
Timestamping Messages and Events in a Distributed

System using Synchronous Communication∗

Vijay K. Garg†‡

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712, USA

garg@ece.utexas.edu

Chakarat Skawratananond§

eServer Solutions

IBM Austin, Inc.

Austin, TX 78758 USA

chakarat@us.ibm.com

Neeraj Mittal

Department of Computer Science

The University of Texas at Dallas

Richardson, TX 75083, USA

neerajm@utdallas.edu

Abstract

Determining order relationship between events of a distributed computation is a fundamen-

tal problem in distributed systems which has applications in many areas including debugging,

visualization, checkpointing and recovery. Fidge/Mattern’s vector-clock mechanism captures

the order relationship using a vector of size N in a system consisting of N processes. As a

result, it incurs message and space overhead of N integers. Many distributed applications use

synchronous messages for communication. It is therefore natural to ask whether it is possible

to reduce the timestamping overhead for such applications.

In this paper, we present a new approach for timestamping messages and events of a syn-

chronously ordered computation, that is, when processes communicate using synchronous mes-

sages. Our approach depends on decomposing edges in the communication topology into mu-

tually disjoint edge groups such that each edge group either forms a star or a triangle. We

∗An earlier version of this paper appeared in 2002 Proceedings of the IEEE International Conference on Distributed

Computing Systems (ICDCS).
†Supported in part by the NSF Grants ECS-9907213, CCR-9988225, an Engineering Foundation Fellowship.
‡Corresponding author.
§This work was done while the author was a Ph.D. student at the University of Texas at Austin.

1

show that, to accurately capture the order relationship between synchronous messages, it is suf-

ficient to use one component per edge group in the vector instead of one component per process.

Timestamps for events are only slightly bigger than timestamps for messages.

Many common communication topologies such as ring, grid and hypercube can be decom-

posed into dN/2e edge groups, resulting in almost 50% improvement in both space and commu-

nication overheads. We prove that the problem of computing an optimal edge decomposition of

a communication topology is NP-complete in general. We also present a heuristic algorithm for

computing an edge decomposition whose size is within a factor of two of the optimal.

We prove that, in the worst case, it is not possible to timestamp messages of a synchronously

ordered computation using a vector containing fewer than 2bN/6c components when N ≥ 2.

Finally, we show that messages in a synchronously ordered computation can always be times-

tamped in an offline manner using a vector of size at most bN/2c.

Key words

synchronous communication, timestamping messages and events, vector clocks, edge decom-

position, vertex cover

1 Introduction

A fundamental problem in distributed systems is to determine the order relationship between

events of a distributed computation as defined by Lamport’s happened-before relation [22]. The

problem arises in many areas including debugging and visualization of distributed programs and

fault-tolerance of distributed systems. It arises in visualization of a computation when debugging

distributed programs (e.g., POET [21], XPVM [20], and Object-Level Trace [5]). It also arises

when evaluating a global property in a distributed computation [10, 16, 2]. An important problem

in rollback recovery is to determine whether a message has become orphan and rollback its receiver

to undo the effect of the message [29, 6].

Vector clocks, which were introduced independently by Fidge [9, 10, 11] and Mattern [24], and

their variants [23] are widely used to capture the causality between events in distributed systems.

To capture the causality, each event is timestamped with the current value of the local vector

clock at the time the event is generated. The order relationship between two events can then

be determined by comparing their timestamps. A vector clock contains one component for every

process in the system. This results in message and space overhead of N integers in a distributed

system consisting of N processes.

2

Charron-Bost [4] shows that, for every N ≥ 2, there exists a distributed computation involving

N processes such that any algorithm has to use a vector containing at least N components to

faithfully capture the happened-before relation between events in the computation. We prove in [15]

that Fidge/Mattern’s (FM’s) vector clock is equivalent to a string realizer of the poset corresponding

to the distributed computation. Further, a vector of size equal to the string dimension of the poset

[8, 15] is necessary and sufficient for timestamping events. In general, timestamps computed using

dimension theory cannot be used in an online manner because the knowledge of the entire poset is

typically required to compute a realizer. Further, the problem of determining the size of a smallest

realizer is NP-complete in general [35]. Although these results indicate that, in the worst case, an

N -dimensional vector clock is required to timestamp events, they do not exclude timestamps which

use fewer than N components for interesting subclasses of computations on N processes. From a

practical point of view, a natural question to ask is whether there exists an efficient timestamping

algorithm for a class of applications in which a timestamp contains fewer than N integers.

In this paper, we show that timestamping of events can be done more efficiently for a distributed

computation that uses synchronous messages. Informally, a message is said to be synchronous

when the send is blocking, that is, the sender waits for the message to be delivered at the receiver

before executing further. We refer to a computation in which all messages are synchronous as

synchronously ordered computation.

Synchronous communication is widely supported in many programming languages (e.g., Occam

and Ada Rendezvous) and programming paradigms (e.g., Synchronous Remote Procedure Calls

(RPCs)). While programming using asynchronous communication allows potentially higher degree

of parallelism because computation and communication can overlap, programs that use synchronous

message-passing are easier to understand and develop [28].

It is well-known that a computation using synchronous communication is logically equivalent

to a computation in which all message exchanges are logically instantaneous. In other words, it

is always possible to draw the time diagram for a synchronously ordered computation such that

arrows for messages appear vertically (assuming time progresses from left to right) [4, 25]. If we

ignore internal events in a synchronously ordered computation, then the problem of timestamping

events of the computation reduces to that of timestamping its messages. (Note that, in a distributed

system using synchronous communication, timestamping messages is equivalent to timestamping

communication events. This is an important problem in itself, especially when communication

events are the only relevant events in a computation.) Using the Lamport’s happened-before

3

relation, we define a partial order on messages and describe an online algorithm for timestamping

messages that accurately capture the partial order. Instead of associating a component in the

vector with each process in the system, we exploit the structure of the communication topology to

reduce the size of the vector. Specifically, we decompose the edges in the communication topology

into mutually disjoint edge groups such that each edge group either forms a star or a triangle.

Intuitively, when the communication is synchronous, messages exchanged along the edges of an

edge group (star or triangle) are totally ordered and their relationship can be captured using a

single integer [31, 17]. Therefore it is sufficient to use one integer in the vector for each edge group

in the decomposition. We show how timestamps assigned to messages can be used to timestamp

internal events by employing only few additional integers. Further, we demonstrate that, like

Fidge/Mattern’s timestamps [9, 10, 11, 24], our timestamps can be used to test for precedence

between two events in O(1) time.

Note that our technique requires that the decomposition of edges into edge groups be known

to all processes. Many common topologies including ring, grid and hypercube can be easily de-

composed into at most dN/2e edge groups. This immediately implies that, with our timestamping

approach, space and communication overheads improve by almost 50% for these topologies. For

general topologies, however, computing an optimal edge decomposition is an NP-complete problem.

We present a heuristic algorithm that can be used for computing an edge decomposition whose size

is within a factor of two of the optimal.

We show that, using an offline algorithm, synchronous messages can be timestamped with

vectors containing at most bN/2c integers. This result is derived using dimension theory of posets.

We also show that, for every N ≥ 2, there exists a synchronously ordered computation on N

processes such that any vector-based timestamping mechanism with component-wise comparison

requires at least 2bN/6c components to accurately capture the partial order on messages. This

holds even when the communication topology is sparse in the sense that the number of edges in

the topology is within a small constant factor of the number of processes.

