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Summary. Writing correct distributed programs is hard.
In spite of extensive testing and debugging, software
faults persist even in commercial grade software. Many
distributed systems should be able to operate properly
even in the presence of software faults. Monitoring the
execution of a distributed system, and, on detecting a
fault, initiating the appropriate corrective action is an
important way to tolerate such faults. This gives rise to
the predicate detection problem which requires finding
whether there exists a consistent cut of a given compu-
tation that satisfies a given global predicate.

Detecting a predicate in a computation is, however,
an NP-complete problem in general. In order to ame-
liorate the associated combinatorial explosion problem,
we introduce the notion of computation slice. Formally,
the slice of a computation with respect to a predicate is
a (sub)computation with the least number of consistent
cuts that contains all consistent cuts of the computa-
tion satisfying the predicate. Intuitively, slice is a concise
representation of those consistent cuts of a computation
that satisfy a certain condition. To detect a predicate,
rather than searching the state-space of the computa-
tion, it is much more efficient to search the state-space
of the slice.

We prove that the slice of a computation is uniquely
defined for all predicates. We present efficient algorithms
for computing the slice for several useful classes of pred-
icates. We establish that the problem of computing the
slice for an arbitrary predicate is NP-complete in general.
We develop efficient heuristic algorithms for computing
an approximate slice for such predicates for which com-
puting the slice is otherwise provably intractable. Our
experimental results demonstrate that slicing can lead
to an exponential improvement over existing techniques
for predicate detection in terms of time and space.
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1 Introduction

Writing distributed programs is an error prone activ-
ity; it is hard to reason about them because they suf-
fer from the combinatorial explosion problem. Software
faults (bugs), in particular global faults, are caused by
subtle interactions between various components of the
system. As such, they may occur only for specific combi-
nations of inputs and certain interleavings of events. This
makes it difficult to eliminate them entirely using testing
and debugging. In fact, in spite of extensive testing and
debugging, software faults may persist even in commer-
cial grade software. Many distributed systems should be
able to operate properly even in the presence of software
faults. Monitoring the execution of a distributed system,
and, on detecting a fault, initiating the appropriate cor-
rective action is an important way to tolerate such bugs.

A system for tolerating global faults will, in gen-
eral, consist of three components: program tracing mod-
ule, fault detection module, and fault recovery module.
The program tracing module is responsible for record-
ing the values of variables or objects being monitored
(that is, on which the predicate depends) whenever they
change. The fault detection module analyzes the trace
to check for the possible occurrence of a fault. On de-
tecting a fault, the fault recovery module takes the nec-
essary corrective measure to recover from the fault. It
could involve halting the program execution, or reset-
ting the values of variables, or rolling back the execu-
tion of the program to a consistent cut before the fault
followed by replay (or retry), possibly under control.
The ability to detect global faults is therefore a po-
tentially important step in tolerating them. In this pa-
per, we focus on detecting those faults that can be ex-
pressed as predicates on variables of processes. For ex-
ample, “no process has the token” can be written as
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no token1∧no token2∧· · ·∧no tokenn, where no tokeni
denotes the absence of token on process pi. This gives rise
to the predicate detection problem, which involves finding
a consistent cut of a distributed computation, if it exists,
that satisfies the given global predicate. (This problem
is also referred to as detecting a predicate under possibly
modality in the literature.) Predicate detection problem
also arises in other areas in distributed systems such as
testing and debugging, for example, to set conditional
breakpoints.

Detecting a predicate in a computation is a hard
problem in general [Gar02b,SS95,MG01b]. The reason
is the combinatorial explosion in the number of possible
consistent cuts. Given n processes each with at most k
local states, the number of possible consistent cuts in
the computation could be as large as O(kn). Finding
a consistent cut that satisfies the given predicate may,
therefore, require looking at a large number of consistent
cuts. In fact, we prove in [MG01b] that detecting a pred-
icate in 2-CNF (conjunctive normal form), even when no
two clauses contain variables from the same process, is
an NP-complete problem, in general. An example of such
a predicate is: (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn),
where each xi is a boolean variable on process pi.

The approaches for solving the predicate detection
problem can be divided into three categories. The first
approach involves repeatedly computing global snapshots
of the computation until the given predicate becomes
true [CL85,Bou87,SK86]. This approach works only for
stable predicates, that is, predicates that stay true once
they become true. Some examples of stable predicates
are termination and deadlock. The given predicate may
not be stable and may turn true only between two succes-
sive snapshots. The second approach is based on search-
ing the state-space of the computation. This approach
involves incrementally building the lattice corresponding
to the computation until the desired predicate turns true
[CM91,JMN95,SUL00,AV01]. Unlike the first approach,
this approach can be used to detect unstable predicates.
However, the algorithms based on this approach may
have exponential running time. The third approach ex-
ploits the structure of the predicate itself—by imposing
restrictions—to evaluate its value efficiently for a given
computation. Polynomial-time algorithms have been de-
veloped for several useful classes of predicates includ-
ing conjunctive predicates [Gar02b,HMSR98], linear and
semi-linear predicates [CG98], and relational predicates
[CG95].

We develop the computation slicing technique for re-
ducing the size of the computation and therefore the
number of consistent cuts to be analyzed for detecting
a predicate. The slice of a computation with respect to
a predicate is the (sub)computation satisfying the fol-
lowing two conditions. First, it contains all consistent
cuts for which the predicate evaluates to true. Second,
among all computations that fulfill the first condition, it
contains the least number of consistent cuts. Intuitively,
slice is a concise representation of consistent cuts satis-
fying a given property. We establish that the slice of a
computation is uniquely defined for all predicates. Since
we expect global faults to be relatively rare, the state-

space of the slice will be much smaller than that of the
computation itself. Therefore, in order to detect a global
fault, rather than searching the state-space of the compu-
tation, it is much more efficient to search the state-space
of the slice.

As an illustration, suppose we want to detect the
predicate (x1 ∗ x2 + x3 < 5) ∧(x1 > 1) ∧ (x3 6 3) in
the computation shown in Figure 1(a). The computa-
tion consists of three processes p1, p2 and p3 hosting
integer variables x1, x2 and x3, respectively. The events
are represented by circles. Each event is labeled with
the value of the respective variable immediately after
the event is executed. For example, the value of vari-
able x1 immediately after executing the event c is −1.
The first event on each process (namely a on p1, e on
p2 and u on p3) “initializes” the state of the process
and every consistent cut contains these initial events.
Without computation slicing, we are forced to examine
all consistent cuts of the computation, twenty eight in
total, to ascertain whether some consistent cut satisfies
the predicate. Initially, the value of x3 is 4 which does
not satisfy x3 6 3. To reach a consistent cut satisfying
x3 6 3, v has to be executed. In other words, any con-
sistent cut in which only u has been executed but not v
is of no interest to us and can be ignored. The slice is
shown in Figure 1(b). It is modeled by a partial order
on a set of meta-events; each meta-event consists of one
or more “primitive” events. A consistent cut of the slice
either contains all the events in a meta-event or none of
them. (Intuitively, any consistent cut of the computation
that contains only a partial set of events in a meta-event
is of no relevance to us.) Moreover, a meta-event “be-
longs” to a consistent cut only if all its incoming neigh-
bors are also contained in the cut. We can now restrict
our search to the consistent cuts of the slice which are
only six in number, namely {a, e, f, u, v}, {a, e, f, u, v, b},
{a, e, f, u, v, w}, {a, e, f, u, v, b, w}, {a, e, f, u, v, w, g} and
{a, e, f, u, v, b, w, g}. The slice has much fewer consistent
cuts than the computation itself—exponentially smaller
in many cases—resulting in substantial savings.

The notion of computation slice is similar to the no-
tion of program slice, which was introduced by Weiser in
[Wei82] to facilitate program debugging. Suppose, dur-
ing program testing, a programmer observes that, at a
certain point, the values of some variables differ from
their expected values. Clearly, to locate the error that
caused the mismatch, the programmer needs to examine
only those statements of the program that directly or
indirectly influenced the values of the relevant variables
when the mismatch is observed. A program slice, there-
fore, consists of all those statements of a program that
may potentially affect the value of certain variables at
some point of interest. Intuitively, program slicing may
significantly reduce the amount of code that needs to be
analyzed when debugging a program. Program slicing
has been shown to be useful in program debugging, test-
ing, program understanding and software maintenance
[Ven95,KR97]. A detailed survey of various program slic-
ing techniques can be found in [Tip95]. In spite of the
apparent similarities, the two notions of slicing are quite
different from each other. First, program slicing is appli-
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Fig. 1. (a) A computation and (b) its slice with respect to (x1 > 1) ∧ (x3 6 3).

cable to both sequential and distributed programs. Com-
putation slicing is applicable to distributed programs
only. Second, program slicing involves conducting data
flow analysis of the program [Che93]. Computation slic-
ing, on the other hand, involves computing join-irreducible
elements of a distributive lattice. In fact, the two tech-
niques for testing and debugging are orthogonal to each
other and can be used in conjunction. For instance, to
compute a program slice, the programmer needs to de-
termine a point at which the program behaves in a faulty
manner (that is, there is a mismatch between actual and
expected values). For a sequential program, determin-
ing a point in an execution where a fault has occurred
is a relatively easy problem. However, for a distributed
program, as explained earlier, determining even whether
a fault has occurred in an execution is an intractable
problem in general. In this paper, we show that compu-
tation slicing can be used for reducing the state-space to
be analyzed to determine whether and where a fault has
occurred.

The computation slice for a predicate may contain
consistent cuts that do not satisfy the predicate. We
identify a class of predicates called regular predicates for
which the slice is lean. In other words, the slice for a reg-
ular predicate contains precisely those consistent cuts for
which the predicate evaluates to true. The set of consis-
tent cuts satisfying a regular predicate forms a sublat-
tice (of the lattice of consistent cuts). Some examples
of regular predicates are: conjunctive predicates, which
can be expressed as conjunction of local predicates, like
“all processes are in red state” [Gar02b], and monotonic
channel predicates such as “all control messages have
been received” [Gar02b]. We prove that the class of reg-
ular predicates is closed under conjunction, that is, the
conjunction of two regular predicates is also a regular
predicate. We devise an efficient algorithm to compute
the slice for a regular predicate. The time-complexity
of the algorithm is O(n2|E|), where n is the number of
processes and E is the set of events. In case the reg-
ular predicate can be decomposed into a conjunction of
clauses, where each clause itself is a regular predicate but
depends on variables of only a small subset of processes,
a faster algorithm for computing the slice can be pro-
vided. Also, for special cases of regular predicates such
as conjunctive predicates and certain monotonic channel
predicates, we derive optimal algorithms for computing
the slice, which have O(|E|) time-complexity.

In addition to regular predicates, we also design effi-
cient algorithms to compute the slice for many classes of
non-regular predicates such as linear predicates and post-
linear predicates [Gar02b]. Our algorithms have time-
complexity of O(n2|E|). We prove that it is intractable
in general to compute the slice for an arbitrary predi-
cate. Nonetheless, it is still useful to be able to compute
an approximate slice for such a predicate efficiently. An
approximate slice may be bigger than the actual slice
but will be much smaller than the computation itself.
To that end, we develop efficient algorithms to compose
two slices. Specifically, given two slices, composition? in-
volves computing either (1) the smallest slice that con-
tains all consistent cuts common to both the slices, or
(2) the smallest slice that contains all consistent cuts
that belong to at least one of the slices. We use slice com-
position to efficiently compute the slice for a co-regular
predicate—the complement of a regular predicate—and
a k-local predicate—depends on variables of at most k
processes—for constant k [SS95]. The algorithms have
time-complexities of O(n2|E|2) and O(nmk−1|E|), re-
spectively, where m is the maximum number of events on
a process. More importantly, we use slice composition to
compute an approximate slice—in polynomial-time—for
a predicate derived from regular and co-regular predi-
cates, linear and post-linear predicates, and k-local pred-
icates for constant k, using ¬, ∧ and ∨ operators. Exam-
ple of such a predicate is: (x1∨¬x2)∧(x3∨¬x1)∧(x2∨x3),
where each xi is a linear predicate. Finally, we conduct
simulation tests to experimentally measure the effective-
ness of computation slicing in pruning the search space
when detecting a global fault. Our results indicate that
slicing can lead to an exponential improvement over ex-
isting techniques in terms of time and space. Further-
more, other techniques for reducing the time-complexity
[SUL00] and/or the space-complexity [AV01] are orthog-
onal to slicing, and as such can actually be used in con-
junction with slicing. For instance, Alagar and Venkate-
san’s polynomial space algorithm [AV01] for searching
the state-space of a computation can also be used for
searching the state-space of a slice.

Although, in this paper, we focus on application of
computation slicing to predicate detection, slicing can
also be employed to reduce the search-space when moni-
toring a predicate under other modalities including

? Composition was called grafting in our earlier paper
[MG01a]
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definitely, invariant and controllable [CM91,Gar02b,
BFR96,MG04]. We also show that many results per-
taining to consistent global checkpoints can be derived
as special cases of slicing. In particular, we furnish an
alternate characterization of the condition under which
individual local checkpoints can be combined with others
to form a consistent global checkpoint (consistency theo-
rem by Netzer and Xu [NX95]): a set of local checkpoints
can belong to the same consistent global snapshot if and
only if the local checkpoints in the set are mutually con-
sistent (including with itself) in the slice. Moreover, the
R-graph (rollback-dependency graph) defined by Wang
[Wan97] is a special case of the slice. The minimum and
maximum consistent global checkpoints that contain a
set of local checkpoints [Wan97] can also be easily ob-
tained using the slice. We have applied slicing to solve
several problems in combinatorics as well [Gar02a].

