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Abstract

We show that the problem of predicate detection in distributed systems
is NP-complete. In the past, efficient algorithms have been developed for
special classes of predicates such as stable predicates, observer-independent
predicates, and conjunctive predicates. We introduce a class of predicates,
semi-linear predicates, which properly contains all of the above classes.
We first discuss stable, observer-independent and semi-linear classes of
predicates and their relationships with each other. We alsostudy closure
properties of these classes with respect to conjunction anddisjunction. Fi-
nally, we discuss algorithms for detection of predicates inthese classes.
We provide a non-deterministic, detection algorithm for each class of pre-
dicate. We show that each class can be equivalently characterized by the
degree of non-determinism present in the algorithm. Stablepredicates are
defined as those that can be detected by an algorithm with the most non-
determinism. All other classes can be derived by appropriately constraining
the non-determinism in this algorithm.
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1 Introduction

Detection of a global predicate is a fundamental problem in distributed computing.
This problem arises in many contexts such as designing, testing and debugging of
distributed programs. For example, the detection of globalpredicate arises in imple-
menting the most basic command of a debugging system:“stop the program when
the predicate� is true.” To stop the program, it is necessary to detect the predicate�; a non-trivial task if� requires access to the global state.

There are three approaches for detecting global predicates. The first approach
is based on the global snapshot algorithm by Chandy and Lamport [4, 3, 24]. Their
approach requires repeated computation of consistent global snapshots until a snap-
shot is found in which the desired predicate is true. This approach works only for
stable predicates,i.e.predicates that do not turn false once they become true. If the
desired predicate� were not stable then their approach may fail to detect the pre-
dicate because� may turn true only between two successive snapshots.

The second approach to global predicate detection is based on the construction
of the lattice of global states [7, 17, 20]. This approach, first presented by Cooper
and Marzullo [7], allows the detection ofdefinitely:� andpossibly:� . The predic-
atepossibly:� is true if � is true for any global state in the lattice. The predicate
definitely:� is true if, for all paths from the initial global state to the final global
state,� is true in some global state along that path. This approach can detect both
stable and unstable predicates. However, detection may be prohibitively expens-
ive. In a system withn processes each withm “relevant” local states, this approach
requires exploringO(mn) global states in the worst case.

The third approach is based on exploiting the structure of the predicate�. This
approach is less general than the second, but results in moreefficient detection
algorithms. For example, [13, 12] present algorithms to detect possibly:� and
definitely:� of complexityO(n2m) when� is a conjunction of local predicates.
Similarly, [15], and independently [26, 6] present efficient algorithms to detectPxi < C where thexi are variables on different processes andC is constant. In
[25], Stoller and Schneider propose a hybrid of the second and third approaches that
reduces the size of the lattice that must be explored during detection. This method
may require exponential complexity to detect some predicates.1

The best approach to use in a given application depends upon the specific pre-
dicate that is to be detected. For example, a snapshot algorithm may be acceptable
to detect termination, but cannot be used to detect violations of mutual exclusion.
In [5], predicates are classified into three types: stable, observer-independent, and1Stoller and Schneider’s method is exponential in the size ofthefixed set. The cardinality of the
fixed set is at mostn � 1.
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general. Membership of a predicate in a class can be determined by its truthness in
different modalities. A stable predicate is one for which� is true in a global state
wheneverpossibly:� is also true in that state. An observer-independent predicate is
one for whichdefinitely:� andpossibly:� are equivalent.

The contributions of this paper are:� We show that the third approach cannot always yield an efficient detection
algorithm. In particular, the problem of detecting whethera boolean expres-
sion became true in a distributed computation is NP-complete. The problem
stays NP-complete even when processes do not communicate with each other
and each process executes a single instruction.� We define thelinear class of predicates. We show that the set of global states
satisfying a predicate� is an inf-semilattice if and only if� is a linear predic-
ate. Thus, linearity captures the class of predicates for which the first satisfy-
ing global state exists. We also present an algorithm to detect the first global
state for which linear� is true.� By considering the dual predicate of linearity, we get a necessary and suffi-
cient condition for a given set of global states to be a lattice. This general-
izes many earlier results. For example, the fact that the setof all recoverable
states form a lattice [18] is an easy consequence of our result. Similarly, the
monotonicity condition on channel predicates [11] is also aspecial case of
linearity.� We define a larger class of predicates,semi-linear that includes linear,
observer-independent and stable predicates as proper subclasses. We de-
scribe the closure properties of all four classes under conjunction and
disjunction.� We provide a family of non-deterministic detection algorithms. Beginning
with an algorithm to detect stable predicates, we show that by constraining the
non-determinism we can derive algorithms that detect predicates in the other
classes. We show that each algorithm will detect precisely those predicates
that are members of the corresponding class. Thus, the degree and type of
non-determinism in a detection algorithm provides an equivalent means to
classify predicates.� We generalize the definitions forpossibly:� anddefinitely:� for ranges of ex-
ecution. In practice, it is often not desirable or even possible to begin monit-
oring a predicate at the start of execution. Thus, one would like to determine
if � became true between two consistent global states. Our algorithms detect
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Table 1: Notation used in this paperP � fp1 : : : png the set of processes in the systems, t a local states! t s happens beforetW , X, Y , Z a consistent cutX � Y Y is reachable fromXXs The cut formed by advancingX to the successor ofsS � fX1; : : : Xkg a sequence of cuts�(X) The predicate� evaluated inXP�(X;Y ) The predicatepossibly:� is true betweenX andYD�(X;Y ) The predicatedefinitely:� is true betweenX andY
possibly:� given two bounding global states. Alternatively, the upperbound
can be left unspecified, allowing the algorithms to be used on-line.

