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Abstract analyzing the executions of distributed programs. For ex-

ample, when debugging a distributed mutual exclusion al-

Monitoring of global predicates is a fundamental prob- gorithm, detecting concurrent accesses to a shared resourc
lem in asynchronous distributed systems. This problemis useful. In a leader election protocol, it is necessary to
arises in various contexts such as design, testing and debugensure that processes agree on the current leader. Peedicat
ging, and fault-tolerance of distributed programs. In this detection is also a natural abstraction for monitoring dis-
paper, we establish that the problem of determining whethertributed systems for various reasons such as fault-toberan
there exists a consistent cut of a computation that satiafies For example, on detecting a deadlock, one of the processes
predicate ink-CNF, k > 1, in which no two clauses contain must be aborted and restarted.

variables from the same process is NP-complete in general. -~ An asynchronous distributed system is characterized by
A polynomial-time algorithm to find the consistent cut, if it |gck of global clock, lack of shared memory, and unbounded
eXiStS, that satisfies the predicate for SpeCial cases is pro relative processor Speeds and messages de'ays_ Conse-
vided. We also give algorithms albeit exponential that can quently, it is impossible to determine the exact order in
be used to achieve an exponential reduction in time overwhich the events on different processes were executed; the
existing techniques for solving the general version.  events can only be partially ordered [13]. This leads to the
Furthermore, we present an algorithm to determine combinatorial explosion problem—the number of possible
whether there exists a consistent cut of a Computatlon forstates the System passed through are, in generaL exponen-
which the sunzy + 25 + - - - + z,, exactly equals some con-  tjal, thereby making the predicate detection problem non-
stantk, Whe_re_ eacly; is an integer variable on procegs trivial. Chase and Garg [3] proved that detecting a predicat
such thatit is incremented or decremented by at most one afn 3-CNE is NP-complete in general. Stoller and Schneider
each step. As a corollary, any symmetric global predicate [15] establish the NP-completeness of detecting even a 2-

on boolean variables such as absence of simple majority|ocal conjunctive predicate (each conjunct is a function on
and exclusive-or of local predicates can now be detected.yariables of at most two processes) in general.

Additionally, the problem is proved to be NP-complete if
eachz; can be changed by an arbitrary amount at each
step.

Our results solve the previously open problems in predi-
cate detection proposed in [7] and bridge the gap between
the known tractability and intractability results.

Nonetheless, the problem can be solved efficiently for
several useful classes of predicates such as stable [2],1, 14
conjunctive [9, 10], linear and semi-linear [4], and rela-
tional [18] predicates. Several fast but exponential algo-
rithms have also been developed for solving the general ver-
sion of the problem [5, 11, 16]. Stoller and Schneider [15]
give an algorithm for detecting a predicate satisfyingaiert
structure by reducing the problem to multiple predicate de-
1. Introduction tection problems each of which is solvable using Garg and
Waldecker's algorithm for monitoring a conjunctive predi-

Correct non-trivial distributed programs are hard to cate [9].
write. Testing and debugging is an important and feasible  Tarafdar and Garg [17] considered extension of the Lam-
way to ensure their reliability and dependability. To that port’s happened-before model [13] for predicate detection
end, predicate detection problem is a useful abstraction fo that allows events on a process to be partially ordered. They
~supported in part by the NSF Grants ECS-9907213, CCR-982054 proved that detecting even a conjunctive predicate becomes

TRW faculty assistantship award, a General Motors Fellggysand an NP-complete, in genef‘?‘lv in this merI. However, t_hey
IBM grant. solved the problem efficiently for special cases when either




arbitrary predicate
NP-complete{4]

k-local conjunctive predicate
NP-complete when k > {15]

l

predicate in k-CNF
NP-complete when k > 4]

I

singular k—-CNF predicate

relational predicats

|

relop¢ {<,€,> 2}
polynomial time algorithn{3,18]

relop ='=
NP-complete when k > 1

polynomial-time algorithm fo
special cases

[this paper]

|

conjunctive predicate
polynomial-time algorithni9]

NP-complete for arbitrary
increments/decrements

polynomial-time algorithm for
increments/decrements by at most|1

[this paper]

Figure 1. Known results in predicate detec-
tion.

all receive events on every process are totally ordered or al
send events on every process are totally ordered.

