predicate b in a computation 〈E, →〉 and let

C→ be

(→ ∪ S→)
+

.

(optimal ⇒ smallest) Assume that
S→ is the optimal control-

ling synchronization. Consider an irreflexive partial order �

that extends →. Our obligation is to establish that b is invariant
in 〈E, �〉 if and only if � contains

S→. We have,

〈E, �〉 |= invariant : b

≡ { definition of invariant : b }
〈∀ �→: 〈E, �→〉 is a run of 〈E, �〉 :

〈E, �→〉 |= invariant : b〉
≡ { � extends → }〈

∀ �→: 〈E, �→〉 is a run of 〈E, �〉 :

(〈E, �→〉 is a run of 〈E, →〉) ∧
(〈E, →〉 |= invariant : b

〉
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≡
{

definition of
S→, which is the optimal

controlling synchronization

}
〈
∀ �→: 〈E, �→〉 is a run of 〈E, �〉 :

(〈E, �→〉 is a run of 〈E, →〉 and 〈E,
C→〉)

〉
≡ { C→ extends → }〈

∀ �→: 〈E, �→〉 is a run of 〈E, �〉 :

(〈E, �→〉 is a run of 〈E,
C→〉)

〉
≡ { definition of a run }

〈∀ �→: 〈E, �→〉is a run of 〈E, �〉 : �→ contains
C→〉

≡ { partial-order algebra }
� contains

C→
≡ { � is an irreflexive partial order that extends → }

� contains
S→

(smallest ⇒ optimal) Assume that
S→ is the smallest control-

ling synchronization. Consider a run 〈E, �〉 of 〈E, →〉. Our
obligation is to establish that b is invariant in 〈E, �〉 if and
only if 〈E, �〉 is a run of 〈E,

C→〉. We have,

〈E, �〉 |= invariant : b

≡ { definition of � }
(� extends →) ∧ (〈E, �〉 |= invariant : b)

≡
{

definition of
S→, which is the smallest

controlling synchronization

}

(� extends →) ∧ (� contains
S→)

≡ { � is an irreflexive partial order }
� contains

C→
≡ { definition of a run }

〈E, �〉 is a run of 〈E,
C→〉

This establishes the equivalence. ��

Proof for Lemma 9. It suffices to prove that → ∪ S(1)→ does
not contain any cycle. Since → is an irreflexive partial order,
a cycle, if it exists, must contain at least one pair of events

ordered by
S(1)→ . Moreover, since both → and

S(1)→ are transitive,
the pairs of events in the cycle must be alternately ordered by

→ and
S(1)→ . We first prove that there is no cycle containing

exactly one pair of events ordered by
S(1)→ .Assume the contrary.

Then,

〈∃ i, j :: si
S(1)→ sj → si〉

⇒ { definition of
S(1)→ }

〈∃ i, j :: (i < j) ∧ (sj → si)〉
⇒ { s satisfies the agreement property }

〈∃ i, j :: (sj �→ si) ∧ (sj → si)〉
⇒ { predicate calculus }

a contradiction

We now prove that if there is a cycle that contains m,

m � 2, pairs of events ordered by
S(1)→ then there is a cycle

that contains strictly fewer than m pairs of events ordered by
S(1)→ . Let the cycle be si

S(1)→ sj → su
S(1)→ sv

C(1)→ si, where
the path from sv to si contains exactly m−2 pair(s) of events

ordered by
S(1)→ . Since

S(1)→ is a total order, either si
S(1)→ sv or

sv
S(1)→ si. We have,

Case 1: si
S(1)→ sv

(si
S(1)→ sj → su

S(1)→ sv
C(1)→ si) ∧ (si

S(1)→ sv)

⇒ { simplifying }
si

S(1)→ sv
C(1)→ si

⇒ { simplifying }
a cycle with at most m − 1 pair(s) of events

ordered by
S(1)→

Case 2: sv
S(1)→ si

(si
S(1)→ sj → su

S(1)→ sv
C(1)→ si) ∧ (sv

S(1)→ si)

⇒ { simplifying }
si

S(1)→ sj → su
S(1)→ sv

S(1)→ si

≡ { rewriting }
sj → su

S(1)→ sv
S(1)→ si

S(1)→ sj

⇒ { S(1)→ is transitive }
sj → su

S(1)→ sj

⇒ { simplifying }
a cycle with at most one pair of events ordered by

S(1)→

This establishes that there is no cycle in → ∪ S(1)→ and

therefore
C(1)→ is an irreflexive partial order. ��

Proof for Lemma 10. It suffices to prove that
C(1)→ ∪ S(2)→ does

not contain any cycle. Since, from Lemma 9,
C(1)→ is an irreflex-

ive partial order, a cycle, if it exists, must contain at least one

pair of events ordered by
S(2)→ . We first prove that there is no

cycle containing exactly one pair of events ordered by
S(2)→ .

