On Computation of State Avoidance Control for Infinite
State Systems in Assignment Program Framework * T

Ratnesh Kumar Vijay K. Garg
Dept. of Elec. & Comp. Eng. Dept. of Elec. & Comp. Eng.
Iowa State Univ., Ames, IA Univ. of TX at Austin, TX
Abstract

In this paper we study supervisory control of discrete event systems with poten-
tially infinite state-space using state variables for representation and specification. An
assignment program model consisting of state variables and a finite set of conditional
assignment statements is used for representing a discrete event system, and a predicate
over state variables is used for representing a state avoidance control specification. The
contribution of this paper is to show how to perform supervisory control computations
symbolically. In the case of a Petri net (vector addition system) with the set of for-
bidden states being a right-closed set, we present a finitely terminating algorithm for
maximally permissive supervision.

Keywords: Discrete event systems, Assignment Programs, Supervisory control, State
avoidance, Petri nets

1 Introduction

Algorithms for computation of supervisors for discrete event systems have been well
developed for plants with finitely many states and specifications given as regular languages
of event traces. There has been little work on synthesis of supervisors for general systems
which have infinitely many states except for some classes of Petri nets. In this paper we
present a state variable approach to supervisory control of such systems, which allows a
concise description of an infinite state system.

Prior work on control of infinite state systems has mainly been in the framework of Petri
nets. This includes the work on various classes of controlled Petri net [6], and the equivalent
vector discrete event systems [11]. In this paper we study the synthesis problem for general
infinite state systems modeled using assignment programs. This model was first used in

*A preliminary version of this paper appeared in [2, 8].

tThis research was supported in part by the National Science Foundation under the grants ECS-9709796,
ECS-0099851, ECS-0218207, ECS-0244732, ECS-9907213, and CCR-9988225, a ONR grant N000140110621,
a Texas Education Board grant ARP-320, an Engineering Foundation Fellowship, and an IBM Grant.

[10] to obtain a necessary and sufficient condition for the existence of a supervisor, and to
provide a formula for a maximally permissive supervisor. In this paper, we study the issue
of algorithmic computation of the supervisors.

We consider the problem of safety control formulated as a state avoidance problem and
specified as a predicate over state variables. Using predicate transformers, we obtain a
supervisor using symbolic computations. This computation is in general undecidable (as
expected), which however, only indicates the non-existence of a general purpose automated
solution technique. Special case analysis can be carried out for obtaining the solution, and
we illustrate the methodology using several examples.

An interesting special case arises when the system is a Petri net, and the set of forbidden
states is a right-closed set, i.e., if a certain Petri net marking is forbidden, then any other
marking covering it is also forbidden. The importance of this class of sets has been recognized
by others in the Petri-net community. See for example [16] where the structure of a right-
closed set is studied and is shown that it can be represented as a finite union and intersection
of sets expressed using linear inequalities. We show that the supervisory control problem
for state avoidance is decidable for such systems and provide an algorithmic technique to
compute a maximally permissive supervisor. The approach we have taken is similar in spirit
to that in [4] on recursive equivalence of the liveness and reachability problems for the Petri
nets.

This decidability result generalizes the existing results on controlled Petri nets where
supervisory synthesis for state avoidance of right-closed markings (typically specified as the
simultaneous marking of certain combination of places) has been solved for various restricted
class of Petri nets such as a subclass of marked graphs [6], a subclass of state machines [1],
and recently a more general class of Petri nets satisfying the “transition conflict (TC)”
condition [5]. Our result also generalizes the existing results on controlled vector discrete
event systems, which are precisely the controlled Petri nets, where the problem has been
solved under the restriction of “loop-freedom” in the uncontrolled subnet, and the set of
forbidden states specified as a “linear-inequality predicate”, which is a right-closed set (see
[11, 17]). It also generalizes the results based on place invariance techniques presented in
[18] where the set of forbidden states is also specified as a linear inequality predicate—a
right-closed set, and sufficient conditions are given for the existence of a supervisor, and the
supervisor computed is not necessarily maximally permissive.

An expanded version of this paper, which includes all omitted proofs, as well as more
examples is available on the World Wide Web [9].