In [Ksh98], Kshemkalyani describes a unifying frame-
work for viewing a distributed computation at multiple
levels of atomicity. In particular, Kshemkalyani defines
an execution of a system in terms of certain elementary
events. System executions at coarser level of atomicity
are then hierarchically composed using system execu-
tions at finer levels of atomicity by grouping multiple el-
ementary events together into a single compound event.
However, system executions considered by Kshemkalyani
are such that either communication events for the same
message are grouped together or events on the same pro-
cess are grouped together. In contrast, in a computation
slice, events belonging to multiple messages and/or pro-
cesses can be grouped together into a single meta-event
depending on the predicate. Furthermore, our focus is
on developing efficient algorithms for automatically com-
puting the slice of a computation for a given predicate.

The paper is organized as follows. Section 2 describes
our model of distributed system and the notation we use
in this paper. We formally define the notion of compu-
tation slice in Section 3. In Section 4, we introduce the
class of regular predicates, using which we establish the
uniqueness of slice for all predicates in Section 5. Sec-
tion 6 describes an efficient representation for slice. In
Section 7 and Section 8, we discuss our results pertain-
ing to regular predicates and general predicates, respec-
tively. Finally, in Section 9, we describe our results in
slicing and applications of slicing to solving problems in
combinatorics.

2 Model and Notation

We assume an asynchronous distributed system com-
prising of many processes which communicate with each
other by sending messages over a set of channels. There
is no global clock or shared memory. Processes are non-
faulty and channels are reliable. Channels may be non-
FIFO. Message delays are finite but unbounded.

Traditionally, a distributed computation is modeled
as a partial order on a set of events [Lam78]. In this
paper, we relax the restriction that the order on events
must be a partial order. Instead, we use directed graphs
on events to model distributed computations as well as

slices. Directed event graphs allow us to handle both of
them in a uniform and convenient manner.

Given a directed graph G, let V(G) and E(G) denote
its set of vertices and edges, respectively. A subset of
vertices of a directed graph forms a consistent cut if the
subset contains a vertex only if it also contains all its
incoming neighbors. Formally,

C is a consistent cut of G ,
〈∀e, f ∈ V(G) : (e, f) ∈ E(G) : f ∈ C ⇒ e ∈ C〉

Observe that a consistent cut either contains all ver-
tices in a cycle or none of them. This observation can be
generalized to a strongly connected component. Tradi-
tionally, the notion of consistent cut (down-set or order
ideal) is defined for partially ordered sets [DP90]. Here,
we extend the notion to sets with arbitrary orders. Let
C(G) denote the set of consistent cuts of a directed graph
G. Observe that the empty set ∅ and the set of vertices
V(G) trivially belong to C(G). We call them trivial con-
sistent cuts. Let P(G) denote the set of connected pairs
of vertices (u, v) such that there is a path from u to v in
G. We assume that each vertex has a path to itself.

2.1 Directed Graph: Path- and Cut-Equivalence

A directed graph G is cut-equivalent to a directed graph

H, denoted by G
C∼= H, if they have the same set of

consistent cuts. Formally, G
C∼= H , C(G) = C(H).

Likewise, a directed graph G is path-equivalent to a

directed graph H, denoted by G
P∼= H, if a path from

vertex u to vertex v in G implies a path from vertex u

to vertex v in H, and vice versa. Formally, G
P∼= H ,

P(G) = P(H). We assume that every vertex has a path
to itself. The next lemma explores the relation between
the two notions.

Lemma 1. Let G and H be directed graphs with the
same set of vertices. Then,

P(G) ⊆ P(H) ≡ C(G) ⊇ C(H)

Evidently, Lemma 1 implies that two directed graphs
are cut-equivalent if and only if they are path-equivalent.
In other words, to determine whether two directed graphs
are cut-equivalent, it is necessary and sufficient to as-
certain that they are path-equivalent. This is significant
because testing for cut-equivalence directly by verify-
ing that the two graphs have the same set of consistent
cuts is computationally expensive in general (|C(G)| =
O(2|V(G)|)). However, testing for path-equivalence by ver-
ifying that the two graphs have the same set of con-
nected vertex pairs is cheap and can be accomplished in
polynomial-time (|P(G)| = O(|V(G)|2)). In the rest of

the paper, we use ∼= to denote both
C∼= and

P∼=.
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2.2 Distributed Computation as Directed Graph

A distributed computation, or simply a computation,
〈E,→〉 is a directed graph with vertices as the set of
events E and edges as →. To limit our attention only to
those consistent cuts that can actually occur during an
execution, we assume that P(〈E,→〉) contains at least
the Lamport’s happened-before relation [Lam78]. A dis-
tributed computation in our model can contain cycles.
This is because whereas a computation in the traditional
or happened-before model captures the observable order
of execution of events, a computation in our model cap-
tures the set of possible consistent cuts. Intuitively, each
strongly connected component of a computation can be
viewed as a meta-event; all events in a meta-event should
be executed atomically.

We denote the set of processes in the system by P =
{p1, p2, . . . , pn}. For an event e, let proc(e) denote the
process on which e occurs. The predecessor and succes-
sor events of e on proc(e) are denoted by pred(e) and
succ(e), respectively, if they exist. When events e and f
occur on the same process and e occurs before f in real-

time, then we write e
P→ f . Let

P→ denote the reflexive

closure of
P→.

We assume the presence of fictitious initial and final
events on each process. The initial event on process pi,
denoted by ⊥i, occurs before any other event on pi. Like-
wise, the final event on process pi, denoted by >i, occurs
after all other events on pi. We use final events only to
facilitate the description of the slicing algorithms given
in this paper. It does not imply that processes have to
synchronize with each other at the end of the computa-
tion. For convenience, let ⊥ and > denote the set of all
initial events and final events, respectively. We assume
that all initial events belong to the same strongly con-
nected component. Similarly, all final events belong to
the same strongly connected component. This ensures
that any non-trivial consistent cut will contain all initial
events and none of the final events. As a result, every
consistent cut of a computation in the traditional model
is a non-trivial consistent cut of the corresponding com-
putation in our model, and vice versa. Only non-trivial
consistent cuts are of real interest to us. As we will see
later, the extended model allows us to capture empty
slices in a very convenient fashion.

The frontier of a consistent cut C, denoted by
frontier(C), is defined as the set of those events in C
whose successors are not in C. Formally,

frontier(C) , { e ∈ C | e 6∈ > ⇒ succ(e) 6∈ C }

A consistent cut passes through an event if the event
belongs to the frontier of the cut. Two events are said
to be consistent if they are contained in the frontier of
some consistent cut, otherwise they are inconsistent. It
can be verified that events e and f are consistent if and
only if there is no path in the computation from succ(e),
if it exists, to f and from succ(f), if it exists, to e. Note
that, in the extended model, in contrast to the tradi-
tional model, an event can be inconsistent with itself.

2.3 Global Predicate

A global predicate (or simply a predicate) is defined as a
boolean-valued function on variables of processes. Given
a consistent cut, a predicate is evaluated with respect
to the values of variables resulting after executing all
events in the cut. If a predicate b evaluates to true for a
consistent cut C, we say that “C satisfies b”. We leave
the predicate undefined for the trivial consistent cuts.

A global predicate is local if it depends on variables
of a single process. Note that it is possible to evaluate
a local predicate with respect to an event on the appro-
priate process. In case the predicate evaluates to true,
the event is called a true event; otherwise, it is called a
false event. Further, a predicate is said to be k-local if it
depends on variables of at most k processes [SS95]. For
example, suppose xi is an integer variable on process pi
for each i ∈ [1 . . . n]. Then, x1 + x2 < 3 is an example
of 2-local predicate, and x1 ∗ x2 + x3 < 6 an example of
3-local predicate.

In this paper, when deriving the time-complexity of
a slicing algorithm, we assume that the time-complexity
of evaluating a predicate for a given consistent cut is
O(n), where n is the number of processes in the compu-
tation. In case the time-complexity is higher, the time-
complexity of the slicing algorithm will increase propor-
tionately.

3 Computation Slice

Informally, a computation slice (or simply a slice) is a
concise representation of all those consistent cuts of the
computation that satisfy a given predicate. Recall that
the set of consistent cuts of a computation 〈E,→〉 is de-
noted by C(〈E,→〉). For reasons of clarity, we abbreviate
C(〈E,→〉) by C(E). Also, for a predicate b, we use Cb(E)
to denote the subset of those consistent cuts of C(E)
that satisfy b. Let Ib(E) denote the set of all graphs
on vertices E such that for every graph G ∈ Ib(E),
Cb(E) ⊆ C(G) ⊆ C(E). We now define computation slice
formally.

Definition 1 (slice). A slice of a computation with re-
spect to a predicate is a directed graph with the least num-
ber of consistent cuts such that the graph contains all
consistent cuts of the computation for which the pred-
icate evaluates to true. Formally, given a computation
〈E,→〉 and a predicate b,

S is a slice of 〈E,→〉 for b ,
〈∀G : G ∈ Ib(E) : |C(S)| 6 |C(G)|〉

We use 〈E,→〉b to denote a slice of 〈E,→〉 with re-
spect to b. We show in Section 5 that slice of a computa-
tion is uniquely defined for every predicate in the sense
that if two graphs S and T constitute a slice of 〈E,→〉 for
b (as per the above definition) then C(S) = C(T ). In that
case, from Lemma 1, P(S) = P(T ). In other words, al-
though graphs S and T may have different sets of edges,
their transitive closures are identical. Note that 〈E,→〉
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can be written as 〈E,→〉true. Therefore a computation
can also be viewed as a slice. In the rest of the paper,
we use the terms “computation”, “slice” and “directed
graph” interchangeably.

Note that every slice derived from the computation
〈E,→〉 will have the trivial consistent cuts (∅ and E)
among its set of consistent cuts. Thus a slice is empty if
it has no non-trivial consistent cuts. In the rest of the
paper, unless otherwise stated, a consistent cut refers
to a non-trivial consistent cut. In general, a slice will
contain consistent cuts that do not satisfy the predicate
(besides trivial consistent cuts). In case a slice does not
contain any such cut, it is called lean. Formally,

Definition 2 (lean slice). The slice of a computation
with respect to a predicate is lean if every consistent cut
of the slice satisfies the predicate.

An interesting question to ask is: “For what class
of predicates is the slice always lean?” To answer this
question, we introduce the class of regular predicates.

4 Regular Predicate

Informally, the set of consistent cuts that satisfy a reg-
ular predicate is closed under set intersection and set
union. Formally,

Definition 3 (regular predicate). A global predicate
is called regular if, given two consistent cuts that satisfy
the predicate, the consistent cuts given by their set inter-
section and set union also satisfy the predicate. Mathe-
matically, given a regular predicate b and consistent cuts
C1 and C2,

(C1 satisfies b) ∧ (C2 satisfies b)

⇒
(C1 ∩ C2 satisfies b) ∧ (C1 ∪ C2 satisfies b)

It can be verified that a local predicate is regular.
Hence the following predicates are regular.

• process pi is in “red” state
• the leader has sent all “prepare to commit” messages

We now provide more examples of regular predicates.
Consider a function f(x, y) with two arguments such
that it is monotonic in its first argument x but anti-
monotonic in its second argument y. Some examples of
the function f are: x − y, 3x − 5y, x/y when x, y > 0,
and logy x when x, y > 1. We establish that the predi-
cates of the form f(x, y) < c and f(x, y) 6 c, where c is
some constant, are regular when either both x and y are
monotonically non-decreasing variables or both x and y
are monotonically non-increasing variables. For instance,
the property that all messages have been acknowledged
can be expressed as: number of messages sent − number
of messages acknowledged 6 0.

Lemma 2. Let x and y be monotonically non-decreasing
variables. Then the predicates f(x, y) < c and f(x, y) 6 c
are regular predicates.

Proof. We show that the predicate f(x, y) < c is reg-
ular. The proof for the other predicate is similar and
has been omitted. For a consistent cut C, let x(C) and
y(C) denote the values of variables x and y, respectively,
immediately after all events in C are executed. Con-
sider consistent cuts C1 and C2 that satisfy the pred-
icate f(x, y) < c. Note that, by definition of C1 ∩ C2,
y(C1∩C2) is either y(C1) or y(C2). Without loss of gen-
erality, assume that y(C1 ∩ C2) = y(C1). Then,

f(x(C1 ∩ C2), y(C1 ∩ C2))

= { assumption }
f(x(C1 ∩ C2), y(C1))

6
{
x is monotonically non-decreasing implies

x(C1 ∩ C2) 6 x(C1), and f is monotonic in x

}

f(x(C1), y(C1))

< { C1 satisfies the predicate f(x, y) < c }
c

Thus C1∩C2 satisfies the predicate f(x, y) < c. Like-
wise, it can be proved that C1∪C2 satisfies the predicate
f(x, y) < c. ut

It can be established that Lemma 2 holds even when
both x and y are monotonically non-increasing variables.
Similar results can be proved for the case when < and
6 are replaced by > and >, respectively. All the above-
mentioned results can be combined as follows:

Theorem 1. Let f be a function with two arguments
such that it is monotonic in its first argument and anti-
monotonic in its second argument. Then the predicate of
the form f(x, y) relop c, where relop ∈ {<,6, >,>}
and c is some constant, is regular when either both x and
y are monotonically non-decreasing variables or both x
and y are monotonically non-increasing variables.

By substituting f(x, y) with x− y, x with “the num-
ber of messages that process pi has sent to process pj so
far” and y with “the number of messages sent by process
pi that process pj has received so far”, it can be verified
that the following predicates are regular.

• no outstanding message in the channel from process
pi to process pj

• at most k messages in transit from process pi to pro-
cess pj

• at least k messages in transit from process pi to pro-
cess pj

We next show that the conjunction of two regular
predicates is also a regular predicate.

Theorem 2. The class of regular predicates is closed un-
der conjunction.

The proof is given in the appendix. The closure under
conjunction implies that the following predicates are also
regular.



Neeraj Mittal, Vijay K. Garg: Techniques and Applications of Computation Slicing 7

• any conjunction of local predicates
• no process has the token and no channel has the token
• every “request” message has been “acknowledged” in

the system

5 Establishing the Uniqueness of Slice

In this section, we show that the slice of a computation
with respect to a predicate is uniquely defined. Our ap-
proach is to first prove that the slice for a regular pred-
icate is uniquely defined using which we show that the
slice is uniquely defined even for a predicate that is not
regular.