In this paper, we restrict� to be a condition defined on the values of program
variables in a single global state. Other work in predicate detection has considered
predicates defined on sequences of states. For example, [22,12] discuss linked pre-
dicates, [16, 2] discuss atomic sequences, and [9] discuss regular patterns. We also
refer the reader to [1, 23, 10] for surveys of stable and unstable predicate detection.

This paper is organized as follows. In Section 2 we describe our model of a dis-
tributed system, and introduce the terminology used. In Section 3 we show that de-
tection of possibly� is NP-Complete. Section 4 defines the predicate classes (stable,
observer-independent, linear). Examples of predicates, the closure properties, and
significance of each class are described. Section 5 presentsthe detection algorithms.

2 Our Model of the Execution of a Distributed Program

Table 1 summarizes the notation used in this paper. A distributed system consists of

a set of processesP def= fp1; : : : ; png. Each process executes a predefined program.
Processes do not share any clock or memory; they communicateand synchronize
with each other by sending messages over a set of channels. Weassume that mes-
sages are not lost, altered, or spuriously introduced into achannel. We do not assume
that channels are FIFO.

We model the execution of each process in the distributed system as a sequence
of distinct local states. We use lowercase letterss andt to represent local states.
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Following Lamport [19] we define the causally-precedes relation ! (also known
as “happened before”) as follows:s! t if and only if:

1. s andt are states from the same process, ands precedest in the
execution of that process.

2. s andt are states from different processes and a message is sent
in states and received in statet.

3. there exists some stateu such thats! u andu! t.
Two states are said to beconcurrent(denotedskt) when neither state happened

before the other. Formally: skt def= s 6! t ^ t 6! s
We use the termlocal stateto refer to a states from a single process. Aglobal

stateis a set of concurrent local states, one from each process. Werequire that the
execution of a distributed system commence with a global state. Acut is a partial ex-
ecution of the program. It must end with a global state. Formally, a cut is a downset
of local states (ordered by!), which includes exactlyn concurrent supremal states.
We use symbolsX, Y andZ to denote cuts.

Given a cut,X, we use the notationX � Y to denote thatY is a cut reachable
from X. That is,X � Y and there is an execution of the system that takes it fromX to Y . 2 Note that the set of states from a single process is a total order. That is,
eachs has a well-defined successor, denoted by succ(s) (unlesss is the final state in
the process). Whens is a supremal state in cutX, we denote byXs the cut formed
by including inX the immediate successor tos. FormallyXs def= X [ fsucc(s)g

It is well known that the set of global states from an execution form a lattice
[21]. In our terminology the equivalent result is: given a cut Y , the set of all cutsfX : X � Y g forms a lattice with respect to�.

A predicate is a boolean-valued function whose domain is theset of all possible
cuts from all possible executions of a distributed system. The predicate detection
problem is concerned with identifying a cut (or cuts) in which a predicate evaluates
to true. We use� to denote the predicate of interest. We assume in this paper that�(X) is easy to compute givenX. The difficulty in the predicate detection problem2Note that since cuts are downsets,X � Y impliesX is a prefix ofY .
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is attributable to the fact that the number of cuts from any execution is exponential
in the number of processes.

We use the notationX[i℄ to refer to the supremal local state,s, inX from processpi.
Finally, we useS to denote a sequence of cuts; each cut in the sequence reach-

able from the previous cut. That is,S = fX1; : : : Xkg where for alli, Xi < Xi+1.
A sequence of cuts is called apath iff for all i, Xi andXi+1 differ by exactly one
local state. The term “observation” is used to describe a path in [5].

3 NP-Completeness of Global Predicate Detection

The global predicate detection problem (GLOB) is a decisionproblem. It takes the
form of:

Given: an executionY of n processes, an initial cutX � Y , and a
predicate�.
Determine if there exists a cutW : X � W � Y such that�(W ) is
true.

We show that the predicate detection problem is NP-Complete.

Theorem 3.1 GLOB is NP-complete.Proof: First note that the problem is in NP. A
verifier for the problem takes as input a cutW and then determines if the predicate
is true. Therefore, if�(W ) can be evaluated in polynomial time, then the detection
of � belongs to the class NP.

We show NP-completeness of the simplified predicate detection problem where� is a boolean function of a set of program variables,fu1; : : : ung. Each of then processes contributes one program variable. Furthermore,program variables
are restricted to taking the values “true” or “false”. We reduce the satisfiability
problem (SAT) to GLOB by constructing an appropriate execution.

In an instance of SAT, we are given a boolean expression,e(u1; : : : un), and we
wish to determine if there exist a set of truth values for theui such thate evaluates
to true. To answer this question, we construct a distributedsystem withn processes
such that eachui is a variable in processpi. The executionY consists of two local
states from eachpi. In the first state,ui has the value false. In the second state,ui has the value true. There are no messages exchanged during the computation.
The initial cutX is the initial global state of the system (i.e.X consists of the first
state from each process). The value of predicate� is the result of evaluatinge on
the variables in the system.

It is easily verified that the predicate� is true for some cut betweenX andY if
and only if the expression is satisfiable.2
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The above result suggests that detection of a general globalpredicate is intract-
able even for simple distributed computation (boolean variables, no messages ex-
changed). However, many predicates are known to be detectable in polynomial
time. The remaining sections discuss classes of predicatesfor which efficient de-
tection algorithms are known.