To summarize, the paper makes the following contributions:

1. We define a causal relationship between synchronous messages based on the Lamport’s happened-

before relation on events. We present an online algorithm to timestamp messages using a

vector of size less than N . We prove that these vector timestamps accurately capture the

order relationship between messages.

4

2. Using timestamps assigned to messages, we assign timestamps to all events in the compu-

tation. Our timestamps for events use only few additional integers than timestamps for

messages. We also show that, similar to Fidge/Mattern’s timestamps, our timestamps can

be used to test for precedence between any two events in O(1) time.

3. We prove that the problem of computing an optimal edge decomposition is NP-complete in

general. We present a heuristic algorithm for computing edge decomposition such that the

size of the decomposition is at most twice the size of an optimal edge decomposition.

4. We show that the vector of size bN/2c is sufficient to capture relationship between synchronous

messages using an offline algorithm.

5. We show that, for every N ≥ 2, there exists a synchronously ordered computation on N

processes such that any vector-based timestamping mechanism for messages requires at least

2bN/6c entries in the vector.

The remainder of this paper is organized as follows. Section 2 provides background for the

problem discussed in this paper. An online algorithm for timestamping messages is given in Sec-

tion 3. We also demonstrate how timestamps for messages can be used to generate timestamps

for events using only few additional integers. We show that the problem of edge decomposition is

NP-complete in Section 4 and also present an approximation algorithm for solving the problem.

Section 5 describes an offline algorithm. Section 6 compares our work with others.

2 Model and Notations

We assume a loosely-coupled message-passing system without any shared memory or a global clock.

A distributed program consists of N processes, denoted by {P1, P2, . . . , PN}, communicating via

messages. In this paper, we assume that all messages are synchronous. A computation that uses

only synchronous messages is called a synchronously ordered computation. It can be shown that a

computation is synchronously ordered if it is possible to timestamp send and receive events with

integers in such a way that (1) timestamps increase within each process and (2) the send and the

receive events associated with each message have the same timestamp. Therefore, the space-time

diagram of the computation can be drawn such that all messages arrows are vertical, assuming that

time progresses from left to right [4] (see Figure 1).

5

P1

P2

P3

P4

m1

m2

m4
m3

m5 m6

Figure 1: A synchronously ordered computation with 4 processes.

Determining the order of messages is crucial in observing distributed systems. We write e ≺ f
when event e occurs before f in a process. Here, we define the order among synchronous messages.

The set of messages M in a given synchronously ordered computation forms a posetM = (M, 7→),

where 7→ is the transitive closure of � defined as follows:

mi �mj ⇐⇒





mi.send ≺ mj .send , or

mi.send ≺ mj .receive , or

mi.receive ≺ mj .send , or

mi.receive ≺ mj .receive

We say that mi synchronously precedes mj when mi 7→ mj . Also, when we have mi1�mi2�. . .�mik ,

we say that there is a synchronous chain of size k from mi1 to mik . Finally, when mi 6= mj and

neither mi 67→ mj nor mj 67→ mi holds, we write mi‖mj .

In the example given in Figure 1, m1‖m3, m1 � m2, m2 7→ m6, and m3 7→ m5. There is a

synchronous chain between m1 and m5 of size 4.

To perform precedence-test based on synchronously-precede relation, we devise a timestamping

mechanism that assigns a vector to each message m (or, equivalently, to send and receive events of

the message). Let m.v denote the vector assigned to message m. Our goal is to assign timestamps

that satisfy the following property,

mi 7→ mj ⇐⇒ mi.v < mj .v (1)

Given any two vectors u and v of size t, we define the less-than relation, denoted by <, as

6

Symbol Domain Meaning

≺ events relation on events executed on the same process

→ events Lamport’s happened-before relation on events

� messages relation on messages involving a common process

7→ messages transitive closure of �

7→ messages reflexive closure of 7→

Table 1: Various relations on messages and events used in this paper.

follows.

u < v ⇐⇒




∀k : 1 ≤ k ≤ t : u[k] ≤ v[k] ∧
∃l : 1 ≤ l ≤ t : u[l] < v[l]

(2)

We call the relation given in Equation (2) vector order.

From Equations (1) and (2), one can determine if mi 7→ mj by checking whether mi.v < mj .v.

If mi.v is not less than mj .v and mj .v is not less than mi.v, then we know that mi‖mj (assuming

mi 6= mj).

For convenience, Table 1 lists various relations that we use in this paper.

3 An Online Algorithm

In this section, we describe an algorithm for assigning timestamps to messages and events in a

synchronously ordered computation to accurately capture their order relationship. Note that,

in a distributed system using synchronous communication, timestamping messages is equivalent

to timestamping communication events. This is an important problem in itself, especially when

communication events are the only relevant events in a computation.

As opposed to Fidge/Mattern’s approach which is based on using one component for each

process, our algorithm uses one component for each edge group. We first define the notion of edge

decomposition and edge group.

3.1 Edge Decomposition

The communication topology of a system that consists of N processes, P1, . . . , PN , can be viewed

as an undirected graph G = (V,E) where V = {P1, . . . , PN}, and (Pi, Pj) ∈ E when Pi and Pj can

7

(b)(a)

Figure 2: Examples of the communication topologies. (a) A topology where every pair of processes

can communicate directly with each other. (b) A topology where not every pair of processes

communicate directly with each other.

communicate directly. Figure 2(a) gives the communication topology of a system in which every

process can communicate directly with each other. Figure 2(b) gives the communication topology

of another system in which not every pair of processes communicates directly with each other.

Some particular topologies that will be useful to us are the star and the triangle topologies. An

undirected graph G = (V,E) is a star if there exists a vertex x ∈ V such that all edges in E are

incident to x. We call such a star as rooted at node x. An undirected graph G = (V,E) is a triangle

if |E| = 3, and these three edges form a triangle. We denote a triangle by a triple such as (x, y, z)

denoting its endpoints.

The star and triangle topologies are useful because messages in a synchronously ordered com-

putation with these topologies are always totally ordered. In fact, we have the following:

Lemma 1 The message sets for all synchronously ordered computations in a system with G =

(V,E) as the communication topology are totally ordered if and only if G is a star or a triangle.

Proof: Given any two messages in a star topology, there is always one process (the center of the

star) which is a participant (a sender or a receiver) in both the messages. Since all message events

within a process are totally ordered it follows that both these messages are comparable. The similar

argument holds for the triangle topology.

Conversely, assume that the graph is not a star or a triangle. This implies that there exists

two distinct edges (Pi, Pj) and (Pk, Pl) such that none of their endpoints is common. Consider a

synchronously ordered computation in which Pi sends a synchronous message to Pj and Pk sends a

synchronous message to Pl concurrently. These messages are concurrent and therefore the message

8

(a) (b)

Figure 3: Edge decompositions of the fully-connected topology with 5 processes. (a) The first

decomposition consisting of 2 stars and 1 triangle. (b) The second decomposition consisting of 4

stars.

set is not totally ordered.

Note that the above Lemma does not claim that message set cannot be totally ordered for a

topology that is neither a star nor a triangle. It only claims that for every such topology there

exists a synchronously ordered computation in which messages do not form a total order. Now

based on the definitions of star and triangle graphs, we are ready to define the edge decomposition

of G.

Definition 2 (Edge Decomposition) Let G = (V,E) be communication topology of a system

using synchronous communication. A partition of the edge set, {E1, E2, . . . , Ed}, is called an edge

decomposition of G if E = E1 ∪ E2 ∪ . . . ∪ Ed such that:

1. ∀i, j : i 6= j : Ei ∩ Ej = ∅, and

2. ∀i : (V,Ei) is either a star or a triangle.