2 Notation and Preliminaries

A discrete event system, denoted G, is a 4-tuple G := (X, X, ~, Xj), where X denotes the
state set, X is the finite event set, ~» C X x ¥ x X is the set of state transitions, and Xq C X
is the set of initial states. We use state variables to represent the states and a finite set of
conditional assignment statements to represent the state transitions. The desired behavior
is specified as a predicate over the state variables representing a set of forbidden states.

The notation v is used to denote the vector of state variables of G. If v is n-dimensional,
then v = [vy,..., v, ..., v,], where v; is the ith state variable. The state space X of G equals
the Cartesian product of domains of all state variables, i.e., X := [[i; D(v;), where D(v;) is
the domain of v;. By definition D(v;) is a countable set and can be identified with the set of
natural numbers N .

We use predicates for describing various subsets of the state space. Let P(v) denote the
collection of predicates defined using the state variable vector v, i.e., if P(v) € P(v), then it
is a boolean valued map P(v) : X — {0,1}. Consider for example a two dimensional state
space X = Z2. Then the predicate P(v) = [v; > wy] refers to all the states in which the
value of variable v, is at least as large as the value of variable vs. The symbols true and
false are used for denoting predicates that hold on all and none of the states respectively.
With every predicate P(v) € P(v), we associate a set Xp C X on which P(v) takes the
value one. Thus the collection of predicates P(v) has a one-to-one correspondence with the
power set 2%, and the names predicates and state-sets can be used interchangeably. We say
that the predicate P(v) holds on X CXif X C Xp.

Given P(v) € P(v), its negation is denoted by —=P(v). Given an indexing set A such
Py (v) € P(v) for each A € A, the conjunction and disjunction over A is denoted by Aycp Pa(v)
and Ve Pa(v) respectively. The quadruple (P(v),—, A, V) forms a boolean algebra that is
isomorphic to the algebra of the subsets of X with the operations of complementation,
intersection, and union. For predicates P(v) and Q(v), we say that P(v) is stronger than
Q(v) (equivalently, Q(v) is weaker than P(v)), denoted P(v) < Q(v), if P(v) AQ(v) = P(v),
or equivalently, P(v)VQ(v) = Q(v). It is easily verified that (P(v), <) is a complete Boolean
lattice.

State transitions map a state to another state. Such mappings are extended to set of
states or predicates in a natural way, and are known as predicate transformers. We use F
to denote the collection of all predicate transformers, i.e., if f € F, then f : P(v) — P(v).
The conjunctive closure of f, denoted f,, and disjunctive closure of f denoted f* is defined
to be Ajso f* and V,sq f* respectively, where fO is the identity predicate transformer and
= f(fY). Given f: X — X, the substitution predicate transformer “v:= f(v)” maps a
predicate P(v) to P(f(v)).

Next we review the assignment program model, first introduced in [10], for a discrete
event system G described above. The initial state set of GG is specified as an nitial predicate,
denoted I(v), which implies Xy = X;. The state transitions “~»” of G is specified using a
finite set of conditional assignment statements of the form:

0 :[Cr(v)] = [v~ £ ()],

where o € ¥ is an event, C,(v) is a predicate, called the guard, and f, : X — X is a map
defined on the state space. If no guard is present, then true is treated as the guard. A
conditional assignment statement of the above type is enabled if the condition C,(v) holds.
An enabled assignment statement may ezecute. Upon execution, new values are assigned to
the state variables according to the map f, and a state transition on the event o occurs.
For simplicity, we assume that if multiple assignment statements are simultaneously enabled

only one of them nondeterministically executes at any time. This assumption may be relaxed
to allow concurrency of execution.

The substitution predicate transformer can be used to define the forward one-step reach-
able, fr, and backward one-step reachable, br, predicate transformers for G. fr determines
the “postcondition” after the occurrence of a state transition for a given “precondition”,
whereas br determines the “precondition” prior to the occurrence of a state transition for a
given postcondition. !

For the assignment statement o : [C,(v)] = [v ~ f,(v)] and a condition P(v), these are
formally defined as follows:

fr(P),0) = Colf; ' () AP(f;'(v)); br(P(v),0) := Co(v) A P(f5(v)).