5.1 Regular Predicate

It is well known in distributed systems that the set of all
consistent cuts of a computation forms a lattice under
the subset relation [JZ88,Mat89]. We ask the question:
does the lattice of consistent cuts satisfy any additional
property? The answer to this question is in affirmative.
Specifically, we show that the set of consistent cuts of
a directed graph not only forms a lattice but that the
lattice is distributive. A lattice is said to be distributive
if meet distributes over join [DP90]. Formally,

a u (b t c) ≡ (a u b) t (a u c)

where u and t denote the meet (infimum) and join
(supremum) operators, respectively. (It can be proved
that meet distributes over join if and only if join dis-
tributes over meet.)

Theorem 3. Given a directed graph G, 〈C(G);⊆〉 forms
a distributive lattice.

Proof. Let C1 and C2 be consistent cuts of G. We define
their meet and join as follows:

C1 u C2 , C1 ∩ C2

C1 t C2 , C1 ∪ C2

It is sufficient to establish that C1 ∩C2 and C1 ∪C2

are consistent cuts of G which can be easily verified. ut

The above theorem is a generalization of the result
in lattice theory that the set of down-sets of a partially
ordered set forms a distributive lattice [DP90]. We fur-
ther prove that the set of consistent cuts (of a directed
graph) does not satisfy any additional structural prop-
erty. To that end, we need the notion of join-irreducible
element defined as follows.

Definition 4 (join-irreducible element [DP90]). An
element of a lattice is join-irreducible if (1) it is not the
least element of the lattice, and (2) it cannot be ex-
pressed as join of two distinct elements, both different
from itself. Formally, a ∈ L is join-irreducible if

〈∃ x ∈ L :: x < a〉 ∧
〈∀ x, y ∈ L : a = x t y : (a = x) ∨ (a = y)〉

Pictorially, an element of a lattice is join-irreducible if
and only if it has exactly one lower cover, that is, it has
exactly one incoming edge in the corresponding Hasse
diagram. The notion of meet-irreducible element can be
similarly defined. It turns out that a distributive lattice
is uniquely characterized by the set of its join-irreducible
elements. In particular, every element of the lattice can
be written as join of some subset of its join-irreducible
elements, and vice versa. This is formally captured by
the next theorem.

Theorem 4 (Birkhoff’s Representation Theorem
for Finite Distributive Lattices [DP90]). Let L be a
finite distributive lattice and J I(L) be the set of its join-
irreducible elements. Then the map f : L −→ C(J I(L))
defined by

f(a) = { x ∈ J I(L) | x 6 a }

is an isomorphism of L onto C(J I(L)). Dually, let P
be a finite poset (partially ordered set). Then the map
g : P −→ JI(C(P )) defined by

g(a) = { x ∈ P | x 6 a }

is an isomorphism of P onto J I(C(P )).

Note that the above theorem can also be stated in
terms of meet-irreducible elements.

Example 1. Consider the computation depicted in
Figure 2(a). Figure 2(b) depicts the lattice of consis-
tent cuts of the computation. In the figure, the label
of a consistent cut indicates the number of events that
have to be executed on each process to reach the cut.
For example, the label of the consistent cut C is (3, 2, 1)
implying that to reach C, three events have to executed
on process p1, two on p2 and one on p3. Mathematically,
C = {e1, e2, e3, f1, f2, g1}.

In Figure 2(b), the consistent cuts of the computa-
tion corresponding to the join-irreducible elements of the
lattice have been drawn in thick lines. There are eight
join-irreducible elements which is same as the number
of strongly connected components of the computation.
Note that the poset induced on the set of strongly con-
nected components of the computation is isomorphic to
the poset induced on the set of join-irreducible elements
of the lattice. It can be verified that every consistent
cut of the computation can be expressed as the join of
some subset of these join-irreducible elements. For ex-
ample, the consistent cut C can be written as the join of
the consistent cuts T and V . Moreover, the join of every
subset of these join-irreducible elements is a consistent
cut of the computation. For instance, the join of the con-
sistent cuts T , V and W is given by the consistent cut
D. ut

In this paper, we are concerned with only a subset
of consistent cuts and not the entire set of consistent
cuts. To that end, the notion of sublattice of a lattice
comes in useful [DP90]. Given a lattice, a subset of its
elements forms a sublattice if the subset is closed under
the meet and join operators of the given lattice. In our
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Fig. 2. (a) A computation, (b) the lattice of its consistent cuts, (c) the sublattice of the consistent cuts that satisfy the
regular predicate “all channels are empty”, and (d) the poset induced on the set of join-irreducible elements of the sublattice.

case, the meet and join operators are set intersection
and set union, respectively. Clearly, the set of consistent
cuts satisfying a regular predicate forms a sublattice of
the lattice of consistent cuts. Finally, we make an impor-
tant observation regarding a sublattice which will help
us prove the desired result.

Lemma 3 ([DP90]). A sublattice of a distributive lat-
tice is also a distributive lattice.

Example 2. In Figure 2(b), the consistent cuts for which
the regular predicate “all channels are empty” evaluates

to true have been shaded. Figure 2(c) depicts the poset
induced on these consistent cuts. It can be verified that
the poset forms a sublattice of the lattice in Figure 2(b).
Moreover, the sublattice is a distributive lattice. ut
Theorem 5. The slice of a computation with respect to
a regular predicate is uniquely defined.

Proof. Consider a computation 〈E,→〉 and a regular
predicate b. Clearly, from the definition of regular predi-
cate, Cb(E), is closed under set intersection and set union.
As a result, Cb(E) forms a sublattice of C(E). Since
C(E) forms a distributive lattice, from Lemma 3, Cb(E)
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also forms a distributive lattice. Thus, from Theorem 4,
Cb(E) is uniquely characterized by the set of its join-
irreducible elements J I(Cb(E)). In other words, the set
of consistent cuts of the poset induced on J I(Cb(E)) is
identical to Cb(E). Clearly, the slice of 〈E,→〉 with re-
spect to b is isomorphic to the poset induced on
J I(Cb(E)). ut

We now prove that the slice for a predicate is lean if
and only if the predicate is regular.

Theorem 6. The slice of a computation with respect to
a predicate is lean if and only if the predicate is regular.

Proof. (if ) Assume that the predicate, say b, is regular.
Thus the set of consistent cuts that satisfy the predicate,
denoted by Cb, forms a sublattice of the lattice of consis-
tent cuts (of the computation). From Lemma 3, Cb is in
fact a distributive lattice. Let J I(Cb) denote the set of
join-irreducible elements of Cb. From Birkhoff’s Repre-
sentation Theorem, Cb is isomorphic to C(J I(Cb)). Thus
the required slice is given by the poset induced on J I(Cb)
by ⊆. Moreover, every consistent cut of the slice satisfies
the predicate and therefore the slice is lean.

(only if ) Assume that the slice of a computation with re-
spect to a predicate is lean. From the proof of Theorem 3,
the set of consistent cuts of the slice is closed under set
union and set intersection. This in turn implies that the
set of consistent cuts that satisfy the predicate is closed
under set union and set intersection. Thus the predicate
is regular. 2

Example 3. The sublattice shown in Figure 2(c) has ex-
actly six join-irreducible elements, namely U , V , W ,
X, Y and Z. These elements (or consistent cuts) have
been drawn in thick lines. It can be ascertained that ev-
ery consistent cut in the sublattice can be written as
the join of some subset of the consistent cuts in J =
{U, V,W,X, Y, Z}. In other words, every consistent cut
of the computation that satisfies the regular predicate
“all channels are empty” can be represented as the join
of some subset of the elements in J . Moreover, the join
of every subset of elements in J yields a consistent cut
contained in the sublattice and hence a cut for which
“all channels are empty”. The poset induced on the el-
ements of J by the relation ⊆ is shown in Figure 2(d).
(Recall that each join-irreducible element corresponds to
a strongly connected component, that is, a meta-event.)
This poset corresponds to the slice of the computation
shown in Figure 2(a) with respect to the regular predi-
cate “all channels are empty”. ut

Theorem 6 implies that for every sublattice of the
lattice of consistent cuts of a computation, there is a
regular predicate, and vice versa.

5.2 Non-Regular Predicate

To prove that the slice exists even for a predicate that
is not a regular predicate, we define a closure operator,

denoted by reg, which, given a computation, converts
an arbitrary predicate into a regular predicate satisfy-
ing certain properties. Given a computation 〈E,→〉, let
R(E) denote the set of predicates that are regular with
respect to the computation (→ is implicit).

Definition 5 (reg). Given a predicate b, we define
reg (b) as the predicate that satisfies the following condi-
tions:

1. it is regular, that is, reg (b) ∈ R(E),
2. it is weaker than b, that is, b⇒ reg (b), and
3. it is stronger than any other predicate that satisfies

(1) and (2), that is,

〈∀ u : u ∈ R(E) : (b⇒ u)⇒ (reg (b)⇒ u)〉

Informally, reg (b) is the strongest regular predicate
weaker than b. In general, reg (b) not only depends on
the predicate b, but also on the computation under con-
sideration. We assume the dependence on computation
to be implicit and make it explicit only when necessary.
The next theorem establishes that reg (b) exists and is
uniquely defined for every predicate b.

Theorem 7. The predicate reg (b) exists and is uniquely
defined for every predicate b.

Proof. Consider a predicate b. First, we show that if
reg (b) exists, then reg (b) is uniquely defined. Then, we
show that reg (b) exists.

(uniqueness) Assume that reg (b) exists. Suppose there
are two predicates u and v that satisfy the three condi-
tions specified in Definition 5. Since u satisfies the first
two conditions and v satisfies the third condition, v ⇒ u.
Likewise, u⇒ v. Combining the two implications, u ≡ v.

(existence) Let Rb(E) be the set of regular predicates in
R(E) weaker than b. Observe that Rb(E) is non-empty
because true is a regular predicate weaker than b and
therefore contained in Rb(E). We set reg (b) to the con-
junction of all predicates in Rb(E). Formally,

reg (b) ,
∧

q ∈Rb(E)

q

It remains to be shown that reg (b) as defined sat-
isfies the three required conditions. Now, first condition
holds because the class of regular predicates is closed un-
der conjunction. The second condition holds because ev-
ery predicate in Rb(E) is weaker than b and hence their
conjunction is weaker than b. Finally, let u be a pred-
icate that satisfies the first two conditions. Note that
u ∈ Rb(E). Since conjunction of predicates is stronger
than any of its conjunct, reg (b) is stronger than u. Thus
reg (b) satisfies the third condition. ut

We now prove that the slice is uniquely defined for
every predicate.

Theorem 8. The slice of a computation is uniquely de-
fined with respect to every predicate.
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Fig. 3. (a) A computation, (b) the lattice of its consistent cuts, (c) the sublattice of its consistent cuts that satisfy reg (x1 ∨ x2),
and (d) its slice with respect to reg (x1 ∨ x2) (and therefore also with respect to x1 ∨ x2).

Proof. Consider a computation 〈E,→〉 and a predicate
b. For convenience, let r = reg (b). Since b⇒ r, Cb(E) ⊆
Cr(E) ⊆ C(E). We claim that Cr(E) is the smallest sub-
lattice of C(E) that contains Cb(E). Let S be a sublattice
of C(E) that contains Cb(E). Further, let s be the regular
predicate corresponding to S. Since Cb(E) ⊆ S, b ⇒ s.
From definition of reg (b), reg (b) ⇒ s, which, in turn,
implies that S contains Cr(E). In other words, every sub-
lattice of C(E) that contains Cb(E) also contains Cr(E).
Clearly, the slice of 〈E,→〉 with respect to b is given by
the slice of 〈E,→〉 with respect to reg (b). ut

Note that although the slice for b is same as the slice
for reg (b), computing a boolean formula for reg (b) using
a boolean formula for b is an intractable problem. We
therefore explore alternative approaches for computing
the slice for b that do not require computation of reg (b).

Example 4. Consider the computation depicted in Fig-
ure 3(a). The lattice of its consistent cuts is shown in
Figure 3(b). Each consistent cut is labeled with its fron-
tier. The consistent cuts for which the predicate x1 ∨ x2

evaluates to true have been shaded in the figure. Clearly,
the set of consistent cuts that satisfy x1 ∨ x2 does not
form a sublattice. The smallest sublattice containing the
subset is shown in Figure 3(c); the sublattice corresponds
to the predicate reg (x1 ∨ x2). The slice for the regu-
lar predicate reg (x1 ∨ x2) and hence for the predicate
x1 ∨ x2 is portrayed in Figure 3(d). ut
Theorem 9. reg is a closure operator. Formally,

1. reg (b) is weaker than b, that is, b ⇒ reg (b),
2. reg is monotonic, that is, (b ⇒ u) ⇒ (reg (b) ⇒
reg (u)), and

3. reg is idempotent, that is, reg (reg (b)) ≡ reg (b).

From the above theorem it follows that [DP90, The-
orem 2.21],

Corollary 1. 〈R(E);⇒〉 forms a lattice.

The meet and join of two regular predicates b1 and
b2 is given by

b1 u b2 , b1 ∧ b2
b1 t b2 , reg (b1 ∨ b2)

The dual notion of reg (b), the weakest regular pred-
icate stronger than b, is also conceivable. However, such
a predicate may not always be unique.

Example 5. In the previous example, three consistent cuts
satisfy the predicate x1 ∨ x2, namely X, Y and Z, as
shown in Figure 3(b). Two distinct subsets of the set
S = {X,Y, Z}, given by {X,Y } and {X,Z}, form max-
imal sublattices of S implying that there is no weakest
regular predicate that is stronger than x1 ∨ x2. ut

6 Representing a Slice

Any directed graph that is cut-equivalent to a slice con-
stitutes a valid representation of the slice. However, for



Neeraj Mittal, Vijay K. Garg: Techniques and Applications of Computation Slicing 11

computational purposes, it is preferable to select those
graphs to represent a slice that have fewer edges and can
be constructed cheaply. In this section, we show that ev-
ery slice can be represented by a directed graph with
O(|E|) vertices and O(n|E|) edges.