We refer to each Ei in the edge decomposition as an edge group. In our algorithm, we will

assign one component of the vector for every edge group. Note that there is possibly more than

one decomposition for a topology. Our goal is to get the smallest possible decomposition. Consider

a fully-connected system consisting of N processes. The first decomposition consists of N − 3

stars and 1 triangle. The second decomposition consists of N − 1 stars. Figure 3 presents the two

decompositions of a fully-connected system with 5 processes.

The complete graph is the worst case for edge decomposition, resulting in N − 3 stars and 1

triangle. In general, the number of edge groups may be much smaller than N − 2. Given a tree-

based communication topology consisting of 20 processes, Figure 4 shows how to decompose edges

into three edge groups E1, E2, and E3 where each group is a star.

9

E1
E2 E3

Figure 4: A tree-based topology with 20 processes.

We will discuss techniques for edge decomposition that minimize the number of edge groups in

Section 4.

3.2 Timestamping Messages (Communication Events)

Each process maintains a vector of size d, where d is the size of the edge decomposition. We assume

that information about edge decomposition is known to all processes in the system.

The online algorithm is presented in Figure 5. Due to the implementation of synchronous

message ordering [25, 14], we assume that for each message sent from Pi to Pj , there exists an

acknowledgment sent from Pj to Pi. Essentially, to timestamp each message, the sender and the

receiver must first exchange their local vector clocks. Then, each process computes the component-

wise maximum between its vector and the vector received (Lines (5) and (9)). Finally, both the

sender and the receiver increment the gth element of their vectors where the channel along which

the message is sent belongs to the gth group in the edge decomposition (Lines (6) and (10)). The

resulting vector clock is the timestamp of this message. Intuitively, the gth entry of the local vector

clock at process Pi captures the number of messages that have been exchanged along the gth edge

group so far as per Pi.

Figure 6 shows a sample execution of the proposed algorithm on a fully-connected system with

5 processes. Edge decomposition consists of 2 stars (E1 and E2) and 1 triangle (E3). For example,

message sent from P2 to P3 is timestamped (1, 1, 1) because the channel between P2 and P3 is in

edge group E2, and the local vector on P2 and P3 before transmission are (1, 0, 0) and (0, 0, 1),

respectively.

Next, we prove that our online algorithm assigns vector timestamps to synchronous messages

such that these timestamps encode poset (M, 7→). The channel along which a message mx is sent

must be a member of a group in the edge decomposition. We use mx.g to denote the index of the

10

Pi ::

var

vi : vector[1..d] of integers, initially 0;

ED : edge decomposition,({E1, . . . , Ed});

(01) On sending m to Pj ;

(02) send(m, vi) to Pj ;

(03) On receiving (m, v) from Pj ;

(04) send acknowledgment(vi) to Pj ;

(05) ∀k : vi[k] = max(vi[k], v[k]);

(06) vi[g]++ where edge (i, j) ∈ Eg;

(07) Timestamp of m is vi;

(08) On receiving acknowledgment(v) of m from Pj ;

(09) ∀k : vi[k] = max(vi[k], v[k]);

(10) vi[g]++ where edge (i, j) ∈ Eg;

(11) Timestamp of m is vi;

Figure 5: An online algorithm for timestamping messages.

(1,2)
(1,3)
(1,4)
(1,5)

(2,3)
(2,4)
(2,5)

(3,4)
(3,5)
(4,5)

E1 E2 E3[
1
0
0

]

[
1
2
2

][
1
1
1

]

[
0
0
1

] [
1
1
3

]

[
0
0
2

]

P1

P2

P3

P4

P5

P2P1

P5 P3

P4

Figure 6: A synchronously ordered computation with 5 processes, and its edge decomposition.

group to which this channel belongs in the edge decomposition. Clearly,

Lemma 3 mi‖mj ⇒ mi.g 6= mj .g

Proof: Let ci (resp. cj) be an edge in the topology graph G that corresponds to the channel along

which mi (resp. mj) is sent. Since mi‖mj , from Lemma 1, all messages in an edge group are totally

ordered, we get that ci and cj must belong to different edge groups. Therefore, mi.g 6= mj .g.

Theorem 4 Given an edge decomposition of a system in which processes communicate using syn-

11

chronous messages, the algorithm in Figure 5 assigns timestamps to messages such that mi 7→
mj ⇐⇒ mi.v < mj .v.

Proof: (⇒) First, we show that mi 7→ mj ⇒ mi.v < mj .v. Since the sender and the receiver

of a message exchange their local vector clocks and compute the component-wise maximum of the

two vector clocks, it is easy to see that if mi �mj , then mi.v ≤ mj .v. This in turn implies that if

mi 7→ mj then mi.v ≤ mj .v because 7→ is the transitive closure of �. We now claim that:

mi 7→ mj ⇒ mi.v[mj .g] < mj .v[mj .g] (3)

This is true because before the timestamp is assigned to mj , mj .v[mj .g] is incremented. Thus,

we have mi 7→ mj ⇒ mi.v < mj .v.

(⇐) We now show the converse, mi 67→ mj ⇒ ¬(mi.v < mj .v). Due to the definition of vector

order, it is sufficient to show that:

mi 67→ mj ⇒ mj .v[mi.g] < mi.v[mi.g] (4)

We do a case analysis.

(Case 1: mj 7→ mi)

From Equation (3), by changing roles of mi and mj , we get that mj .v[mi.g] < mi.v[mi.g].

(Case 2: mi‖mj)

We prove by induction on k, the size of the longest synchronous chain from a minimal message in

the poset (M, 7→) to mj . A message m is minimal if there is no message m′ in the computation

such that m′ 7→ m.

(Base: l = 1) mj is a minimal message.

From Lemma 3 and mi‖mj , mi.g 6= mj .g. Since mj is a minimal message by the initial

assignment of the vector clock, both sender and the receiver have 0 as the component for mi.g

and the component-wise maximum also results in 0 for mi.g. Further, since mi.g 6= mj .g the

component for mi.g is not incremented. Hence, mj .v[mi.g] = 0.

We now claim that mi.v[mi.g] ≥ 1. This is true because we increment the component for

mi.g before assigning the timestamp for mi. Since the value of all entries are at least 0, it

will be at least 1 after the increment operation.

From, mj .v[mi.g] = 0 and mi.v[mi.g] ≥ 1, we get that mj .v[mi.g] < mi.v[mi.g].

12

(Induction: l > 1)

Let mk be any message such that mk � mj . We know that mi 67→ mk, otherwise mi 7→ mj .

By induction hypothesis,

mi 67→ mk ⇒ mk.v[mi.g] < mi.v[mi.g]

To obtain mj .v, the sender and receiver of mj exchange timestamps of any immediately

preceding message (if any). From induction hypothesis, we know that the mi.g
th component

of vectors from both the sender and receiver are less than mi.v[mi.g]. Hence, it stays less

after the component-wise maximum. Further, since mi.g 6= mj .g, the component for mi.g is

not incremented. Therefore, mj .v[mi.g] < mi.v[mi.g].

This establishes the Theorem.

Given an edge decomposition of size d, our online timestamping algorithm uses a vector of size

d at each process. Further, each message carries a vector of size d. It may appear that, with

our timestamping approach, as many as d comparisons may have to be made in the worst case to

determine the exact relationship between two messages, In the next section, we show that this time

can actually be reduced to O(1).

