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Abstract

We show that the problem of predicate detection in distedugystems
is NP-complete. In the past, efficient algorithms have bemrelbped for
special classes of predicates such as stable predicaszsyebindependent
predicates, and conjunctive predicates. We introduce ss @ predicates,
semi-linear predicateswhich properly contains all of the above classes.
We first discuss stable, observer-independent and sesarliclasses of
predicates and their relationships with each other. We siady closure
properties of these classes with respect to conjunctiondésjdnction. Fi-
nally, we discuss algorithms for detection of predicateghese classes.
We provide a non-deterministic, detection algorithm foclealass of pre-
dicate. We show that each class can be equivalently chamesteby the
degree of non-determinism present in the algorithm. Stphéelicates are
defined as those that can be detected by an algorithm with t& non-
determinism. All other classes can be derived by appragyiaonstraining
the non-determinism in this algorithm.
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1 Introduction

Detection of a global predicate is a fundamental problemstriduted computing.
This problem arises in many contexts such as designingndeshd debugging of
distributed programs. For example, the detection of glpbadicate arises in imple-
menting the most basic command of a debugging system:“B@prbgram when
the predicatep is true.” To stop the program, it is necessary to detect tbdipate
¢; a non-trivial task if¢ requires access to the global state.

There are three approaches for detecting global predicatess first approach
is based on the global snapshot algorithm by Chandy and Laf#p@, 24]. Their
approach requires repeated computation of consistenalgtolapshots until a snap-
shot is found in which the desired predicate is true. Thigaggh works only for
stable predicates.e. predicates that do not turn false once they become trueeIf th
desired predicate were not stable then their approach may fail to detect the pre
dicate because may turn true only between two successive snapshots.

The second approach to global predicate detection is bastteaonstruction
of the lattice of global states [7, 17, 20]. This approaclst firesented by Cooper
and Marzullo [7], allows the detection definitelyy andpossiblyi . The predic-
atepossiblyy is true if ¢ is true for any global state in the lattice. The predicate
definitelys is true if, for all paths from the initial global state to thedl global
state,¢ is true in some global state along that path. This approactdetect both
stable and unstable predicates. However, detection maydhgbively expens-
ive. In a system wit, processes each with “relevant” local states, this approach
requires exploring)(m™) global states in the worst case.

The third approach is based on exploiting the structure @ptiedicatep. This
approach is less general than the second, but results in efficent detection
algorithms. For example, [13, 12] present algorithms tcedigbossiblyy and
definitelys of complexity O(n?m) when ¢ is a conjunction of local predicates.
Similarly, [15], and independently [26, 6] present effidiemgorithms to detect
>~ x; < C where ther; are variables on different processes @&hds constant. In
[25], Stoller and Schneider propose a hybrid of the secoddlard approaches that
reduces the size of the lattice that must be explored durtection. This method
may require exponential complexity to detect some predgat

The best approach to use in a given application depends hpapecific pre-
dicate that is to be detected. For example, a snapshot thigomay be acceptable
to detect termination, but cannot be used to detect violataf mutual exclusion.
In [5], predicates are classified into three types: staldegover-independent, and

! stoller and Schneider’s method is exponential in the sizbefixed set The cardinality of the
fixed set is at most — 1.



general. Membership of a predicate in a class can be detedhyits truthness in
different modalities. A stable predicate is one for whigtfs true in a global state
whenevepossibly# is also true in that state. An observer-independent prealisa
one for whichdefinitelyy andpossiblyi are equivalent.

The contributions of this paper are:

e We show that the third approach cannot always yield an efficdetection
algorithm. In particular, the problem of detecting whethdyoolean expres-
sion became true in a distributed computation is NP-coraplEhe problem
stays NP-complete even when processes do hot communic¢ateagh other
and each process executes a single instruction.

¢ We define thdinear class of predicates. We show that the set of global states
satisfying a predicaté is an inf-semilattice if and only i§ is a linear predic-
ate. Thus, linearity captures the class of predicates faclnthe first satisfy-
ing global state exists. We also present an algorithm toctiédte first global
state for which lineap is true.

¢ By considering the dual predicate of linearity, we get a ssaey and suffi-
cient condition for a given set of global states to be a lattithis general-
izes many earlier results. For example, the fact that thefsdt recoverable
states form a lattice [18] is an easy consequence of ourtre&sahilarly, the
monotonicity condition on channel predicates [11] is alsspacial case of
linearity.

e We define a larger class of predicatesemi-linear that includes linear,
observer-independent and stable predicates as propelassibs. We de-
scribe the closure properties of all four classes under wamjon and
disjunction.

e We provide a family of non-deterministic detection algomiis. Beginning
with an algorithm to detect stable predicates, we show thabhstraining the
non-determinism we can derive algorithms that detect pegds in the other
classes. We show that each algorithm will detect precidedgd predicates
that are members of the corresponding class. Thus, the elegidtype of
non-determinism in a detection algorithm provides an eajeivt means to
classify predicates.