4 Classes of Predicates

In this section we describe four classes of predicates; stable, observer-independent,
linear and semi-linear. First, we extend the predicate modalities defined by Cooper
and Marzullo in [8]. We define possibly� to hold between cutsX andY if there
exists at least one cut,W , X � W � Y such that� is true in cutW . We denote
this asP�(X;Y ). Formally:P�(X;Y ) def= 9W : X �W � Y : �(X)

Definitely � is defined to hold betweenX andY iff every path fromX to Y
includes at least one cut for which� is true. We use the notationD�(X;Y ) defined
as follows:D�(X;Y ) def= 8S : S is a path from X to Y: (9W 2 S :: �(W ))

For completeness, whenX 6� Y we defineP�(X;Y ) andD�(X;Y ) to be false.
Obviously: �(X) _ �(Y ) ) D�(X;Y )D�(X;Y ) ) P�(X;Y )
4.1 Stable Predicates

The best known classification of predicates is that of thestableand theunstable
predicates. Simply put, a stable predicate remains true once it becomes true. More
formally, we say that� is stable if and only if:8X;Y : X � Y : �(X)) �(Y )

Well known examples of stable predicates are, termination,and garbage collec-
tion. It must be noted that stability depends on the system. Some properties are
stable in some systems but not stable in others. For example,the formula,mini xi > k
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is a stable predicate in distributed simulation environments when thexi are the
timestamps in every process and every message. Clearly, it is not stable for arbitrary
systems. Recall that apredicatein our terminology includes not just the formula,
but the system as well.

4.2 Observer Independent Predicates

Charron-Bostet al [5] describe a class of predicates that they call “observer in-
dependent”. In our notation, this class includes all predicates such that8X;Y :P�(X;Y ) , D�(X;Y ). The name observer independent stems from the notion
of a set of observers where each witnesses a different sequential execution of the
system. Each observer can determine if� became true in any of the cuts witnessed
by them. If the predicate is observer independent, then all observers will agree on
whether� ever became true. It must be noted that our definition of observer inde-
pendent is stronger than that given in [5]. They defined possibly and definitely�
with respect to the initial state of the system. Since we require possibly� and def-
initely � to be equivalent for any range of cuts, some predicates whichwould be
observer independent in their definition are not observer independent with ours.

Any stable predicate is also observer independent. A proof of this fact appears
in [5]. In our model, the proof takes the following form: given a stable predicate�,8X;Y : P�(X;Y )) �(Y )

That is, if a stable predicate ever becomes true in a cut that precedesY , then it
must still be true inY . Further, since�(Y )) D�(X;Y ) for anyX, it follows thatP�(X;Y ) ) D�(X;Y ). Recall that for any predicate,D�(X;Y ) ) P�(X;Y ).
Thus, when� is stable, possibly and definitely� are equivalent.

An example of an observer-independent predicate is a disjunction of local pre-
dicates. Consider a distributed system with predicateb defined on one process, and
predicate defined on another. Then the predicate� = b_ is observer independent
[5].

4.3 Linear Predicates

In this paper we introduce two new classes of predicates,linear andsemi-linear. A
predicate belonging to either of these classes can be detected efficiently (see Sec-
tion 5). Linear predicates subsume conjunctive predicatesand channel predicates
[13, 14]. A linear predicate is based on the definition of a “forbidden” state. States
are forbidden with respect to a predicate,�, and a cutX.

forb�(s;X) def= 8Y : X � Y : :�(Y ) _Xs � Y
8



The intuition of forb�(s;X) is that� must remain false until a successor tos is
reached. We say that a predicate islinear if for any cutX in which the predicate is
false, at least one of the supremal states inX is forbidden.

linear(�) def= 8X :: :�(X)) (9s 2 sup(X) :: forb�(s;X))
An important subclass of linear predicates are conjunctivepredicates [13],e.g.b < 10 ^  = 3whereb and are variables on different processes. To evaluate this

predicate in a cut, we use the values ofb and from the last state of the respective
processes in that cut. Any conjunctive predicate is linear.Consider a cut,X, in
which a conjunction of local predicates is false. From the definition of a conjunctive
predicate, there must exist at least one supremal state,s, for which the corresponding
local predicate is false. This state clearly satisfies the definition of being forbidden
in X.

Some boolean-valued functions are linear in some systems but not in others. For
example, consider the formula “b+  < k” for real-valued variablesb and on dif-
ferent processes and constantk. This formula defines a linear predicate for systems
in which eitherb or  is monotonically increasing. For example, ifb is monoton-
ically increasing, then in any cut where predicate is false,the supremal state with
variable is forbidden. A new value for must be found before the predicate can
become true, sinceb can only increase in value.

Many interesting channel predicates [14] also satisfy linearity. A channel pre-
dicate is defined as a boolean function on the state of a uni-directional channel. Note
that a channel predicate is not a local predicate; it dependson the state of the sender
and the receiver. Consider the channel predicate, “there are no messages in the chan-
nel.” This channel predicate may be useful in detecting termination of a computa-
tion. We show that this channel predicate is linear. If the predicate is false in some
cut, then the supremal state corresponding to the receiver of the channel is forbid-
den. This is because a non-empty channel can become empty only by receiving
messages. Thus, until at least one new state is reached by thereceiving process,
the predicate will remain false regardless of action taken by other processes. More
generally, the predicate “there are exactlyk messages in the channel” is linear.