Note that the computation of br is easier as compared to that of fr, since its computation
does not require the extra computation of f -1 X
For ¥ C X, we define fr(P(v),X) := V s fr(P(v),0), and similarly, br(P(v),X) =

~

Vyes br(P(v), o). Finally, note that fr*(P(v),X) denotes the set of states which are reach-
able from a state in P(v) by execution of zero or more transitions of events in 3. Similarly,

br*(P(v),Y) denotes the set of states from where a state in P(v) can be reached by execution
of zero or more transitions of events in . Clearly, fr* is useful in characterizing the forward
reachability, whereas br* is useful in characterizing the backward reachability.

Let B(v) € P(v) be a forbidden predicate, i.e., it specifies the set of forbidden states. A
supervisor S is designed which restricts the behavior of G by disabling some of its controllable
events at its various states so that the controlled system G g does not visit any of the forbidden
states. We use X, C X to denote the set of uncontrollable events; the events in X — X, are
controllable. Then S is a map that assigns to every event o € ¥ a predicate S,(v) where o
is disabled by S. Since uncontrollable events cannot be disabled, we require S,(v) = false

for each o € ¥,. Each assignment statement of the controlled system then takes the form:
0 [Cy(v) N =Sy (v)] = [v~ fr(v)].

Remark 1 Note that in our setting concurrency of state transitions is not allowed. This is
restrictive compared to the setting in controlled Petri nets [6]. An advantage of this restric-
tion is that a unique maximally permissive supervisor exists. (In the setting of controlled
Petri nets a unique maximally permissive supervisor need not exist as demonstrated in [3].)

Since the effect of supervision is to strengthen the guard for each conditional assignment
statement in G, it is clear that S restricts the behavior of G. We use frg and brg to denote
the associated predicate transformers of G's. The control task is to design S such that

frs(I(v),) 2 =B(v). (1)

!Earlier references such as [14, 10] used wp (resp., sp) instead of br (resp., fr) for backward (resp.,
forward) one-step reachability. This, however, was a poor notation since the predicate transformers wp and
sp are used to mean something different in computer science literature: For example, pr(P(v), ¥)) denotes
the set of initial states from where the program consisting of assignment statements in ¥ C ¥ terminates
and reaches states where P(v) holds.

Remark 2 A special case of this problem with I(v) = —=B(v) was first studied in [14] where
it was shown that a supervisor exists if and only if =B(v) is ¥,-invariant, i.e., =B(v) <
—br(B(v),%,). A related problem was studied in [10, 11] where conditions were derived for
the existence of a supervisor S such that fr§(I(v),X) = —B(v), i.e., the inequality of (1)
replaced by an equality. Below we present conditions for the problem of (1). It turns out
that the existence conditions for the two cases (inequality vs. equality) differ, nonetheless
the formula for the maximally permissive supervisor is the same.

Proposition 1 [9] Given a plant G and a forbidden predicate B(v), [3S : fr§(I(v),X) <
—B(v)] & [I(v) X —br*(B(v), X,)].

From Proposition 1, the test for the existence of a supervisor requires the computation
of br*(B(v),X,). We show below that the same computation is also needed for obtaining a
maximally permissive supervisor. (Given two supervisors S* and S? we say that S* is more
permissive or less restrictive than S2%, denoted S' < S?) if for each o € %, Si(v) < S2%(v).
S is said to be the least permissive or the most restrictive supervisor if it disables all the
controllable events in all the states.)

Let S be the family of supervisors such that for each S € S, fr§(I(v),X) < =B(v). Then
since we impose the requirement of non-concurrency of transition execution, & contains a
maximally permissive supervisor ST whenever it is nonempty, given by S!(v) := AsesS, (v)
for each o € ¥. The following theorem gives an explicit characterization of ST and can be
obtained similar to [14, Corollary 7.1 and Proposition 8.1].