¢ We generalize the definitions fpossiblyy anddefinitelyy for ranges of ex-
ecution. In practice, it is often not desirable or even gaedio begin monit-
oring a predicate at the start of execution. Thus, one wakiotd determine
if » became true between two consistent global states. Ouiithlignar detect
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Table 1: Notation used in this paper

P={p1...pn} the set of processes in the system

s, t a local state

s—t s happens before

wW,X,Y,Z a consistent cut

X<Y Y is reachable fromX

Xs The cut formed by advancind to the successor af
S ={Xi,...Xx} | asequence of cuts

d(X) The predicatep evaluated inX

Py(X,Y) The predicateossibly# is true betweenX andY
Dy(X,Y) The predicatalefinitelys is true betweerX andY

possiblyi given two bounding global states. Alternatively, the uppeund
can be left unspecified, allowing the algorithms to be usednm

In this paper, we restricp to be a condition defined on the values of program
variables in a single global state. Other work in predica®cdtion has considered
predicates defined on sequences of states. For examplé2discuss linked pre-
dicates, [16, 2] discuss atomic sequences, and [9] disegstar patterns. We also
refer the reader to [1, 23, 10] for surveys of stable and Umstaredicate detection.

This paper is organized as follows. In Section 2 we descrilvermdel of a dis-
tributed system, and introduce the terminology used. Ini@e8 we show that de-
tection of possiblyp is NP-Complete. Section 4 defines the predicate classédgsta
observer-independent, linear). Examples of predicabescliosure properties, and
significance of each class are described. Section 5 praberdstection algorithms.

2 Our Model of the Execution of a Distributed Program

Table 1 summarizes the notation used in this paper. A digibsystem consists of

a set of processd3 o {p1,-..,pn}. Each process executes a predefined program.
Processes do not share any clock or memory; they commurdcatsynchronize
with each other by sending messages over a set of channelasdifme that mes-
sages are not lost, altered, or spuriously introduced iotaanel. We do notassume
that channels are FIFO.

We model the execution of each process in the distributeigisyas a sequence
of distinct local states. We use lowercase letteed¢ to represent local states.



Following Lamport [19] we define the causally-precedesti@ie— (also known
as “happened before”) as follows:

s — tifand only if:

1. s andt are states from the same process, apdecedes in the
execution of that process.

2. s andt are states from different processes and a message is sent
in states and received in state

3. there exists some statesuch thats — v andu — ¢.

Two states are said to lmencurrent(denoteds||t) when neither state happened
before the other. Formally:

5||td§fs74>t/\t74>s

We use the terrfocal stateto refer to a state from a single process. global
stateis a set of concurrent local states, one from each processeg\ue that the
execution of a distributed system commence with a globtd stacutis a partial ex-
ecution of the program. It must end with a global state. Fdigmacut is a downset
of local states (ordered by ), which includes exactly concurrent supremal states.
We use symbols(, Y andZ to denote cuts.

Given a cut, X, we use the notatioX < Y to denote thal” is a cut reachable
from X. Thatis,X C Y and there is an execution of the system that takes it from
X toY. ? Note that the set of states from a single process is a totar.ofthat is,
eachs has a well-defined successor, denoted by sii€aflesss is the final state in
the process). Whesis a supremal state in clX, we denote byX * the cut formed
by including in X the immediate successor ioFormally

xX* % x U {sucds)}

It is well known that the set of global states from an execufarm a lattice
[21]. In our terminology the equivalent result is: given d &4 the set of all cuts
{X: X <Y} forms a lattice with respect tg.

A predicate is a boolean-valued function whose domain isd¢hef all possible
cuts from all possible executions of a distributed systeime predicate detection
problem is concerned with identifying a cut (or cuts) in whapredicate evaluates
to true. We useb to denote the predicate of interest. We assume in this phper t
#(X) is easy to compute givel. The difficulty in the predicate detection problem

ZNote that since cuts are downsels,C Y implies X is a prefix ofY".



is attributable to the fact that the number of cuts from arguoeion is exponential
in the number of processes.
We use the notatioX [¢] to refer to the supremal local statejn X from process
bi.
Finally, we useS to denote a sequence of cuts; each cut in the sequence reach-
able from the previous cut. Thati§,= { X}, ... X} } where for alli, X; < X;;;.
A sequence of cuts is calledpathiff for all 7, X; and X, differ by exactly one
local state. The term “observation” is used to describe h paf5].

3 NP-Completeness of Global Predicate Detection

The global predicate detection problem (GLOB) is a decigimrblem. It takes the
form of:

Given: an executionY” of n processes, an initial clf < Y, and a
predicates.

Determine if there exists a culV : X < W <Y such thatp(W) is
true.

We show that the predicate detection problem is NP-Complete

Theorem 3.1 GLOB is NP-completeProof: First note that the problemisin NP. A
verifier for the problem takes as input a diit and then determines if the predicate
is true. Therefore, i$3(1¥') can be evaluated in polynomial time, then the detection
of ¢ belongs to the class NP.

We show NP-completeness of the simplified predicate dmtgmtbblem where
¢ is a boolean function of a set of program variabl€s,, ... u,}. Each of the
n processes contributes one program variable. Furthermpregram variables
are restricted to taking the values “true” or “false”. We reate the satisfiability
problem (SAT) to GLOB by constructing an appropriate exeout

In an instance of SAT, we are given a boolean expressian, . . . u,, ), and we
wish to determine if there exist a set of truth values forithsuch thate evaluates
to true. To answer this question, we construct a distribsistem withe processes
such that each; is a variable in procesg;. The executioy” consists of two local
states from eaclp;. In the first stateu; has the value false. In the second state,
u; has the value true. There are no messages exchanged dudrgpihputation.
The initial cutX is the initial global state of the systerng( X consists of the first
state from each process). The value of predigats the result of evaluating on
the variables in the system.