Recall that the set of consistent cuts of a computa-
tion 〈E,→〉 that satisfy a regular predicate b is denoted
by Cb(E). From Birkhoff’s Representation Theorem, the
poset induced on J I(Cb(E)) by the relation ⊆ is cut-
equivalent to the slice 〈E,→〉b. It can be proved that
|J I(Cb(E))| is upper-bounded by |E|. Therefore the di-
rected graph corresponding to 〈J I(Cb(E));⊆〉 may have
Ω(|E|2) edges.

In order to reduce the number of edges, we exploit
properties of join-irreducible elements. For an event e, let
Jb(e) denote the least consistent cut of 〈E,→〉 that satis-
fies b and contains e. In case no consistent cut containing
e that also satisfies b exists or when e ∈ >, Jb(e) is set
to E—one of the trivial consistent cuts. Here, we use E
as a sentinel cut. We first show that Jb(e) is uniquely
defined. Let ie be the predicate defined as follows:

C satisfies ie , e ∈ C
It can be proved that ie is a regular predicate. Next,

consider the predicate be defined as the conjunction of b
and ie. Since the class of regular predicates is closed un-
der conjunction, be is also a regular predicate. The con-
sistent cut Jb(e) can now be reinterpreted as the least
consistent cut that satisfies be. Since be is regular, the
notion of least consistent cut that satisfies be is uniquely
defined, thereby implying that Jb(e) is uniquely defined.
For purposes of computing the slice only, we assume that
both trivial consistent cuts satisfy the given regular pred-
icate. That is, {∅, E} ⊆ Cb(E). The next lemma estab-
lishes that Jb(e) is a join-irreducible element of Cb(E).

Lemma 4. Jb(e) is a join-irreducible element of the dis-
tributive lattice 〈Cb(E);⊆〉.

Proof. Suppose Jb(e) can be expressed as the join (in
our case, set union) of two consistent cuts in Cb(E), say
C1 and C2. That is, Jb(e) = C1 ∪ C2, where both C1

and C2 satisfy b. Our obligation is to show that either
Jb(e) = C1 or Jb(e) = C2. Since Jb(e) contains e, either
C1 or C2 contains e. Without loss of generality, assume
that e belongs to C1. By definition of set union, C1 ⊆
Jb(e). Also, since C1 is a consistent cut containing e that
satisfies b, and Jb(e) is the least such cut, Jb(e) ⊆ C1.
Combining the two, Jb(e) = C1. ut

It is possible that Jb(e)s are not all distinct. Let
Jb(E) denote the set {Jb(e) | e ∈ E }. Does Jb(e) cap-
ture all join-irreducible elements of Cb(E)? The following
lemma provides the answer.

Lemma 5. Every consistent cut in Cb(E) can be
expressed as the join of some subset of consistent cuts
in Jb(E).

Proof. Consider a consistent cut C in Cb(E). Let D(C)
be the consistent cut defined as follows:

D(C) =
⋃

e∈C
Jb(e)

We prove that D(C) is actually equal to C. Since,
by definition, e ∈ Jb(e), each event in C is also present
in D(C). Thus C ⊆ D(C). To prove that D(C) ⊆ C,
consider an event e ∈ C. Since C is a consistent cut
containing e that satisfies b and Jb(e) is the least such
cut, Jb(e) ⊆ C. More precisely, for each event e ∈ C,
Jb(e) ⊆ C. This implies that D(C) ⊆ C. ut

From the previous two lemmas, it follows that Jb(E) =
J I(Cb(E)). Combining it with Birkhoff’s Representation
Theorem, we can deduce that:

Theorem 10. Given a computation 〈E,→〉 and a regu-
lar predicate b, the poset 〈Jb(E);⊆〉 is cut-equivalent to
the slice 〈E,→〉b.

Next, in order to reduce the number of edges, rather
than constructing a poset on the set of join-irreducible
elements, we construct a directed graph with events as
vertices and forming a strongly connected component
out of each meta-event. It can be easily verified that:

Observation 1. The directed graph Gb(E) with the set
of vertices as E and an edge from an event e to an event
f if and only if Jb(e) ⊆ Jb(f) is cut-equivalent to the
slice 〈E,→〉b.

The poset representation of a slice—given by a par-
tial order on a set of meta-events—is better suited for
visualization purposes. On the other hand, the graph
representation—given by a directed graph on a set of
events—is more suited for slicing algorithms. In this pa-
per, we primarily use the graph based representation.
From the way the graph Gb(E) is constructed, clearly,
two events e and f belong to the same strongly connected
component of Gb(E) if and only if Jb(e) = Jb(f). As a
result, there is a one-to-one correspondence between the
strongly connected components of Gb(E) and the join-
irreducible elements of Cb(E).

Now, let Fb(e) be a vector whose ith entry denotes the
earliest event f on process pi such that Jb(e) ⊆ Jb(f).
Informally, Fb(e)[i] is the earliest event f on pi such that
there is a path from e to f in the slice 〈E,→〉b. Using
Fb, we construct a directed graph we call the skeletal
representation of the slice and denote it by Sb(E). The
graph Sb(E) has E as the set of vertices and the following
edges:

1. for each event e 6∈ >, there is an edge from e to
succ(e), and

2. for each event e and every process pi, there is an edge
from e to Fb(e)[i].

Example 6. Consider the slice depicted in Figure 3(d) of
the computation shown in Figure 3(a) with respect to
the predicate reg (x1 ∨ x2). Here, Jb(f) = {a, e, f} and
Jb(c) = {a, b, c, d, e, f, g} = Jb(d). Also, Fb(f) = [c, f ]
and Fb(c) = [c, g] = Fb(d). ut

In order to prove that Sb(E) faithfully captures the
slice 〈E,→〉b, we prove the following two lemmas. The
first lemma establishes that Jb is order-preserving.
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Lemma 6 (Jb is order-preserving). Given events e
and f , e→ f ⇒ Jb(e) ⊆ Jb(f).

Proof. Consider Jb(f). Since e → f and f ∈ Jb(f), e ∈
Jb(f). Therefore Jb(f) is a consistent cut that contains e
and satisfies b. Since Jb(e) is the least such cut, Jb(e) ⊆
Jb(f). ut

The second lemma shows that if Jb(e) ⊆ Jb(f) then
there is a path from event e to event f in Sb(E), and
vice versa.

Lemma 7. Given events e and f , Jb(e) ⊆ Jb(f) ≡
(e, f) ∈ P(Sb(E)).

Proof. (⇒) Assume that Jb(e) ⊆ Jb(f). Let proc(f) =
pi and g = Fb(e)[i]. Since, by definition, g is the earliest

event on pi such that Jb(e) ⊆ Jb(g), g
P→ f . This implies

that (g, f) ∈ P(Sb(E)). Further, by construction, (e, g) ∈
P(Sb(E)). Thus (e, f) ∈ P(Sb(E)).

(⇐) It suffices to show that for each edge (u, v) in Sb(E),
Jb(u) ⊆ Jb(v). If v = succ(u) then Jb(u) ⊆ Jb(v) follows
from Lemma 6. If v = Fb(u)[i], where pi = proc(v), then
Jb(u) ⊆ Jb(v) follows from the definition of Fb(u). ut

Finally, from Observation 1 and Lemma 7, we can
conclude that:

Theorem 11. Sb(E) is cut-equivalent to 〈E,→〉b.

It is easy to see that Sb(E) has O(|E|) vertices and
O(n|E|) edges. In the next section we provide efficient
polynomial-time algorithms to compute Jb(e) and Fb(e)
for each event e when b is a regular predicate.

7 Slicing for Regular Predicate

In this section, we discuss our results on slicing with
respect to a regular predicate. They are discussed here
separately from our results on slicing for a general pred-
icate because, as proved in Section 5.1, the slice for a
regular predicate is lean and therefore furnishes more
information than the slice for a general predicate. First,
we present an efficient O(n2|E|) algorithm to compute
the slice for a regular predicate. The algorithm can be
optimized for the case when a regular predicate can be
decomposed into a conjunction of clauses, where each
clause itself is a k-local regular predicate—a regular pred-
icate that is also k-local—with small k. We also provide
an optimal algorithm for a special class of regular predi-
cates, namely conjunctive predicates. (An optimal slicing
algorithm for certain monotonic channel predicates can
be found elsewhere [MG03b].) Next, we show how a reg-
ular predicate can be monitored under various modali-
ties [CM91,Gar02b,MG04,SUL00], specifically possibly,
invariant and controllable, using slicing. Finally, we demon-
strate that results pertaining to consistent global check-
points can be derived as special cases of slicing.

7.1 Computing the Slice for Regular Predicate

In this section, given a computation 〈E,→〉 and a regular
predicate b, we describe an efficient O(n2|E|) algorithm
to compute the slice 〈E,→〉b. In particular, we construct
Sb(E)—the skeletal representation of 〈E,→〉b. To that
end, it suffices to give an algorithm to compute Fb(e) for
each event e.

Our approach is to first compute Jb(e) for each event
e. Consider the predicate be defined in Section 6. Since
be is a regular predicate, it is also a linear predicate. (A
predicate is said to be linear if, given two consistent cuts
that satisfy the predicate, the consistent cut given by
their set intersection also satisfies the predicate.) Chase
and Garg [Gar02b] give an efficient algorithm to find
the least consistent cut that satisfies a linear predicate.
Their algorithm is based on the linearity property which
is defined as follows:

Definition 6 (linearity property [CG98]). A pred-
icate satisfies the linearity property if, given a consis-
tent cut that does not satisfy the predicate, there exists
an event in its frontier, called the forbidden event, such
that every consistent cut containing the given consistent
cut either does not satisfy the predicate or does not pass
through the forbidden event. Formally, given a compu-
tation 〈E,→〉, a linear predicate b and a consistent cut
C,

C does not satisfy b ⇒
〈∃f : f ∈ frontier(C) :

〈∀D : D ⊇ C : D satisfies b ⇒ succ(f) ∈ D〉〉

We denote the forbidden event of C with respect to b by
forbidden(b, C).

Figure 4 describes the algorithm ComputeJ to deter-
mine Jb(e) for each event e on process pi, using the
linearity property. The algorithm scans the computa-
tion once from left to right. Only a single scan is suf-
ficient because, from Lemma 6, once we have computed
Jb(e), we do not need to start all over again to deter-
mine Jb(succ(e)) but can rather continue on from Jb(e)
itself. The algorithm basically adds events one-by-one to
the cut constructed so far until either all the events are
exhausted or the desired consistent cut is reached.

The time-complexity analysis of the algorithm Com-
puteJ is as follows. Each iteration of the while loop at
line 5 has O(n) time-complexity assuming that the time-
complexity of invoking forbidden be at line 9 once isO(n).
Moreover, the while loop is executed at most O(|E|)
times because in each iteration either we succeed in find-
ing the required consistent cut or we add a new event
to C. Since there are at most |E| events in the com-
putation, the while loop cannot be executed more than
O(|E|) times. Thus the overall time-complexity of the
algorithm ComputeJ is O(n|E|) implying that Jb(e) for
each event e can be computed in O(n2|E|) time.

Finally, we give an algorithm to compute Fb(e) for
each event e provided Jb(e) for each event e is given to
us. We first establish a lemma similar to Lemma 6 for Fb.
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Input: (1) a computation 〈E,→〉, (2) a regular predicate b, and (3) a process pi

Output: Jb(e) for each event e on pi

1 C := ⊥;

2 for each event e on pi do // visited in the order given by
P→

3 done := false;

4 if C = E then done := true;

5 while not(done) do

6 if there exist events f and g in frontier(C)
such that succ(f)→ g then // C is not a consistent cut

7 C := C ∪ {succ(f)}; // advance beyond f
else // C is a consistent cut

8 if (C = E) or (C satisfies be) then done := true;
else

9 f := forbidden(be, C); // invoke the linearity property

10 C := C ∪ {succ(f)}; // advance beyond f
endif;

endif;
endwhile;

11 Jb(e) := C;
endfor;

Fig. 4. The algorithm ComputeJ to determine Jb(e) for each event e on process pi.

Input: (1) a computation 〈E,→〉, (2) Jb(e) for each event e, and (3) a process px

Output: Fb(e) for each event e on px

1 for each process pi do

2 f := ⊥i;
3 for each event e on px do // visited in the order given by

P→
4 while Jb(e) 6⊆ Jb(f) do f := succ(f); endwhile;

5 Fb(e)[i] := f ;
endfor;

endfor;

Fig. 5. The algorithm ComputeF to determine Fb(e) for all events e on process px.

The lemma allows us to compute the ith entry of Fb(e)
for all events e on process px in a single scan of events
on process pi from left to right.

Lemma 8 (Fb is order-preserving). For events e and
f , and a process pi,

e→ f ⇒ Fb(e)[i]
P→ Fb(f)[i]

Proof. Assume that e → f . Let g = Fb(e)[i] and h =
Fb(f)[i]. Note that proc(g) = proc(h) = pi. By definition
of Fb(f), Jb(f) ⊆ Jb(h). Since, from Lemma 6, Jb(e) ⊆
Jb(f), Jb(e) ⊆ Jb(h). Again, by definition of Fb(e), g is
the earliest event on pi such that Jb(e) ⊆ Jb(g). There-

fore g
P→ h. ut

Figure 5 depicts the algorithm ComputeF to deter-
mine Fb(e) for each event e on process pi. The algorithm
is self-explanatory and its time-complexity analysis is

as follows. Let Ei denote the set of events on process
pi. The outer for loop at line 1 is executed exactly n
times. For the ith iteration of the outer for loop, the
while loop at line 4 is executed at most O(|Ei| + |Ex|)
times. Each iteration of the while loop has O(1) time-
complexity because whether Jb(e) ⊆ Jb(f) can be ascer-
tained by performing only a single comparison, namely
testing whether e is contained in Jb(f). More precisely,
Jb(e) ⊆ Jb(f) if and only if e ∈ Jb(f). The reason is as
follows. Since e ∈ Jb(e), if Jb(e) ⊆ Jb(f), then e ∈ Jb(f).
Also, if e ∈ Jb(f), then Jb(f) is a consistent cut that
contains e and satisfies b. Since Jb(e) is the least such
cut, Jb(e) ⊆ Jb(f). Combining the two, we obtain the
desired equivalence. The overall time-complexity of the
algorithm ComputeF is, therefore, O(|E|+ n|Ex|). Sum-
ming over all possible values for x, Fb(e) for all events
e on all processes can be determined in O(n|E|) time.
The overall algorithm is summarized in Figure 6.
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Input: (1) a computation 〈E,→〉, and (2) a regular predicate b

Output: the slice 〈E,→〉b

1 compute Jb(e) for each event e using the algorithm ComputeJ;

2 compute Fb(e) for each event e using the algorithm ComputeF;

3 construct Sb(E) the skeletal representation of 〈E,→〉b;
4 output Sb(E);

Fig. 6. The algorithm SliceForRegular to compute the slice for a regular predicate.