Assume the contrary. We have,

〈∃ i :: si+1
S(2)→ succ(si)

C(1)→ si+1〉

⇒
{

by definition of
S(2)→ , proc(si+1) �= proc(si)

implying si+1 �= succ(si)

}

〈∃ i :: si+1
S(2)→ succ(si)

C(1)→ si+1〉

⇒
{

since s satisfies the continuity property,

succ(si) �→ si+1

}

〈∃ i, j, k :: si+1
S(2)→ succ(si) → sj

S(1)→ sk
C(1)→ si+1〉

⇒ { S(1)→ is a total order on s }
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〈∃ i, j :: (si+1
S(2)→ succ(si) → sj

C(1)→ si+1)∧
((si+1

S(1)→ sj) ∨ (sj
S(1)→ si+1))〉

⇒
{

si+1
S(1)→ sj implies si+1

S(1)→ sj
C(1)→ si+1, which

contradicts Lemma 9

}

〈∃ i, j :: (si+1
S(2)→ succ(si) → sj

C(1)→ si+1) ∧
(sj

S(1)→ si+1)〉
⇒ { si

P→ succ(si) and
P→ ⊆ → }

〈∃ i, j :: (si → sj) ∧ (sj
S(1)→ si+1)〉

⇒
{

S(1)→ is a total order on s and s satisfies

the agreement property

}

〈∃ i, j :: (si
S(1)→ sj) ∧ (sj

S(1)→ si+1)〉
⇒ { s satisfies the agreement property }

〈∃ i, j :: i < j < i + 1〉
⇒ { i and j are integers }

a contradiction

We now prove that if there is a cycle that contains m,

m � 2, pairs of events ordered by
S(2)→ then there is a cycle

that contains strictly fewer than m pairs of events ordered

by
S(2)→ . Let the cycle be si+1

S(2)→ succ(si)
C(1)→ sj+1

S(2)→
succ(sj)

C(2)→ si+1, where the path from succ(sj) to si+1

contains exactly m−2 pair(s) of events ordered by
S(2)→ . Since

S(1)→ is a total order, either si+1
S(1)→ sj+1 or sj+1

S(1)→ si+1. We
have,

Case 1: si+1
S(1)→ sj+1

(si+1
S(2)→ succ(si)

C(1)→ sj+1
S(2)→ succ(sj)

C(2)→ si+1)

∧ (si+1
S(1)→ sj+1)

⇒ { simplifying }
si+1

S(1)→ sj+1
S(2)→ succ(sj)

C(2)→ si+1

⇒ { simplifying }
a cycle with at most m − 1 pair(s) of events

ordered by
S(2)→

Case 2: sj+1
S(1)→ si+1

(si+1
S(2)→ succ(si)

C(1)→ sj+1
S(2)→ succ(sj)

C(2)→ si+1)

∧ (sj+1
S(1)→ si+1)

⇒ { simplifying }
si+1

S(2)→ succ(si)
C(1)→ sj+1

S(1)→ si+1

⇒ { simplifying }
a cycle with at most one pair of events ordered by

S(2)→

This establishes that there is no cycle in
C(1)→ ∪ S(2)→ and

therefore
C(2)→ is an irreflexive partial order. ��

Proof for Lemma 18. Assume that the weighted true event
graph does contain a permissible path. Consider the shortest
permissible path s = s1s2 · · · sl. Assume, on the contrary,
that s does not satisfy the agreement property. Then there ex-
ist integers i and j, where i < j, such that sj → si. Since s
is a shortest permissible path, sj /∈ ⊥; if otherwise, the path
sjsj+1 · · · sl is a shorter permissible path than s—a contradic-
tion. Furthermore, i � 2; if otherwise, si ∈ ⊥ which implies
that si → sj , thereby creating a cycle in →. Two possible
cases arise depending on whether there is an edge from si−1
to sj .

Case 1: (si−1, sj) /∈ E(G)

{ definition of an edge }
(succ(si−1) → sj) ∧ (sj → si)

⇒ { → is transitive }
succ(si−1) → si

≡ { definition of an edge }
(si−1, si) /∈ E(G)

⇒ { s is a path implying (si−1, si) ∈ E(G) }
a contradiction

In the second case, two possible sub-cases arise depending
on the weight of the edge from si−1 to sj . If w(si−1, sj) =
(0, 1) then the path s1s2 · · · si−1sj · · · sl is permissible and
has lesser weight than s—a contradiction. The more interest-
ing case is when w(si−1, sj) = (1, 1). Then,

Case 2.2: w(si−1, sj) = (1, 1)

{ definition of the weight function }
sj �→ succ(si−1)

⇒
{

sj → si implying

si → succ(si−1) ⇒ sj → succ(si−1)

}

si �→ succ(si−1)

≡
{

(si−1, si) ∈ E(G) and definition of the

weight function

}

w(si−1, si) = (1, 1)

Thus the path s1s2 · · · si−1sj · · · sl is permissible and has
lesser weight than s—a contradiction. This establishes that s
satisfies the agreement property. ��

Proof for Theorem 22. Assume that the weighted true event
graph G does contain a permissible path. From Theorem 17, b
is controllable in 〈E, →〉. Let

min→ denote a minimum control-
ling synchronization for b in 〈E, →〉. Further, let {G(k)} rep-
resent the sequence of weighted true event graphs generated
by adding synchronization dependencies from

min→ one-by-one,
where G(0) = G. Note that b is invariant in the computation
obtained by adding all synchronization dependencies from

min→.
From the bounded reduction lemma,

rank(G(i)) − rank(G(i+1)) � 1, 0 � i < | min→ |
Adding the above inequality for all values of i, we obtain,



130 N. Mittal, V.K. Garg

rank(G(0)) − rank(G|min→ |) � | min→ |
≡ { using Theorem 21 }

rank(G) − 0 � | min→ |
≡ { simplifying }

rank(G) � | min→ |
≡ { min→ corresponds to a minimum controlling

synchronization }
rank(G) = | min→ |

This establishes the theorem. ��
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