Itis easily verified that the predicatgis true for some cut betweeXi andY’ if
and only if the expression is satisfiable.
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The above result suggests that detection of a general giobdicate is intract-
able even for simple distributed computation (booleanaldes, no messages ex-
changed). However, many predicates are known to be detedtalpolynomial
time. The remaining sections discuss classes of predifateghich efficient de-
tection algorithms are known.

4 Classes of Predicates

In this section we describe four classes of predicateslestabserver-independent,
linear and semi-linear. First, we extend the predicate nitbeladefined by Cooper
and Marzullo in [8]. We define possibly to hold between cutX andY if there
exists at least one cuity, X < W < Y such thatp is true in cutiW. We denote
this asP4(X, Y'). Formally:

Py X, V) 3w . X <W <Y : p(X)

Definitely ¢ is defined to hold betweeX andY iff every path fromX to Y
includes at least one cut for whighis true. We use the notatiai, (X, Y') defined

as follows:
Dy(X,Y) ¥ vS : Sis apath from Xto Y- (3W € § = p(W))

For completeness, wheni £ Y we defineP; (X, Y) andD,(X,Y') to be false.
Obviously:

PX) VoY) = Dy(X,Y)
Dy(X,Y) = Py(X,Y)

4.1 Stable Predicates

The best known classification of predicates is that ofdtadleand theunstable
predicates. Simply put, a stable predicate remains true aiteecomes true. More
formally, we say that is stable if and only if:

VX,Y i X <Y1 ¢(X) = ¢(Y)

Well known examples of stable predicates are, terminatiod,garbage collec-
tion. It must be noted that stability depends on the systeomeSproperties are
stable in some systems but not stable in others. For exathgléormula,

minxz; > k
13
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is a stable predicate in distributed simulation environteemhen ther; are the
timestamps in every process and every message. Cleaslyat stable for arbitrary
systems. Recall that@redicatein our terminology includes not just the formula,
but the system as well.

4.2 Observer Independent Predicates

Charron-Bostet al [5] describe a class of predicates that they call “obsemer i
dependent”. In our notation, this class includes all pratgis such that X, Y
Py(X,Y) & Dy(X,Y). The name observer independent stems from the notion
of a set of observers where each witnesses a different stigluexecution of the
system. Each observer can determing ifecame true in any of the cuts witnessed
by them. If the predicate is observer independent, thenbakvers will agree on
whether¢ ever became true. It must be noted that our definition of elesende-
pendent is stronger than that given in [5]. They defined jpbssind definitelyg
with respect to the initial state of the system. Since weirequossibly¢ and def-
initely ¢ to be equivalent for any range of cuts, some predicates whakd be
observer independent in their definition are not observdeendent with ours.

Any stable predicate is also observer independent. A prbthfie fact appears
in [5]. In our model, the proof takes the following form: give stable predicats,

VXY : Py(X,Y) = ¢(Y)

That is, if a stable predicate ever becomes true in a cut teaeped’, then it
must still be true inY”. Further, since)(Y') = Dy(X,Y) for any X, it follows that
Py(X,Y) = Dy(X,Y). Recall that for any predicatd);(X,Y) = Py(X,Y).
Thus, wheny is stable, possibly and definitelyare equivalent.

An example of an observer-independent predicate is a dispmof local pre-
dicates. Consider a distributed system with prediéatefined on one process, and
predicate: defined on another. Then the predicate: bV cis observer independent

[5].

4.3 Linear Predicates

In this paper we introduce two new classes of predicditesar andsemi-linear A
predicate belonging to either of these classes can be ddtefficiently (see Sec-
tion 5). Linear predicates subsume conjunctive predicateschannel predicates
[13, 14]. Alinear predicate is based on the definition of alifdden” state. States
are forbidden with respect to a predicatge.and a cutX.

forby(s, X) VY : X <V :=p(Y)VX* <Y

8



The intuition of forky (s, X) is that$ must remain false until a successoxtis
reached. We say that a predicatdingar if for any cut X in which the predicate is
false, at least one of the supremal stateXirs forbidden.

linear(¢) & VX :: =p(X) = (3s € sugX) :: forby(s, X))

An important subclass of linear predicates are conjungineglicates [13]e.g.

b < 10 A ¢ = 3 wherebandc are variables on different processes. To evaluate this
predicate in a cut, we use the valueg@ndc from the last state of the respective
processes in that cut. Any conjunctive predicate is lin€ézonsider a cutX, in
which a conjunction of local predicates is false. From thientteon of a conjunctive
predicate, there must exist at least one supremal stdte,which the corresponding
local predicate is false. This state clearly satisfies tHimitien of being forbidden

in X.

Some boolean-valued functions are linear in some systetmsobin others. For
example, consider the formula 4 ¢ < k" for real-valued variable$ andc on dif-
ferent processes and constan(This formula defines a linear predicate for systems
in which eitherb or ¢ is monotonically increasing. For example pifs monoton-
ically increasing, then in any cut where predicate is false,supremal state with
variablec is forbidden. A new value for must be found before the predicate can
become true, sincican only increase in value.

Many interesting channel predicates [14] also satisfydiitg. A channel pre-
dicate is defined as a boolean function on the state of a ugdttnal channel. Note
that a channel predicate is not a local predicate; it dependse state of the sender
and the receiver. Consider the channel predicate, “there@messages in the chan-
nel.” This channel predicate may be useful in detecting iteation of a computa-
tion. We show that this channel predicate is linear. If thedjirate is false in some
cut, then the supremal state corresponding to the receftbeahannel is forbid-
den. This is because a non-empty channel can become emptpwnéceiving
messages. Thus, until at least one new state is reached bgdhiging process,
the predicate will remain false regardless of action takgeother processes. More
generally, the predicate “there are exadtlynessages in the channel” is linear.

