
On Detecting Global Predicates in Distributed Computations

Neeraj Mittal
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188, USA
neerajm@cs.utexas.edu

Vijay K. Garg�
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA

garg@ece.utexas.edu

Abstract

Monitoring of global predicates is a fundamental prob-
lem in asynchronous distributed systems. This problem
arises in various contexts such as design, testing and debug-
ging, and fault-tolerance of distributed programs. In this
paper, we establish that the problem of determining whether
there exists a consistent cut of a computation that satisfiesa
predicate ink-CNF,k > 1, in which no two clauses contain
variables from the same process is NP-complete in general.
A polynomial-time algorithm to find the consistent cut, if it
exists, that satisfies the predicate for special cases is pro-
vided. We also give algorithms albeit exponential that can
be used to achieve an exponential reduction in time over
existing techniques for solving the general version.

Furthermore, we present an algorithm to determine
whether there exists a consistent cut of a computation for
which the sumx1+x2+ � � �+xn exactly equals some con-
stantk, where eachxi is an integer variable on processpi
such that it is incremented or decremented by at most one at
each step. As a corollary, any symmetric global predicate
on boolean variables such as absence of simple majority
and exclusive-or of local predicates can now be detected.
Additionally, the problem is proved to be NP-complete if
eachxi can be changed by an arbitrary amount at each
step.

Our results solve the previously open problems in predi-
cate detection proposed in [7] and bridge the gap between
the known tractability and intractability results.

1. Introduction

Correct non-trivial distributed programs are hard to
write. Testing and debugging is an important and feasible
way to ensure their reliability and dependability. To that
end, predicate detection problem is a useful abstraction for�supported in part by the NSF Grants ECS-9907213, CCR-9520540,
TRW faculty assistantship award, a General Motors Fellowship, and an
IBM grant.

analyzing the executions of distributed programs. For ex-
ample, when debugging a distributed mutual exclusion al-
gorithm, detecting concurrent accesses to a shared resource
is useful. In a leader election protocol, it is necessary to
ensure that processes agree on the current leader. Predicate
detection is also a natural abstraction for monitoring dis-
tributed systems for various reasons such as fault-tolerance.
For example, on detecting a deadlock, one of the processes
must be aborted and restarted.

An asynchronous distributed system is characterized by
lack of global clock, lack of shared memory, and unbounded
relative processor speeds and messages delays. Conse-
quently, it is impossible to determine the exact order in
which the events on different processes were executed; the
events can only be partially ordered [13]. This leads to the
combinatorial explosion problem—the number of possible
states the system passed through are, in general, exponen-
tial, thereby making the predicate detection problem non-
trivial. Chase and Garg [3] proved that detecting a predicate
in 3-CNF is NP-complete in general. Stoller and Schneider
[15] establish the NP-completeness of detecting even a 2-
local conjunctive predicate (each conjunct is a function on
variables of at most two processes) in general.

Nonetheless, the problem can be solved efficiently for
several useful classes of predicates such as stable [2, 1, 14],
conjunctive [9, 10], linear and semi-linear [4], and rela-
tional [18] predicates. Several fast but exponential algo-
rithms have also been developed for solving the general ver-
sion of the problem [5, 11, 16]. Stoller and Schneider [15]
give an algorithm for detecting a predicate satisfying certain
structure by reducing the problem to multiple predicate de-
tection problems each of which is solvable using Garg and
Waldecker’s algorithm for monitoring a conjunctive predi-
cate [9].

Tarafdar and Garg [17] considered extension of the Lam-
port’s happened-before model [13] for predicate detection
that allows events on a process to be partially ordered. They
proved that detecting even a conjunctive predicate becomes
NP-complete, in general, in this model. However, they
solved the problem efficiently for special cases when either

relop {<, ,>, }< >

arbitrary predicate

k−local conjunctive predicate relational predicate

relop = ’=’

[this paper]

NP−complete for arbitrary
increments/decrements

increments/decrements by at most 1

NP−complete[4]

NP−complete when k > 1[15]

predicate in k−CNF

NP−complete when k > 2[4] polynomial time algorithm[3,18]

polynomial−time algorithm for

conjunctive predicate
polynomial−time algorithm[9]

special cases
polynomial−time algorithm for

NP−complete when k > 1

[this paper]

singular k−CNF predicate

Figure 1. Known results in predicate detec-
tion.

all receive events on every process are totally ordered or all
send events on every process are totally ordered.