Our contributions in this paper are as follows. We solve
the previously open problems in predicate detection pro-
posed in [7]. In Section 3, we establish that the problem of
determining whether there exists a consistent cut of a com-
putation that satisfies a predicatethtCNF such that no two
clauses contain variables from the same process, called sin
gular k-CNF predicate, is NP-complete in general whien

2. Model and notation

In this section, we formalize the notion of distributed
computation, consistent cut and global predicate.

2.1. Distributed computations

A distributed system consists of a set of procesBes
{p1,p2,...,pn}. Each process executes a predefined pro-
gram. Processes do not share any clock or memory; they
communicate and synchronize with each other by send-
ing messages over a set of channels. The messages could
be point-to-point, broadcast or multicast. We assume that
channels are reliable, that is, messages are not lostedilter
or spuriously introduced into a channel. We do not assume
FIFO channels.

A local computatiorof a process is described by a se-
guence of events that transforms thitial state of the pro-
cess to dinal state At each step, thiocal stateof a process
is captured by the initial state and the sequence of events
that have been executed up to that step. We assume that
there is a fictitious event for each process, callednitel
event that initializes the state of the process. The initial
event occurs before any other event on the process.LLet
and T; denote the initial and final event, respectively, on
procesy;.

Each event is aend evenfareceive evenbr aninternal
event An event can be a send event as well as a receive
event. An event causes the local state of a process to be
updated. Additionally, a send event causes a message or
a set of messages to be sent and a receive event causes a
message or a set of messages to be received. We assume
that all events are distinct. We use lowercase lettensd f

is at least 2. Our result bridges the gap between the knOWI"to represent events. Letproc denote the process on which

tractability [9] and intractability [3, 15] results in detiéing

conjunction of clauses (see Figure 1) and subsumes the tWQ, o denoted by.pred ande. suce, respectively
earlier known NP-completeness results. Furthermore, the ' ’ ' '

result can be used to establish the intractability of otker r
lated interesting problems. A polynomial-time algorithon t
find the consistent cut, if it exists, that satisfies a singula
k-CNF predicate for special cases is provided. We also give

algorithms albeit exponential that can be used to achieve an

exponential reduction in time over existing techniques for
solving the general version.

Moreover, in Section 4, we present an algorithm to deter-

evente occurs. The previous and next eventg @ e.proc

if they exist.
We denote the order of events on procgsby <, and let
<p= Uj<;<n <p:. Further, leta,; be the relation induced
by messages, that isiys = {(s,r) | sis a send event and

r is the corresponding receive evént

A distributed computatiois modeled by an irreflexive
partial order on the set of events of the underlying progeam’
execution. We usé’ to denote a distributed computation
with the set of event& and the irreflexive partial ordex
(read as “precedes”). We do not assume that the distributed

mine whether there exists a consistent cut of a computationcomputation iscomplete that is, every message that was
for which the sume; + 25 + - - - + z,, exactly equals some  sent has been received. LBt and E.T denote the set
constantk, where eachx; is an integer variable on process of initial and final events, respectively. We assume that
p; such thatitis incremented or decremented by at most one< includes<p and<iy, and an initial event precedes any
at each step. As a corollary, any symmetric global predicateother event, that is, for each;, € E.1 ande € E\ E. L,

on boolean variables can now be observed. Additionally, L; < e, where *\” denotes the set difference operation. The
the problem is proved to be NP-complete if eaghtan be irreflexive partial order could be (but not restricted to) the
changed by an arbitrary amount at each step. Our resultshappened-befonelation defined by Lamport [13].

build upon and, in some sense, complete the work described A run of a distributed computatio’, is some total
in[3, 18]. order of events inE consistent with the partial ordex.