Linear predicates are not necessarily stable. Any conjunctive predicate is a
counter example. If at least one of the local predicates is unstable, then the con-
junction of these properties is also unstable. Furthermore, conjunctive predicates
are not necessarily observer independent. Consider the simple formula� = a ^ b,
for boolean variablesa andb on two different processes. Figure 1 shows a lattice of
cuts in whichP�(X1;X) is true yetD�(X1;X) is not. The predicate does not hold
in X1. There are two possible paths fromX1 toX. Along the pathfX1;X2;Xg, �
is always false. However, the pathfX1;X3;Xg does include a cut,X3, for which� is true.
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Figure 1: Conjunctive predicates may not be observer independent.
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The class of observer independent predicates is not contained within the class
of linear predicates. For example, a disjunction of local predicates is observer in-
dependent, but not linear (see Section 4.5.4).

4.4 Semi-Linear Predicates

The semi-linear class of predicates contains all three of the previous classes (stable,
observer-independent, and linear). Semi-linear predicates are also relatively easy
to detect. The class is defined with respect to the semi-forbidden property of states
and cuts. We say that states is semi-forbidden in cutX if it satisfies the following
definition:

sforb�(s;X) def= 8Y : Xs � Y : P�(X;Y )) P�(Xs; Y )
That is,Y indicates any possible continuation of the system (afterX) that in-

cludes at least the immediate successor tos. If any of the new states fromY permit
the predicate to become true (i.e.P�(X;Y )), then it must also be true in some cut
that is strictly greater thanX and includes the immediate successor tos. The in-
tuition of semi-forbidden is thats is irrelevant to the truth-value of the predicate.
While looking for a cut where the predicate is true, we can disregards in favor of
its successor.

Since we consider only consistent cuts in this paper, we require the state that is
semi-forbidden to be aneligible state. Letp be a process in the system, and lets
be the supremal state fromp in some cutX. Note that advancing the cut alongp
may not be possible for two reasons. First,s may be the final state from processp.
Second, even ifs has a successor,t, thenX [ftgmay not be a consistent cut. That
is, p receives a message betweens andt, and the state where that message was sent
is not part ofX. For any consistent cutX, we use eligible(X) to denote the set of
states along whichX can be advanced while maintaining consistency. Formally,

eligible(X) def= fs 2 sup(X)j:final(s) ^ 8t 2 sup(X) : t 6! succ(s)g
Note that in our model, the eligible set forX is empty if and only ifX is a

complete cut. That is, the system has executed to termination inX. We denote this
condition by final(X).
Lemma 4.1

1. LetX andY be two consistent cuts such thatX � Y and9s 2 eligible(X) :s 2 Y . Then,Y s is also consistent.

2. LetX andY be two consistent cuts such thatX < Y and eligible(X) is a
singletonfsg. Then,Xs � Y .
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Proof: Follows from the definition of eligibility.2
We now define the semi-linear class of predicates:

semi-linear(�) def= 8X : [:�(X)^:final(X)) 9s 2 eligible(X) : sforb�(s;X)℄
We first show that the class of semi-linear predicates strictly includes the class

of linear predicates.

Theorem 4.2 Any linear predicate is also semi-linear.Proof: Let � be any lin-
ear predicate. To show that it is semi-linear, consider anyX such that:�(X) ^:final(X). From linearity of� there exists a states 2 sup(X) such thats is for-
bidden inX. We will show that there exists a statet in X which is eligible and
semi-forbidden. If the states itself is eligible, then we are done since forb�(s;X)
clearly implies sforb�(s;X). Otherwise, lett be an eligible state inX such thatt ! succ(s). Since:final(X) we are guaranteed existence of such at. We only
need to show thatt is semi-forbidden inX. Consider anyY such thatXt � Y . If:(Xs � Y ), then from linearity we get that:P�(X;Y ). Thus,t is semi-forbidden
in this case. Now, letY be such thatXs � Y andP�(X;Y ). Since:�(X),
there existsW such thatX < W � Y and�(W ). From linearity of�, it fol-
lows thatXs � W . This impliesXt � W sincet ! succ(s). Therefore,P�(X;Y )) P�(Xt; Y ) and thust is semi-forbidden.2

We now show that semi-linear includes the class observer-independent.

Theorem 4.3 Any observer-independent predicate is also semi-linear.Proof: Let� be an observer-independent predicate andX be any cut such that:�(X) and:final(X). We show that for any states 2 eligible(X), s is semi-forbidden. Con-
sider anyY such thatXs � Y . If :P�(X;Y ), s is semi-forbidden trivially. Other-
wise, assume thatP�(X;Y ) holds. Since� is observer independent, it follows thatD�(X;Y ). If �(Xs) thens is semi-forbidden sinceP�(Xs; Y ) is trivially true.