7.2 Optimizing for the Special Case: Computing the
Slice for Decomposable Regular Predicate

In this section, we explore the possibility of a faster al-
gorithm for the case when a regular predicate can be
expressed as a conjunction of clauses where each clause
is again a regular predicate but depends on variables of
only a small number of processes. For example, consider
the regular predicate “counters on all processes are ap-
proximately synchronized”, denoted by bsync, which can
be expressed formally as:

bsync ,
∧

16i,j6n
(|counteri − counterj | 6 4ij)

where each counteri is a monotonically non-decreasing
variable on process pi. In this example, each clause de-
pends on variables of at most two processes and is there-
fore 2-local. Using the algorithm discussed in this sec-
tion, it is possible to compute the slice for bsync inO(n|E|)
time—a factor of n faster than using the algorithm Slice-
ForRegular. We describe the algorithm in two steps. In
the first step, we give a fast algorithm to compute the
slice for each clause. In the second step, we describe how
to combine slices for all clauses together in an efficient
manner to obtain the slice for the given regular predi-
cate.

7.2.1 Step 1

Consider a computation 〈E,→〉 and a k-local regular
predicate b. Let Q denote the subset of processes whose
variables b depends on. Without loss of generality, as-
sume that → is a transitive relation. We denote the pro-
jection of E on Q by E(Q) and that of → on Q×Q by
→(Q). Thus the projection of the computation 〈E,→〉
on Q is given by 〈E(Q),→(Q)〉.

We first show that the slice 〈E,→〉b of the compu-
tation 〈E,→〉 can be recovered exactly from the slice
〈E(Q),→(Q)〉b of the projected computation 〈E(Q),→(Q)〉.
To that end, we extend the definition of Fb(e) and de-
fine Fb(e,Q) to be a vector whose ith entry represents the
earliest event on process pi that is reachable from e in
the slice 〈E(Q),→(Q)〉b. Thus Fb(e) = Fb(e, P ), where
P is the entire set of processes. We next define Kb(e) as
follows:

Kb(e)[i] =

{
Fb(e,Q)[i] : (e ∈ E(Q)) ∧ (pi ∈ Q)
F(e)[i] : otherwise

We claim that it suffices to know Kb(e) for each event
e to be able to compute the slice 〈E,→〉b. We build a
graphHb(E) in a similar fashion as the skeletal represen-
tation Sb(E) of 〈E,→〉b except that we use Kb instead
of Fb in its construction. The next lemma proves that
every path in Hb(E) is also a path in Sb(E).

Lemma 9. For each event e and process pi, Fb(e)[i]
P→

Kb(e)[i].

Proof. Every consistent cut of the slice 〈E,→〉b is a con-
sistent cut of the computation 〈E,→〉 as well. There-
fore, by Lemma 1, every path in 〈E,→〉 is also a path in
〈E,→〉b. This in turn implies that, for each event e and

process pi, Fb(e)[i]
P→ F(e)[i]. Our obligation is to prove

that Fb(e)[i]
P→ Fb(e,Q)[i] when e ∈ E(Q) and pi ∈ Q.

Consider an event e ∈ E(Q) and process pi ∈ Q. For

convenience, let f = Fb(e,Q)[i]. Let C be the least con-

sistent cut of the slice 〈E,→〉b that contains f . Clearly,

C is also a consistent cut of the computation 〈E,→〉. We

have,

{ definition of projection }
C(Q) is a consistent cut of 〈E(Q),→(Q)〉

≡ { predicate calculus }
(C(Q) is a consistent cut of 〈E(Q),→(Q)〉) ∧(

(C = >) ∨ (C 6= >)
)

⇒
{

in case C 6= >, by definition, C satisfies b

and b depends only on variables of Q

}

C(Q) is a consistent cut of 〈E(Q),→(Q)〉b
⇒ { f ∈ C, proc(f) = pi, and pi ∈ Q }

(f ∈ C(Q)) ∧
(C(Q) is a consistent cut of 〈E(Q),→(Q)〉b)

⇒ { using definition of f , which is Fb(e,Q)[i] }
(f ∈ C(Q))∧
(there is a path from e to f in 〈E(Q),→(Q)〉b)∧
(C(Q) is a consistent cut of 〈E(Q),→(Q)〉b)

⇒ { definition of consistent cut }
(f ∈ C(Q)) ∧ (e ∈ C(Q))
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Input: (1) a computation 〈E,→〉,
(2) a k-local regular predicate b that depends only on variables of Q ⊆ P with |Q| 6 k

Output: the slice 〈E,→〉b

1 compute F(e) for each event e;

2 compute the projection of 〈E,→〉 onto Q, say 〈E(Q),→(Q)〉;
3 compute the slice of 〈E(Q),→(Q)〉 with respect to b, say 〈E(Q),→(Q)〉b, using

the algorithm SliceForRegular;
Also, compute Fb(e,Q) for each event e;

4 compute Kb(e) for each event e as follows:

Kb(e)[i] =

{
Fb(e,Q)[i] : (e ∈ E(Q)) ∧ (pi ∈ Q)

F(e)[i] : otherwise

5 construct the directed graph Hb(E) with E as its set of vertices and edges as follows:

1. for each event e 6∈ >, there is an edge from e to succ(e), and
2. for each event e and process pi, there is an edge from e to Kb(e)[i].

6 output Hb(E);

Fig. 7. The algorithm SliceForKLocalRegular to compute the slice for a k-local regular predicate.

⇒ { {e, f} ⊆ C(Q) implies {e, f} ⊆ C }
(f ∈ C) ∧ (e ∈ C)

≡ { definition of C }
there is a path from e to f in 〈E,→〉b

≡ { definition of Fb(e)[i] }
Fb(e)[i]

P→ f

Thus Fb(e)[i]
P→ Fb(e,Q)[i]. ut

We now prove the converse, that is, every path in
Sb(E) is also a path in Hb(E). To that end, by virtue of
Lemma 1, it suffices to show that every consistent cut of
Hb(E) is also a consistent cut of Sb(E) or, equivalently,
every consistent cut of Hb(E) satisfies b.

Lemma 10. Every (non-trivial) consistent cut of Hb(E)
satisfies b.

The proof is in the appendix. Finally, the previous
two lemmas can be combined to give the following theo-
rem:

Theorem 12. Hb(E) is cut-equivalent to Sb(E).

Observe that the two graphs Hb(E) and Sb(E) may
actually be different. However, Theorem 12 ensures that
the two will be cut-equivalent, thereby implying that
Hb(E) captures the slice faithfully. Figure 7 describes
the algorithm SliceForKLocalRegular for computing the
slice for a k-local regular predicate. We assume that the
computation is given to us as n queues of events—one for
each process. Further, the Fidge/Mattern’s timestamp
ts(e) for each event e [Mat89,Fid91] is also available to
us, using which J(e) can be computed easily. The algo-
rithm ComputeF can be used to computer F(e) for each
event e in O(n|E|). The projection of the computation on
Q can then be computed at line 2 in a straightforward

fashion—by simply ignoring events on other processes.
The slice of the projected computation can be computed
at line 3 in O(|Q|2|E(Q)|) time. The vector Kb(e) for
each event e can be determined at line 4 in O(n|E|) time.
Finally, the graph Hb(E) can be constructed at line 5 in
O(n|E|) time. Thus the overall time-complexity of the
algorithm is O(|Q|2|E(Q)|+n|E|). If |Q| is small, say at
most

√
n, then the time-complexity of the algorithm is

O(n|E|)—a factor of n faster than computing the slice
directly using the algorithm SliceForRegular.

A natural question to ask is: “Can this technique of
taking a projection of a computation on a subset of pro-
cesses, then computing the slice of the projection and
finally mapping the slice back to the original set of pro-
cesses be used for a non-regular predicate as well?” The
answer is no in general as the following example demon-
strates.

Example 7. Consider the computation depicted in
Figure 8(a) involving three processes p1, p2 and p3. Let
x1 and x2 be boolean variables on processes p1 and p2,
respectively. In the figure, the solid events, namely e3

and f3, satisfy the respective boolean variable. The slice
of the computation for the (non-regular) predicate x1∨x2

is depicted in Figure 8(b). Figure 8(c) displays the pro-
jection of the computation on processes on which the
predicate x1 ∨ x2 depends, namely p1 and p2. The slice
of the projected computation is shown in Figure 8(d)
and its mapping back to the original set of processes is
depicted in Figure 8(e). As it can be seen, the slice shown
in Figure 8(e) computed using the algorithm SliceForK-
LocalRegular is different from the actual slice shown in
Figure 8(b). For instance, events g2 and g3 belong to
the same meta-event in the actual slice but not in the
slice computed using the algorithm SliceForKLocalRegu-
lar. The reason for this difference is as follows. Since the
predicate x1∨x2 is non-regular, the slice of the projected
computation shown in Figure 8(d) contains the consis-
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Fig. 8. (a) A computation, (b) its slice with respect to the predicate x1 ∨ x2, (c) its projection on processes p1 and p2, (d)
the slice of the projected computation with respect to the predicate x1 ∨ x2, and (e) the slice computed in (d) mapped to the
original set of processes.

tent cutX = {e1, e2, f1, f2} which does not satisfy x1∨x2

but has to be included anyway so as to complete the sub-
lattice. Now, on mapping this slice back to the original
set of processes, the resulting slice depicted in Figure 8(e)
will contain all consistent cuts of the original computa-
tion whose projection on {p1, p2} is X. There are three
such consistent cuts, namely X ∪ {g1}, X ∪ {g1, g2} and
X ∪ {g1, g2, g3}. However, only one of these consistent
cuts, given by X ∪ {g1, g2, g3}, is required to complete
the sublattice for the actual slice. ut

It can be verified that the algorithm SliceForKLocal-
Regular when used for computing the slice for a non-
regular predicate, in general, produces a slice bigger than
the actual slice. Thus it yields a fast way to compute an
approximate slice for a non-regular predicate (e.g., linear
predicate).

7.2.2 Step 2

Now, consider a decomposable regular predicate b ex-
pressible as conjunction of k-local regular predicates b(j),

where 1 6 j 6 m. Let Qj denote the subset of processes
whose variable(s) the jth clause b(j) depends on. For a
process pi, we define clausesi as the set of those clauses
that depend on some variable of pi, that is, clausesi ,
{ b(j) | pi ∈ Qj }. Also, let s = max

16i6n
|clausesi|. For ex-

ample, for the regular predicate bsync, k = 2 and s = n.
To obtain the slice with respect to b, we can proceed

as follows. We first compute the slice for each clause
using the algorithm SliceForKLocalRegular. This will give
us Kb(j)(e) for each clause b(j) and event e. Then, for
each event e and process pi, we simply set Kb(e)[i] to
the earliest event in the following set:

{Kb(1)(e)[i],Kb(2)(e)[i], . . . ,Kb(m)(e)[i]}

However, this approach has time-complexity of O((nm+
k2s)|E|).

To reduce the time-complexity, after computing the
slice 〈E(Qj),→(Qj)〉b(j) for each clause b(j), we com-
pute Kb directly without first computing Kb(j) for each
clause b(j). The algorithm is shown in Figure 9. Intu-
itively, among all the slices for the clauses belonging to
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clausesi, Kb(e)[i] is the earliest event on pi that is reach-
able from e. Formally,

Kb(e)[i] = min
b(j)∈clausesi

Fb(j)(e,Q
j)[i]

It can be verified that the graph Hb(E) then con-
structed using Kb(e) for each event e—in a similar fash-
ion as in Step 1—is actually cut-equivalent to the slice
〈E,→〉b. The proof is similar to that in Step 1 and has
been omitted. The overall time-complexity of the algo-
rithm is given by:

O(n|E|) +
m∑
j=1

O(|Qj |2|E(Qj)|)

=

{
each b(j) is a k-local predicate, therefore

|Qj | 6 k

}

O(n|E|) +O(k2
m∑
j=1

|E(Qj)|)

= { simplifying }
O(n|E|+ k2s |E|) = O((n+ k2s)|E|)

In case k is O(1) and s is O(n), as is the case with
bsync, the overall time-complexity is O(n|E|), which is a
factor of n less than computing the slice directly using
the algorithm SliceForRegular.

7.3 Optimal Algorithm for the Special Case

For special cases of regular predicates, namely conjunc-
tive predicates and certain monotonic channel predicates,
it is possible to give an O(|E|) optimal algorithm for
computing the slice. We only present the slicing algo-
rithm for the class of conjunctive predicates here. The
slicing algorithm for the class of monotonic channel pred-
icates can be found elsewhere [MG03b].

Consider a computation 〈E,→〉 and a conjunctive
predicate b. The first step is to partition events on each
process into true events and false events. Then we con-
struct a graph Hb(E) with vertices as the events in E
and the following edges:

1. from an event, that is not a final event, to its succes-
sor,

2. from a send event to the corresponding receive event,
and

3. from the successor of a false event to the false event.