Our contributions in this paper are as follows. We solve
the previously open problems in predicate detection pro-
posed in [7]. In Section 3, we establish that the problem of
determining whether there exists a consistent cut of a com-
putation that satisfies a predicate ink-CNF such that no two
clauses contain variables from the same process, called sin-
gulark-CNF predicate, is NP-complete in general whenk
is at least 2. Our result bridges the gap between the known
tractability [9] and intractability [3, 15] results in detecting
conjunction of clauses (see Figure 1) and subsumes the two
earlier known NP-completeness results. Furthermore, the
result can be used to establish the intractability of other re-
lated interesting problems. A polynomial-time algorithm to
find the consistent cut, if it exists, that satisfies a singulark-CNF predicate for special cases is provided. We also give
algorithms albeit exponential that can be used to achieve an
exponential reduction in time over existing techniques for
solving the general version.

Moreover, in Section 4, we present an algorithm to deter-
mine whether there exists a consistent cut of a computation
for which the sumx1 + x2 + � � �+ xn exactly equals some
constantk, where eachxi is an integer variable on processpi such that it is incremented or decremented by at most one
at each step. As a corollary, any symmetric global predicate
on boolean variables can now be observed. Additionally,
the problem is proved to be NP-complete if eachxi can be
changed by an arbitrary amount at each step. Our results
build upon and, in some sense, complete the work described
in [3, 18].

2. Model and notation

In this section, we formalize the notion of distributed
computation, consistent cut and global predicate.

2.1. Distributed computations

A distributed system consists of a set of processesP =fp1; p2; : : : ; png. Each process executes a predefined pro-
gram. Processes do not share any clock or memory; they
communicate and synchronize with each other by send-
ing messages over a set of channels. The messages could
be point-to-point, broadcast or multicast. We assume that
channels are reliable, that is, messages are not lost, altered
or spuriously introduced into a channel. We do not assume
FIFO channels.

A local computationof a process is described by a se-
quence of events that transforms theinitial stateof the pro-
cess to afinal state. At each step, thelocal stateof a process
is captured by the initial state and the sequence of events
that have been executed up to that step. We assume that
there is a fictitious event for each process, called theinitial
event, that initializes the state of the process. The initial
event occurs before any other event on the process. Let?i
and>i denote the initial and final event, respectively, on
processpi.

Each event is asend event, a receive eventor aninternal
event. An event can be a send event as well as a receive
event. An event causes the local state of a process to be
updated. Additionally, a send event causes a message or
a set of messages to be sent and a receive event causes a
message or a set of messages to be received. We assume
that all events are distinct. We use lowercase letterse andf
to represent events. Lete:pro
 denote the process on which
evente occurs. The previous and next events ofe one:pro

are denoted bye:pred ande:su

, respectively, if they exist.
We denote the order of events on processpi by<pi and let<P= S1�i�n <pi . Further, let�M be the relation induced
by messages, that is,�M = f(s; r) j s is a send event andr is the corresponding receive eventg.

A distributed computationis modeled by an irreflexive
partial order on the set of events of the underlying program’s
execution. We useE� to denote a distributed computation
with the set of eventsE and the irreflexive partial order�
(read as “precedes”). We do not assume that the distributed
computation iscomplete, that is, every message that was
sent has been received. LetE:? andE:> denote the set
of initial and final events, respectively. We assume that� includes<P and�M and an initial event precedes any
other event, that is, for each?i 2 E:? ande 2 E n E:?,?i � e, where “n” denotes the set difference operation. The
irreflexive partial order� could be (but not restricted to) the
happened-beforerelation defined by Lamport [13].

A run of a distributed computationE� is some total
order of events inE consistent with the partial order�.

Observe that every run is a distributed computation whose
events are totally ordered. We use the terms “distributed
computation” and “computation” interchangeably.

2.2. Cuts and consistent cuts

Intuitively, a cut represents the global state of a dis-
tributed system. Aglobal stateis a collection of local states,
one from each process. Equivalently, acutof a computationE� is a set of eventsC, whereE:? � C, such that, for
each evente in C, e:pred is also inC (if it exists).

Some cuts or global states cannot arise in the execu-
tion of the distributed system. Only those cuts that respect
causality can possibly occur. A cutC is consistentiff, for
each evente in C, all its preceding events are also inC.
Formally,C is a consistent cut ofE� 4= (E:? � C) Vh8 e; f :: (e � f) ^ (f 2 C)) e 2 Ci

Observe that every consistent cut is a computation and
vice versa. A cutC passes throughan evente on processP
iff e is the last event inP to be contained inC. Formally,C passes throughe 4= (e 2 C) V(e 62 E:>) e:su

 62 C)

Two events areconsistentif there exists a consistent cut
that passes through both the events, otherwise they arein-
consistent. It can be verified that eventse andf are incon-
sistent iff eithere:su

 4 f or f:su

 4 e. Finally, two
eventse andf are independentiff they are incomparable
with respect to�. For example, in Figure 2, eventsf andh
are consistent whereas eventse andh are not. Also, eventsf andg are independent whereas eventsf andh are not.