Observe that every run is a distributed computation whose D X, h
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events are totally ordered. We use the terms “distributed
computation” and “computation” interchangeably. o X, f
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Intuitively, a cut represents the global state of a dis-
tributed system. Aylobal states a collection of local states,

one from each process. Equivalentlyg of a computation Figure 2. A distributed computation.
E_ is a set of event§’, whereE.L C (, such that, for
each event in C, e.pred is also inC (if it exists). we write a singular predicate ib-CNF (exactlyk literals

Some cuts or global states cannot arise in the execu-er clause) asing_ulark-CNF predicate Note t_hat a Sir)-
tion of the distributed system. Only those cuts that respectgular k-CNF predicate reduces to a conjunctive predicate

causality can possibly occur. A cGt is consistentff, for whenk is 1.
each event in C, all its preceding events are also (h A relational predicatg18] is of the formz; + xo +- - - +
Formally, z, relop k, where eaclz; is an integer variable on process
p; andrelop € {=, <, >, <, >}. Note that our definition of
C'is a consistent cut of - 2 (E.LCC) A relational predicates includes equality which was exatlide
Ve, fu(e<fAN(FEC) = e€C) in the definition by Tomlinson and Garg [18].

The predicate detection problem can be defined under

Observe that every consistent cut is a computation andtWo modalities, namelyossibly anddefinitely [S], which
vice versa. A cut passes throughn event on process® roughly correspond to weak and strong predicates [8], re-

iff e is the last event itP to be contained iif’. Formally, spectively. The predicatgossibly: b is true in a com-
putation iff there is a consistent cut that satisftesThe

predicatedefinitely: b holds in a computation ifb even-
tually becomes true in all runs of the computation. Pos-
sibly true predicates are useful for detecting bad condi-
tions such as violation of mutual exclusion and absence of
simple majority, whereas definitely true predicates are use
ful for verifying the occurrence of good conditions such
as commit point of a transaction and election of a leader.
In this paper, unless otherwise stated, we focus on ob-
serving predicates undemossibly modality and omit the
word “possibly” when distinction between the two modal-
ities is not required. For convenience, we abbreviate
the predicatepossibly: (x1 + z2 + -+ - + z,, relop k) by

. possibly: (relop k). For examplepossibly: (= k) is a
2.3. Global predicates shorthand fopossibly: (z1 + z2 + -+ + z, = k). Like-
wise, we obtainlefinitely : (relop k).

C passes through = (eeC) A
(e¢ ET = essucc¢ C)

Two events areonsistentf there exists a consistent cut
that passes through both the events, otherwise thejnare
consistent It can be verified that eventsand f are incon-
sistent iff eithere.succ x f or f.succ < e. Finally, two
eventse and f areindependeniff they are incomparable
with respect to<. For example, in Figure 2, evenfsandh
are consistent whereas eveatandh are not. Also, events
f andg are independent whereas evejigndh are not.

A global predicatg(or simply a predicate) is a boolean-
valued function defined on a cut or global state. A global - . .
predicate idocal iff it is a function of variables of a sin- 3. Detecting singulark-CNF predicates
gle process. Given a set of local predicates, one for each
process, we defineue eventss those events for which the First, we prove that the problem of monitoring a sin-
relevant variable evaluates to true. In this paper, wheneve gular 2-CNF predicate is NP-complete. Next, we present
it is appropriate, we encircle the true events in our figures. polynomial-time algorithm for solving special cases of the

A conjunction of local predicates is callebnjunctive ~ problem, namely when the computation is either receive-
predicate[9]. A predicate of boolean variables in CNF is ordered or send-ordered. Finally, we give algorithms al-
calledsingulariff no two clauses contain variables from the beit exponential that can be used to achieve an exponential
same process. Intuitively, a predicate in CNF is singular if reduction in time over existing techniques for solving the
it is possible to rewrite the predicate such that each vigiab general version. Our NP-completeness result solves two of
occurs in at most one clause and each process hosts at mo§te open problems proposed in [7] and subsumes the earlier
one variable. For example, for the computation in Figure 2, known two NP-completeness results [4, 15]. Our proof and
the predicatéz; V z3) A (z2 V —z4) is singular but the pred- ~ algorithms use the following observation:
icate(z1 V x2) A (22 V —x3 V z4) iS NOt. FOr convenience,



Observation 1 Consider a singulark-CNF predicateb
with clausesC; = z! va?2v...vzh 1 < i < m,
wherez] is a boolean variable on proceds Let G; de-
note the set of processes that host the variables;irthat

is, G; = {p! |1 < j < k}. Anecessary and sufficient
condition for the existence of a consistent cut that sasisfie
b is the existence oh. pairwise consistent trueventse;,

1 <1 < m, such that eacl; is an event on some process
in G;.

