Timestamping Messages in Synchronous Computations

Vijay K. Garg

garg@ece.utexas.edu

Chakarat Skawratananond

skawrata@ece.utexas.edu

Parallel and Distributed Systems Laboratory
The University of Texas at Austin
Austin, TX 78712

July 5, 2002
Causality Tracking

- Definition: e *happened before* f (denoted by \rightarrow)
 - e occurs before f in the same process, or
 - there is a transfer of information from e to f, or
 - there exists an event g such that $e \rightarrow g$ and $g \rightarrow f$.

- Causality tracking requires us to timestamp events such that *happened before* relationship can be determined between events.
Determining causal relationship is essential in distributed computing.

• Debugging Distributed Systems.
 – Visualization of the computation.
 * POET [Kunz et al.’97]
 * XPVM [Kohl-Geist95]
 * Object-Level Trace [IBM]
 – Predicate Detection.
 * e.g. [Fidge89, Mattern89, Garg-Waldecker94].

• Fault-tolerance.
 – Determining orphan processes. e.g. [Strom-Yemini88, Damani-Garg96].
Distributed Computation: A partial ordered set (poset) \((X, \rightarrow)\), where \(X\) is the set of events, and \(\rightarrow\) is Lamport’s happened-before relation.

\[
X = \{a, b, c, d, e\}
\]

Relation \(\rightarrow\) = \{(a, b), (a, d), (a, e), (b, d), (b, e), (c, d), (c, e)\}
Causality Tracking with Vector Clocks

Fidge and Mattern [Fidge89, Mattern89] introduced vector clocks such that

\[\forall e, f \in X : e \rightarrow f \iff v(e) < v(f) \]

Vector order: componentwise comparison

(2, 0) is less than (2, 2)

(0, 1) is incomparable to (1, 0).
Issues of Vector Clocks

Overhead:

- Message overhead: $O(N)$.
- Space overhead: $O(N)$.

where N is the number of processes in the computation.

Characteristics:

- *Online* algorithm.
- requires knowledge about *the number of processes*.
- *asynchronous* messages.
Talk Outline

- **Online Algorithm.**
 - Background: Synchronous Computation.
 - Algorithm.

- **Off-line Algorithm.**
 - Background: Dimension Theory.
 - Algorithm.

- Summary and Future Work.
Synchronous Computation

Synchronous Computation is the computation that uses only synchronous messages.

A message is called *synchronous* when the sender has to wait for the acknowledgement or a reply from the receiver before executing further.

Synchronous communication is widely supported in many programming languages and standards such as CSP, Ada, RPC, and Java RMI.
Message Timestamping

Synchronously-Precede Relation \((\mapsto) \): \(m_1 \) synchronously precedes \(m_2 \) if

- There is a process participating in \(m_1 \) and then \(m_2 \), or
- If \(m_1 \mapsto m_3 \) and \(m_3 \mapsto m_2 \), then \(m_1 \mapsto m_2 \).

\[
\begin{align*}
P_1 & \quad \uparrow \quad m_1 \quad \uparrow \quad m_3 \quad \uparrow \quad m_5 \quad \uparrow \quad m_6 \\
P_2 & \quad \uparrow \quad m_3 \quad \uparrow \quad m_5 \\
P_3 & \quad \uparrow \quad m_2 \quad \uparrow \quad m_4 \\
P_4 & \\
\end{align*}
\]

\(m_1 \mapsto m_3, m_2 \mapsto m_6, m_1 \parallel m_2 \)

Message Timestamps:

\[
m_1 \mapsto m_2 \iff v(m_1) < v(m_2)
\]

Problem Statement: Give an algorithm to compute \(v \) efficiently.
Communication Topology: \((G = (V, E))\)

A partition of the edge set, \(\{E_1, E_2, \ldots, E_d\}\), is called an edge decomposition of \(G\) if \(E = E_1 \cup E_2 \cup \ldots \cup E_d\) such that

- \(\forall i, j : E_i \cap E_j = \emptyset\), and
- \(\forall i : (V, E_i)\) is either a star or a triangle.
Edge Decomposition: Examples

Two of the possible decompositions.

E_1 E_2 E_3
Properties of Star and Triangle

Lemma: Messages in synchronous computations on *star* or *triangle* topologies are always totally ordered.

Concurrent messages must belong to different edge groups.
Online Algorithm

Each process maintains a vector of size \(d \) (size of edge decomposition) initially 0 vector.

- Sender and Receiver exchange vector clocks.

- Take component-wise maximum.

- Both increment the \textit{component corresponding to the edge group} of the edge connecting the sender and receiver.
Online Algorithm: Example

- P_1: (1,0,0)
- P_2: (0,0,1)
- P_3: (0,0,1)
- P_4: (0,1,3)
- P_5: (0,0,2)

Connections:
- $P_1 \rightarrow P_2$
- $P_2 \rightarrow P_3$
- $P_3 \rightarrow P_4$
- $P_4 \rightarrow P_5$
- $P_5 \rightarrow P_3$

Connections:
- E_1: $P_1 \rightarrow P_2$
- E_2: $P_2 \rightarrow P_3$
- E_3: $P_3 \rightarrow P_4$
Determining Optimal Edge Decomposition

A **vertex cover** of an undirected graph $G = (V, E)$ is a subset $V' \subseteq V$ such that if (u, v) is an edge of G, then either $u \in V'$ or $v \in V'$ (or both).