Alternatively, assume� is not true inXs. Since:�(X), we know:P�(X;Xs).
SinceD�(X;Y ), we can conclude9W : Xs < W � Y : �(W ). Again,s is semi-
forbidden.2

Note that the observer-independent and semi-linear classes are not equivalent.
As shown above, a conjunctive predicate is linear (and hencealso semi-linear), but
not observer-independent.
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4.4.1 Examples of semi-linear predicates

For an example of a semi-linear predicate, consider the execution of a mutual ex-
clusion algorithm. LetX[i℄ denote the supremal state from processpi in X. LetCS(X[i℄) denote that processpi is in the critical section in stateX[i℄. To ensure
that the given execution is proper, we are interested in determining existence of a

consistent cutX such that�(X) def= 9i; j : i 6= j : CS(X[i℄) ^ CS(X[j℄).
Theorem 4.4 �(X) def= 9i; j : CS(X[i℄) ^ CS(X[j℄) is semi-linear.Proof: As-
sume that:�(X). Therefore,8i; j : :CS(X[i℄) _ :CS(X[j℄)
If X is the final global state, then we are done. Otherwise, eligible(X) is non-empty.
We now do a case analysis.
Case 1: There existss 2 eligible(X) such that:CS(s).
We claim thats satisfies sforb�(s;X). LetY be any extension such thatXs � Y .
If :P�(X;Y ), then we are done. Else, let there beW such thatX � W � Y and�(W ). If Xs � W , thens is semi-forbidden. From Lemma 4.1 part 1,W s is a
consistent cut. It is sufficient to show thatW s satisfies�. From�(W ), there existi; j such thatCS(W [i℄)^CS(W [j℄). Since we have assumed in this case:CS(s),s 6= W [i℄ ^ s 6= W [j℄. Hence,W [i℄ = W s[i℄ ^W [j℄ = W s[j℄. Thus�(W s), ands is semi-forbidden inX.
Case 2: There does not exists in eligible(X) such that:CS(s).
Since eligible(X) is non-empty, it follows that there is a uniques in eligible(X)
such thatCS(s). We again claim thats satisfies sforb�(s;X). LetY andW be as
in case 1. SinceX < W , and eligible(X) consists of singletonfsg, it follows from
Lemma 4.1 part 2 thatXs �W . Therefore,s is semi-forbidden.2

As another example of a semi-linear predicate consider a disjunction of local
predicates. Since this predicate is observer-independent, it follows from Lemma
4.3 that it is also semi-linear.

4.5 Closure Properties

4.5.1 Stable is closed under conjunction and disjunction

It is easy to see that the conjunction of two stable predicates is also stable. Let� ��1 ^�2 where�1 and�2 are both stable predicates. Consider a pair of cuts,X andY where�(X) is true andX � Y . Note that�1(X) is true, and hence so is�1(Y )
(because of the stability of�1). Similarly �2(Y ) is true. Hence,�(Y ) is true. A
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similar argument can be used to show that the class of stable predicates is closed
under disjunction.

4.5.2 Observer Independent is closed under disjunction

A proof that the class of observer independent predicates isclosed under disjunction
was first given in [5]. Consider� � �1_�2, where both�1 and�2 are observer in-
dependent. LetX andY be cuts such thatP�(X;Y ). By the definition ofP�(X;Y ),
there must exist some cutW : X � W � Y where�(W ). Without loss of gener-
ality, assume�1(W ), and henceP�1(X;Y ). Since�1 is observer independent, we
know thatD�1(X;Y ). ThereforeD�(X;Y ) and� is observer independent.

However, the conjunction of two observer independent predicates may not be
observer independent. A simple counter example is� = a^b, for boolean variablesa andb on different processes (see Section 4.3). However, the predicate “a is true”
is observer-independent, sincea is local to a single process (similarly forb).
4.5.3 Linear is closed under conjunction

The class of linear predicates is closed under conjunction.Let �1 and�2 be any
linear predicates. Denote by forb�i(s;X) that states is forbidden with respect to�i in cutX. Let� be the conjunction of�1 and�2. Then we show:[forb�1(s;X) _ forb�2(s;X)℄) forb�(s;X)

Assume forb�1(s;X), and letY be reachable fromX. If Xs 6� Y , then
we know by the definition of forbidden that:�1(Y ). Hence:�(Y ). Similarly,
forb�2(s;X) implies forb�(s;X).

Assume:�(Y ). We now show that there exists a forbidden supremal state inY .
Without loss of generality, assume:�1(Y ). Since�1 is linear, there must exist a su-
premal state,s, inY such that forb�1(s; Y ). As shown above, we know forb�(s; Y ).
4.5.4 Linear is not closed under disjunction

The class of linear predicates is not closed under disjunction. A disjunction of local

predicates, such as “� def= a _ b”, is a simple counter example. Consider a cutX
from a system with two processes. Assume:�(X). Let s be the supremal state
in X for variablea, andt be the supremal state inX for variableb. We show thats is not forbidden. Ifb is true in succ(t), then� will be true inXt. Similarly, t is
not forbidden. Thus, there are no states inX that are forbidden, and hence� is not
linear.
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4.5.5 Semi-linear is not closed under conjunction or disjunction

The class of semi-linear predicates is not closed under either conjunction or dis-
junction. A single counter example of a predicate that is notsemi-linear can serve
to prove both the conjunctive and disjunctive cases. First,we explain the example.
Consider a predicate defined on integer values,i andj, from two processes. The

predicate� def= i + j < 2 is not semi-linear. The following execution shows a cut
in which neither of the supremal states are semi-forbidden.

i = 1

j = 1

p1

p2

X

s

Without loss of generality, assume the state,s, is semi-forbidden. Then consider
the following extension:

i = 1

j = 1

p1

p2

j = 0

i = 2

Y

s

Note that,:�(X), Xs � Y , andP�(X;Y ). However, the predicate is only
true inY wheni takes the value 1 andj takes the value0. No cutW exists whereXs � W � Y and�(W ). Thuss is not semi-forbidden. By symmetry, neither of
the states inX are semi-forbidden. Therefore� is not semi-linear.