2.3. Global predicates

A global predicate(or simply a predicate) is a boolean-
valued function defined on a cut or global state. A global
predicate islocal iff it is a function of variables of a sin-
gle process. Given a set of local predicates, one for each
process, we definetrue eventsas those events for which the
relevant variable evaluates to true. In this paper, whenever
it is appropriate, we encircle the true events in our figures.

A conjunction of local predicates is calledconjunctive
predicate[9]. A predicate of boolean variables in CNF is
calledsingulariff no two clauses contain variables from the
same process. Intuitively, a predicate in CNF is singular if
it is possible to rewrite the predicate such that each variable
occurs in at most one clause and each process hosts at most
one variable. For example, for the computation in Figure 2,
the predicate(x1_x3)^(x2_:x4) is singular but the pred-
icate(x1 _ x2) ^ (x2 _ :x3 _ x4) is not. For convenience,

x
3

x
4

x
2

x
1

p
4

p
3

p
1

p
2

g

fe

h

Figure 2. A distributed computation.

we write a singular predicate ink-CNF (exactlyk literals
per clause) assingulark-CNF predicate. Note that a sin-
gular k-CNF predicate reduces to a conjunctive predicate
whenk is 1.

A relational predicate[18] is of the formx1+x2+ � � �+xn relop k, where eachxi is an integer variable on processpi andrelop 2 f=; <;>;�;�g. Note that our definition of
relational predicates includes equality which was excluded
in the definition by Tomlinson and Garg [18].

The predicate detection problem can be defined under
two modalities, namelypossibly anddefinitely [5], which
roughly correspond to weak and strong predicates [8], re-
spectively. The predicatepossibly : b is true in a com-
putation iff there is a consistent cut that satisfiesb. The
predicatedefinitely : b holds in a computation iffb even-
tually becomes true in all runs of the computation. Pos-
sibly true predicates are useful for detecting bad condi-
tions such as violation of mutual exclusion and absence of
simple majority, whereas definitely true predicates are use-
ful for verifying the occurrence of good conditions such
as commit point of a transaction and election of a leader.
In this paper, unless otherwise stated, we focus on ob-
serving predicates underpossibly modality and omit the
word “possibly” when distinction between the two modal-
ities is not required. For convenience, we abbreviate
the predicatepossibly : (x1 + x2 + � � �+ xn relop k) bypossibly : (relop k). For example,possibly : (= k) is a
shorthand forpossibly : (x1 + x2 + � � �+ xn = k). Like-
wise, we obtaindefinitely : (relop k).
3. Detecting singulark-CNF predicates

First, we prove that the problem of monitoring a sin-
gular 2-CNF predicate is NP-complete. Next, we present
polynomial-time algorithm for solving special cases of the
problem, namely when the computation is either receive-
ordered or send-ordered. Finally, we give algorithms al-
beit exponential that can be used to achieve an exponential
reduction in time over existing techniques for solving the
general version. Our NP-completeness result solves two of
the open problems proposed in [7] and subsumes the earlier
known two NP-completeness results [4, 15]. Our proof and
algorithms use the following observation:

Observation 1 Consider a singulark-CNF predicateb
with clausesCi = x1i _ x2i _ � � � _ xki , 1 � i � m,
wherexji is a boolean variable on processji . Let Gi de-
note the set of processes that host the variables inCi, that
is, Gi = fpji j 1 � j � kg. A necessary and sufficient
condition for the existence of a consistent cut that satisfiesb is the existence ofm pairwise consistent trueeventsei,1 � i � m, such that eachei is an event on some process
in Gi.

The observation is the consequence of the fact that, given
a set of pairwise consistent events—not necessarily from all
processes, it is always possible to find a consistent cut that
passes through all the events in the set.

3.1. NP-completeness result

The problem is in NP because the general problem of
observing an arbitrary boolean expression is in NP [4]. To
prove its NP-hardness, we transform an arbitrary instance
of a variant of the satisfiability problem, which we call
non-monotone 3-SAT problem, to an instance of detecting
a singular 2-CNF predicate.

Non-Monotone 3-SAT problem: Given a formula in CNF
such that (1) each clause has at most three literals, and
(2) each clause with exactly three literals has at least one
positive literal and one negative literal, does there exista
satisfying truth assignment for the formula?