Linear predicates are not necessarily stable. Any conjmgiredicate is a
counter example. If at least one of the local predicates stalnte, then the con-
junction of these properties is also unstable. Furthermmajunctive predicates
are not necessarily observer independent. Consider th@esfiormulag = a A b,
for boolean variableg andb on two different processes. Figure 1 shows a lattice of
cuts in whichP, (X, X) is true yetD4 (X1, X) is not. The predicate does not hold
in X;. There are two possible paths frak to X. Along the path{ X, X5, X}, ¢
is always false. However, the paflX,, X3, X } does include a cutX3, for which
¢ is true.
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Figure 1. Conjunctive predicates may not be observer irnuibgmet.
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The class of observer independent predicates is not ceataiuithin the class
of linear predicates. For example, a disjunction of locadicates is observer in-
dependent, but not linear (see Section 4.5.4).

4.4 Semi-Linear Predicates

The semi-linear class of predicates contains all threeeptkvious classes (stable,
observer-independent, and linear). Semi-linear preegate also relatively easy
to detect. The class is defined with respect to the semidddyi property of states
and cuts. We say that statés semi-forbidden in cukX if it satisfies the following
definition:

sforby (s, X) € VY : X¥ <V : Py(X,Y) = Py(X*,Y)

That is,Y indicates any possible continuation of the system (aft®that in-
cludes at least the immediate successar. tbany of the new states froi permit
the predicate to become truiee( P, (X,Y’)), then it must also be true in some cut
that is strictly greater thaiX and includes the immediate successos.td he in-
tuition of semi-forbidden is that is irrelevant to the truth-value of the predicate.
While looking for a cut where the predicate is true, we camedjards in favor of
its successor.

Since we consider only consistent cuts in this paper, weiretjue state that is
semi-forbidden to be aaligible state. Letp be a process in the system, anddet
be the supremal state fromin some cutX. Note that advancing the cut alopg
may not be possible for two reasons. Fiktsinay be the final state from process
Second, even i§ has a successar,thenX U {¢} may not be a consistent cut. That
is, p receives a message betweandt, and the state where that message was sent
is not part of X. For any consistent cut’, we use eligibléX') to denote the set of
states along whiclX can be advanced while maintaining consistency. Formally,

eligible(X) % {s € supX)|~final(s) AVt € supX) : t /4 sucds)}
Note that in our model, the eligible set fof is empty if and only ifX is a
complete cut. That is, the system has executed to termmati& . We denote this
condition by fina{ X).

Lemma4.1

1. LetX andY be two consistent cuts such that< Y and3s € eligible(X) :
s € Y. ThenY? is also consistent.

2. LetX andY be two consistent cuts such thdit < Y and eligibl€ X) is a
singleton{s}. Then, X* <Y.
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Proof. Follows from the definition of eligibility2

We now define the semi-linear class of predicates:

semi-lineafq) “vx . [¢(X) A —final(X) = 3s € eligible(X) : sforby (s, X)]
We first show that the class of semi-linear predicates btriotludes the class
of linear predicates.

Theorem 4.2 Any linear predicate is also semi-lineaProof: Let ¢ be any lin-
ear predicate. To show that it is semi-linear, consider ahpuch that-¢(X) A
—final(X'). From linearity of¢ there exists a state € supX) such thats is for-
bidden inX. We will show that there exists a statén X which is eligible and
semi-forbidden. If the stateitself is eligible, then we are done since fg(b, X)
clearly implies sforf(s, X'). Otherwise, let be an eligible state inX' such that
t — sucds). Since—final(X) we are guaranteed existence of such aVe only
need to show thatis semi-forbidden inX. Consider any” such thatX! < Y. If
~(X* <Y), then from linearity we get that P, (X, Y"). Thus,t is semi-forbidden
in this case. Now, le¥” be such thatX® < Y and P4(X,Y). Since—¢(X),
there existd¥ such thatX < W < Y and ¢(W). From linearity of¢, it fol-
lows thatX* < W. This impliesX! < W sincet — sucds). Therefore,
P4(X,Y) = P,(X',Y) and thust is semi-forbidden2

We now show that semi-linear includes the class obsendapiendent.

Theorem 4.3 Any observer-independent predicate is also semi-lineevof. Let
¢ be an observer-independent predicate axicbe any cut such that¢(X) and
—final(X'). We show that for any statec eligible(XX'), s is semi-forbidden. Con-
sider anyY such thatX® < Y. If -P,(X,Y), s is semi-forbidden trivially. Other-
wise, assume thdt; (X, Y") holds. Sincep is observer independent, it follows that
Dy(X,Y). If $(X?) thens is semi-forbidden sinc&y(X?,Y) is trivially true.
Alternatively, assume is not true inX *. Since-¢(X), we know-Py(X, X*).
SinceDy(X,Y), we can concludeW : X°* < W <Y : ¢(W). Again,s is semi-
forbidden.2

Note that the observer-independent and semi-linear damsenot equivalent.
As shown above, a conjunctive predicate is linear (and hatstesemi-linear), but
not observer-independent.
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4.4.1 Examples of semi-linear predicates

For an example of a semi-linear predicate, consider thewicgcof a mutual ex-
clusion algorithm. LetX[:] denote the supremal state from procgsén X. Let

CS(X|[i]) denote that procegs is in the critical section in stat& [;]. To ensure
that the given execution is proper, we are interested inra@téng existence of a

consistent cufl such thatp(X) % 3, : 4 # j : CS(X[i]) A CS(X[4]).
Theorem 4.4 ¢(X) def Ji,5 : CS(X[i]) A CS(X[j]) is semi-linear.Proof: As-
sume that-¢(X). Therefore,

Vi, j : 2CS(X[i]) v ~CS(X]3])

If X isthe final global state, then we are done. Otherwise, digi¥) is non-empty.
We now do a case analysis.