Proposition 2 [9] Given a plant G and a forbidden predicate B(v), if S # (), then a
maximally permissive supervisor is given by: SI(v) = br(br*(B(v),%,),0) for any o €
(E - Eu)-

3 Computation of br*: GGeneral Case

The test for the existence of a supervisor as well as the computation of a maximally per-
missive supervisor (when one exists) require the computation of br*(B(v), 3,). The following
theorem shows that the computation of br*(B(v),%,) is in general undecidable, and we need
systematic methods to decide the termination of the recursive computation in special cases.

Theorem 1 For a plant G, and a forbidden predicate B(v), it is in general undecidable to
determine whether a given state is in br*(B(v), 2,).

Proof: Our proof is based on the undecidability of the emptiness of a recursively enumerable
language, i.e., a language generated by a Turing machine [7, Theorem 8.6]. We show that the
emptiness problem of a recursively enumerable language can be reduced to the problem of
determining membership in br*(B(v), X,) for some G and B(v). Consider a Turing machine
T with its event set being 3,. Let G be an assignment program that emulates 7" (this is

possible since an assignment program is Turing equivalent [9, Theorem 1]), and let B(v) be
the predicate representing the accepting states of 7. Then the language accepted by 7T is
nonempty if and only if it is possible to reach one of its accepting states (by a sequence of
uncontrollable event transitions) from the initial state of 7', i.e., if and only if the initial state
of T is in br*(B(v),%,). Since the problem of determining the emptiness of the language
accepted by 7' is in general undecidable, it follows that it is undecidable to determine whether
the initial state of 7" is in br*(B(v), Xy). u

Remark 3 Note that Theorem 1 provides the expected result that generally the compu-
tation of maximally permissive supervisor cannot be achieved in an automated fashion. A
similar result has been derived for the case of Petri nets when both the plant and the spec-
ification are given as general Petri nets [15]. Theorem 1 illustrates that for systems for
which the language emptiness problem is undecidable, the existence (and computation) of
a supervisor for state avoidance control is also undecidable. This complements the result
of Sreenivas [15] which shows that for systems for which language containment problem is
undecidable, the existence (and computation) of a supervisor for language avoidance control
is undecidable.

Undecidability of the computation, however, only indicates the non-existence of a general
purpose automated computation technique. Analysis for special cases may be carried out
for the computation of br*(B(v), ¥,). We first discuss the case when a single uncontrollable
event is present and later generalize this to the case of multiple uncontrollable events.

3.1 Single Uncontrollable Event

Note when there is a single uncontrollable event o, then br*(B(v),%,) = br*(B(v),0) =
[Gn € N : br"(B(v),0)]. In the following theorem we give a formula for br"(B(v), o) which
is used to compute br*(B(v), o).

Theorem 2 For alln > 1, br*(B(v),0) = B(f2(v)) Aicn—1 Co (fi(v))-

Proof: The proof is based on induction on n. The assertion trivially holds for n = 1,
establishing the base step. For induction step assume it is true for n < k. Then

brk“(B(v), o)

:br< B(v),0))

= br (B(f*(v)) Z<klc< fi)), o)

= [B(’“(fa(v))) i<hot Co(F2(Fo ()] A Co(v)
— [BUF(0)) Aves Co (1 0D A Co0)

= [B(f5*(v)) Ai<igk Co (f2(0)] A Co(£(v)

= B(f*1(v)) Ni<k Cs(f2(v)),

where the second equality follows from the induction hypothesis. This establishes the induc-
tion step and completes the proof. []
The following example illustrates the application of Theorem 2.

6

Example 1 Suppose B(v) = [v = m], C,(v) = [v < m], and f,(v) = v + 1, which implies
f*(v) = v+n. Then using the formula of Theorem 2 we obtain: br™(B(v),o) = [v = m —n].
Hence br*(B(v),0) = [v < m].

The formula in Theorem 2 requires multiple conjunctions. However, as shown in the
following corollary the formula is much simplified when f, satisfies certain conditions with
respect to Cy,(v).

Definition 1 A function f : X — X is said to be increasing with respect to a predicate
P(v) € P(v) if P(v) = P(f(v)); it is said to be decreasing with respect to P(v) if P(f(v)) =
P(v).