For the purpose of building the graph, we assume
that all final events are true events. Thus every false
event has a successor. The first two types of edges ensure
that the Lamport’s happened-before relation [Lam78] is
contained in P(Hb(E)). Consider the computation de-
picted in Figure 10(a) and the conjunctive predicate x1∧
x2. The corresponding graph constructed as described is
shown in Figure 10(b). We now establish that the above-
mentioned edges are sufficient to eliminate all those con-
sistent cuts of the computation that do not satisfy the
conjunctive predicate.

Lemma 11. Every (non-trivial) consistent cut of Hb(E)
satisfies b.

Proof. It is sufficient to prove that no consistent cut of
Hb(E) contains a false event in its frontier. Consider a
consistent cut C ofHb(E). Assume, on the contrary, that
C contains a false event, say e, in its frontier. Since every
false event has a successor, by construction, there is an
edge from the successor of e, say f , to e. Therefore f
also belongs to C. This contradicts the fact that e is the
last event on its process to be contained in C. ut

We next show that the above constructed graph re-
tains all consistent cuts of the computation that satisfy
the conjunctive predicate.

Lemma 12. Every consistent cut of 〈E,→〉 that satisfies
b is a consistent cut of Hb(E).

Proof. Consider a consistent cut C of 〈E,→〉 that satis-
fies b. Assume, on the contrary, that C is not a consistent
cut of Hb(E). Thus there exist events e and f such that
there is an edge from e to f in Hb(E), f belongs to C
but e does not. Since C is a consistent cut of 〈E,→〉,
the edge from e to f could only be of type (3). (The
other two types of edges are present in 〈E,→〉 as well.)
Equivalently, e and f occur on the same process, e is the
successor of f , and f is a false event. Again, since f is
contained in C but its successor e is not, f belongs to the
frontier of C. However, C satisfies b and hence cannot
contain any false event in its frontier. ut

From the previous two lemmas, it follows that:

Theorem 13. Hb(E) is cut-equivalent to 〈E,→〉b.

It is easy to see that the graph Hb(E) has O(|E|)
vertices, O(|E|) edges (at most three edges per event
assuming that an event that is not local either sends
at most one message or receives at most one message
but not both) and can be built in O(|E|) time. Thus
the algorithm has O(|E|) overall time-complexity. It also
gives us an O(|E|) algorithm to evaluate possibly :b when
b is a conjunctive predicate.

7.4 Applications of Slicing

In this section, we show that slicing can be used to solve
other problems in distributed systems.

7.4.1 Monitoring Regular Predicate under Various
Modalities

A predicate can be monitored under four modalities,
namely possibly, definitely, invariant and controllable
[CM91,Gar02b,MG04,SUL00]. A predicate is possibly
true in a computation if there exists a consistent cut
of the computation that satisfies the predicate. On the
other hand, a predicate definitely holds in a computa-
tion if it eventually becomes true in all runs of the com-
putation (a run is a path in the lattice of consistent
cuts starting from the initial consistent cut and ending
at the final consistent cut). The modalities invariant
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for each event e ∈ E do
Kb(e) := F(e);

endfor;

for each conjunct b(j) do
for each event e ∈ E(Qj) do

for each process pi ∈ Qj do

Kb(e)[i] := min{Kb(e)[i], Fb(j)(e,Q
j)[i] };

endfor;
endfor;

endfor;

Fig. 9. Computing Kb(e) for each event e.
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Fig. 10. (a) A computation, and (b) its slice with respect to the conjunctive predicate x1 ∧ x2.

and controllable are duals of the modalities possibly and
definitely, respectively. Specifically, a predicate is invari-
ant in a computation if the predicate stays true through-
out every run of the computation. Finally, a predicate is
controllable in a computation if there exists a run of the
computation such that the predicate stays true through-
out the run. Monitoring has applications in the areas
of testing and debugging and software fault tolerance of
distributed programs.

We show how to monitor a regular predicate under
possibly : b, invariant : b and controllable : b modalities
using slicing. Given a directed graph G, let scc(G) denote
the number of strongly connected components of G.

Theorem 14. A regular predicate is

1. possibly true in a computation if and only if the slice
of the computation with respect to the predicate has at
least one non-trivial consistent cut, that is, it has at
least two strongly connected components. Formally,

possibly : b ≡ scc(〈E,→〉b) > 2

2. invariant in a computation if and only if the slice of
the computation with respect to the predicate is cut-
equivalent to the computation. Formally,

invariant : b ≡ 〈E,→〉b ∼= 〈E,→〉
3. controllable in a computation if and only if the slice

of the computation with respect to the predicate has
the same number of strongly connected components
as the computation. Formally,

controllable : b ≡ scc(〈E,→〉b) = scc(〈E,→〉)

The proof of the theorem can be found in the ap-
pendix. We do not yet know how to monitor a regular
predicate under definitely modality.

7.4.2 Zig-Zag Consistency Theorem: A Special Case of
Slicing

We now show how slicing relates to some of the well-
known results in checkpointing. Consider a conjunctive
predicate such that the local predicate for an event on a
process is true if and only if the event corresponds to a
local checkpoint. It can be verified that there is a zigzag
path [NX95,Wan97] from a local checkpoint c to a lo-
cal checkpoint c′ in a computation if and only if there
is a path from succ(c), if it exists, to c′ in the corre-
sponding slice—which can be ascertained by comparing
Jb(succ(c)) and Jb(c

′). An alternative formulation of the
consistency theorem in [NX95] can thus be obtained as
follows:

Theorem 15. A set of local checkpoints can belong to
the same consistent global snapshot if and only if the local
checkpoints in the set are mutually consistent (including
with itself) in the slice.

Moreover, the R-graph (rollback-dependency graph)
[Wan97] is path-equivalent to the slice when each con-
tiguous sequence of false events on a process is merged
with the nearest true event that occurs later on the pro-
cess. The minimum consistent global checkpoint that



Neeraj Mittal, Vijay K. Garg: Techniques and Applications of Computation Slicing 19

contains a set of local checkpoints [Wan97] can be com-
puted by taking the set union of Jb’s for each local check-
point in the set. The maximum consistent global check-
point can be similarly obtained by using the dual of Jb.

8 Slicing for Non-Regular Predicate

In this section, we describe our results on slicing for
general predicates. We first prove that it is in general
NP-hard to compute the slice for an arbitrary predicate.
Nonetheless, polynomial-time algorithms can be devel-
oped for certain special classes of predicates. In partic-
ular, we provide efficient algorithm to compute the slice
for a linear predicate and its dual—a post-linear predi-
cate [Gar02b]. We next present an efficient algorithm for
composing two slices efficiently; composition can be done
with respect to meet or join operator as explained later.
Slice composition can be used to compute the slice for a
predicate in DNF (disjunctive normal form). We further
provide three more applications of composition. First, we
demonstrate how composition can be employed to com-
pute the slice for a co-regular predicate—complement of
a regular predicate—in polynomial-time. Second, using
composition, we derive a polynomial-time algorithm to
the compute the slice for a k-local predicate for constant
k. Lastly, we employ slice composition to compute an
approximate slice—in polynomial-time—for a predicate
composed from linear predicates, post-linear predicates,
co-regular predicates and k-local predicates, for constant
k, using ∧ and ∨ operators.

8.1 NP-Hardness Result

It is evident from the definition of slice that the following
is true:

Observation 2. The necessary and sufficient condition
for the slice of a computation with respect to a predicate
to be non-empty is that there exists a consistent cut of
the computation that satisfies the predicate.

However, finding out whether some consistent cut of
the computation satisfies a predicate is an NP-complete
problem [Gar02b]. Thus it is in general NP-complete to
determine whether the slice for a predicate is non-empty.
This further implies that computing the slice for an arbi-
trary predicate is an NP-hard problem. From the results
of [MG01b], it follows that this is the case even when
the predicate is in 2-CNF and no two clauses contain
variables from the same process.

8.2 Computing the Slice for Linear or Post-Linear
Predicate

Recall that a predicate is linear if given two consistent
cuts that satisfy the predicate, the cut given by their
set intersection also satisfies the predicate [Gar02b]. A
post-linear predicate can be defined dually [Gar02b]. It

turns out that the algorithm SliceForRegular described in
Section 7.1 for computing the slice for a regular predi-
cate can also be used to compute the slice for a linear
predicate. The proof is given in the appendix. For a post-
linear predicate, however, a slightly different version of
the algorithm based on the notion of meet-irreducible
element is applicable.

8.3 Composing Two Slices

Given two slices, slice composition can be used to either
compute the smallest slice that contains all consistent
cuts common to both slices—composing with respect to
meet—or compute the smallest slice that contains con-
sistent cuts of both slices—composing with respect to
join. In other words, given slices 〈E,→〉b1 and 〈E,→〉b2 ,
where b1 and b2 are regular predicates, composition can
be used to compute the slice 〈E,→〉b, where b is either
b1 u b2 = b1∧ b2 or b1 t b2 = reg (b1∨ b2). Slice com-
position enables us to compute the slice for an arbitrary
boolean expression of local predicates—by rewriting it in
DNF—although it may require exponential time in the
worst case.

8.3.1 Composing with respect to Meet: b ≡ b1 u b2
≡ b1 ∧ b2

In this case, the slice 〈E,→〉b contains a consistent cut
of 〈E,→〉 if and only if the cut satisfies b1 as well as b2.
Given an event e, let Fmin(e) denote the vector obtained
by taking componentwise minimum of Fb1(e) and Fb2(e).
We first prove that no component of Fmin(e) is less than
(or occurs before) the corresponding component of Fb(e).

Lemma 13. For each event e and process pi,

Fb(e)[i]
P→ Fmin(e)[i].

Proof. For convenience, let f = Fb1(e)[i]. Let C be the

least consistent cut of the slice 〈E,→〉b that contains f .

Clearly, C is also a consistent cut of the computation

〈E,→〉. We have,

(C is a consistent cut of 〈E,→〉) ∧(
(C = >) ∨ (C 6= >)

)

⇒
{

in case C 6= >, by definition, C satisfies b

and therefore satisfies b1 as well

}

C is a consistent cut of 〈E,→〉b1
⇒ { by definition, C contains f }

(f ∈ C) ∧ (C is a consistent cut of 〈E,→〉b1)

⇒ { using definition of f , which is Fb1(e)[i] }
(f ∈ C)∧
(there is a path from e to f in 〈E,→〉b1)∧
(C is a consistent cut of 〈E,→〉b1)
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⇒ { definition of consistent cut }
(f ∈ C) ∧ (e ∈ C)

≡
{

by definition, C is the least consistent cut of

〈E,→〉b that contains f

}

there is a path from e to f in 〈E,→〉b
≡ { definition of Fb(e)[i] }

Fb(e)[i]
P→ f

Therefore Fb(e)[i]
P→ Fb1(e)[i]. Likewise, Fb(e)[i]

P→
Fb2(e)[i]. ut

We now construct a directed graph Smin(E) that is
similar to Sb(E) except that we use Fmin instead of Fb
in its construction. We show that Smin(E) is in fact cut-
equivalent to Sb(E).

Theorem 16. Smin(E) is cut-equivalent to Sb(E).

Proof. We have,

{ definition of Fmin }(
P(Sb1(E)) ⊆ P(Smin(E))

) ∧
(
P(Sb2(E)) ⊆ P(Smin(E))

)

≡ { using Lemma 1 }(
C(Smin(E)) ⊆ C(Sb1(E))

) ∧
(
C(Smin(E)) ⊆ C(Sb2(E))

)

≡ { set calculus }
C(Smin(E)) ⊆

(
C(Sb1(E)) ∩ C(Sb2(E))

)

≡ { b ≡ b1 ∧ b2 }
C(Smin(E)) ⊆ C(Sb(E))

Also, we have,

{ using Lemma 13 }
P(Smin(E)) ⊆ P(Sb(E))

≡ { using Lemma 1 }
C(Sb(E)) ⊆ C(Smin(E))

Thus C(Smin(E)) = C(Sb(E)). ut
Roughly speaking, the aforementioned algorithm com-

putes the union of the sets of edges of each slice. Note
that, in general, Fb(e)[i] need not be same as Fmin(e)[i].
This algorithm can be generalized to conjunction of an
arbitrary number of regular predicates.

8.3.2 Composing with respect to Join: b ≡ b1 t b2 ≡
reg (b1 ∨ b2)

In this case, the slice 〈E,→〉b contains a consistent cut
of 〈E,→〉 if the cut satisfies either b1 or b2. Given an
event e, let Fmax(e) denote the vector obtained by taking
componentwise maximum of Fb1(e) and Fb2(e). We first
prove that no component of Fb(e) is less than (or occurs
before) the corresponding component of Fmax(e).

Lemma 14. For each event e and process pi,

Fmax(e)[i]
P→ Fb(e)[i]

The proof of Lemma 14 is similar to that of Lemma 13
and therefore has been omitted. We now construct a di-
rected graph Smax(E) that is similar to Sb(E) except
that we use Fmax instead of Fb in its construction. We
show that Smax(E) is in fact cut-equivalent to Sb(E).

Theorem 17. Smax(E) is cut-equivalent to Sb(E).

Again, the proof of Theorem 17 is similar to that of
Theorem 16 and hence has been omitted. Intuitively, the
above-mentioned algorithm computes the intersection of
the sets of edges of each slice. In this case, in contrast to
the former case, Fb(e)[i] is identical to Fmax(e)[i]. The
reason is as follows. Recall that Fb(e)[i] is the earliest
event on pi that is reachable from e in 〈E,→〉b. From
Theorem 17, at least Fmax(e)[i] is reachable from e in

〈E,→〉b. Thus Fb(e)[i]
P→ Fmax(e)[i]. Combining it with

Lemma 14, we obtain,

Observation 3. For each event e and process pi,

Fb(e)[i] = Fmax(e)[i]

This algorithm can be generalized to disjunction of
an arbitrary number of regular predicates.

8.4 Computing the Slice for Co-Regular Predicate

Given a regular predicate, we give an algorithm to com-
pute the slice of a computation with respect to its
negation—a co-regular predicate. In particular, we ex-
press the negation as disjunction of polynomial number
of regular predicates. The slice can then be computed by
composing together slices for each disjunct.