Case 1 There exists € eligible(X') such that-C'S(s).

We claim thats satisfies sforp(s, X). LetY be any extension such that® <Y
If -P,(X,Y), then we are done. Else, let there Bésuch thatX < W <Y and
p(W). If X® < W, thens is semi-forbidden. From Lemma 4.1 partl,® is a
consistent cut. It is sufficient to show tH&t* satisfiesp. From ¢(W), there exist
i, 7 such thatC'S(W[i]) A\CS(W{j]). Since we have assumed in this cageS(s),
s # Wil As # Wj]. Hence W[i] = W*[i] A Wj] = W?[j]. Thus¢(W?#), and
s is semi-forbidden inX .

Case 2 There does not existin eligible(X') such that-C'S(s).

Since eligibl¢ X') is non-empty, it follows that there is a uniquen eligible(X)
such thatC'S(s). We again claim thas satisfies sfor(s, X). LetY andW be as
in case 1. Sinc& < W, and eligibld X') consists of singletofis}, it follows from
Lemma 4.1 part 2 thak® < W. Therefore;s is semi-forbidden2

As another example of a semi-linear predicate considerjargison of local
predicates. Since this predicate is observer-independeioilows from Lemma
4.3 that it is also semi-linear.

4.5 Closure Properties

4.5.1 Stable is closed under conjunction and disjunction

It is easy to see that the conjunction of two stable predicistalso stable. Let =
@1 N\ ¢ Whereg, andg, are both stable predicates. Consider a pair of ckitand
Y where¢(X) is true andX < Y. Note thatp; (X) is true, and hence so s (Y')
(because of the stability af;). Similarly ¢»(Y") is true. Henceg(Y') is true. A
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similar argument can be used to show that the class of stabticates is closed
under disjunction.

4.5.2 Observer Independent is closed under disjunction

A proof that the class of observer independent predicaidesed under disjunction
was first given in [5]. Considep = ¢ V ¢, where bothp; and¢, are observer in-
dependent. LeX andY be cuts such that, (X, Y). By the definition of (X, Y'),
there must exist some ciit’ : X < W <Y where¢(W). Without loss of gener-
ality, assumep; (W), and hence’;, (X, Y). Sinces, is observer independent, we
know thatD,, (X,Y"). ThereforeD4(X,Y’) and¢ is observer independent.
However, the conjunction of two observer independent jpagdis may not be
observer independent. A simple counter exampieds a A b, for boolean variables
a andb on different processes (see Section 4.3). However, thegatteda is true”
is observer-independent, singés local to a single process (similarly fé).

4.5.3 Linearis closed under conjunction

The class of linear predicates is closed under conjunctigt.¢); and ¢, be any
linear predicates. Denote by fosf§s, X) that states is forbidden with respect to
¢; in cut X. Let ¢ be the conjunction of; and¢,. Then we show:

[forby, (s, X) V forby, (s, X)] = forby(s, X)

Assume forb, (s, X), and letY be reachable fromX. If X* £ Y, then
we know by the definition of forbidden thats;(Y). Hence—-¢(Y). Similarly,
forby, (s, X) implies forhy (s, X).

Assume-¢(Y'). We now show that there exists a forbidden supremal state in
Without loss of generality, assumeb; (Y). Sinceg; is linear, there must exist a su-
premal states, in Y such thatfory, (s,Y’). As shown above, we know fogls, Y').

4.5.4 Linear is not closed under disjunction

The class of linear predicates is not closed under disjanct disjunction of local

predicates, such as;b“déf a V b", is a simple counter example. Consider a &t

from a system with two processes. Assumg(X). Let s be the supremal state
in X for variablea, and¢ be the supremal state ik for variableb. We show that
s is not forbidden. Ifb is true in sucdf), then¢ will be true in Xt. Similarly, ¢ is
not forbidden. Thus, there are no stateirthat are forbidden, and hengds not
linear.
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4.5.5 Semi-linear is not closed under conjunction or disjuntion

The class of semi-linear predicates is not closed undeere¢tbnjunction or dis-

junction. A single counter example of a predicate that issgmhi-linear can serve
to prove both the conjunctive and disjunctive cases. Rirstexplain the example.
Consider a predicate defined on integer valdesd j, from two processes. The

predicatep &ty + j < 2is not semi-linear. The following execution shows a cut
in which neither of the supremal states are semi-forbidden.

. —O—

j=1

Without loss of generality, assume the statés semi-forbidden. Then consider
the following extension:

Note that,—¢(X), X° < Y, andPy(X,Y). However, the predicate is only
true inY when; takes the value 1 angdtakes the valué. No cutW exists where
X5 < W <Y and¢(W). Thuss is not semi-forbidden. By symmetry, neither of
the states inX are semi-forbidden. Thereforgis not semi-linear.