It is easy to prove that the non-monotone 3-SAT prob-
lem is NP-complete in general. This is because, given a
formula in 3-CNF, it can be easily transformed into a for-
mula that satisfies the above-mentioned conditions, which
we call anon-monotone 3-CNF formula. Consider a clause
in a formula in 3-CNF containing only positive literals, sayC = y1 _ y2 _ y3. We replace the clauseC with clausesy1_y2_:z3, y3_z3 and:y3_:z3. A similar substitution
can be done for a clause containing only negative literals.
It is easy to see that resulting formula is a non-monotone
3-CNF formula. Further, the new formula is satisfiable iff
the original formula is satisfiable.

We now prove the NP-hardness of detecting a singular
2-CNF predicate. Consider a non-monotone 3-CNF for-
mula with clausesCi, 1 � i � m. We construct a compu-
tation and a singular 2-CNF predicate defined on consistent
cuts of the computation as follows. Without loss of general-
ity, assume that each clause has at least two literals—a lone
literal in a clause has to be assigned value true in any satis-
fying assignment. For each clauseCi in the formula, there
are two processesp1i andp2i with boolean variablesx1i andx2i , respectively, in the computation. Initially, all variables
evaluate to false. We add the clausex1i _x2i to the predicate.
Now, we describe the local computations of processes in the
computation. There is one true event for each literal in the

y
3

y
1x1

3

x1
1

x1
2p1

2

p1
3

1p
1

y
3

y
1

y
1

1
1

1
2

3
1

2
3

x2
3p2

3

y
2

2
2

x2
2p2

2

y
2

x2
12p

1

y
2

2
1

: true event: false event

e

f

g

Figure 3. The transformation for (y1_y2_:y3)^(:y1 _ :y2) ^ (:y1 _ y2 _ y3).
formula. There are two cases to consider: eitherjCij = 2
or jCij = 3.

Case 1 [jCij = 2]: Let Ci = l1i _ l2i . The local compu-
tations of processesp1i andp2i consist of a true event, cor-
responding to literalsl1i andl2i , respectively, followed by a
false event.

Case 2 [jCij = 3]: Let Ci = l1i _ l2i _ l3i . Without loss
of generality, assume thatl1i is a positive literal andl2i is
a negative literal. The local computation of the processp1i
consists of a true event, corresponding to the literall1i , fol-
lowed by a false event, finally followed by a true event, cor-
responding to the literall2i . The local computation of the
processp2i consists of a true event, corresponding to the lit-
erall3i , followed by a false event.

Given a consistent cut of the computation that satis-
fies the singular 2-CNF predicate, a satisfying assignment
for the corresponding non-monotone 3-CNF formula is ob-
tained by assigning true value to a literal if the cut passes
through the true event corresponding to the literal. To as-
certain that the assignment is consistent, that is, no two con-
flicting literals are assigned value true, we need to ensure
that no two true events corresponding to conflicting literals
(such as eventse andf in Figure 3) are consistent, thereby
guaranteeing that no consistent cut passes through both such
events. To that effect, we add an arrow from the successor
of the true event corresponding to the positive literal (such
as evente) to the true event corresponding to the negative
literal (such as eventf).

We claim that the computation does not have any cy-

cles and two true events are inconsistent iff the correspond-
ing literals are conflicting. The latter equivalence ensures
that if two literals can simultaneously be assigned value
true (such asy1 andy3) then there does exist a consistent
cut that passes through both the corresponding true events
(such as eventse andg in Figure 3). Observe that each ar-
row is from the successor of the true event corresponding
to a positive literal, which is a false event, to the true event
corresponding to the conflicting negative literal. Thus each
external event is either a send event or a receive event but
not both. Further, when a process contains two true events,
the true event corresponding to the positive literal precedes
the true event corresponding to the negative literal. There-
fore if a process contains both send and receive events, the
send event precedes the receive event. As a result, there
is no outgoing edge after an incoming edge on any process,
that is, there are no dependencies between true events due to
transitivity. Thus the computation is free of cycles and two
true events are inconsistent iff the corresponding literals are
conflicting.

It is easy to see that the reduction takes polynomial
time and the non-monotone 3-CNF formula is satisfiable iff
some consistent cut of the computation satisfies the singular
2-CNF predicate.

Theorem 1 Detecting a singular 2-CNF predicate is
NP-complete in general.

Corollary 2 Detecting a conjunction of clauses of the formxi relop xj , where eachxi is an integer variable andrelop2 f<;�; >;�; 6=g, such that no two clauses contain vari-
ables from the same process is NP-complete in general.