3.3 Reducing Time for Precedence Testing

One of the advantages of Fidge/Mattern’s timestamps are that they can be used to test for prece-

dence in O(1) time. It turns out that our timestamps also satisfy the same desirable property. To

reduce the time for precedence testing, we prove the following two Lemmas. The proof of both

Lemmas uses the contrapositive of Equation (4), which was established while proving Theorem 4:

mi.v[mi.g] ≤ mj .v[mi.g] ⇒ mi 7→ mj (5)

The first Lemma deals with the case when two messages are exchanged along channels that

belong to the same edge group.

Lemma 5 Assume mi.g = mj .g. Then,

(mi 7→ mj) ⇐⇒ mi.v[mi.g] < mj .v[mi.g]

13

Proof: Assume that mi.g = mj .g.

(⇒) We need to show that mi 7→ mj ⇒ mi.v[mi.g] < mj .v[mi.g]. The implication follows from

Equation (3), which was established while proving Theorem 4.

(⇐) Now, we show the converse, that is, mi.v[mi.g] < mj .v[mi.g] ⇒ mi 7→ mj . The implication

follows from Equation (5) and the observation that mi.v[mi.g] < mj .v[mi.g] ⇒ mi.v[mi.g] ≤
mj .v[mi.g].

The second Lemma deals with the case when two messages are exchanged along channels that

belong to different edge groups.

Lemma 6 Assume mi.g 6= mj .g. Then,

(mi 7→ mj) ⇐⇒ mi.v[mi.g] ≤ mj .v[mi.g]

Proof: Assume that mi.g 6= mj .g.

(⇒) We need to show that mi 7→ mj ⇒ mi.v[mi.g] ≤ mj .v[mi.g]. Clearly, from Theorem 4,

mi 7→ mj ⇒ mi.v < mj .v. From the definition of vector order, it follows that mi.v < mj .v ⇒
mi.v[mi.g] ≤ mj .v[mi.g]. Combining the two, we get the result.

(⇐) The converse follows from Equation (5).

Lemmas 5 and 6 enable us to determine the order relationship between two messages in O(1)

time provided we know the edge groups to which the two messages belong. Intuitively, edge groups

play the same role in our approach as processes in Fidge/Mattern’s approach.

3.4 Timestamping Internal (Non-Communication) Events

In this section, we show how internal events can be timestamped so that Lamport’s happened-before

relation between events [22] can be inferred from timestamps assigned to messages. Lamport’s

happened-before relation, denoted by→, is defined as the smallest transitive relation satisfying the

following properties [22]:

1. if events e and f occur on the same process, and e occurred before f in real time then e

happened-before f , and

2. if events e and f correspond to the send and receive, respectively, of a message then e

happened-before f .

14

Recall that for each synchronous message m sent from a process Pi to another process Pj , there

is an acknowledgment sent from Pj to Pi. It is important to note that happened-before relation

between events uses messages as well as their acknowledgments.

For an internal event e, let e.p denote the process on which e is executed. Also, let e.b denote

the last message exchanged by e.p before it executes e. If no such message exists, then e.b is defined

to be ⊥. Finally, let e.a denote the first message exchanged by e.p after it executes e. If no such

message exists, then e.a is defined to be >. We use 7→ to denote the reflexive closure of 7→.

Further, expressions m 7→ ⊥ and > 7→ m evaluate to false for all messages m.

Theorem 7 e→ f ⇐⇒ (e ≺ f) ∨ (e.a 7→ f.b)

Proof: (⇒) First, we have to prove that e→ f ⇒ (e ≺ f) ∨ (e.a 7→ f.b). If e and f are on the

same process, then e ≺ f and the implication trivially holds. Otherwise, since e → f , there must

be a causal chain of messages starting from e and ending at f . This in turn implies that either

e.a = f.b or there exists a synchronous chain of messages starting from e.a and ending at f.b.

(⇐) Conversely, we have to prove that (e ≺ f) ∨ (e.a 7→ f.b) ⇒ e → f . Clearly, when e ≺ f ,

e → f . Therefore assume that e.a 7→ f.b. From the definition of ⊥ and >, e.a 6= > and f.b 6= ⊥.

Since e is executed before e.a is exchanged and f is executed after f.b is exchanged, there exists a

causal chain of messages from e to f involving application messages and/or their acknowledgments.

As a result, e→ f .

From Theorem 7, timestamp for an internal event consists of two parts. The first part enables us

to evaluate the first disjunct (whether e ≺ f holds) and the second part enables us to evaluate the

second disjunct (whether e.a 7→ f.b holds). For an event e, the first part can be realized using two

integers: (1) identifier of the process on which e is executed, given by e.p, and (2) counter indicating

the number of events that have been executed on e.p before e, denoted by e.c. The second part can

be realized using two vector timestamps: (1) vector timestamp for e.b and (2) vector timestamp

for e.a. This means that the timestamp for an internal event consists of 2d + 2 integers. The size

of the timestamp can be further reduced to only d+ 4 integers using the following Lemma.

Theorem 8 e.a 7→ f.b ⇐⇒ (e.a 6= >) ∧ (f.b 6= ⊥) ∧ (e.a.v[e.a.g] ≤ f.b.v[e.a.g])

Proof: (⇒) Assume that e.a 7→ f.b holds. From the definition of e.a and f.b, we can infer

that e.a 6= > and f.b 6= ⊥. It remains to be shown that e.a.v[e.a.g] ≤ f.b.v[e.a.g]. In case

15

e.a = f.b, the result clearly holds. Therefore assume that e.a 7→ f.b. From Lemmas 5 and 6, either

e.a.v[e.a.g] < f.b.v[e.a.g] or e.a.v[e.a.g] ≤ f.b.v[e.a.g] holds. In either case, e.a.v[e.a.g] ≤ f.b.v[e.a.g]

holds.

(⇐) Assume that (e.a 6= >) ∧ (f.b 6= ⊥) ∧ (e.a.v[e.a.g] ≤ f.b.v[e.a.g]) holds. In case e.a.g = e.b.g,

from Lemma 5, we can infer that e.a 7→ f.b holds. On the other hand, if e.a.g 6= f.b.g, then, from

Lemma 6, we can deduce that e.a 7→ f.b holds. This in turn implies that e.a 7→ f.b holds.

Theorem 8 implies that the timestamp for e does not need to carry the vector timestamp of

e.a. Rather it is sufficient to store two integers to be able to conduct the precedence test involving

e: e.a.g and e.a.v[e.a.g]. To summarize, the timestamp for e is given by five components: (1) e.p,

(2) e.c, (3) e.b.v, (4) e.a.g and (5) e.a.v[e.a.g]. The third component is defined only if f.b 6= ⊥.

The fourth and fifth components are defined only if e.a 6= >. Theorem 8 also allows us to conduct

the precedence test involving internal events in O(1) time.

Observe that the timestamp for an internal event is not completely defined until the process

to which the event belongs exchanges a message. This, however, does not create any problem as

far as testing for precedence is concerned. It can be verified that the precedence test still produces

correct result. Moreover, no other process in the system except the process to which it belongs

would know about such an event (because it is an “internal” event). Therefore when a process

exchanges a message, only timestamps stored locally may have to be updated. The change does

not need to be propagated to other processes.

Remark 1 For a communication event e, we can define both e.b and e.a to be the message involved

in the communication. It can be verified that Theorem 7 is still applicable as long as not both

events are communication events of the same message. Therefore the precedence test described

above can be used to compare any pair of events except when the two events are communication

events of the same message.