We now rewritei + j < 2 as an equation of boolean variablesh, c andd. Let
1 be encoded in two bitg, andb, and; be encoded by bitsandd. Then we have:

¢ (a A —c) A (=bV =d)

This predicate is a conjunction of two terms. The first teritsisif a conjunctive
predicate tia A —¢). The second term is a disjunctive predicaté {/ —d). Both
terms are semi-linear predicates, yet their conjunctiamissemi-linear.

15



Also, by rewriting¢ in disjunctive normal form as:

¢ (ma A e A=)V (~a A e A —d)
we have a disjunction of two conjunctive predicates. Thusae two semi-linear
predicates{a A ¢ A =b and—a A —¢ A —~d), whose disjunction is not semi-linear.

4.6 Linear Predicates have an Infimum Satisfying Cut

In some applications, most notably distributed debugginig,important to detect
the first cut in which a predicate becomes true. For exampfgpgrammer may
be attempting to determine what programming error causesytitem to enter an
undesirable state. If the debugger can identify the firsh siate, the programmer
can more easily trace the problem to its source. Howevesdore predicates there
is no unique first cut in which the predicate is true. Thatliaugh the set of con-
sistent cuts is a lattice, the set of all cuts for whigks true, may not be a lattice.
For example, consider a disjunctive predica‘lg,%f a Vb. Inthe following diagram
there are two infimal cuts (shown with solid lines) for whitte tpredicate is true.
There is no unique first cut for whichis true.

a
pl >

Denote byCy the set ofall cuts for which a predicatg is true, and by’ (X, Y")
the set of cuts betweeXi andY” for which ¢ is true. We now show that for any, Y,
the setC,(X,Y’) contains a unique infimum if and only ¢fis linear.

Lemma 4.5 C, is an inf-semilattice iffy is linear. Proof: (C, is an inf-semilattice
= ¢islinear)

We prove the contrapositive. Assume tlids not linear. From the definition of
linearity, there exists some ci such that none of the supremal statesXinare
forbidden. That is, for any supremal statén X:

3, X <Y, AX LY, g(Y))

Note thatX is equal to the intersection of alf;. Each cutY; is an element of
Cy, but their infimum {) is not inC,. Therefore(y is not an inf-semilattice.
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(¢ is linear = Cy4 is an inf-semilattice)

We again show the contrapositive. et= {Y7,Y5,..Y}, } be any subset @, such
thatinfC' & C,. We know that in€” must exist, since the set of consistent cuts forms
a lattice. LetX =inf C.

Given any supremal statec X, there existy; € C such thats is a supremal
state inY;. Note thatX < Y;, but X* £ Y;. Furthermore,s(Y;) while —¢(X).
Thus,s is not forbidden inX. Since there are no forbidden supremal stateX'in
¢ is not linear.2

4.7 Dual Properties

Just as existence of the least cut requires that the predids linear, the existence
of thelargestsatisfying cut requires a property that is dual of linearity

Definition 4.6 A predicateg is post-linear iff
VX :=¢p(X) = JsesupX) VY <X : Y < XV-¢(Y)
For example, forp ©pye< k, if b is known to be monotonically decreasing,
then the predicate is post-linear.
All the results for linear predicates have dual versiongfust-linear predicates.

Thus,¢ is a post-linear predicate iff is a sup-semilattice. Combining these results,
we get:

Theorem 4.7 C, is a lattice iff¢ is linear and post-linear.

As an application of Theorem 4.7, we consider the problenecdvery in dis-
tributed systems [18]. We call a local staszoverableif after a failure, the state
can be recovered from the disk using a checkpoint and theagedsg. A cut is
called recoverable if all states belonging to that cut aceverable and the cut is
consistent

The following is an easy corollary of the Theorem 4.7.

Corollary 4.8 The set of all recoverable cuts is a lattideroof: Recoverability of
a state is local to a process. Any local predicate is bothdmend post-linear2

Since results for dual properties are easily derived, wensil discuss them any
further.

3Note that the notion of consistency in [18] is slightly diféat from the one discussed in this
paper.
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A|gOI’|thm Agenera]
Given execution X, Y] and predicate

éog chooseV betweenX andY
1 while =¢(W) andW <Y do
ézg advancéV;

3 end while;

4) returng(W);

Figure 2: Algorithm to detect a global predicate

5 Detection

We now discuss predicate detection for different classegatifal predicates. Note
that, detection of a predicate is specific to a single exenufl'hat is, predicate de-
tection is not a verification process that asserts the pagsgliscecomes true (or re-
mains false) in alpossibleexecutions. Only that it became true (remained false)
for one particular execution.

We therefore treat the detection problem as one in whichtébaxkecution from
cut X to Y is provided as input to an algorithmd. The algorithm responds with
the value forP,(X,Y). If the algorithm evaluates to true, then the algorithm also
returns a cut¥ for which ¢(W).

All the algorithms use a common paradigm shown in Fig. 2. Werr® this
algorithm asAgenerar Algorithm Agenerarepeatedly checks the value of the predicate
on some cul¥ . If the predicate is false arid’ is not the last cut in the computation,
we advancéV by setting it to some cut that is reachable from the old valué’o
Note we require thal < Y be maintained whel’ is advanced. This algorithm
is non-deterministic in two ways. It does not specify the¢iahivalue of W, and it
does not specify howl’ should be advanced. We will see later that by restricting
this non-determinism, algorithms for various classes eflfrates can be derived.