The above corollary states that even detecting predicates
such as(x1 < x2)^ (x3 < x4)^ � � �^ (xn�1 < xn), where
eachxi is an integer variable on processpi, is NP-complete
in general. The proof involves a simple transformation from
a singular 2-CNF predicate. Consider a clausexi _ xj . We
define integer variableszi andzj such thatzi is 0 whenxi
is false and is�1 otherwise. Similarly,zj is 0 whenxj is
false and is1 otherwise. It can be easily shown thatxi _ xj
iff zi < zj .
3.2. Efficient algorithm for special cases

In [17], Tarafdar and Garg considered extension of the
Lamport’s happened before model for predicate detection,
calledstrong causality model, that allows events on a pro-
cess to be partially ordered. For this model, they pre-
sented an algorithm for detecting a conjunctive predicate
when either all receive events on every process are totally
ordered or all send events on every process are totally or-
dered (CPDSC - Conjunctive Predicate Detection in Strong
Causality Model). The observation 1 enables us to view
each group as ameta-processwith events on it as partially

ordered. Thus CPDSC algorithm can be applied to solve
our problem in a straightforward fashion. However, as in
their case, either all receive events on every meta-process
should be totally ordered, that is, the computation isreceive-
ordered, or all send events on every meta-process should
be totally ordered, that is, the computation issend-ordered.
We give a brief description of the algorithm in this paper as-
suming that the computation is receive-ordered. The proof
of correctness and other details can be found in [17].

For happened-before model, Garg and Waldecker [9]
gave a polynomial time algorithm for detecting a conjunc-
tive predicate (CPDHB - Conjunctive Predicate Detection
in Happened-Before Model). Note that given a set of true
events, one from each process, either the events in the set
are pairwise consistent or there exist eventse andf in the
set such thate:su

 happened beforef . Since events on a
process are totally ordered in happened-before model,e is
also inconsistent with every event on the process that occurs
afterf . This allows us to eliminatee from consideration in
a scan of the computation from left to right, thereby giving
an efficient algorithm for the predicate detection.

Since events on a meta-process are, in general, not to-
tally ordered, CPDHB algorithm cannot be applied directly.
However, if the computation is receive-ordered then it sat-
isfies property P1 that enables an efficient algorithm to be
developed. Consider a computationE�. We first extend the
partial order� as follows. For two independent eventse
andf on a meta-process such thatf is a receive event, we
add an arrow frome to f . It can be proved that the added
arrows do not create any cycle [17]. We then linearize the
new partial order thus generated to obtain a total order on
all events, say<. It can be verified that the computation
satisfies the following property:

Property P1 Given eventse, f and g such that eventsf
andg are on the same meta-process but eventse andf are
on different meta-processes, we have,(e � f) ^ (f < g)) e � g

Thus given eventse andf on different meta-processes
such thate:su

 � f , by virtue of property P1,e is also
inconsistent, with respect to�, with every eventg that oc-
curs afterf , with respect to<, on the same meta-process
(asf). Since events on a meta-process are totally ordered
with respect to<, we can eliminatee from consideration in
a scan ofE< from left to right. This gives us an efficient
algorithm to detect the given predicate.

3.3. Algorithms for the general case

For the general case, when the computation is neither
receive-ordered nor send-ordered, we construct subsets of
processes with one process from each group and apply
CPDHB algorithm to each such subset. Since there arek

processes in each group, the number of such subsets is at
mostkn=k. Therefore the complexity of the algorithm isO((n2m) � k(n=k)�2), wherem is the maximum number of
events on each process andO((n=k)2m) is the complexity
of invoking CPDHB algorithm once. Note that the expres-
sionk(n=k)�2 attains its maximum value atk = 2 for a fixedn. The worst-case time complexity of the existing tech-
niques isO(mn)making them exponentially worse than our
algorithm.

Alternatively, we can divide events in each group into
a set of chains (of events) that cover all true events in that
group - each true event belongs to at least one chain. We
then construct subsets of chains containing one chain from
each group. Finally, we apply CPDHB algorithm to each
such subset treating each chain in the subset as a separate
process for detection purposes. Note that the minimum
number of chains needed to cover all true events in a group
is upper bounded byk.

4. DetectingPossibly : (= k)
First, we establish the NP-completeness of observingpossibly : (= k) in general. Next, we present a polynomial-

time algorithm for the special case when eachxi can be
incremented or decremented by at most one at each step.