We now rewritei+ j < 2 as an equation of boolean variables,a; b;  andd. Leti be encoded in two bits,a andb, andj be encoded by bits andd. Then we have:� def= (:a ^ :) ^ (:b _ :d)
This predicate is a conjunction of two terms. The first term isitself a conjunctive

predicate (:a ^ :). The second term is a disjunctive predicate (:b _ :d). Both
terms are semi-linear predicates, yet their conjunction isnot semi-linear.
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Also, by rewriting� in disjunctive normal form as:� def= (:a ^ : ^ :b) _ (:a ^ : ^ :d)
we have a disjunction of two conjunctive predicates. Thus wehave two semi-linear
predicates (:a^:^:b and:a^:^:d), whose disjunction is not semi-linear.

4.6 Linear Predicates have an Infimum Satisfying Cut

In some applications, most notably distributed debugging,it is important to detect
the first cut in which a predicate becomes true. For example, aprogrammer may
be attempting to determine what programming error causes the system to enter an
undesirable state. If the debugger can identify the first such state, the programmer
can more easily trace the problem to its source. However, forsome predicates there
is no unique first cut in which the predicate is true. That is, although the set of con-
sistent cuts is a lattice, the set of all cuts for which� is true, may not be a lattice.

For example, consider a disjunctive predicate,� def= a_b. In the following diagram
there are two infimal cuts (shown with solid lines) for which the predicate is true.
There is no unique first cut for which� is true.

p1

p2

a

b

Denote byC� the set ofall cuts for which a predicate� is true, and byC�(X;Y )
the set of cuts betweenX andY for which� is true. We now show that for anyX;Y ,
the setC�(X;Y ) contains a unique infimum if and only if� is linear.

Lemma 4.5 C� is an inf-semilattice iff� is linear. Proof: (C� is an inf-semilattice) � is linear )
We prove the contrapositive. Assume that� is not linear. From the definition of
linearity, there exists some cutX such that none of the supremal states inX are
forbidden. That is, for any supremal states in X:9Ys : X � Ys ^Xs 6� Ys : �(Ys)

Note thatX is equal to the intersection of allYs. Each cutYs is an element ofC�, but their infimum (X) is not inC�. Therefore,C� is not an inf-semilattice.
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(� is linear) C� is an inf-semilattice)
We again show the contrapositive. LetC = fY1; Y2; ::Ykg be any subset ofC� such
that infC 62 C�. We know that infC must exist, since the set of consistent cuts forms
a lattice. LetX = inf C.

Given any supremal states 2 X, there existsYi 2 C such thats is a supremal
state inYi. Note thatX � Yi, butXs 6� Yi. Furthermore,�(Yi) while:�(X).
Thus,s is not forbidden inX. Since there are no forbidden supremal states inX,� is not linear.2
4.7 Dual Properties

Just as existence of the least cut requires that the predicate� be linear, the existence
of the largestsatisfying cut requires a property that is dual of linearity.

Definition 4.6 A predicate� is post-linear iff8X : :�(X)) 9s 2 sup(X) : 8Y � X : Y s � X _ :�(Y )
For example, for� def= b +  < k, if b is known to be monotonically decreasing,
then the predicate is post-linear.

All the results for linear predicates have dual versions forpost-linear predicates.
Thus,� is a post-linear predicate iffC� is a sup-semilattice. Combining these results,
we get:

Theorem 4.7 C� is a lattice iff� is linear and post-linear.

As an application of Theorem 4.7, we consider the problem of recovery in dis-
tributed systems [18]. We call a local staterecoverableif after a failure, the state
can be recovered from the disk using a checkpoint and the message log. A cut is
called recoverable if all states belonging to that cut are recoverable and the cut is
consistent3

The following is an easy corollary of the Theorem 4.7.

Corollary 4.8 The set of all recoverable cuts is a lattice.Proof: Recoverability of
a state is local to a process. Any local predicate is both linear and post-linear.2

Since results for dual properties are easily derived, we will not discuss them any
further.3Note that the notion of consistency in [18] is slightly different from the one discussed in this
paper.
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Algorithm Ageneral
Given execution[X;Y ℄ and predicate�
(0) chooseW betweenX andY
(1) while :�(W ) andW < Y do
(2) advanceW ;
(3) end while;
(4) return�(W );

Figure 2: Algorithm to detect a global predicate

5 Detection

We now discuss predicate detection for different classes ofglobal predicates. Note
that, detection of a predicate is specific to a single execution. That is, predicate de-
tection is not a verification process that asserts the predicate becomes true (or re-
mains false) in allpossibleexecutions. Only that it became true (remained false)
for one particular execution.

We therefore treat the detection problem as one in which a partial execution from
cutX to Y is provided as input to an algorithmA. The algorithm responds with
the value forP�(X;Y ). If the algorithm evaluates to true, then the algorithm also
returns a cutW for which�(W ).

All the algorithms use a common paradigm shown in Fig. 2. We refer to this
algorithm asAgeneral. AlgorithmAgeneralrepeatedly checks the value of the predicate
on some cutW . If the predicate is false andW is not the last cut in the computation,
we advanceW by setting it to some cut that is reachable from the old value of W .
Note we require thatW � Y be maintained whenW is advanced.4 This algorithm
is non-deterministic in two ways. It does not specify the initial value ofW , and it
does not specify howW should be advanced. We will see later that by restricting
this non-determinism, algorithms for various classes of predicates can be derived.