Any execution of the detection algorithm corresponds togusace of cuts
(the successive values oF). Let S = {S.1,...S.last} denote one such se-
guence. That is, th8.; are successive values of variathlé that are evaluated at
line (1). Let sequend®, X,Y, ¢, A) denote the property thef is a possible se-
guence of cuts produced by algorithinduring detection of the global predicate
¢ in execution[ X, Y']. For the above algorithm, an alternative characterizatibn
sequences, X, Y, ¢, Agenera) IS given below.

“We also assume that the predicate fisjis true for all supremal statesin Y.
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Lemma 5.1 sequenceS, X, Y, ¢, Ageneral) def

Vi:Si<S.(i+1)A
¢(S.last) vY < SlastA
Vi < last: =¢(S.3) A
Vi: X<854i<Y

Proof: The first conjunct follows because success$ivés are obtained by advan-
cing W. The second conjunct is obtained by negating the guard owltile loop.
The third conjunct specifies the condition under which treuation of ¢ is done
on an additional cut. The final conjunct follows from theiadization of W, and
the definition of “advance”.

Conversely, any sequenSehat satisfies these four conjuncts is a possible se-
guence of the algorithnz

What does it mean to say that algorithfrdetects the predicatefor execution
Y? Since the algorithm returrg S.last) as its value, the algorithm is correct only if
P4(X,Y) is equal tap(S.last). Since the detection algorithm is non-deterministic,
it must return this answer for any sequerftthat satisfies sequence X, Y, ¢, A).
Thus, we can formally define the property that algoritdrdetects a predicatg¢ as

detectA, ¢) & VX, Y, S : sequence(S, X,Y, ¢, A) : P4(X,Y) = $(S.lasy
Since¢(S.last) always impliesP; (X, Y’) we can rewritedetectas a:
detectA, ¢) = VX,Y, S : sequence(S,X,Y,$, A) : Py(X,Y) = ¢(S.last)

We now discuss how various detection algorithms can be elérfvtom Al-
gOI’Ithm Agenera|

5.1 Stable Predicates

In this section we show that if we do not constrain any noreaheinism, the general
algorithm detects a predicadaf it is stable. The converse is also true. If a predicate
is not stable, the general algorithm cannot correctly ddtdor some execution.
Therefore,Astapie = Ageneral
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Theorem 5.2 For any predicatep,

detect Astaple, ¢) = Stable(p)

Proof: First assume thap is stable. From the definition afetectwe need to show
that

VX,Y,S : sequenceS, X, Y, ¢, Astanie) : Py(X,Y) = ¢(S.last)

Forany X, Y, S assume that sequen® X, Y, ¢, Astable) and Py (X, Y') hold.
From Lemma 5.1 conjunct 2, it follows thatS.last) V S.last = Y. The first dis-
junct gives us the desired result, so now consisléast = Y. However,P,(X,Y)
and stabl¢¢) imply ¢(Y"). Combining this withS.last =Y we get¢(S.last).

For the converse, assume thatis not stable. This implies that there ex-
ists [X, Y] such thatP,(X,Y) and ~¢(Y). Let the sequenc& be simply
defined as a sequence consisting of a single cut’ —lt is easy to verify that
sequences, X, Y, ¢, Astable) @and Py(X,Y') hold but¢(S.last) is false. Thus, we
get detedtAsiapie @) is false.2

5.2 Observer Independent Predicates

For the general algorithm to work correctly for observerdpdndent predicates, we
need to restrict its non-determinism. First, we requird tha algorithm begin its
search fromX. Second, we require that while advancing theldutthe algorithm
advances by exactly one eligible local state frim® Observe that the resulting
algorithm, Ao, shown in Fig. 3, is still non-deterministic, since it carooke any
eligible state to advance the cut. There may be multiplélddigstates in any cut.
We now give a characterization of sequeff€eX, Y, ¢, Ao.i). First, a pathS,
in the execution X, Y] is defined as:

path(S, X,Y) % (8.1 = X) AVi : (3s € eligible(S.i) : S.(i + 1) = S.i%)

That is, eachS.i and S.(: + 1) differ by exactly one eligible state.
From the algorithm, it then follows that seque(§eX,Y, ¢, Ao.i) =
(sequenceS, X, Y, ¢, Astanle) A path(S, X, Y)).

We now show that the algorithm captures the class of obsémdependent pre-
dicates.

5The theory can be easily generalized to handle the case aftasileously advancing along mul-
tiple eligible states. For simplicity of discussion, we baestricted this paper to a single eligible
state.
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Algorithm A
Given execution X, Y] and predicate

éog W =X;

1 while =¢(W) andW <Y do

2 advancd/V by any eligible state;
3 end whilg;

4 return ¢(W);

Figure 3: Algorithm to detect a observer independent pegdic

Theorem 5.3 For any predicatep,
detectAo.i, ) = observer-independefit)

Proof: First assume thap is observer independent. From the definitioriefect,
we need to show that

VX,Y,S :sequenckS, X, Y, ¢, Ao.i) : Py(X,Y) = ¢(S.last)

For any X,Y, S assume that sequenc X, Y, ¢, Aoi) and Py (X, Y) hold.
From sequendgs, X, Y, ¢, Ao.i) either¢(S.last) or S.last= Y. In the former case,
we are done. So now assume tlsaiast = Y. From the definition of observer-
independentf), we obtain thatD (X, Y") holds. From pathS, X,Y), (S.last =
Y) and Dy (X,Y), it follows that3: : ¢(S.4). Combining this with the fact that
Vi 14 < last: ~¢(S.7), we get thaty(S.last) holds.