Corollary 1 [9] If f, is increasing with respect to C,(v), then br*(B(v),o) = B(v) V
[Co(v) A { Va1 B(fr(v))}]- If f, is decreasing with respect to C,(v), then br*(B(v),0) =
B() Vus1[Co (f27(v)) A B(f™(v))]. If f, is increasing with respect to C,(v) and decreasing
with respect to B(v), or it is decreasing with respect to C,(v) and B(v), then br*(B(v),0) =
B(v).

We illustrate the above results by applying it to a “linear” system.

Example 2 Assume that f,(v) = av + b, where a,b are constants of appropriate sizes (if
v € 2" then a € Z"" and b € Z™). Then using induction on n it is easy to show that

() = av+ (a—1)"Ha" —1)b ifa#1
o) v+ nb otherwise.

Suppose for example that the assignment f, is of the form: vy, vy := vy + v9,v; — v9. Then

in this case
— 1 1 - b= 0
a= 1 117 = .

Therefore from the formula above

[, ve) = [1 _1] [z;],

where it can be verified that

l 28 0 if n even
1 1]" 0 2%
1 -1] ~) [27 2%] .
[[2_ o] if n odd.
2 — 2
In other words,
25,25 vy if n even

fo(v1,v9) = { n=1

277 v + 2”7_11)2,2”7_11)1 - 2"7_1112 if n odd.

Suppose B(vy,v9) = [v1 > vs] and Cy(v1, v2) = true. Then from Corollary 1

7

br*((vy > v2),0)

=3n € N : B(f*(v1,v2))

= [3n even : (22v; > 22v,)]

V[3n odd : (2“7711)1 + 2”7711)2 > QnTAvl — 2”7711)2)]
= [v1 > va] V[(v1 + v2) > (v1 — v2)]

= [v1 > o] V]vg > 0].

Thus if the system starts from a state where the last condition does not hold, i.e., where
[v1 < vy < 0], then it never reaches a state in [v; > v,] on an event sequence of o.

3.2 Multiple Uncontrollable Events

Note when ¥, = {01,09,...,0m}, X% = (0}05 ...0},)*. So the reachability computation
with respect to traces in X} can equivalently be obtained by repeated reachability compu-
tation with respect to traces in ojo3...o,,, which in turn is a m-fold repeated reachability
computation, each with respect to sequences of a single uncontrollable event. Hence the
following iterative computation gives br*(B(v), 3,):

e By(v) := B(v)
br*

e Byyi(v) :=br*(Bi(v), 0i11)

Then br*(B(v),X,) = In € N : (By)"(v).

In the following example we illustrate our technique for an infinite state system that
cannot be modeled as a Petri net. This example appears in [13, pp. 194-196] to illustrate
the limitation of the modeling power of Petri nets and to show how Petri nets with inhibitor
arcs can be used to model the given system.

Example 3 Consider the following producer-consumer problem consisting of two producers
and two consumers. Producer P;(i = 1,2) produces items for consumer C;, and upon pro-
duction it deposits the item in buffer B;. The transmission of the items from buffer B; to
consumer C; is via a shared channel which can transmit only one item at a time and gives
priority of transmission to items of buffer B; (items of buffer B, can only be transmitted
to consumer Cy over the channel when B; is empty). A Petri net with inhibitor arc model
for this system is given in [13, p. 196], which can be translated to an assignment program
model as follows. p;/c;/b; denotes number of items at P;/C;/B;. Initially, p; = ¢; = 1 and
b; = 0.

prody : [p1 > 0] = [by ~ by + 1]
prody : [ps > 0] = [by~> by + 1]
cony: [by >0A ¢ > 0] = [by ~ b — 1]
cong: [bg>0ANca>0Ab;=0] = [by~> by — 1]

first two events are the production events that are controllable and the last two events are
the consumption events that are uncontrollable. The control task is to ensure the stability

of the buffers by requiring that the cumulative contents of the two buffers never exceed a
fixed number m, i.e., the forbidden states are given by B(v) = [b + by > m].