The observation is the consequence of the fact that, given
a set of pairwise consistent events—not necessarily from al
processes, it is always possible to find a consistent cut that
passes through all the events in the set.

3.1. NP-completeness result

o . false event @: true event

The problem is in NP because the general problem of
observing an arbitrary boolean expression is in NP [4]. To
prove its NP-hardness, we transform an arbitrary instance  Figure 3. The transformationfor  (y1VyaV—ys)A
of a variant of the satisfiability problem, which we call (=y1 V —y2) A (—y1 V ya V y3).
non-monotone 3-SAT probleno an instance of detecting
a singular 2-CNF predicate.

formula. There are two cases to consider: eiff@g = 2
Non-Monotone 3-SAT problem: Given a formulain CNF ~ or [C;i| = 3.
such that (1) each clause has at most three literals, and
(2) each clause with exactly three literals has at least oneCase 1 [C;| = 2]: LetC; = I} v I?. The local compu-
positive literal and one negative literal, does there eaist tations of processes; andp? consist of a true event, cor-
satisfying truth assignment for the formula? responding to literalg} andi?, respectively, followed by a
false event.

It is easy to prove that the non-monotone 3-SAT prob-
lem is NP-complete in general. This is because, given aCase 2 [C;| = 3]: LetC; = I} v I? v I?. Without loss
formula in 3-CNF, it can be easily transformed into a for- of generality, assume that is a positive literal and? is
mula that satisfies the above-mentioned conditions, whicha negative literal. The local computation of the procgss
we call anon-monotone 3-CNF formul&onsider a clause ~ consists of a true event, corresponding to the litgrafol-
in a formula in 3-CNF containing only positive literals, say lowed by a false event, finally followed by a true event, cor-
C = y1 Vys Vys. We replace the clausé with clauses  responding to the literaf. The local computation of the
y1 VY2 V23, y3 V zz and—ys V —z3. A similar substitution proces? consists of a true event, corresponding to the lit-
can be done for a clause containing only negative literals. erall?, followed by a false event.
It is easy to see that resulting formula is a non-monotone
3-CNF formula. Further, the new formula is satisfiable iff Given a consistent cut of the computation that satis-
the original formula is satisfiable. fies the singular 2-CNF predicate, a satisfying assignment

We now prove the NP-hardness of detecting a singular for the corresponding non-monotone 3-CNF formula is ob-
2-CNF predicate. Consider a non-monotone 3-CNF for- tained by assigning true value to a literal if the cut passes
mula with clause€’;, 1 < i < m. We construct a compu- through the true event corresponding to the literal. To as-
tation and a singular 2-CNF predicate defined on consistentcertain that the assignment is consistent, that is, no twe co
cuts of the computation as follows. Without loss of general- flicting literals are assigned value true, we need to ensure
ity, assume that each clause has at least two literals—a lonéhat no two true events corresponding to conflicting literal
literal in a clause has to be assigned value true in any satis{such as eventsand f in Figure 3) are consistent, thereby
fying assignment. For each clauégin the formula, there  guaranteeing that no consistent cut passes through bdth suc
are two processegs andp? with boolean variables} and events. To that effect, we add an arrow from the successor
z?, respectively, in the computation. Initially, all variais| of the true event corresponding to the positive literal fsuc
evaluate to false. We add the clauge/ z? to the predicate.  as event) to the true event corresponding to the negative
Now, we describe the local computations of processes in theliteral (such as evenf).
computation. There is one true event for each literal in the  We claim that the computation does not have any cy-