4 Decomposing Edges of a Communication Topology

As discussed in Section 3.2, the overhead of our algorithm is crucially dependent upon the size of

the edge decomposition. Let α(G) denote the size of a smallest edge decomposition (note that there

may be multiple edge decomposition of the same size). In our edge decomposition, we decompose

the graph into stars and triangles. If we restricted ourselves to decomposing the edge set only in

16

stars then the problem is identical to that of vertex cover. A vertex cover of an undirected graph

G = (V,E) is a subset V ′ ⊆ V such that if (u, v) is an edge of G, then either u ∈ V ′ or v ∈ V ′ (or

both)

We can now provide a bound for the size of the vector clocks based on the vertex cover.

Theorem 9 Let G = (V,E) be communication topology of a system using synchronous communi-

cation. Let β(G) be the size of the optimal vertex cover of G. Then, for N ≥ 3, vectors of size

min(β(G), N − 2) are sufficient to timestamp messages.

Proof: From the definition of vertex cover, every edge is incident on some vertex in the vertex cover.

For every edge we assign some vertex to the vertex cover. If some edge has both the endpoints

in the vertex cover, then we arbitrarily choose one. By the definition of vertex cover problem, all

edges are partitioned in this manner into stars. When β(G) = N − 1, we can simply use trivial

edge decomposition of N − 3 stars and one triangle. Thus, there exists an edge decomposition of

size at most min(β(G), N − 2).

Since vertex cover does not use triangles in edge decomposition, it is natural to ask how bad

can a pure star decomposition be compared to star and triangle decomposition. We claim that

β(G) ≤ 2 α(G). This bound holds because any decomposition of the graph into stars and triangles

can be converted into a decomposition purely of stars by decomposing every triangle into two stars.

The above bound is tight in general because if the graph consisted of just t disjoint triangles, then

α(G) = t and β(G) = 2t.

Even for a connected topology, the ratio β(G)/α(G) can be made arbitrarily closed to two.

Consider a communication topology of the form shown in Figure 7 consisting of t triangles. Any

vertex cover of the topology has to contain at at least two vertices from each triangle. Therefore

β(G) ≥ 2t. However, the optimal edge decomposition of the topology consists of t triangles and 1

star. Therefore α(G) = t+ 1. As a result, the ratio β(G)/α(G) ≥ 2t/(t+ 1) = 2− 2/(t+ 1), which

can be made arbitrarily close to 2 by choosing large enough value for t.

4.1 Complexity of Edge Decomposition Problem

It can be shown that the problem of optimal edge decomposition of a general graph is NP-hard.

The proof of the following result was communicated to us in an email by Nirman Kumar who

attributed it to Sariel Har-Peled. We have included the proof here for completeness sake.

17

t

Figure 7: A communication topology for which the ratio β(G)/α(G) is close to 2.

Theorem 10 Given an undirected graph G, and an integer k, determining whether there exists an

edge decomposition of G of size at most k, is NP-complete in general.

Proof: The problem is clearly in NP because given a partition of the edge set into stars and

triangles it is easy to verify that it is a proper edge decomposition and its size is at most k.

To prove that the problem is NP-hard, we use the transformation from the vertex cover problem

which is known to be NP-hard [13]. Given a graph G and a positive integer k, to determine whether

there is a vertex cover of size k we transform it into the edge decomposition problem as follows. We

construct a new graph H from G by replacing every edge e = (x, y) in G with three edges: (x, xe),

(xe, ye) and (ye, y) where xe and ye are new vertices added for this edge. Thus if the original graph

G has n vertices and m edges, then H has n + 2m vertices and 3m edges. Further, H does not

have any triangles. We now claim that G has a vertex cover of size at most k if and only if H has

an edge decomposition of size at most k +m.

First assume that G has a vertex cover of size k. For any edge e = (x, y) either x or y is in the

vertex cover. If only x is in the vertex cover for G, then we include x and ye in the vertex cover for

H. Similarly, if only y is in the vertex cover for G, then we include y and xe in the vertex cover for

H. If both x and y are in the vertex cover for G, then we include x, y and ye in the vertex cover

for H. It can be verified that the vertex cover for H has size at most k +m. Since a vertex cover

is also an edge decomposition, it follows that there exists an edge decomposition of size at most

k +m.

Now assume that H has an edge decomposition of size at most k + m. Because H has no

triangles, any edge decomposition of H is equivalent to a vertex cover of H. By the construction

of H any vertex cover of H must include at least one of the vertices from {xe, ye} for all edges

18

e. If the vertex cover has both xe and ye, then we remove ye from the vertex cover and add y to

the vertex cover. This change ensures that there is a vertex cover with exactly m vertices from
⋃
e
{xe, ye}. The remaining vertices in the vertex cover of H forms a vertex cover of G. This set is

of size at most k.

4.2 An Approximation Algorithm for Edge Decomposition

We now present an algorithm that returns an edge decomposition which is at most twice the size

of the optimal edge decomposition. Further, our algorithm returns an optimal edge decomposition

when the graph is acyclic.

The algorithm is shown in Figure 8. It works by repeatedly deleting stars and triangles from

the graph. The main while loop in line (02) has three steps inside. The first step chooses any node

which has degree 1, say x which is connected to node y. It outputs a star rooted at y. When no

nodes of degree 1 are left, the algorithm goes to the second step.

In the second step, the algorithm checks if there is a triangle (x, y, z) such that there are no

edges in F which are incident to x or y other than those in the triangle. There may be other edges

incident to z, but the degree of nodes x and y is exactly 2. Once all such triangles have been

output, the algorithm goes to step three.

In the third step, the algorithm chooses an edge (x, y) with the largest number of adjacent

edges. If there is more than one such edge, it chooses any one of them. Now it outputs two stars

one rooted at x and the other rooted at y. After the third step, the algorithm goes back to the

while loop to check if all edges have been accounted for.

Figure 9 shows the operation of our edge decomposition algorithm on the communication topol-

ogy shown in Figure 2(b). Figure 9(b),(c), and (d) show the first, second, and third step, respec-

tively, of the algorithm, respectively. In Figure 9(e), the execution loops back to the first step, edge

(j, k) is output, and the program exits. Figure 9(f) shows the resulting edge decomposition consists

of 4 stars and 1 triangle.

The algorithm has time complexity of O(|V ||E|) because in every step, the identification of the

edge (Line (4), (8), and (12)) can be done in O(|E|) time, which results in deletion of all edges

incident on at least one vertex.

The following theorem shows that the algorithm produces an edge decomposition with a ratio

bound of 2. The ratio bound is the ratio between the size of the edge decomposition produced by

the algorithm and the size of an optimal edge decomposition.

19

Input: Undirected graph G = (V,E);

Output : edge decomposition,({E1, . . . , Ed});

// Each Ei is either a star or a triangle

(01) F := E;

(02) while F 6= ∅ do

//First Step:

(03) while there exists a node x such that degree(x) = 1 do

(04) Let (x, y) be the edge of F incident to x;

(05) output star rooted at y and all incident edges to y;

(06) remove from F all edges incident on y;

(07) endwhile;

//Second Step:

(08) while there exists a triangle (x, y, z) with degree(x) = degree(y) = 2 do

(09) output triangle (x, y, z) ;

(10) remove from F the edges in the triangle;

(11) endwhile

//Third Step:

(12) Let (x, y) be an edge of F with largest number of edges adjacent to it;

(13) output star rooted at y and all incident edges to y;

(14) output star rooted at x and all incident edges to x except (x, y);

(15) remove from F all edges incident on x or y;

(16) endwhile;

Figure 8: An approximation algorithm for edge decomposition.