We proceed with the computation of br*(B(v), %,), where ¥, = {cony, cons} as follows.
We first compute br*(B(v), cony). Note that Ceop, (feon, (v)) =01 —1>0A ¢ > 0] X [by >
0Ac1 > 0] = Coopn, (v), and B(feon, (v)) = [b1 — 1+ by > m] <X [by + by > m] = B(v), i.e.,
feon, is decreasing with respect to both Ceypn, (v) and B(v). Hence from the third part of
Corollary 1, br*(B(v),coni) = B(v) = [by + by > m]. Similarly it can be shown that feon,
is also decreasing with respect to both C,ypn,(v) and B(v). So br*(br*(B(v), cony), cons) =
br*(B(v), cong) = B(v) = [by + by > m]. Hence br*(B(v),%,) = B(v) = [b; + by > m]. Since
I(v) 2 [by + by = 0] X =br*(B(v),2,) = [b1 + by < m], it follows from Proposition 1 that a
supervisor that achieves the desired buffer stability exists.

The maximally permissive supervisor can be computed using the result of Theorem 2 as
follows:

1. Sprods (v) = br(br*(B(v), X,), prody) = [by + by > m]
2. Sprody (V) = br(br*(B(v), Xy), prods) = [by + by > m]

Thus the supervisor disables both the production events when the cumulative buffer
content is at least the desired maximum.

4 Computation of br*: Petri net Case

When G is a Petri net, its state space is X = N, i.e., it is the set of n-dimensional positive
integer valued vectors. We show that in the case of Petri nets the recursive computation of
br*(B(v),%,) terminates whenever the set of forbidden states is right-closed.

Definition 2 Given a set of positive integer valued vectors X C N™, it is said to be right-
closedif x € X and 2’ > z implies 2/ € X. A predicate P(v) € P(v) is said to be right-closed
if Xp is a right-closed set.

Thus X is right-closed if whenever it contains a state, it contains all states “covering” it. The
following well known lemma describes a property of right-closed subsets of positive integer
valued vector sets.

Lemma 1 Given a right-closed vector set X C N™, it contains finitely many minimal
elements (with respect to the standard partial ordering of vectors).

In the following lemma we show that for a Petri net plant br*(B(v), %,) is right-closed
whenever B(v) is right-closed.

Lemma 2 If the plant G has a Petri net model, and the forbidden predicate B(v) is right-
closed, then br*(B(v), ¥,) is also a right-closed predicate.

Proof: Consider a state x in br*(B(v),X,). Then there exists a sequence u of transitions of
uncontrollable events from z to a state Z in B(v). If 2’ is a state covering z, i.e., if 2’ > =z,
then from a property of Petri nets the transition sequence u can also occur at z’ resulting in
a state Z' that covers Z. Since B(v) is a right-closed predicate, ' is in B(v). So we conclude
that 2’ is a state in br*(B(v), ¥,), proving that it is right-closed. n
The above two lemmas can be used to obtain the following main result of this section:

Theorem 3 For a Petri net plant G and a right-closed forbidden predicate B(v), the recur-
sive computation of br*(B(v), X,) terminates in a finite number of iterations.

Proof: From Lemma 2, br*(B(v),%,) is right-closed. So from Lemma 1, it contains a
finite number of minimal positive integer valued vectors. Let X be the set of such minimal
vectors. For each z € X , define N, € N to be the minimum number of uncontrollable
transitions it takes to reach a state in B(v) from state z, and let N := max_ ¢ N,. Then
since N, is finite for each = € X and since X is also finite it follows that N itself is
finite. We claim that the recursive computation of br*(B(v),X¥,) terminates in at most N
iterations, i.e., br*(B(v), Xy) = Vpen 0r™(B(v), X,). It suffice to show that given any state
in br*(B(v),Y,) it takes fewer than N uncontrollable transition to reach a state in B(v) from
. Since z is a state of br*(B(v), $,), it covers some minimal vector 2’ € X. By definition
of N, there exists a transition sequence u of uncontrollable events of length at most N from
2’ to a state ' in B(v). Since = covers z’, u can also occur at z resulting in a state Z that
covers T'. Finally, since B(v) is right-closed, it follows that Z is in B(v). This completes the
proof. []

Remark 4 Since the computation of br*(B(v),%,) does not depend on the conditional
assignment statements corresponding to the controllable events, the result of Theorem 3
can be strengthened to a more general setting where only the uncontrollable sub-system,
i.e., the system described by the conditional assignment statements corresponding to the
uncontrollable events, can be represented as a Petri net.