Any execution of the detection algorithm corresponds to a sequence of cuts
(the successive values ofW ). Let S = fS:1; : : : S:lastg denote one such se-
quence. That is, theS:i are successive values of variableW that are evaluated at
line (1). Let sequence(S;X; Y; �;A) denote the property thatS is a possible se-
quence of cuts produced by algorithmA during detection of the global predicate� in execution[X;Y ℄. For the above algorithm, an alternative characterizationof
sequence(S;X; Y; �;Ageneral) is given below.4We also assume that the predicate final(s) is true for all supremal statess in Y .
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Lemma 5.1 sequence(S;X; Y; �;Ageneral) def=8i : S:i < S:(i+ 1) ^�(S:last) _ Y � S:last^8i : i < last : :�(S:i) ^8i :: X � S:i � Y
Proof: The first conjunct follows because successiveS:i’s are obtained by advan-
cingW . The second conjunct is obtained by negating the guard on thewhile loop.
The third conjunct specifies the condition under which the evaluation of� is done
on an additional cut. The final conjunct follows from the initialization ofW , and
the definition of “advance”.

Conversely, any sequenceS that satisfies these four conjuncts is a possible se-
quence of the algorithm.2

What does it mean to say that algorithmA detects the predicate� for executionY ? Since the algorithm returns�(S:last) as its value, the algorithm is correct only ifP�(X;Y ) is equal to�(S:last). Since the detection algorithm is non-deterministic,
it must return this answer for any sequenceS that satisfies sequence(S;X; Y; �;A).
Thus, we can formally define the property that algorithmA detects a predicate� as

detect(A;�) def= 8X;Y; S : sequene(S;X; Y; �;A) : P�(X;Y ) = �(S:last)
Since�(S:last) always impliesP�(X;Y ) we can rewritedetectas a:

detect(A;�) = 8X;Y; S : sequene(S;X; Y; �;A) : P�(X;Y )) �(S:last)
We now discuss how various detection algorithms can be derived from Al-

gorithmAgeneral.

5.1 Stable Predicates

In this section we show that if we do not constrain any non-determinism, the general
algorithm detects a predicate� if it is stable. The converse is also true. If a predicate
is not stable, the general algorithm cannot correctly detect it for some execution.
Therefore,Astable= Ageneral.
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Theorem 5.2 For any predicate�,

detect(Astable; �) � stable(�)
Proof: First assume that� is stable. From the definition ofdetectwe need to show
that 8X;Y; S : sequence(S;X; Y; �;Astable) : P�(X;Y )) �(S:last)

For anyX;Y; S assume that sequence(S;X; Y; �;Astable) andP�(X;Y ) hold.
From Lemma 5.1 conjunct 2, it follows that�(S:last) _ S:last = Y . The first dis-
junct gives us the desired result, so now considerS:last= Y . However,P�(X;Y )
and stable(�) imply�(Y ). Combining this withS:last= Y we get�(S:last).

For the converse, assume that� is not stable. This implies that there ex-
ists [X;Y ℄ such thatP�(X;Y ) and :�(Y ). Let the sequenceS be simply
defined as a sequence consisting of a single cut —Y . It is easy to verify that
sequence(S;X; Y; �;Astable) andP�(X;Y ) hold but�(S:last) is false. Thus, we
get detect(Astable; �) is false.2
5.2 Observer Independent Predicates

For the general algorithm to work correctly for observer independent predicates, we
need to restrict its non-determinism. First, we require that the algorithm begin its
search fromX. Second, we require that while advancing the cutW , the algorithm
advances by exactly one eligible local state fromW .5 Observe that the resulting
algorithm,Ao-i, shown in Fig. 3, is still non-deterministic, since it can choose any
eligible state to advance the cut. There may be multiple eligible states in any cut.

We now give a characterization of sequence(S;X; Y; �;Ao-i). First, a path,S,
in the execution[X;Y ℄ is defined as:

path(S;X; Y ) def= (S:1 = X) ^ 8i :: (9s 2 eligible(S:i) : S:(i+ 1) = S:is)
That is, eachS:i and S:(i + 1) differ by exactly one eligible state.

From the algorithm, it then follows that sequence(S;X; Y; �;Ao-i) =(sequence(S;X; Y; �;Astable) ^ path(S;X; Y )).
We now show that the algorithm captures the class of observer-independent pre-

dicates.5The theory can be easily generalized to handle the case of simultaneously advancing along mul-
tiple eligible states. For simplicity of discussion, we have restricted this paper to a single eligible
state.
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Algorithm Ao-i
Given execution[X;Y ℄ and predicate�
(0) W := X;
(1) while :�(W ) andW < Y do
(2) advanceW by any eligible state;
(3) end while;
(4) return �(W );

Figure 3: Algorithm to detect a observer independent predicate

Theorem 5.3 For any predicate�,

detect(Ao-i; �) � observer-independent(�)
Proof: First assume that� is observer independent. From the definition ofdetet,
we need to show that8X;Y; S : sequence(S;X; Y; �;Ao-i) : P�(X;Y )) �(S:last)

For anyX;Y; S assume that sequence(S;X; Y; �;Ao-i) andP�(X;Y ) hold.
From sequence(S;X; Y; �;Ao-i) either�(S:last) orS:last= Y . In the former case,
we are done. So now assume thatS:last = Y . From the definition of observer-
independent(�), we obtain thatD�(X;Y ) holds. From path(S;X; Y ); (S:last =Y ) andD�(X;Y ), it follows that9i : �(S:i). Combining this with the fact that8i : i < last : :�(S:i), we get that�(S:last) holds.