If only **stars** are allowed in Edge Decomposition, then the problem becomes Vertex Cover Problem.

Vertex Cover Problem is **NP-Hard** [Garey-Johnson79].
Approximation Algorithm Idea

Repeatedly apply the following three steps:

Star Removal 1:
If \(x \) is connected only to \(y \) then remove star rooted at \(y \).

Triangle Removal:
Remove any triangle \((x, y, z)\) with \(\text{degree}(x) = \text{degree}(y) = 2 \)

Star Removal 2:
Let \((x, y)\) be the edge of with largest number of edges adjacent to it Remove stars rooted at \(x \) and rooted at \(y \).
Approximation Algorithm: Example

(a) Original Graph

(b) Step 1: Remove edge (d, e)

(c) Step 2: Remove edge (h, i)

(d) Step 3: Remove edge (j, k)

Optimal Edge Decomposition

(e) Output: (j, k)

(f) Optimal Decomposition of the graph
Approximation Algorithm

Theorem:
The proposed approximation algorithm produces an edge decomposition which is at most twice the size of the optimal edge decomposition.

Theorem:
If the topology is an acyclic graph, the algorithm produces an optimal edge decomposition.

Time Complexity: \(O(|E||V|) \).
Background: Dimension Theory

Extension: A poset \((X, Q)\) is called an *extension* of poset \((X, P)\) iff

\[
\forall x, y \in X : (x, y) \in P \implies (x, y) \in Q
\]

- \((X, Q)\) is called *linear extension* if \(Q\) is a total order.

Chain Realizer: A family \(\mathcal{R} = \{L_1, L_2, \ldots, L_t\}\) of linear extensions of \(P\) is called a *chain realizer* of a poset \((X, P)\) if \(P = \cap \mathcal{R}\).

- \(x < y \in L_i \cap L_j\) if \(x < y\) in both \(L_i\) and \(L_j\).

Dimension: the cardinality of the smallest possible chain realizer of \((X, P)\).
Timestamping from Chain Realizer

Each element of the poset can be encoded using a vector of size 2.

\[a = (0, 3); \quad b = (1, 5); \quad c = (2, 1) \]
\[d = (3, 4); \quad e = (4, 0); \quad f = (5, 2) \]

Chain Order:

\[v_x < v_y \iff \forall i : v_x[i] < v_y[i] \]
Off-line Algorithm

\textbf{width}(X, P): the size of the longest antichain of \((X, P)\).

Let \(M\) be the poset formed by messages in a synchronous computation with \(N\) processes. \textbf{width}(\(M\)) is at most \(\lfloor \frac{N}{2} \rfloor\).

Theorem:
Given a synchronous computation consisting \(N\) processes, vector clocks of size at most \(\lfloor \frac{N}{2} \rfloor\) can be used to timestamp messages.
Off-line Algorithm (Cont.)

Algorithm:

- construct chain realizer of the poset using Dilworth’s algorithm [Dilworth50].
- compute timestamp for each message from the chain realizer.

Note:

\[\text{Dimension}(M) \leq \text{width}(M) \leq N/2 \]

Note: Calculating dimension of poset is \(NP \)-hard [Yannakakis82].
Summary of Online Algorithm

<table>
<thead>
<tr>
<th></th>
<th>Fidge and Mattern</th>
<th>Our Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>Any</td>
<td>Synchronous</td>
</tr>
<tr>
<td>Require knowledge of topology?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Require knowledge of # of processes?</td>
<td>Yes</td>
<td>Not for some topologies</td>
</tr>
<tr>
<td>Message/Space Overhead</td>
<td>Number of processes</td>
<td>Size of edge decomp.</td>
</tr>
</tbody>
</table>

For client-server systems, our algorithm requires as many coordinates as the number of servers *independent* of the number of clients.
Future Work

- Complexity of Edge decomposition problem.

- Efficient algorithm that constructs chain realizer of size less than \textit{width}.
Timestamping Internal Events

 Assign to each event e with a tuple $(prec(e), succ(e))$.

 - $prec(e)$ is the timestamp of the message immediately prior to e.
 - $succ(e)$ is the timestamp of the message immediately after e.

Theorem: $e \rightarrow f \iff succ(e) \leq prev(f)$

\[
\begin{array}{l}
\text{P_1} \quad \text{(1,0,0)} \\
\text{P_2} \quad \text{e} \quad \text{(1,1,1)} \\
\text{P_3} \quad \text{f} \quad \text{(1,1,3)} \\
\text{P_4} \quad \text{(0,0,1)} \\
\text{P_5} \quad \text{(0,0,2)}
\end{array}
\]

\[
e = [(1,0,0),(1,1,1)]
\]
\[
f = [(0,0,2),(1,1,3)]
\]
\[
g = [(1,1,3),(...)]
\]