Theorem 11 The algorithm in Figure 8 produces an edge decomposition with the approximation

ratio bound of 2.

Proof: The algorithm creates edge groups in the first step (Lines (3)-(7)), the second step (Lines

(8)-(11)) or the third step (Lines (12)-(15)). For every creation of an edge group, we identify an

edge and include it in a set H. In the first step, we use the edge (x, y) the lone edge incident to x

and put in the set H. In the second step, we use the edge (x, y) from the triangle and put it in H.

Finally, for step 3, we put the edge chosen in line 12 in H. It is easy to verify that no two edges

in H are incident to a common vertex. This is because any time we choose an edge in any of the

steps, all adjacent edges are deleted from F . Since no two edges have any vertex in common, edges

in H must all be in distinct edge groups in the optimal edge decomposition. However, the size of

edge decomposition produced is at most twice the size of H.

Note that in the above proof we have not used the fact that in step 3, we choose an edge with

the largest number of adjacent edges. The correctness and the approximation ratio is independent

20

(a) (b)

(c) (d)

(e) (f)

h

g

b
j

i

k

a

c

d e

f

c

d e h i

j k

b

g

d e h

f

output
a

c

c

ih

output

d e

kj
j k

j

i

output
k

h i

output

j k

Figure 9: A sample run of the proposed decomposition algorithm. (a) The input topology. (b) In

the first step, the algorithm outputs 2 stars. There are 7 edges remaining. (c) In the second step,

the algorithm outputs a triangle (c, d, e). There are 4 edges remaining. (d) In the third step, two

stars are output. Edge (j, k) is remaining. (e) The execution loops back to the first step again and

edge (j, k) is output. The algorithm terminates. (f) The resulting edge decomposition consists of

4 stars and 1 triangle.

of that choice. However, by deleting as large number of edges as possible in each step, one would

expect to have a smaller edge decomposition.

We now show that the above algorithm outputs optimal edge decomposition for acyclic graphs.

Theorem 12 The algorithm in Figure 8 produces an optimal edge decomposition for acyclic graphs.

Proof: First note that an acyclic graph can have only stars as edge groups. Further, when the

algorithm is applied to an acyclic graph all the edges will be deleted in the while loop of the first

step. In other words, if we take a forest (an acyclic graph is equivalent to a forest or a collection of

trees) and repeatedly delete all edges that are adjacent or one hop away from the leaves then we

will eventually delete all the edges.

21

Thus, the set H constructed in the proof of Theorem 11 consists of edges added only in step 1.

Since we add exactly one edge group for every edge added to H, the optimality follows.

4.3 Edge Decomposition for Common Topologies

Some of the common topologies that are used for communication in a distributed system are tree,

ring, grid and hypercube. It can be shown that, for all these topologies, there exists a vertex cover

of size at most dN/2e. This implies that it is possible to timestamp messages and events of any

synchronously ordered computation generated on these topologies using at most dN/2e+4 integers.

For the sake of completeness, we briefly describe how to construct a vertex cover of size at most

dN/2e for these topologies.

Tree Topology: A possible vertex cover consists of all vertices on even levels of the tree. Another

vertex cover consists of all vertices on odd levels of the tree. Clearly, the size of one of these vertex

covers is at most dN/2e.

Ring Topology: Assume that the vertices in the ring are numbered sequentially in clockwise

fashion starting from 1. Then the set of all odd-numbered vertices constitutes a vertex cover of the

ring.

Grid Topology: Assume that vertices in each row are numbered sequentially from left to right

starting from 1. A possible vertex cover for the topology can be constructed as follows. From

every odd numbered row, pick all odd-numbered vertices. From every even numbered row, pick all

even-numbered vertices. It can be shown that the size of the vertex cover thus obtained is at most

dN/2e.

Hypercube Topology: A vertex cover of a hypercube of size N/2 can be constructed by in-

cluding all vertices with even parity in the bit representation of their labels. Since every edge in a

hypercube connects vertices that differ in exactly one bit, one of the vertices adjacent to the edge

has even parity. Hence this set covers all edges and contains exactly N/2 vertices.

22

5 An Offline Algorithm

We present an offline timestamping algorithm which takes a completed computation as an input

and assigns a vector timestamp to each message in the given computation. Our offline algorithm is

based on applying dimension theory to the poset formed by messages in the synchronously ordered

computation. We first provide the technical background for dimension theory.

5.1 Background: Dimension Theory

A pair (X,P) is called an irreflexive partially ordered set or a poset if X is a set and P is an

irreflexive, and transitive binary relation on X. A poset (X,P) is called chain if every distinct pair

of points from X is comparable in P . Similarly, we call a poset an antichain if every distinct pair

of points from X is incomparable in P . The width of poset (X,P), denoted by width(X,P), is the

size of the longest antichain of P .

A family of linear extensions of (X,P) denoted by R = {L1, L2, . . . , Lt} is called a realizer of

(X,P) if P = ∩ R. For any poset (X,P), the dimension of (X,P), denoted by dim(X,P), is the

least positive integer t for which there exists a family R = {L1, L2, . . . , Lt} of linear extensions of

P so that P = ∩R =
t⋂
i=1

Li.

5.2 Offline Algorithm for Timestamping Messages

The offline algorithm is based on the result of the following theorem.

Theorem 13 Given a poset (M, 7→) formed by messages in a synchronously ordered computation

with N processes, vector clocks of size bN/2c can be used to encode poset(M, 7→).

Proof: For any subset L ⊆ M such that |L| > bN/2c, there exists mi,mj ∈ L : mi 7→ mj or

mj 7→ mi. This is because each message involves two processes. From a set of bN/2c+ 1 messages,

there must be at least two messages that share a common process. Hence, the size of the longest

antichain of (M, 7→) (or width(M, 7→)) is at most bN/2c. From Dilworth’s theorem [7], for any

poset P , dim(P) ≤ width(P). Hence, dim(M, 7→) ≤ bN/2c.

As a result from Theorem 13, we get the offline algorithm as shown in Figure 10.

As an example, if we use offline algorithm to timestamp messages in the computation shown in

Figure 6, 2-dimensional vectors are sufficient to capture concurrency as shown in Figure 11.

23

From a given poset M,

(1) Let w be the width of poset M. From Theorem 13, w ≤ bN/2c.
(2) Construct a set of linear extensions, {L1, . . . , Lw}, such that

w⋂
i=1

Li =M.

(Procedure for constructing this linear realizer is given in [31])

(3) Timestamp each message m with Vm, where Vm[i] is the number of elements

less than m in Li.

Figure 10: An offline algorithm for timestamping messages.

P2

P3

P4

P5

P1 [
2
0

]

[
3
2

]

[
5
4

]

[
1
3

]

[
4
5

][
0
1

]

Figure 11: A sample run of the offline algorithm.

5.3 Lower Bound on Size of Message Timestamps

In this section, we show that every vector-based timestamping algorithm, in which vector times-

tamps are compared component-wise, has to use at least 2bN/6c components for timestamping

messages in a synchronously ordered computation on N processes, in the worst case.

Our proof uses a well-known poset in dimension theory known as the standard example. The

standard example Sn for n ≥ 2 consists of 2n elements {a1, a2, . . . , an} ∪ {b1, b2, . . . , bn}. The

precedence relation is given by ai < bj if and only if i 6= j, for i, j = 1, 2, . . . , n. Figure 12 shows

the diagram for S5.