Now assume that is not observer-independent. This implies that there gxist
[X, Y] for which P, (X,Y) is true butD4(X,Y) is false. From the latter, there
exists a sequencg such that pathS, X,Y), (S.last = Y) andVi : =¢(S.7). Itis
easy to see that sequerifeX, Y, ¢, Ao.i) and P4 (X, Y') hold; howeverp(S.last)
is false. Therefore, detdct,.i, ¢) is false.2

Observe that any sequence of the algoritdgy, is also a sequence of the al-
gorithm Agiaple This is an alternative proof that the class of stable peddi is
contained in the class of observer-independent predicates

5.3 Semi-linear Predicates

For semi-linear predicates, we need to restrict the noardehism further. Instead
of advancing the cut’ usinganyeligible state, we will advance it using the state
determined by a functioii. That is, we are given some functighwhose domain
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Algorithm Ay
Given execution X, Y], semi-linearp, and functionf

0 W:=X;
élg while =¢(W) andiW < Y do
2 advancéV by f(W);

§3; end while;
4 return ¢(W);

Figure 4: Algorithm to detect a semi-linear predicate gisemi-forbidden function

f

is the set of cuts. When the function is evaluated, it retorresof the eligible states
in the cut. The function may use the knowledge about the pageliand the cut to
determine how the cut should be advanced. We will show thraddtecting semi-
linear predicates, the functighmust evaluate to a semi-forbidden state.

The resulting algorithmd ; is shown in Fig. 4. Itis easy to see that:

sequences, X, Y, ¢, A;) = [sequenceS, X, Y, ¢, Ao i)A(Vi : S.(i+1)—=S.i = f(S.3))]
Theorem 5.4 For any predicatep:
(3f : detectAy, ¢)) = semi-lineal¢)

Proof. First assume thap is semi-linear. From definition afetect, we need to
show that there existg such that

VX,Y,S :sequenckS, X,Y, ¢, Ay) : Py(X,Y) = ¢(S.last)

Let f be any function that evaluates to a semi-forbidden, supkstate in any cut
W for which—¢(W'). Such a function must exist by the definition of semi-ligear

Forany X,Y, S assume that sequer(¢g X,Y, ¢, A;) and Py(X,Y’) hold. As
before, it is sufficient to consider the case wiselast = Y.

Py(X,Y)implies3dWW : X < W <Y : ¢(W). If W =Y, then we are
done. Otherwise, |eV be an infimal cut irC, and letS.i be such that such that
S.i < W. Note that~¢(S.7). By the definition of the functiofy, there exists such
that (S.:)° = S.(7 + 1) and sforly(s, S.i).

By the definition of semi-forbidden, we kndW(S.(i + 1),Y’). That is, there
must exist a culV’ <Y such thatS.(: +1) < W'and¢(W'). If S.(i + 1) =Y,
then we are done. Otherwise repeat this analysis uBifi@nd S.(i + 1) instead of
W and S.i. SinceS is finite, we must eventually arrive &tlast.
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Now for the converse, assume that there exists sosueh that algorithmA
detectsp, and that¢ is not semi-linear. We show an adversary who will force the
algorithm to make a mistake.

Non-semilinearity ofp implies that there exists some executidn such that
—¢(X) and none of the € eligible(X') are semi-forbidden. That is, for eashn
eligible(X) there exists an extensiaf) : X° <Y, : Py(X,Y,)butnotPy(X?,Yj).

The adversary asks the algorithm to begin execution withXtut.et s be the
result of f(X). The adversary presents the algorithm with a successey alfow-
ing the algorithm to advance t& . At this point, the adversary provides to the
algorithm only the remaining execution Bf. Note that the algorithm cannot halt
in a stateW for which¢(W) is true. Yet,P,(X,Y,) is true. Thus the algorithm
does not deteap in this case2

Since the class of linear predicates is contained withirsémi-linear class, al-
gorithm A can also be used to detect linear predicates. Note, howiatrif f
evaluates to a forbidden state, thép will not only detects, but it will also return
the first cut for whichy is true.

Theorem 5.5 (VX : f(X) = s = forby(s, X)) A sequenceS, X,Y, ¢, As) A
$(S.last) implies thatS.last = inf Cy (X, Y). Proof: The proofis by contradiction.
AssumeS.last # inf C4(X,Y'). LetW denote the infimum @iy (X,Y"). Clearly,
W # X. Leti be the largest sequence index such that < W. From the al-
gorithm, this implies that there exists a process inflesuch thatiV [k] = f(S.i).
This implies forp (W k], S.i) and since we knov$.: < W, we can conclude
—¢(W), contradicting our assumptior.

6 Conclusions

We have shown that the general problem of detecting a glotealigate is NP-
complete. We have defined two classes of predicates — linghisami-linear.
We show that linear predicates are exactly those for whietfitist satisfying cut
is unique. We show that the semi-linear class contains tiealiclass, as well as
the previously known classes of stable predicates andwirsierdependent predic-
ates. We demonstrate the closure properties of each of thesses with respect to
conjunction and disjunction.

We also provide a family of algorithms for detecting the acence of a pre-
dicate within a range of execution. We show that the algorittare exact in the
sense that they detect precisely those predicates witkimetpective class. The
most non-deterministic algorithm will detect exactly thalde class of predicates.
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By successively constraining the non-determinism of tlger@thm, we derive al-
gorithms for the observer-independent and semi-lineasels. All of the algorithms
are efficient and can be used for on-line monitoring.
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