4.1. NP-completeness result

The problem is in NP because the general problem of
observing an arbitrary boolean expression is in NP [4]. To
prove its NP-hardness, we reduce an arbitrary instance of
the subset sum problem [6, problem SP13] to an instance
of detectingpossibly : (= k). The subset sum problem is
defined as follows:

Subset Sum Problem: Given a finite setA, sizes(ai) 2Z+ for eachai 2 A and a positive integerB, does there
exist a subsetA0 � A such that the sum of the sizes of the
elements inA0 is exactlyB?

The reduction is as follows. There is a processpi for
each elementai in the setA that hosts variablexi. The ini-
tial value of eachxi is set to zero. Each process has exactly
one eventei. The final value of eachxi, after executingei
on pi, is s(ai). Finally, k is set toB. It is easy to see that
the reduction takes polynomial time and the required subset
exists iffpossibly : (= k) holds.

Theorem 3 Detectingpossibly : (= k) when eachxi can
be modified (incremented or decremented) by an arbitrary
amount at each step is NP-complete in general.

4.2. Efficient algorithm for the special case

Our algorithm for the special case is based on monitoring
predicatespossibly : (� k) andpossibly : (� k). Efficient
algorithms to observe these predicates can be found else-
where [3, 18].

A consistent cutC 0 is reachablefrom a consistent cutC
iff it is possible to attainC 0 from C by executing zero or
more events. It is easy to see thatC 0 is reachable fromC iffC � C 0. If C 0 can be obtained fromC by executing exactly
one event thenC 0 immediately succeedsC. Moreover,C
immediately precedesC 0.

A sequence of consistent cutsfCigi>0 forms apathin a
computation iff eachCi+1 immediately succeedsCi. Ob-
serve thatC 0 is reachable fromC iff there is a path fromC
toC 0. Moreover, every run is a path in a computation.

Observation 2 Let C andC 0 be consistent cuts such thatC 0 is obtained fromC by executing at most one event. Thenjsum(C 0)� sum(C)j � 1.

For a consistent cutC, let sum(C) denote the value
of the sumx1 + x2 + � � � + xn evaluated atC. Given
a pair of integersu andv, let range(u; v) denote the set[minfu; vg : : :maxfu; vg℄. For example,range(3; 8) =[3 : : : 8℄ = f3; 4; 5; 6; 7; 8g andrange(6; 2) = [2 : : : 6℄ =f2; 3; 4; 5; 6g.

Theorem 4 LetC andC 0 be consistent cuts such that there
is a path� fromC toC 0 in the computation. Then, for eachv, v 2 range(sum(C); sum(C 0)))h9D : D 2 � : sum(D) = vi
Proof: Without loss of generality, assume thatsum(C) �sum(C 0). The proof for the other case, whensum(C) �sum(C 0), is similar and has been omitted. Assume thatv 2 range(sum(C); sum(C 0)), that is,sum(C) � v �sum(C 0). If v = sum(C 0) thenC 0 is the required con-
sistent cut. Otherwisev < sum(C 0). Starting fromC
we follow the path� by executing, one-by-one, zero or
more events inC 0 n C until we reach a consistent cutH
such thatsum(H) � v for the first time. We claim thatsum(H) = v. Assume, by the way of contradiction, thatsum(H) 6= v, that is,sum(H) > v. Note thatH exists
sincesum(C 0) > v. Let G be the consistent cut that im-
mediately precedesH along the path. Note thatG exists
sincesum(C) � v. Moreover,sum(G) < v becauseH
is the first consistent cut withsum(:) at leastv. Thus (1)sum(H) > v implying that sum(H) � v + 1, and (2)sum(G) < v implying thatsum(G) � v � 1. Combining
the two, we havesum(H)� sum(G) � 2, a contradiction.
Thereforesum(H) = v andH is the required consistent
cut.

The central idea behind the algorithm for detectingpossibly : (= k) is to find a pair of consistent cutsC

andC 0, if they exist, such thatC 0 is reachable fromC
andk lies in range(sum(C); sum(C 0)). Theorem 4 then
guarantees the existence of a consistent cut that satisfiesx1+x2+� � �+xn = k. The consistent cutC is always set to
the initial consistent cutE:?. The advantage is that every
consistent cut of a computation is reachable from the initial
consistent cut. The next lemma gives sufficient conditions
for possibly : (= k) to hold in a computation.

Lemma 5 LetE� be a computation. Then,(sum(E:?) � k) ^ (possibly : (� k)))possibly : (= k), and(sum(E:?) � k) ^ (possibly : (� k)))possibly : (= k)
Proof: Assume that the conjunction(sum(E:?) � k) ^(possibly : (� k)) holds. Using Theorem 4, withC =E:? and C 0 = “some consistent cut withsum(:) at
leastk”, we can deduce that there is a consistent cutD
such thatsum(D) = k. Observe thatC 0 exists be-
causepossibly : (� k) is true. Further, Theorem 4 is ap-
plicable sinceC 0 is reachable fromC and sum(C) =sum(E:?) � k � sum(C 0) implying that k 2range(sum(C); sum(C 0)). Thuspossibly : (= k) holds
and, therefore,(sum(E:?) � k) ^ (possibly : (� k))
implies possibly : (= k). Likewise, (sum(E:?) � k) ^(possibly : (� k)) impliespossibly : (= k).