cles and two true events are inconsistent iff the correspond ordered. Thus CPDSC algorithm can be applied to solve
ing literals are conflicting. The latter equivalence ensure our problem in a straightforward fashion. However, as in
that if two literals can simultaneously be assigned value their case, either all receive events on every meta-process
true (such ag; andys;) then there does exist a consistent should be totally ordered, thatis, the computatiaeczive-
cut that passes through both the corresponding true eventsrdered or all send events on every meta-process should
(such as eventsandg in Figure 3). Observe that each ar- be totally ordered, that is, the computatiorsend-ordered
row is from the successor of the true event correspondingWe give a brief description of the algorithm in this paper as-
to a positive literal, which is a false event, to the true éven suming that the computation is receive-ordered. The proof
corresponding to the conflicting negative literal. Thusteac of correctness and other details can be found in [17].
external event is either a send event or a receive event but For happened-before model, Garg and Waldecker [9]
not both. Further, when a process contains two true eventsgave a polynomial time algorithm for detecting a conjunc-
the true event corresponding to the positive literal presed tive predicate (CPDHB - @njunctive_Pedicate_[tection
the true event corresponding to the negative literal. There in Happened-Bfore Model). Note that given a set of true
fore if a process contains both send and receive events, thevents, one from each process, either the events in the set
send event precedes the receive event. As a result, therare pairwise consistent or there exist evantad f in the
is no outgoing edge after an incoming edge on any processset such that.succ happened beforg¢. Since events on a
that is, there are no dependencies between true events due forocess are totally ordered in happened-before medil,
transitivity. Thus the computation is free of cycles and two also inconsistent with every event on the process that sccur
true events are inconsistent iff the corresponding liteaae after f. This allows us to eliminate from consideration in
conflicting. a scan of the computation from left to right, thereby giving
It is easy to see that the reduction takes polynomial an efficient algorithm for the predicate detection.
time and the non-monotone 3-CNF formula is satisfiable iff ~ Since events on a meta-process are, in general, not to-
some consistent cut of the computation satisfies the singulatally ordered, CPDHB algorithm cannot be applied directly.
2-CNF predicate. However, if the computation is receive-ordered then it sat-
isfies property P1 that enables an efficient algorithm to be
Theorem 1 Detecting a singular 2-CNF predicate is developed. Consider a computatibn. We first extend the
NP-complete in general. partial order< as follows. For two independent everts
and f on a meta-process such thats a receive event, we
Corollary 2 Detecting a conjunction of clauses of the form add an arrow frone to f. It can be proved that the added
z; relop z;, where eachr; is an integer variable andelop arrows do not create any cycle [17]. We then linearize the
€ {<, <,>,>,#}, such that no two clauses contain vari- new partial order thus generated to obtain a total order on
ables from the same process is NP-complete in general.  all events, say. It can be verified that the computation

satisfies the following property:
The above corollary states that even detecting predicates

suchagz; < z2) A (23 < z4)A---A(Ty_1 < T,), Where Property P1 Given eventg, f andg such that eventg
eachz; is an integer variable on procegs is NP-complete  andg are on the same meta-process but everaad f are
in general. The proof involves a simple transformation from on different meta-processes, we have,

a singular 2-CNF predicate. Consider a claus® z;. We

define integer variables; andz; such thatz; is 0 whenz; e<fIN(f<g) = e<g

is false and is-1 otherwise. Similarlyz; is 0 whenz; is

false and is otherwise. It can be easily shown thatv z; Thus given events and f on different meta-processes

iff z; < zj. such thate.succ < f, by virtue of property Ple is also
inconsistent, with respect te, with every eveny that oc-

3.2. Efficient algorithm for special cases curs afterf, with respect to<, on the same meta-process

(asf). Since events on a meta-process are totally ordered

In [17], Tarafdar and Garg considered extension of the with respect to<, we can e_Iiminate_fror_n considerati(_)n_ in
Lamport's happened before model for predicate detection,@ S¢an of£< from left to right. This gives us an efficient
calledstrong causality modethat allows events on a pro-  &lgorithm to detect the given predicate.
cess to be partially ordered. For this model, they pre- )
sented an algorithm for detecting a conjunctive predicate 3-3. Algorithms for the general case
when either all receive events on every process are totally
ordered or all send events on every process are totally or- For the general case, when the computation is neither
dered (CPDSC - @njunctive Pedicate [®tection in $rong receive-ordered nor send-ordered, we construct subsets of
Causality Model). The observation 1 enables us to view processes with one process from each group and apply
each group as meta-processvith events on it as partially = CPDHB algorithm to each such subset. Since therekare



processes in each group, the number of such subsets is at.2. Efficient algorithm for the special case

mostk"™/*. Therefore the complexity of the algorithm is
O((n*m) - k(»/%)~2) wherem is the maximum number of
events on each process afd(n/k)?m) is the complexity

Our algorithm for the special case is based on monitoring
predicate®ossibly: (< k) andpossibly: (> k). Efficient

of invoking CPDHB algorithm once. Note that the expres- algorithms to observe these predicates can be found else-

sionk (/%) =2 attains its maximum value &t= 2 for a fixed

n. The worst-case time complexity of the existing tech-

niques ig0(m™) making them exponentially worse than our
algorithm.

where [3, 18].