Now assume that� is not observer-independent. This implies that there exists[X;Y ℄ for whichP�(X;Y ) is true butD�(X;Y ) is false. From the latter, there
exists a sequenceS such that path(S;X; Y ), (S:last = Y ) and8i : :�(S:i). It is
easy to see that sequence(S;X; Y; �;Ao-i) andP�(X;Y ) hold; however,�(S:last)
is false. Therefore, detect(Ao-i; �) is false.2

Observe that any sequence of the algorithmAo-i is also a sequence of the al-
gorithmAstable. This is an alternative proof that the class of stable predicates is
contained in the class of observer-independent predicates.

5.3 Semi-linear Predicates

For semi-linear predicates, we need to restrict the non-determinism further. Instead
of advancing the cutW usinganyeligible state, we will advance it using the state
determined by a functionf . That is, we are given some functionf whose domain
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Algorithm Af
Given execution[X;Y ℄, semi-linear�, and functionf
(0) W :=X;
(1) while :�(W ) andW < Y do
(2) advanceW by f(W );
(3) end while;
(4) return �(W);

Figure 4: Algorithm to detect a semi-linear predicate givensemi-forbidden functionf
is the set of cuts. When the function is evaluated, it returnsone of the eligible states
in the cut. The function may use the knowledge about the predicate and the cut to
determine how the cut should be advanced. We will show that for detecting semi-
linear predicates, the functionf must evaluate to a semi-forbidden state.

The resulting algorithm,Af is shown in Fig. 4. It is easy to see that:

sequence(S;X; Y; �;Af ) = [sequence(S;X; Y; �;Ao-i)^(8i : S:(i+1)�S:i = f(S:i))℄
Theorem 5.4 For any predicate�:(9f : detect(Af ; �)) � semi-linear(�)
Proof: First assume that� is semi-linear. From definition ofdetet, we need to
show that there existsf such that8X;Y; S : sequence(S;X; Y; �;Af ) : P�(X;Y )) �(S:last)
Letf be any function that evaluates to a semi-forbidden, supremal state in any cutW for which:�(W ). Such a function must exist by the definition of semi-linear�.

For anyX;Y; S assume that sequence(S;X; Y; �;Af ) andP�(X;Y ) hold. As
before, it is sufficient to consider the case whenS:last= Y .P�(X;Y ) implies9W : X � W � Y : �(W ): If W = Y , then we are
done. Otherwise, letW be an infimal cut inC� and letS:i be such that such thatS:i < W . Note that,:�(S:i). By the definition of the functionf , there existss such
that (S:i)s = S:(i+ 1) and sforb�(s; S:i).

By the definition of semi-forbidden, we knowP�(S:(i + 1); Y ). That is, there
must exist a cutW 0 � Y such thatS:(i + 1) � W 0 and�(W 0). If S:(i+ 1) = Y ,
then we are done. Otherwise repeat this analysis usingW 0 andS:(i+1) instead ofW andS:i. SinceS is finite, we must eventually arrive atS:last.
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Now for the converse, assume that there exists somef such that algorithmAf
detects�, and that� is not semi-linear. We show an adversary who will force the
algorithm to make a mistake.

Non-semilinearity of� implies that there exists some executionX, such that:�(X) and none of thes 2 eligible(X) are semi-forbidden. That is, for eachs in
eligible(X) there exists an extensionYs : Xs � Ys : P�(X;Ys)but notP�(Xs; Ys).

The adversary asks the algorithm to begin execution with cutX. Lets be the
result off(X). The adversary presents the algorithm with a successor ofs, allow-
ing the algorithm to advance toXs. At this point, the adversary provides to the
algorithm only the remaining execution ofYs. Note that the algorithm cannot halt
in a stateW for which�(W ) is true. Yet,P�(X;Ys) is true. Thus the algorithm
does not detect� in this case.2

Since the class of linear predicates is contained within thesemi-linear class, al-
gorithmAf can also be used to detect linear predicates. Note, however,that if f
evaluates to a forbidden state, thenAf will not only detect�, but it will also return
the first cut for which� is true.

Theorem 5.5 (8X : f(X) = s ) forb�(s;X)) ^ sequence(S;X; Y; �;Af ) ^�(S:last) implies thatS:last= inf C�(X;Y ). Proof: The proof is by contradiction.
AssumeS:last 6= inf C�(X;Y ). LetW denote the infimum ofC�(X;Y ). Clearly,W 6= X. Let i be the largest sequence index such thatS:i � W . From the al-
gorithm, this implies that there exists a process indexk such thatW [k℄ = f(S:i).
This implies forb�(W [k℄; S:i) and since we knowS:i � W , we can conclude:�(W ), contradicting our assumption.2
6 Conclusions

We have shown that the general problem of detecting a global predicate is NP-
complete. We have defined two classes of predicates — linear and semi-linear.
We show that linear predicates are exactly those for which the first satisfying cut
is unique. We show that the semi-linear class contains the linear class, as well as
the previously known classes of stable predicates and observer-independent predic-
ates. We demonstrate the closure properties of each of theseclasses with respect to
conjunction and disjunction.

We also provide a family of algorithms for detecting the occurrence of a pre-
dicate within a range of execution. We show that the algorithms are exact in the
sense that they detect precisely those predicates within the respective class. The
most non-deterministic algorithm will detect exactly the stable class of predicates.
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By successively constraining the non-determinism of this algorithm, we derive al-
gorithms for the observer-independent and semi-linear classes. All of the algorithms
are efficient and can be used for on-line monitoring.
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