The following lemma presents sufficient conditions fordefinitely : (= k) to hold in a computation. The proof is
similar to the proof of Lemma 5 and therefore has been
omitted.

Lemma 6 LetE� be a computation. Then,(sum(E:?) � k) ^ (definitely : (� k)))definitely : (= k), and(sum(E:?) � k) ^ (definitely : (� k)))definitely : (= k)
Finally, the next theorem gives the necessary and suf-

ficient conditions for the predicatespossibly : (= k) anddefinitely : (= k) to hold in a computation.

Theorem 7 LetE� be a computation. Then,

(1) possibly : (= k) �(sum(E:?) � k) ^ (possibly : (� k)) W(sum(E:?) � k) ^ (possibly : (� k)), and

(2) definitely : (= k) �(sum(E:?) � k) ^ (definitely : (� k)) W(sum(E:?) � k) ^ (definitely : (� k))

Proof: (1) Follows from the fact thatpossibly : (= k) im-
pliespossibly : (� k) andpossibly : (� k), the disjunction(sum(E:?) � k) _ (sum(E:?) � k) is a tautology and
Lemma 5.

(2) Follows from the fact thatdefinitely : (= k) impliesdefinitely : (� k) and definitely : (� k), the disjunction(sum(E:?) � k) _ (sum(E:?) � k) is a tautology and
Lemma 6.

Observe that the final consistent cut is reachable from
every consistent cut of a computation. Thus an alternate set
of necessary and sufficient conditions forpossibly : (= k)
anddefinitely : (= k) based on final consistent cut can be
defined.

4.3. Applications

Recall thatpossibly distributes over disjunction. Some
examples of predicates that can be expressed as disjunction
of predicates of the formx1 + x2 + � � �+ xn exactly equalsk are:� absence of simple majority:v1+v2+ � � �+vn = n=2,n even.� absence of two-third majority:(v1+v2+� � �vn > bn3
)^(v1+v2+� � � vn < d 2n3 e) �Wk2A(v1 + v2 + � � �+ vn = k),

whereA = [bn3
+ 1 : : : d 2n3 e � 1℄.� exactlyk tokens:token1 + token2 + � � �+ tokenn = k.

Additionally, the symmetric predicates, defined as fol-
lows, can now be efficiently monitored.

Symmetric Predicates:A predicate ofn boolean variablesp(x1; x2; : : : ; xn) is calledsymmetriciff it is invariant under
any permutation of its variables. Some examples of sym-
metric predicates arex^ y, x _ y and(x^ y)_ (:x ^:y).

The necessary and sufficient condition for a predicatep(x1; x2; : : : ; xn) to be symmetric is that it may be spec-
ified by a set of numbersfa1; a2; : : : ; amg, where0 �ai � n and m � n + 1, such that it assumes value
true when and only when, for somei, exactlyai of the
variables are true. For example, the symmetric predicate(x _ y _ z)^ (:x _ :y _ :z) is logically equivalent to the
predicate(x + y + z = 1) _ (x + y + z = 2), where false
and true are represented by0 and1, respectively, for the pur-
poses of evaluatingx+y+z. The proof of this result can be
found elsewhere [12, page 174]. Since,possibly distributes
over disjunction,possibly : b whenb is a symmetric pred-
icate can be efficiently computed using Theorem 7. Some

examples of symmetric predicates that arise in distributed
systems are:� exclusive-or of local predicates:x1�x2�� � ��xn � Wk is odd

(x1+x2+ � � �+xn = k).� not allxi’s are equal:(x1 _ x2 _ � � � _ xn) ^ (:x1 _ :x2 _ � � � _ :xn) �Wk2A(x1+x2+� � �+xn = k), whereA = [1 : : : (n�1)℄.
5. Conclusion

Predicate detection is a fundamental problem in asyn-
chronous distributed systems. This problem arises in var-
ious contexts such as design, testing and debugging, and
fault-tolerance of distributed programs. In this paper, we
solve the previously open problems in predicate detection
proposed in [7]. In particular, we establish that the prob-
lem of determining whether there exists a consistent cut
of a computation that satisfies a singulark-CNF predi-
cate is NP-complete in general whenk is at least 2. Our
result bridges the gap between the known tractability [9]
and intractability [3, 15] results in detecting conjunction
of clauses (see Figure 1). Furthermore, the result can be
used to establish the intractability of other related interest-
ing problems (see Corollary 2). A polynomial-time algo-
rithm to find the consistent cut, if it exists, that satisfies a
singulark-CNF predicate for special cases is provided. We
also give algorithms albeit exponential that can be used to
achieve an exponential reduction in time over existing tech-
niques for solving the general version.