A consistent cut’’ is reachablefrom a consistent cuf’
iff it is possible to attainC’ from C' by executing zero or
more events. Itis easy to see tld4tis reachable frond iff

Alternatively, we can divide events in each group into € C C'. If C' can be obtained fror@’ by executing exactly
a set of chains (of events) that cover all true events in thatone event ther©” immediately succeeds. Moreover,C'
group - each true event belongs to at least one chain. Weimmediately precedes’.
then construct subsets of chains containing one chain from A sequence of consistent c{t§’; };-o forms apathin a
each group. Finally, we apply CPDHB algorithm to each computation iff eactC;,; immediately succeeds;. Ob-
such subset treating each chain in the subset as a separag€rve that" is reachable frond’ iff there is a path fronC

process for detection purposes.

Note that the minimumto C'. Moreover, every run is a path in a computation.

number of chains needed to cover all true events in a groupgpservation 2 Let C and ¢! be consistent cuts such that

is upper bounded by.

4. DetectingPossibly : (= k)

C' is obtained fronC by executing at most one event. Then
|sum(C') — sum(C)| < 1.

For a consistent cuf’, let sum(C) denote the value
of the sumz; + z2 + -+ + z,, evaluated alC'. Given
a pair of integera: andv, let range(u,v) denote the set

First, we establish the NP-completeness of observing|min{u,v}...max{u,v}]. For examplerange(3,8) =

possibly: (= k) in general. Next, we present a polynomial-
time algorithm for the special case when eaghcan be

incremented or decremented by at most one at each step.

4.1. NP-completeness result

The problem is in NP because the general problem of
observing an arbitrary boolean expression is in NP [4]. To

[3...8] = {3,4,5,6,7,8} andrange(6,2) = [2...6] =
12,3,4,5,6}.

Theorem 4 LetC andC’ be consistent cuts such that there
is a pathm fromC to C" in the computation. Then, for each
'U,

v € range(sum(C), sum(C")) =
(3D : D € w: sum(D) =

v)
prove its NP-hardness, we reduce an arbitrary instance ofProof: Without loss of generality, assume ttsatm (C) <
the subset sum problem [6, problem SP13] to an instancesum(C'). The proof for the other case, wheam(C) >

of detectingpossibly: (= k). The subset sum problem is
defined as follows:

Subset Sum Problem: Given a finite set4, sizes(a;) €
Z7* for eacha; € A and a positive integeB, does there
exist a subseft’ C A such that the sum of the sizes of the
elementsind’ is exactlyB?

The reduction is as follows. There is a procesdor
each elemend; in the setA that hosts variable;. The ini-

tial value of each; is set to zero. Each process has exactly sincesum(C)

one event;. The final value of each;, after executing;
onp;, is s(a;). Finally, k is set toB. It is easy to see that

the reduction takes polynomial time and the required subset,

exists iff possibly : (= k) holds.

Theorem 3 Detectingpossibly: (= k) when eache; can

sum/(C"), is similar and has been omitted. Assume that
v € range(sum(C),sum(C")), that is,sum(C) < v <
sum(C"). If v = sum(C") thenC' is the required con-
sistent cut. Otherwise < sum/(C'). Starting fromC
we follow the pathm by executing, one-by-one, zero or
more events irC’ \ C until we reach a consistent ci
such thatsum(H) > v for the first time. We claim that
sum(H) = v. Assume, by the way of contradiction, that
sum(H) # v, thatis,sum(H) > v. Note thatH exists
sincesum(C') > v. LetG be the consistent cut that im-
mediately precede# along the path. Note tha¥ exists
< v. Moreover,sum(G) < v becaused
is the first consistent cut witbum(.) at leastv. Thus (1)
m(H) > v implying thatsum(H) > v + 1, and (2)
um(G) < v implying thatsum(G) < v — 1. Combining
the two, we haveum(H) — sum/(G) > 2, a contradiction.
Thereforesum(H) = v and H is the required consistent
cut. |

be modified (incremented or decremented) by an arbitrary  The central idea behind the algorithm for detecting

amount at each step is NP-complete in general.