Consider a computation 〈E,→〉 and a regular predi-
cate b. For convenience, let →b be the edge relation for
the slice 〈E,→〉b. Without loss of generality, assume that
both→ and→b are transitive relations. Our objective is
to find a property that distinguishes the consistent cuts
that belong to the slice from the consistent cuts that
do not. Consider events e and f such that e 6→ f but
e →b f . Then, clearly, a consistent cut that contains f
but does not contain e cannot belong to the slice. On the
other hand, every consistent cut of the slice that contains
f also contains e. This motivates us to define a predicate
prevents(f, e) as follows:

C satisfies prevents(f, e) , (f ∈ C) ∧ (e 6∈ C)

We now show that the predicate prevents(f, e) is ac-
tually a regular predicate. Specifically, we establish that
prevents(f, e) is a conjunctive predicate.

Lemma 15. prevents(f, e) is a conjunctive predicate.

Proof. Let proc(e) = pi and proc(f) = pj . We define a
local predicate li(e) to be true for an event g on process

pi if g
P→ e. Similarly, we define a local predicate mj(f)

to be true for an event h on process pj if f
P→ h. Clearly,

prevents(f, e) is equivalent to li(e) ∧mj(f). ut
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It turns out that every consistent cut that does not
belong to the slice satisfies prevents(f, e) for some pair
of events (e, f) such that (e 6→ f) ∧ (e →b f) holds.
Formally,

Theorem 18. Let C be a consistent cut of 〈E,→〉. Then,

C satisfies ¬b ≡
〈∃ e, f : (e 6→ f) ∧ (e→b f) :

C satisfies prevents(f, e)〉

Proof. We have,

C satisfies ¬b
≡ { b is a regular predicate }
¬
(
C ∈ C(〈E,→〉b)

)

≡ { definition of C(〈E,→〉b) }
¬〈∀ e, f : e→b f : f ∈ C ⇒ e ∈ C〉

≡ { predicate calculus }
〈∃ e, f : e→b f : (f ∈ C) ∧ (e 6∈ C)〉

≡ { definition of prevents(f, e) }
〈∃ e, f : e→b f : C satisfies prevents(f, e)〉

≡ { predicate calculus }
〈∃ e, f : (e→b f)

∧ (
(e→ f) ∨ (e 6→ f)

)
:

C satisfies prevents(f, e)〉
≡ { e→ f implies e→b f }
〈∃ e, f : (e→ f)

∨ (
(e→b f) ∧ (e 6→ f)

)
:

C satisfies prevents(f, e)〉

≡
{

since C is a consistent cut of 〈E,→〉, C
satisfies prevents(f, e) implies e 6→ f

}

〈∃ e, f : (e→b f) ∧ (e 6→ f) :

C satisfies prevents(f, e)〉
This establishes the theorem. ut
Theorem 18 can also be derived using the results in

lattice theory [Riv74]. We now give the time-complexity
of the algorithm. We start by making the following ob-
servation.

Observation 4. Let e, f and g be events such that f →
g. Then,

prevents(g, e) ⇒ prevents(f, e)

Let Kb(e) denote the vector whose ith entry denotes
the earliest event f on process pi, if it exists, such that
(e 6→ f) ∧ (e →b f) holds. Observation 4 implies that
prevents(Kb(e)[i], e), whenever Kb(e)[i] exists, is the
weakest predicate among all predicates prevents(f, e),
where proc(f) = pi and (e 6→ f)∧ (e→b f). Thus we can
ignore all other events on pi for the purpose of comput-
ing the slice for a co-regular predicate. More precisely,
Theorem 18 can be restated as:

Theorem 19. Let C be a consistent cut of 〈E,→〉. Then,

C satisfies ¬b ≡
〈∃ e, pi : Kb(e)[i] exists :

C satisfies prevents(Kb(e)[i], e)〉

It turns out that Kb(e)[i] and Fb(e)[i] are closely re-
lated.

Observation 5. Kb(e)[i] exists if and only if e 6→
Fb(e)[i]. Moreover, whenever Kb(e)[i] does exist, it is
identical to Fb(e)[i].

Theorem 19 implies that the number of disjuncts in
the predicate equivalent to the negation of a regular
predicate is at most O(n|E|). Further, using Observa-
tion 5, these disjuncts can be determined in O(n2|E|)
time using the algorithms ComputeJ and ComputeF dis-
cussed in Section 7.1. The slice with respect to each dis-
junct can be computed in O(|E|) time using the slic-
ing algorithm for conjunctive predicate. Moreover, for a
disjunct b(i), Jb(i)(e) for each event e can be computed
in O(n|E|) time from its slice 〈E,→〉b(i) (by topologi-
cally sorting the strongly connected components). Using
Jb(i) , it is possible to determine Fb(i)(e) for each event
e in O(n|E|) time using the algorithm ComputeF. Fi-
nally, these slices can be composed together to produce
the slice for a co-regular predicate in O(n|E| × n|E|) =
O(n2|E|2) time. This is because, given an event e, com-
puting each entry of Fr(e), where r = reg (¬b), using
Observation 3 requires O(n|E|) time. Thus the overall
time-complexity of the algorithm is O(n2|E|+n2|E|2) =
O(n2|E|2).

8.5 Computing the Slice for k-Local Predicate for
Constant k

In case the predicate is regular, we can simply use the
algorithm SliceForKLocalRegular to compute the slice in
O(n|E|) time. However, if the predicate is not regular,
then the slice produced will only be an approximate one.
To compute the slice for a k-local predicate, which is not
regular, we use the technique developed by Stoller and
Schneider [SS95]. For a given computation, their tech-
nique can be used to transform a k-local predicate into
a predicate in DNF such that each clause has at most
k conjuncts. (Such a predicate is referred to as k-DNF
predicate.) The resulting predicate has at most mk−1

clauses, where m is the maximum number of events on
a process. For example, consider the predicate x1 6= x2.
Let V denote the set of values that x1 can take in the
given computation. Then x1 6= x2 can be rewritten as:

x1 6= x2 ≡
∨

v∈V

(
(x1 = v) ∧ (x2 6= v)

)

Note that |V | 6 m. Thus the resultant predicate, in
the above case, consists of at most m clauses where each
clause is a conjunctive predicate [Gar02b]). In general,
the resultant k-DNF predicate will consist of at most
mk−1 clauses. To compute the slice for each clause, we
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use the optimal O(|E|) algorithm given in Section 7.3.
We then compose these slices together with respect to
disjunction to obtain the slice for the given k-local pred-
icate. The overall time-complexity of the algorithm is
given by O(nmk−1|E|).

8.6 Computing an Approximate Slice

Even though it is, in general, NP-hard to compute the
slice for an arbitrary predicate, it is still possible to com-
pute an approximate slice in many cases. The slice is
“approximate” in the sense that it is bigger than the ac-
tual slice for the predicate. Nonetheless, it still contains
all consistent cuts of the computation that satisfy the
predicate. In many cases, the approximate slice that we
obtain is much smaller than the computation itself and
therefore can be used to prune the search-space for many
intractable problems such as monitoring predicates un-
der various modalities.

In particular, using slice composition and slicing al-
gorithms for various classes of predicates, it is possible to
compute an approximate slice in an efficient manner for
a large class of predicates—namely those derived from
linear predicates, post-linear predicates, regular predi-
cates, co-regular predicates, and k-local predicates for
constant k using ∧ and ∨ operators.

To compute an approximate slice for such a predi-
cate, we first construct the parse tree for the correspond-
ing boolean expression; all predicates occupy leaf nodes
whereas all operators occupy non-leaf nodes. We then
recursively compute the slice by starting with leaf-nodes
and moving up, level by level, until we reach the root.
For a leaf node, we use the slicing algorithm appropriate
for the predicate contained in the node. For example, if
the leaf node contains to a linear predicate, we use the
algorithm described in Section 8.2. For a non-leaf node,
we use the suitable composition algorithm depending on
the operator.

Example 8. Suppose we wish to compute an approximate
slice for the predicate (x1 ∨ x2) ∧ (x3 ∨ x4), where each
xi is a regular predicate. First, we compute slices for
regular predicates x1, x2, x3 and x4. Next, we compose
the first two and the last two slices together with respect
to join to obtain slices for the clauses x1 ∨ x2 and x3 ∨
x4, respectively. Finally, we compose the slices for both
clauses together with respect to meet. The slice obtained
will contain all consistent cuts that satisfy the predicate
(x1 ∨ x2) ∧ (x3 ∨ x4). ut

8.7 Experimental Evaluation

In this section, we evaluate the effectiveness of slicing in
pruning the search-space for detecting a predicate un-
der possibly modality. We compare our approach with
that of Stoller, Unnikrishnan and Liu [SUL00], which
is based on partial-order methods [God96]. Intuitively,
when searching the state-space, at each consistent cut,
partial-order methods allow only a small subset of en-
abled transitions to be explored. In particular, we use

partial-order methods employing both persistent and sleep
sets for comparison. We consider two examples that were
also used by Stoller, Unnikrishnan and Liu to evaluate
their approach [SUL00].

The first example, called primary-secondary, concerns
an algorithm designed to ensure that the system always
contains a pair of processes acting together as primary
and secondary. The invariant for the algorithm requires
that there is a pair of processes pi and pj such that (1) pi
is acting as a primary and correctly thinks that pj is its
secondary, and (2) pj is acting as a secondary and cor-
rectly thinks that pi is its primary. Both the primary
and the secondary may choose new processes as their
successor at any time; the algorithm must ensure that
the invariant is never falsified. A global fault, therefore,
corresponds to the complement of the invariant which
can be expressed as:

¬Ips =
∧

i,j∈[1...n], i6=j

(
¬isPrimaryi∨

¬isSecondaryj∨
(secondaryi 6= pj)∨
(primaryj 6= pi)

)

Note that ¬Ips is a predicate in CNF where each
clause is a disjunction of two local predicates. An approx-
imate slice for ¬Ips can be computed in O(n3|E|) time.
In the second example, called database partitioning, a
database is partitioned among processes p2 through pn,
while process p1 assigns tasks to these processes based
on the current partition. A process pi, i ∈ [2 . . . n], can
suggest a new partition at any time by setting variable
changei to true and broadcasting a message contain-
ing the proposed partition. An invariant that should be
maintained is: if no process is changing the partition,
then all processes agree on the partition. Its complement,
corresponding to a global fault, can be expressed as:

¬Idb = ¬change2 ∧ ¬change3 ∧ · · · ∧ ¬changen ∧ (1)( ∨

i,j∈[1...n], i6=j
(partitioni 6= partitionj)

)

Note that the first n − 1 clauses of ¬Idb are local
predicates and the last clause, say LC, is a disjunction of
2-local predicates. Thus, using the technique described in
Section 8.5, LC can be rewritten as a predicate in DNF
with O(n|E|) clauses. To reduce the number of clauses,
we proceed as follows. Let V denote the set of values
that partition1 assumes in the given computation. Then
it can be verified that LC is logically equivalent to:

∨

v∈V

(
(partition1 = v)∧(

(partition2 6= v) ∨ (partition3 6= v)∨
· · · ∨ (partitionn 6= v)

))

(2)

This decreases the number of clauses to O(n|V |).
Note that |V | is bounded by the number of events on
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No Faults One Injected Fault

Number of Partial-Order Computation Partial-Order Computation

Processes Methods Slicing Methods Slicing

n T M T M T M T M

6 0.07 0.62 0.36 1.21 0.05 0.41 0.37 1.38

7 0.16 1.11 0.61 1.34 0.11 0.81 0.59 1.41

8 0.37 2.06 0.90 1.54 0.31 1.79 0.91 1.61

9 0.83 4.37 1.24 1.70 0.59 3.05 1.21 1.77

10 1.52 7.26 1.73 1.81 1.12 5.54 1.70 2.00

11 2.99∗ 13.14∗ 2.15 1.93 2.09∗ 9.50∗ 2.13 2.27

12 5.0∗ 21.56∗ 2.85 2.16 3.51∗ 14.13∗ 2.77 2.43

n: number of processes T : amount of time spent (in s)

M : amount of memory used (in MB)
*: does not include the cases in which the technique runs out of memory

Table 1. Primary-Secondary example with the number of events on a process bounded by 90.

the first process, and therefore we expect n|V | to be
O(|E|). Also, note that rewriting LC does not have any
impact on the performance of the partial order methods
approach because the set of processes on whose variables
the clause LC depends stay the same in both cases.

We use the simulator implemented in Java by Stoller,
Unnikrishnan and Liu to generate computations of these
protocols. Message latencies and other delays (e.g., how
long to wait before looking for a new successor) are se-
lected randomly using the distribution 1+exp(x), where
exp(x) is the exponential distribution with mean x. Fur-
ther details of the two protocols and the simulator can
be found elsewhere [SUL00]. We consider two different
scenarios: fault-free and faulty. The simulator always pro-
duces fault-free computations. A faulty computation is
generated by randomly injecting faults into a fault-free
computation. Note that in the first (fault-free) scenario,
we know a priori that the computation does not con-
tain a faulty consistent cut. We cannot, however, assume
the availability of such knowledge in general. Thus it is
important to study the behavior of the two predicate
detection techniques in the fault-free scenario as well.
We implement the algorithm for slicing a computation
in Java. We compare the two predicate detection tech-
niques with respect to two metrics: amount of time spent
and amount of memory used. In the case of the former
technique, both metrics also include the overhead of com-
puting the slice. We run our experiments on a machine
with Pentium 4 processor operating at 1.8GHz clock fre-
quency and 512MB of physical memory.