Furthermore, we present an algorithm to determine
whether there exists a consistent cut of a computation for
which the sumx1+x2+ � � �+xn exactly equals some con-
stantk, where eachxi is an integer variable on processpi
such that it is incremented or decremented by at most one
at each step. As a corollary, any symmetric global predicate
on boolean variables can now be observed. Additionally,
the problem is proved to be NP-complete if eachxi can be
changed by an arbitrary amount at each step. Our results
build upon and, in some sense, complete the work described
in [3, 18].

References

[1] L. Bouge. Repeated Snapshots in Distributed Systems with
Synchronous Communication and their Implementation in
CSP.Theoretical Computer Science, 49:145–169, 1987.

[2] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems.ACM
Transactions on Computer Systems, 3(1):63–75, Feb. 1985.

[3] C. Chase and V. K. Garg. On Techniques and their Lim-
itations for the Global Predicate Detection Problem. In
Proceedings of the Workshop on Distributed Algorithms
(WDAG), pages 303–317, France, Sept. 1995.

[4] C. Chase and V. K. Garg. Detection of Global Predicates:
Techniques and their Limitations.Distributed Computing,
11(4):191–201, 1998.

[5] R. Cooper and K. Marzullo. Consistent Detection of Global
Predicates. InProceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, pages 163–173, Santa
Cruz, California, 1991.

[6] M. R. Garey and D. S. Johnson.Computer and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man and Company, New York, 1991.

[7] V. K. Garg. Observation and Control for Debugging Dis-
tributed Computations. InProceedings of the International
Workshop on Automated Debugging (AADEBUG), pages 1–
12, Linköping, Sweden, 1997. Keynote Presentation.

[8] V. K. Garg and B. Waldecker. Detection of Unstable Predi-
cates. InProceedings of the ACM/ONR Workshop on Paral-
lel and Distributed Debugging, Santa Cruz, CA, May 1991.

[9] V. K. Garg and B. Waldecker. Detection of Weak Unstable
Predicates in Distributed Programs.IEEE Transactions on
Parallel and Distributed Systems, 5(3):299–307, Mar. 1994.

[10] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Effi-
cient Distributed Detection of Conjunctions of Local Pred-
icates in Asynchronous Computations. InProceedings of
the 8th IEEE Symposium on Parallel and Distributed Pro-
cessing (SPDP), pages 588–594, New Orleans, Oct. 1996.

[11] R. Jegou, R. Medina, and L. Nourine. Linear Space Al-
gorithm for On-line Detection of Global Predicates. In
J. Desel, editor,Proceedings of the International Workshop
on Structures in Concurrency Theory (STRICT). Springer-
Verlag, 1995.

[12] Z. Kohavi. Switching and Finite Automata Theory.
McGraw-Hill, 2nd edition, 1978.

[13] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System.Communications of the ACM (CACM),
21(7):558–565, July 1978.

[14] M. Spezialetti and P. Kearns. Efficient Distributed Snap-
shots. InProceedings of the 6th International Conference on
Distributed Computing Systems (ICDCS), pages 382–388,
1986.

[15] S. D. Stoller and F. Schnieder. Faster Possibility Detec-
tion by Combining Two Approaches. InProceedings of
the Workshop on Distributed Algorithms (WDAG), France,
Sept. 1995.

[16] S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. Efficient De-
tection of Global Properties in Distributed Systems Using
Partial-Order Methods. InProceedings of the 12th Inter-
national Conference on Computer-Aided Verification (CAV),
volume 1855 ofLecture Notes in Computer Science, pages
264–279. Springer-Verlag, July 2000.

[17] A. Tarafdar and V. K. Garg. Addressing False Causality
while Detecting Predicates in Distributed Programs. InPro-
ceedings of the 9th International Conference on Distributed
Computing Systems (ICDCS), pages 94–101, Amsterdam,
The Netherlands, May 1998.

[18] A. I. Tomlinson and V. K. Garg. Monitoring Functions on
Global States of Distributed Programs.Journal of Parallel
and Distributed Computing, 41(2):173–189, Mar. 1997.