possibly: (= k) is to find a pair of consistent cut€



and C’, if they exist, such that?’ is reachable fronC' Proof: (1) Follows from the fact thapossibly: (= k) im-
andk lies inrange(sum(C), sum(C")). Theorem 4 then  pliespossibly: (< k) andpossibly: (> k), the disjunction
guarantees the existence of a consistent cut that satisfiegsum(E.L) < k) V (sum(E.L) > k) is a tautology and
z1+2z2+---+x, = k. The consistent cut is always setto =~ Lemma 5.
the initial consistent cutl. L. The advantage is that every
consistent cut of a computation is reachable from the initia (2) Follows from the fact thatlefinitely: (= k) implies
consistent cut. The next lemma gives sufficient conditions definitely: (< k) and definitely: (> k), the disjunction
for possibly : (= k) to hold in a computation. (sum(FE.L) < k) V (sum(F.L) > k) is a tautology and

Lemma 6. ]
Lemma5 Let E; be a computation. Then,

Observe that the final consistent cut is reachable from

(sum(E.L) < k) A (possibly: (> k)) every consistent cut of a computation. Thus an alternate set
possibly: (= k), and of necessary and sufficient conditions farssibly: (= k)
anddefinitely: (= k) based on final consistent cut can be
(sum(E.L) > k) A (possibly: (< k)) defined.
possibly: (= k)

o 4.3. Applications
Proof: Assume that the conjunctiq@um(E.L) < k) A

(possibly: (> k)) holds. Using Theorem 4, witld' =
E.L and C' = “some consistent cut withsum(.) at
leastk”, we can deduce that there is a consistent but
such thatsum(D) = k. Observe thatC' exists be-
causepossibly: (> k) is true. Further, Theorem 4 is ap-
plicable sinceC’ is reachable fromC and sum(C) =
sum(E.L) < k < sum(C') implying that & €

Recall thatpossibly distributes over disjunction. Some
examples of predicates that can be expressed as disjunction
of predicates of the forma; + =5 + - - - + z,, exactly equals
k are:

e absence of simple majority; +vs + - - -+ v, = n/2,

even.
range(sum(C), sum(C")). Thuspossibly: (= k) holds nev
f'ind,_ therefore,(sum(E.L)_ < k) A (possibly: (> k)) e absence of two-third majority:
implies possibly: (= k). Likewise, (sum(E.L) > k) A (vi+vat-vp > |2 A (01 4va+- v, < [22]) =
(possibly: (< k)) impliespossibly: (= k). ] V (v1 +v2+---+v, = k),
keA
The following lemma presents sufficient conditions for whered =[|3] +1... [%”] —1].

definitely: (= k) to hold in a computation. The proof is

similar to the proof of Lemma 5 and therefore has been ® €xactlyk tokens:
omitted. token, + tokens + - - - + token,, = k.

Lemma 6 Let E- be a computation. Then, Additionally, the symmetric predicates, defined as fol-
lows, can now be efficiently monitored.

(sum(B.L) < k) A (definitely: (> k)) =

definitely: (= k), and Symmetric Predicates:A predicate of» boolean variables
p(x1, xa,...,z,) is calledsymmetrigff it is invariant under
(sum(E.L) > k) A (definitely: (< k)) = any permutation of its variables. Some examples of sym-
definitely: (= k) metric predicates are Ay, z Vy and(z Ay) V (—z A —y).
Finally, the next theorem gives the necessary and suf- The necessary and sufficient condition for a predicate
ficient conditions for the predicatemssibly: (= k) and  p(z1,22,...,z,) to be symmetric is that it may be spec-
definitely: (= k) to hold in a computation. ified by a set of numbersgai,as,...,a,}, where0 <
a; < mnandm < n + 1, such that it assumes value
Theorem 7 Let £ be a computation. Then, true when and only when, for some exactly a; of the