For primary-secondary example, the simulator is run
until the number of events on some process reaches 90.
The measurements averaged over 300 computations are
displayed in Table 1. With computation slicing, for fault-
free computations, the slice is always empty. As the num-
ber of processes is increased from 6 to 12, the amount
of time spent increases from 0.36s to 2.85s, whereas the
amount of memory used increases from 1.21M to 2.16M.
On the other hand, with partial-order methods, they

increase, almost exponentially, from 0.07s to 5.0s and
0.62M to 21.56M, respectively. Even on injecting a fault,
the slice stays quite small. After computing the slice, in
our experiments, we only need to examine at the most
13 consistent cuts to locate a faulty consistent cut, if
any. The amount of time spent and the amount of mem-
ory used, with computation slicing, increase from 0.37s
to 2.77s and 1.38M to 2.43M, respectively, as the num-
ber of processes is increased from 6 to 12. However, with
partial-order methods, they again increase almost ex-
ponentially from 0.05s to 3.51s and 0.41M to 14.13M,
respectively. Clearly, with slicing, both time and space
complexities for detecting a global fault, if it exists, in
primary-secondary example are polynomial in input size
for the specified range of parameters. In contrast, with
partial-order methods, they are exponential in input size.
Figure 11(a) and Figure 11(b) plot the variation in the
two metrics with the number of processes for the two
approaches.

The worst-case performance of the partial-order meth-
ods approach is quite bad. With 12 processes in the sys-
tem and the limit on the memory set to 100MB, the ap-
proach runs out of memory in approximately 6% of the
cases. In around two-thirds of such cases, the compu-
tation actually contains a consistent cut that does not
satisfy the invariant. It may be noted that we do not
include the above-mentioned cases in computing the av-
erage amount of time spent and memory used. Includ-
ing them will only make the average performance of the
partial-order methods approach worse. Further, the per-
formance of the partial-order methods approach appears
to be very sensitive to the location of the fault, in partic-
ular, whether it occurs earlier during the search or much
later or perhaps does not occur at all. Consequently, the
variation or standard deviation in the two metrics is very
large. This has implications when predicate detection is
employed for achieving software fault tolerance. Specifi-
cally, it becomes hard to provision resources (in our case,
memory) when using partial-order methods approach. If
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Fig. 11. Primary-Secondary example with the number of events on a process bounded by 90 for (a) no faults and (b) one
injected fault.

No Faults One Injected Fault

Number of Partial-Order Computation Partial-Order Computation

Processes Methods Slicing Methods Slicing

n T M T M T M T M

4 0.05 0.07 0.24 1.06 0.03 0.05 0.24 0.95

5 0.05 0.09 0.34 1.13 0.03 0.08 0.36 0.99

6 0.05 0.13 0.50 1.22 0.03 0.10 0.48 1.13

7 0.05 0.22 0.59 1.33 0.04 0.16 0.62 1.25

8 0.07 0.31 0.76 1.41 0.04 0.23 0.73 1.57

9 0.07∗ 0.36∗ 0.89 1.56 0.05 0.31 0.92 1.69

10 0.08∗ 0.40∗ 1.09 1 .80 0.05∗ 0.42∗ 1.07 1.80

n: number of processes T : amount of time spent (in s)

M : amount of memory used (in MB)

*: does not include the cases in which the technique runs out of memory

Table 2. Database partitioning example with the number of events on a process bounded by 80.

too little memory is reserved, then, in many cases, the
predicate detection algorithm will not be able to run suc-
cessfully to completion. On the other hand, if too much
memory is reserved, the memory utilization will be sub-
optimal.

For database partitioning example, the simulator is
run until the number of events on some process reaches
80. (This also implies that V in the alternative formu-
lation of LC has at most 80 values.) The measurements

averaged over 300 computations are shown in Table 2.
Figure 12(c) and Figure 12(d) plot the variation in the
two metrics with the number of processes for the two ap-
proaches. As it can be seen, the average performance of
partial-order methods is much better than computation
slicing. This is because substantial overhead is incurred
in computing the slice even after changing the formula-
tion of LC from (1) to (2). (The alternative formulation
of LC decreases the time-complexity of computing the
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Fig. 12. Database partitioning example with the number of events on a process bounded by 80 for (c) no faults and (d) one
injected fault.

slice by a factor of four.) The slice itself is quite small.
Specifically, for the fault-free scenario, the slice is always
empty. On the other hand, for the faulty scenario, only at
most 4 transitions need to be explored after computing
the slice to locate a faulty consistent cut, if any.

Even for database partitioning example, for 10 pro-
cesses, the partial-order methods approach runs out of
memory in a small fraction—approximately 1%—of the
cases. Therefore the worst-case performance of compu-
tation slicing is better than partial-order methods. To
get the best of both worlds, predicate detection can be
first done using the partial-order methods approach. In
case it turns out that the approach is using too much
memory, say more than cn|E| for some small constant
c, and still has not terminated, it can be aborted and
the computation slicing approach can then be used for
predicate detection.

9 Discussion

In this paper, we introduce the notion of computation
slice and prove its usefulness in evaluating global prop-
erties in distributed computations. We provide efficient
polynomial-time algorithms for computing the slice for
several useful classes of predicates. For many other classes
predicates for which it is otherwise provably NP-complete
to compute the slice, we present efficient heuristic al-
gorithms for computing an approximate slice. Our ex-
perimental results demonstrate that slicing can lead to

an exponential improvement over existing techniques in
terms of time and space for intractable problems such as
predicate detection.

We prove elsewhere [MSGA04] that there exists a
polynomial-time algorithm for detecting a predicate if
and only if there exists a polynomial-time algorithm for
computing its slice. At first glance it may seem that we
are not any better off than we were before. After all,
predicate detection is “equivalent” to computation slic-
ing. Then, how can slicing be used to improve the com-
plexity of predicate detection? The answer is in affirma-
tive; slicing can indeed be used to facilitate predicate
detection as illustrated by the following example. Con-
sider a predicate b that is a conjunction of two clauses b1

and b2. Now, assume that b1 can be detected efficiently
but b2 has no structural property that can be exploited
for efficient detection. To detect b, without computation
slicing, we are forced to use techniques [CM91,AV01,
SUL00] which do not take advantage of the fact that
b1 can be detected efficiently. With computation slic-
ing, however, we can first compute the slice for b1. If
only a small fraction of consistent cuts satisfy b1, then,
instead of detecting b in the computation, it is much
more efficient detect b in the slice. Therefore by spending
only polynomial amount of time in computing the slice
we can throw away exponential number of consistent
cuts, thereby obtaining an exponential speedup overall.
Consequently, by virtue of the equivalence result, it is
possible to compute the slice efficiently for many more
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classes predicates including relational predicates [CG95],
stable and co-stable predicates, and co-linear predicates
[CG98].

Although in this paper our focus is on distributed
systems, slicing has applications in other areas as well,
such as combinatorics [Gar02a]. A combinatorial prob-
lem usually requires counting, enumerating or ascertain-
ing the existence of structures that satisfy a given prop-
erty. We cast the combinatorial problem as a distributed
computation such that there is a bijection between the
combinatorial structures satisfying a property b and the
global states (or consistent cuts) that satisfy a property
equivalent to b. We then apply results in slicing a com-
putation with respect to a predicate to obtain a slice
consisting of only those global states that satisfy b. This
gives us an efficient algorithm to count, enumerate or
detect structures that satisfy b when the total set of
structures is large but the set of structures satisfying
b is small.

For example, consider the following problem in com-
binatorics: Count the number of subsets of size k of the
set {1, 2, . . . , n} (hereafter denoted by [n]) which do not
contain any consecutive numbers (for given values of n
and k). To solve this problem, we first come up with
a distributed computation such that there is a one-to-
one correspondence between global states and subsets of
size k. Figure 13(a) depicts a computation such that all
subsets of [n] of size k are its global states. There are
k processes in this computation and each process exe-
cutes exactly n− k events. By the structure of the com-
putation, if, in a global state, process pi has executed
j events, then process pi+1 must have also executed at
least j events. The correspondence between subsets of
[n] and global states can be understood as follows. If a
process pi has executed m events in a global state, then
the element m + i belongs to the corresponding subset.
Thus process p1 chooses a number from 1 . . . (n− k+ 1)
(because there are n− k events); process p2 chooses the
next larger number and so on. Figure 13(b) gives an ex-
ample of the computation for subsets of size 3 of the set
[6]. The global state shown corresponds to the subset
{1, 3, 4}.

Now we define predicate b to be “the global state does
not contain any consecutive numbers”. For the compu-
tation we have constructed, it can be easily verified that
the predicate b is regular. Therefore one can mechani-
cally and efficiently compute the slice of the computa-
tion with respect to b. Figure 14 shows the slice which
includes precisely such subsets. Clearly, if the event la-
beled m on process pi has been executed, then the event
labeled m+ 2 on process pi+1 should also have been ex-
ecuted. This can be accomplished by adding the dotted
arrows to the computation as depicted in the figure. By
collapsing all strongly connected components and by re-
moving the transitively implied edges, we obtain a graph
that is isomorphic to the graph shown in Figure 13(a),
with k processes and in which each process executes
n−k−(k−1) events. Therefore the total number of such

sets is
(
n−k+1

k

)
. [Gar02a] gives several other applications

of slicing for analyzing problems in integer partitions, set
families, and set of permutations.

At present, all our algorithms for computing a slice
are centralized in nature. They assume that there is a
designated process that is responsible for collecting all
the events that have been generated and constructing
a trace using them. Slicing algorithms use this trace
to compute the slice. While the centralized approach is
quite adequate for applications such as testing and de-
bugging, for other applications including software fault
tolerance, a more distributed approach is desirable. More-
over, all slicing algorithms presented in this paper are
off-line in nature. To detect a software fault in a more
timely manner, however, it is desirable and sometimes
essential that its slice be computed and analyzed for any
possible fault in an incremental fashion. As the execution
of the system progresses and more and more events in
the trace become available, the current slice is updated
to reflect the newly generated events. In the future, we
plan to develop slicing algorithms that are incremental
and more distributed in nature.

References

[AV01] S. Alagar and S. Venkatesan. Techniques to
Tackle State Explosion in Global Predicate Detec-
tion. IEEE Transactions on Software Engineering,
27(8):704–714, August 2001.
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A Omitted Proofs

Proof (of Theorem 2). We have to prove that if b1 and
b2 are regular predicates then so is b1∧ b2. Consider con-
sistent cuts C1 and C2 that satisfy b1∧ b2. By semantics
of conjunction, both C1 and C2 satisfy b1 as well as b2.
Since b1 and b2 are regular predicates, C1 ∩ C2 satisfies
b1 and b2. Again, by semantics of conjunction, C1 ∩ C2

satisfies b1 ∧ b2. Likewise, C1 ∪C2 satisfies b1 ∧ b2. Thus
b1 ∧ b2 is a regular predicate. ut

Proof (of Theorem 9). (reg (b) is weaker than b) Follows
from the definition.

(reg is monotonic) Since reg (b′) is weaker than b′, it is
also weaker than b. That is, reg (b′) is a regular predicate
weaker than b. By definition, reg (b) is the strongest regu-
lar predicate weaker than b. Therefore reg (b) is stronger
than reg (b′) or, in other words, reg (b)⇒ reg (b′).

(reg is idempotent) Follows from the fact that reg (b) is
a regular predicate and is weaker than reg (b). ut

Proof (of Lemma 10). It suffices to prove that if C is a

consistent cut of Hb(E), then C(Q) is a consistent cut of

〈E(Q),→(Q)〉b. We prove the contrapositive. We have,

C(Q) is not a consistent cut of 〈E(Q),→(Q)〉b
⇒ { definition of consistent cut }
〈∃ e, f ∈ E(Q) :

there is a path from e to f in 〈E(Q),→(Q)〉b :

(f ∈ C(Q)) ∧ (e 6∈ C(Q)〉
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⇒
{

using definition of Fb(e,Q)[i] where

pi = proc(f)〉

}

〈∃ e, f ∈ E(Q) : Fb(e,Q)[i]
P→ f :

(f ∈ C(Q)) ∧ (e 6∈ C(Q)〉
⇒ { using definition of Kb(e)[i] }
〈∃ e, f ∈ E(Q) : Kb(e)[i]

P→ f :

(f ∈ C(Q)) ∧ (e 6∈ C(Q)〉
⇒ { using definition of Hb(E) }
〈∃ e, f ∈ E(Q) :

there is a path from e to f in Hb(E) :

(f ∈ C(Q)) ∧ (e 6∈ C(Q)〉

⇒
{
f ∈ C(Q)⇒ f ∈ C and

(e 6∈ C(Q)) ∧ (e ∈ E(Q))⇒ e 6∈ C

}

〈∃ e, f ∈ E :

there is a path from e to f in Hb(E) :

(f ∈ C) ∧ (e 6∈ C)〉
⇒ { definition of consistent cut }

C is not a consistent cut Hb(E)

This establishes the lemma. ut

Proof (of Theorem 14). The first two propositions are
easy to verify. We only prove the last proposition. As
for the last proposition, it can be verified that a regular
predicate is controllable in a computation if and only if
there exists a path from the initial to the final consistent
cut in the lattice (of consistent cuts) such that every con-
sistent cut along the path satisfies the predicate [TG98].
Note that the path from the initial to the final consistent
cut actually corresponds to a longest chain in the lattice
of consistent cuts. For a lattice L, let height(L) denote
the length of a longest chain in L. Therefore if b is con-
trollable in 〈E,→〉, then a longest chain in C(E) is con-
tained in Cb(E) as well and vice versa. This implies that
height(C(E)) 6 height(Cb(E)). However, Cb(E) ⊆ C(E)
implying that height(Cb(E)) 6 height(C(E)). Therefore
we have:

controllable : b ≡ height(C(E)) = height(Cb(E))

For a finite distributive lattice L, the length of its
longest chain is equal to the number of its join-irreducible
elements [DP90]. In other words, height(L) = J I(L).
Also, as observed before in Section 6, for a directed
graph, the number of join-irreducible elements of the lat-
tice generated by its set of consistent cuts—including
trivial consistent cuts—is same as the number of its
strongly connected components. As a result,

height(C(E)) = J I(C(E)) = scc(〈E,→〉), and

height(Cb(E)) = J I(Cb(E)) = scc(〈E,→〉b)
This establishes the theorem. ut