Dushnik and Miller [8] have shown that dim(Sn) = n. We construct a synchronously ordered

computation involving N processes such that the poset on messages contains the standard example

Sn with n ≥ 2bN/6c as a subposet.

24

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5

Figure 12: The standard example S5.

b1

b2a1

a2

Figure 13: An example of a synchronously ordered computation that contains S2 as a poset.

Our construction is recursive in nature. The result trivially holds for N ≤ 3. For 4 ≤ N ≤
12, it is easy to construct a synchronously ordered computation that contains S2 as a subposet.

An example of such a computation is shown in Figure 13. We next show how to construct a

synchronously ordered computation containing Sn+2 as a subposet given a synchronously ordered

computation containing Sn as a subposet by using only six additional processes. The construction

is shown in Figure 14.

Besides messages an+1, an+2, bn+1 and bn+2, we use fourteen additional messages to obtain the

desired computation. The main idea behind the construction is as follows. Let Cn refer to the given

computation and Cn+2 refer to the resulting computation. For a message m, let m.ps denote the

set of processes involved in the exchange of m. Further, let An denote the set {a1, a2, . . . , an}. The

set Bn can be similarly defined. Observe that an−1 7→ bi already holds for each bi ∈ Bn−2 in Cn.

This implies that there is a chain of messages (possibly empty) starting from an−1 and ending at

bi for each bi ∈ Bn−2 in Cn. Each chain starts from one of the processes in an−1.ps. Therefore, to

ensure that an+1 7→ bi holds for each bi ∈ Bn−2 in Cn+2, we proceed as follows. We add messages

sn+1 and tn+1 between one of the processes in an+1.ps and both processes in an−1.ps as shown in

Figure 14. Each of the two messages is added after an−1 but before any other message is exchanged

by the respective process (of an−1.ps) in Cn. By the way of construction, it is easy to see that

25

b2

b1

bn

bn−1

bn+2

bn+1

a1

a2

an−1

an

an+2

an+1

wn+2

xn+2

un+1

vn+1

vn+2

un+2

tn+2

sn+2

tn+1

wn+1

xn+1

yn+2

yn+1

sn+1

Previously

Added Messages

Figure 14: Constructing Sn+2 from Sn using six additional processes.

an+1 7→ bi for each bi ∈ Bn−2 in Cn+2. We now summarize the function of all fourteen messages.

• Messages sn+1 and tn+1 ensure that an+1 7→ bi for each bi ∈ Bn−2 and an+1 7→ bn. Messages

xn+1 and yn+1 ensure that an+1 7→ bn−1.

• Messages sn+2 and tn+2 ensure that an+2 7→ bi for each bi ∈ Bn−1. Messages xn+2 and yn+2

ensure that an+2 7→ bn.

• Messages un+1 and vn+1 ensure that ai 7→ bn+2 for each ai ∈ An−1. Messages wn+1 and xn+1

ensure that an 7→ bn+2.

26

• Messages un+2 and vn+2 ensure that ai 7→ bn+1 for each ai ∈ An−2 and an 7→ bn+1. Messages

wn+2 and xn+2 ensure that an−1 7→ bn+1.

It can be verified that, even after adding the fourteen messages, ai‖bi still holds for each i =

1, 2, . . . , n + 2. Therefore the poset induced on messages in An+2 ∪ Bn+2 by the synchronously

precedes relation 7→ actually corresponds to the standard example Sn+2. We have,

Theorem 14 For every N ≥ 2, there exists a synchronously ordered computation on N processes

such that the poset (M, 7→) has a dimension of at least 2bN/6c.

Observe that, in our construction, no process exchanges messages with more than six processes.

Therefore the lower bound holds even if the communication topology is sparse and contains only

Θ(N) edges.

6 Related Work

Fidge, in his paper on timestamping events in a distributed computation [9, 11], also describes a

method for timestamping synchronous communication events (which is equivalent to timestamping

synchronous messages) using traditional vector clocks. As opposed to processes in our model,

processes in [11] are allowed to communication using both asynchronous and synchronous messages.

We, on the other hand, assume that all messages are synchronous and our focus is on timestamping

messages and events efficiently for such a computation.

Several techniques have been proposed to reduce the overhead imposed by Fidge/Mattern’s

vector clocks [9, 10, 11, 24]. Singhal and Kshemkalyani [27] present a technique to reduce the

amount of data piggybacked on each message. The main idea is to only send those entries of

the vector along with a message that have changed since a message was last sent to that process.

Hélary et al [18] further improve upon Singhal and Kshemkalyani technique and describe a suite of

algorithms that provide different trade offs between space overhead and communication overhead.

The ideas described in the two papers are actually orthogonal to the ideas presented in this paper

and, therefore, can also benefit our timestamping algorithm by reducing its overhead.

Fowler and Zwaenepoel [12] propose a variant of vector clocks in which each process only keeps

direct dependencies on others. Although each process maintains a vector of size equal to the number

of processes, only one integer is piggybacked on a message. For capturing transitive causal relations,

however, it is necessary to recursively trace causal dependencies. This technique is therefore more

27

suitable for applications where precedence test can be performed offline. Jard and Jourdan [19]

propose an algorithm that allows only relevant events to be tracked using a variation of direct

depending mechanism, which they refer to as adaptive timestamping. Torres-Rojas and Ahamad

[30] introduce another variant of vector clocks called plausible clocks. Unlike traditional vector

clocks, plausible clocks are scalable because they can be implemented using fixed-length vectors

independent of the number of processes. However, plausible clocks do not characterize causality

completely because two events may be ordered even if they are concurrent. As a result, plausible

clocks are useful only when imposing ordering on some pairs of concurrent events has no effect on

the correctness of the application.

In [3], Basten et al introduce the notion of an abstract event. An abstract event is a non-empty

subset of primitive events. Basten et al define two precedence relations on abstract events, namely

strong precedence and weak precedence [3]. They also present techniques for timestamping abstract

events to accurately capture the two precedence relations.

Several centralized algorithms for timestamping events have also been proposed [32, 33, 34].

They are mainly used for visualizing a distributed computation. An important objective of these

algorithms is to reduce the amount of space required to store timestamps for all events in a computa-

tion while maintaining the time required for comparing two events (to determine their relationship)

at an acceptable level. Ward presents two centralized algorithms to create vector timestamps whose

size can be as small as the dimension of the partial order of execution [32, 33]. The second algo-

rithm is an online version of the first one. The main idea is to incrementally build a realizer using

Rabinovitch and Rival’s Theorem [26], and then create timestamp vectors based on that realizer.

In the online algorithm, the vector timestamps that have already been assigned to events may have

to be changed later on arrival of a new event. In fact, timestamp of an event may be changed

multiple times. Further, all timestamps may not be of the same length. This leads to a some-

what complicated precedence test. Ward and Taylor present an offline algorithm for timestamping

events based on decomposing processes into a hierarchy of clusters [34]. The algorithm exploits

the observation that events within a cluster can only be causally dependent on events outside the

cluster through receive events from transmissions that occurred outside the cluster. As a result,

non-cluster receive events can be timestamped much more efficiently than cluster receive events.

Recently, Agarwal and Garg [1] have proposed a class of logical clock algorithms based on the

notion of chain clocks. Chain clocks can be used for tracking dependencies between relevant events

based on generalizing a process to any chain in the computation poset. Their approach reduces

28

the number of components required in the vector clock when the set of relevant events is a small

fraction of the total events. The algorithm in this paper is not dependent on any notion of relevance.