variables are true. For example, the symmetric predicate

(1) possibly: (= k) (zVyVz)A(—zV-yV-z)is logically equivalent to the

(sum(E.L) < k) A (possibly: (> k)) predicate(z + y + z = 1) V (z + y + z = 2), where false
(sum(E.L) > k) A (possibly: (< k)), and and true are represented®gndl, respectively, for the pur-
poses of evaluating+y + z. The proof of this result can be
(2) definitely: (= k) = found elsewhere [12, page 174]. Sinpessibly distributes
(sum(E.L) < k) A (definitely: (> k)) V over disjunctionpossibly: b whenb is a symmetric pred-
(sum(E.L) > k) A (definitely: (< k)) icate can be efficiently computed using Theorem 7. Some



examples of symmetric predicates that arise in distributed [4] C. Chase and V. K. Garg. Detection of Global Predicates:
systems are:

exclusive-or of local predicates:

r1DPr2®d--- D, = V ($1+$2+"'+$n:k)-
k is odd

not all z;'s are equal:
(z1 Vaa V- Vo) A(-z1 V-oze Ve Viog,) =

V (z1+z2+- -+, = k),whered = [1...(n—1)].
keA

5. Conclusion

(5]

(6]

(7]

Techniques and their Limitationeistributed Computing
11(4):191-201, 1998.

R. Cooper and K. Marzullo. Consistent Detection of Globa
Predicates. IProceedings of the ACM/ONR Workshop on
Parallel and Distributed Debuggingrages 163—-173, Santa
Cruz, California, 1991.

M. R. Garey and D. S. Johnso&omputer and Intactabil-
ity: A Guide to the Theory of NP-Completenedsé H. Free-
man and Company, New York, 1991.

V. K. Garg. Observation and Control for Debugging Dis-
tributed Computations. IRroceedings of the International
Workshop on Automated Debugging (AADEBUgzges 1—
12, Linkdping, Sweden, 1997. Keynote Presentation.

Predicate detection is a fundamental problem in asyn- [8] V. K. Garg and B. Waldecker. Detection of Unstable Predi-

chronous distributed systems. This problem arises in var-
ious contexts such as design, testing and debugging, and
fault-tolerance of distributed programs. In this paper, we
solve the previously open problems in predicate detection

(9]

proposed in [7]. In particular, we establish that the prob- [10]

lem of determining whether there exists a consistent cut

of a computation that satisfies a singufaCNF predi-
cate is NP-complete in general whérnis at least 2. Our

result bridges the gap between the known tractability [9]

and intractability [3, 15] results in detecting conjunctio

of clauses (see Figure 1). Furthermore, the result can be

used to establish the intractability of other related iestr
ing problems (see Corollary 2). A polynomial-time algo-
rithm to find the consistent cut, if it exists, that satisfies a [12]

singulark-CNF predicate for special cases is provided. We

cates. InProceedings of the ACM/ONR Workshop on Paral-
lel and Distributed DebuggingSanta Cruz, CA, May 1991.
V. K. Garg and B. Waldecker. Detection of Weak Unstable
Predicates in Distributed ProgramEEEE Transactions on
Parallel and Distributed System5(3):299-307, Mar. 1994.
M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Effi-
cient Distributed Detection of Conjunctions of Local Pred-
icates in Asynchronous Computations. Pmoceedings of
the 8th IEEE Symposium on Parallel and Distributed Pro-
cessing (SPDRpages 588-594, New Orleans, Oct. 1996.

] R. Jegou, R. Medina, and L. Nourine. Linear Space Al-

also give algorithms albeit exponential that can be used to [13]
achieve an exponential reduction in time over existingtech
nigues for solving the general version.

Furthermore, we present an algorithm to determine [14]

whether there exists a consistent cut of a computation for

which the sunme; + z5 + - - - + z,, exactly equals some con-
stantk, where eachx; is an integer variable on process

such that it is incremented or decremented by at most one
at each step. As a corollary, any symmetric global predicate
on boolean variables can now be observed. Additionally,

the problem is proved to be NP-complete if eaghcan be

changed by an arbitrary amount at each step. Our results

15]

[16]

build upon and, in some sense, complete the work described
in [3, 18].
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