The proof of Theorem 3 is existential in nature. It does not provide an upper bound on
the number of iterations needed for the recursive computation of br*(B(v), ¥,) to terminate,
but it can be seen that it is bounded by the depth of the deepest coverability tree [13]
associated with the uncontrollable sub-system.

5 Conclusion

We have examined the suitability of using assignment programs to model discrete event
systems. The problem of supervisory synthesis for state avoidance is in general infeasible.
We believe that techniques need to be developed so that the synthesis can be done with
some human assistance. To this end, we have presented certain symbolic techniques. The
success of theorem prover softwares such as PVS [12] that can do many types of symbolic
computations automatically, confirms that the symbolic computation presented in the paper

10

can be automated. However, the iterative computation is not guaranteed to terminate in
general. We show that when the system can be represented as a Petri net and the forbidden
state set is right-closed, such as when it is specified as simultaneous marking of certain
combination of places, then the iterative computation does terminate.

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

R. K. Boel, L. Ben-Naoum, and V. Van Breusegem. On forbidden state problems for a
class of controlled Petri nets. IEEE Transactions on Automatic Control, 40(10):1717-
1731, 1995.

V. K. Garg and R. Kumar. State-variable approach for controlling discrete event systems
with infinite states. In Proceedings of 1992 American Control Conference, pages 2809—
2813, Chicago, 1L, July 1992.

C. H. Golaszewski and P. J. Ramadge. Supervisory control of discrete event processes
with arbitrary controls. In P. Varaiya and A. B. Kurzhanski, editors, Discrete Event
Systems: Models and Applications, pages 459-469. Springer-Verlag, 1987.

M. H. T. Hack. The recursive equivalence of the reachability problem and the liveness
problem for Petri nets and Vector addition systems. In 15th Annual Symposium on
Switching and Automata Theory, pages 156-164, New Orleans, LA, October 1974.

L. E. Holloway, X. Guan, and L. Zhang. A generalization of state avoaidance policies for
controlled Petri nets. IEEE Transactions on Automatic Control, 41(6):804-816, June
1996.

L. E. Holloway and B. H. Krogh. Synthesis of feedback control logic for a class of
controlled Petri nets. IEEE Transactions on Automatic Control, 35(5):514-523, May
1990.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.

R. Kumar and V. K. Garg. Assignment program model for control of infinite state
systems. In Proceedings of 1995 Annual Allerton Conference, pages 166-175, Urbana,
IL, October 1995.

R. Kumar and V. K. Garg. Computation of state avoaidance control for infinite state
systems in assignment program framework—the expanded version. Technical report,
http://www.eng.iastate.edu/” rkumar/PUBS/cstmttech.ps, 1997.

R. Kumar, V. K. Garg, and S. I. Marcus. Predicates and predicate transformers for
supervisory control of discrete event systems. IEEFE Transactions on Automatic Control,
38(2):232-247, February 1993.

11

[11] Y. Li and W. M. Wonham. Control of vector discrete event systems I - the base model.
IEEE Transactions on Automatic Control, 38(8):1214-1227, August 1993.

[12] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System guide,
Version 2.4. Technical report, SRI International, Melno Park, CA, 2001.

[13] J. L. Peterson. Petri Net Theory and Modeling of Systems. Prentice Hall, Inc., Engle-
wood Cliffs, NJ, 1981.

[14] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event systems.
SIAM Journal of Control and Optimization, 25(5):1202-1218, 1987.

[15] R. S. Sreenivas. On a weaker notion of controllability of a language K with respect to
to a language L. IEEE Transactions on Automatic Control, 38(9):1446-1447, 1993.

[16] G. Stremersch. Supervision of Petri nets. Kluwer Academic Publishers, Boston, MA,
2001.

[17] G. Stremersch and R. K. Boel. Reduction of the supervisory control problem for petri
nets. IEEE Transactions on Automatic Control, 45(12):2358-2363, 2000.

[18] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis. Feedback control of Petri nets
based on place invariants. Automatica, 32(1):15-28, 1996.

12