Moreover, the algorithm by Agarwal and Garg [1] is centralized whereas the algorithm in this paper

is completely distributed.

7 Conclusion

In this paper, we have shown that, when communication is synchronous, messages and events can

be assigned timestamps using fewer than N components for a distributed system consisting of N

processes. The main idea is to decompose the communication topology into edge groups and to use

one component in the vector for each edge group. If the size of the edge decomposition is d, then

our timestamps for messages contain d integers and timestamps for events contain d + 4 integers.

For many common topologies including tree, ring, grid and hypercube, d ≤ dN/2e. As a result,

for these topologies, our timestamping approach significantly outperforms traditional vector clocks.

We have also shown that the precedence test for our timestamping mechanism requires only O(1)

time.

When messages can be timestamped in an offline manner, we have proved that timestamp-

ing can be done using at most dN/2e integers. Moreover, we have shown that any vector-based

timestamping algorithm requires at least 2bN/6c integers in the worst case.

References

[1] A. Agarwal and V. K. Garg. Efficient Dependency Tracking for Relevant Events in

Shared-Memory Systems. In Proceedings of the, ACM Symposium on Principles of

Distributed Computing (PODC), pages 19–28, 2005.

[2] S. Alagar and S. Venkatesan. Techniques to Tackle State Explosion in Global Predicate

Detection. IEEE Transactions on Software Engineering, 27(8):704–714, August 2001.

[3] T. Basten, T. Kunz, J. P. Black, M. H. Coffin, and D. J. Taylor. Vector Time and Causality

among Abstract Events in Distributed Computations. Distributed Computing (DC),

11:21–39, 1997.

[4] B. Charron-Bost, F. Mattern, and G. Tel. Synchronous and Asynchronous Communication in

Distributed Computations. Distributed Computing (DC), 9:173–191, September 1996.

29

[5] IBM Corporation. IBM Distributed Debugger for Workstations. Available at

http://www.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/olt/index.html.

[6] O. P. Damani and V. K. Garg. How to Recover Efficiently and Asynchronously when

Optimism Fails. In Proceedings of the IEEE International Conference on Distributed

Computing Systems (ICDCS), pages 108–115, Hong Kong, May 1996.

[7] R. P. Dilworth. A Decomposition Theorem for Partially Ordered Sets. Annals of

Mathematics, 51:161–166, 1950.

[8] B. Dushnik and E. W. Miller. Partially Ordered Sets. American Journal of Mathematics,

63:600–610, 1941.

[9] C. J. Fidge. Timestamps in Message-Passing Systems that Preserve the Partial-Ordering. In

K. Raymond, editor, Proceedings of the 11th Australian Computer Science Conference

(ACSC), pages 56–66, February 1988.

[10] C. J. Fidge. Partial Orders for Parallel Debugging. In Proceedings of the ACM/ONR

Workshop on Parallel and Distributed Debugging, pages 183–194, January 1989.

[11] C. J. Fidge. Logical Time in Distributed Computing Systems. IEEE Computer, 24(8):28–33,

August 1991.

[12] J. Fowler and W. Zwaenepoel. Causal Distributed Breakpoints. In Proceedings of the 10th

IEEE International Conference on Distributed Computing Systems (ICDCS), pages 131–141.

IEEE Computer Society, 1990.

[13] M. R. Garey and D. S. Johnson. Computer and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, New York, 1991.

[14] V. K. Garg. Elements of Distributed Computing. John Wiley and Sons, Incorporated, New

York, NY, 2002.

[15] V. K. Garg and C. Skawratananond. String Realizers of Posets with Applications to

Distributed Computing. In Proceedings of the 20th ACM Symposium on Principles of

Distributed Computing (PODC), pages 72–80, Newport, Rhode Island, August 2001.

30

[16] V. K. Garg and B. Waldecker. Detection of Weak Unstable Predicates in Distributed

Programs. IEEE Transactions on Parallel and Distributed Systems (TPDS), 5(3):299–307,

March 1994.

[17] D. Haban and W. Weigel. Global Events and Global Breakpoints in Distributed Systems. In

Proceedings of the 21st Hawaii International Conference on Systems Sciences, pages 166–175,

January 1988.

[18] J.-M. Hélary, M. Raynal, G. Melideo, and R. Baldoni. Efficient Causality-Tracking

Timestamping. IEEE Transactions on Knowledge and Data Engineering, 15(5):1239–1250,

2003.

[19] C. Jard and G.-V. Jourdan. Dependency Tracking and Filtering in Distributed

Computations. Technical Report 851, IRISA, Campus de Beaulieu – 35042 Rennes Cedex –

France, August 1994.

[20] J. A. Kohl and G. A. Geist. The PVM3.4 tracing facility and XPVM 1.1. Technical report,

Computer Science and Mathematics Division Oak Ridge National Lab, Tennesse, USA, 1995.

[21] T. Kunz, J. P. Black, D. J. Taylor, and T. Basten. POET: Target-System Independent

Visualizations of Complex Distributed-Applications Executions. The Computer Journal,

40(8), 1997.

[22] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM (CACM), 21(7):558–565, July 1978.

[23] K. Marzullo and L. Sabel. Efficient Detection of a Class of Stable Properties. Distributed

Computing (DC), 8(2):81–91, 1994.

[24] F. Mattern. Virtual Time and Global States of Distributed Systems. In Parallel and

Distributed Algorithms: Proceedings of the Workshop on Distributed Algorithms (WDAG),

pages 215–226. Elsevier Science Publishers B. V. (North-Holland), 1989.

[25] V. V. Murty and V. K. Garg. Synchronous Message Passing. In Proceedings of the

International Symposium on Autonomous Decentralized Systems, pages 208–214, Phoenix,

Arizona, USA, April 1995.

31

[26] I. Rabinovitch and I. Rival. The Rank of Distributive Lattice. Discrete Mathematics,

25:275–279, 1979.

[27] M. Singhal and A. Kshemkalyani. An Efficient Implementation of Vector Clocks.

Information Processing Letters (IPL), 43:47–52, August 1992.

[28] M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill

and The MIT Press, 1994.

[29] R. E. Strom and S. Yemeni. Optimistic Recovery in Distributed Systems. ACM Transactions

on Computer Systems, 3(3):204–226, 1985.

[30] F. J. Torres-Rojas and M. Ahamad. Plausible Clocks: Constant Size Logical Clocks for

Distributed Systems. In Proceedings of the 10th Workshop on Distributed Algorithms

(WDAG), pages 71–88. Springer-Verlag, 1996.

[31] W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns

Hopkins University Press, Baltimore, MD, 1992.

[32] P. A. S. Ward. An Offline Algorithm for Dimension-Bound Analysis. In Dhabaleswar Panda

and Norio Shiratori, editors, Proceedings of the International Conference on Parallel

Processing, pages 128–136. IEEE Computer Society, 1999.

[33] P. A. S. Ward. An Online Algorithm for Dimension-Bound Analysis. In P. Amestoy et al,

editor, Proceedings of the Euro-Par, Lecture Notes in Computer Science (LNCS), pages

144–153. Springer-Verlag, 1999.

[34] P. A. S. Ward and D. T. Taylor. A Hierarchical Cluster Algorithm for Dynamic, Centralized

Timestamps. In Proceedings of the IEEE International Conference on Distributed Computing

Systems (ICDCS), pages 585–593, April 2001.

[35] M. Yannakakis. The Complexity of the Partial Order Dimension Problem. SIAM Journal on

Algebraic and Discrete Methods, 3:351–358, 1982.

32

