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Abstract

Determining order relationship between events in dis-
tributed computations is a fundamental problem with ap-
plications in distributed monitoring systems and fault-
tolerance. Fidge and Mattern’s vector clocks capture the
order relationship with vectors of sizeN in a system withN processes. Since many distributed applications usesyn-
chronousmessages, it is natural to ask if the overhead can
be reduced for these applications. In this paper, we present
a new method of timestamping messages and events in syn-
chronous computations that capture the order relationship
with vectors of size less than or equal to the size of the ver-
tex cover of the communication topology of the system. Our
method is fundamentally different from that of Fidge and
Mattern’s technique. The timestamps in our method do not
use one component per process but still guarantee that the
order relationship is captured accurately. Our algorithm
is online and only requires piggybacking of timestamps on
program messages. It is applicable to all programs that ei-
ther use programming languages which use synchronous
communication such as CSP, or use synchronous remote
procedure calls.

1. Introduction

Determining order relationship between events in dis-
tributed computations is a fundamental problem with ap-
plications in distributed monitoring systems and fault-
tolerance. For example, it is used to provide visualizations
of the computation for debugging in systems such as POET
[13], XPVM [12], and Object-Level Trace [11]. It is also
used in the area of global property evaluation [5, 9]. In the�supported in part by the NSF Grants ECS-9907213, CCR-9988225,
Texas Education Board Grant ARP-320, an Engineering Foundation Fel-
lowship, and an IBM grant.

area of fault-tolerance, the order relationship is used to de-
termine if a process isorphanand needs to be rolled back
[19, 2].

Vector clocks introduced by Fidge [5] and Mattern [15]
(FM for short) is widely used to capture causality and con-
currency between events in distributed systems. This rela-
tionship between events is based on Lamport’shappened
before relation [14]. However, vector clock mechanism
does not scale well because it imposesO(N) of local stor-
age on each process andO(N) message overhead in a sys-
tem withN processes.

Charron-Bost [1] has shown that for everyN � 2, there
exists a computation onN processes such that vector clocks
of size at leastN are required to capture happened before
relation and concurrency between events. In [8], we have
shown that Fidge and Mattern’s vectors are equivalent to
string realizers of the poset corresponding to the distributed
computation and the vectors of size equal to the string di-
mension [4, 8] of the poset are necessary and sufficient for
timestamping events. However, timestamps that are deter-
mined using dimension theory cannot be used in an online
manner because the knowledge of the entire poset is nec-
essary to determine a realizer. Further, the problem of de-
termining the size of the smallest realizer is NP-complete
[24]. Although, these results show that in the worst case the
timestamps may requireN -dimensional vector clocks, they
do not exclude timestamps which use less thanN coordi-
nates for interesting subset of computations onN processes.
From the practical point of view, the natural question to ask
is whether there exists an efficient algorithm for an interest-
ing class of applications in which timestamping is scalable.

In this paper, we show that timestamping can be done
more efficiently in distributed computations that usessyn-
chronousmessages. A message is calledsynchronouswhen
the send is blocking, i.e., the sender waits for the mes-
sage to be delivered by the receiver before executing fur-
ther. Synchronous communication is widely supported in



many programming languages and standards such as CSP
[10], Ada Rendezvous, and synchronous Remote Procedure
Calls (RPC). While programming using asynchronous com-
munication allows higher degree of parallelism and is less
prone to deadlocks, algorithms using synchronous message-
passing are easier to develop and verify. Also, the imple-
mentation of asynchronous communication requires buffer
management and flow control mechanisms. Implementa-
tion of synchronous messages requires that the sender wait
for an acknowledgment from the receiver before executing
further.

It is known that a synchronous computation, i.e., a com-
putation based on synchronous messages, is logically equiv-
alent to a computation in which all messages are instanta-
neous. In other words, we can always draw the time dia-
grams for synchronous computations withverticalmessage
arrows [1, 16]. If we ignoreinternal events in a computa-
tion, then timestamping events is equivalent to timestamp-
ing messages in the computation. We define a partial order(M; 7!), whereM is the set of messages in the computation
and 7! is the order relationship between messages (defined
formally in Section 2). We then provide an algorithm that
assigns vector clocks to the messages such that for any two
messagesm1 andm2,m1 7! m2 () ve
tor(m1) < ve
tor(m2)

Our method captures the order relationship with vectors
of size less than or equal to the size of the vertex cover of
the communication topology of the system. Our method is
fundamentally different from that of Fidge and Mattern’s
technique. The timestamps in our method do not use one
component per process but still guarantee that the order
relationship is captured accurately. We use the notion of
edge decompositiondefined in Section 3 to partition edges
in the communication topology graph of the system. We
assign each component of the vector clock to each edge
group in the edge decomposition. Our algorithm is online
and only requires piggybacking of timestamps on program
messages and acknowledgements. We exploit the commu-
nication topology of the system to reduce the size of vector
clocks. For example, an integer is sufficient to timestamp
in a system with astar or a triangle topology. For a client-
server based system with a constant number of servers and
a variable number of clients, vectors in our timestamps re-
quire a constant number of coordinates.

We also present an offline algorithm and show that times-
tamping of messages does not take more thanN=2 compo-
nents for any synchronous computation. This result is de-
rived using dimension theory of posets.

The remainder of this paper is organized as follows. Sec-
tion 2 provides technical background for the problem dis-
cussed in this paper. The online algorithm is given in Sec-
tion 3. Section 4 describes the offline algorithm. In Sec-
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Figure 1. A synchronous computation with 4
processes.

tion 5, we discuss how the proposed algorithms can be ex-
tended for timestamping internal events. Section 6 com-
pares our work with others.

2. Model and Notations

We assume a loosely-coupled message-passing system
without any shared memory or a global clock. A dis-
tributed program consists ofN processes, denoted byfP1; P2; : : : ; PNg, communicating via messages. In this
paper, we assume that all messages aresynchronous. A
computation that uses only synchronous messages is called
a synchronous computation. It can be shown that a compu-
tation is synchronous if it is possible to timestamp send and
receive events with integers in such a way that (1) times-
tamps increase within each process and (2) the sending and
the receiving events associated with each message have the
same timestamp. Therefore, the time diagram of the com-
putation can be drawn such that all messages arrows are
vertical [1] (see Figure 1).

Determining the order of messages is crucial in observ-
ing distributed systems. We writee � f when evente oc-
curs beforef in a process. Here, we define the order among
synchronous messages. The set of messagesM in a given
synchronous computation forms a posetM = (M; 7!),
where7! is the transitive closure ofB defined as follows.m1 Bm2 () 8>><>>: m1:send � m2:send , orm1:send � m2:re
eive , orm1:re
eive � m2:send , orm1:re
eive � m2:re
eive
We saym1 synchronously precedesm2 whenm1 7! m2.
And when we havem1 7! m2 7! : : : 7! mk, we say that
there is asynchronous chainof sizek from m1 to mk. We
denotem1jjm2 whenm1 67! m2 andm2 67! m1.

In the example given in Figure 1,m1jjm2, m1 B m3,m2 7! m6, andm3 7! m5. There is a synchronous chain
betweenm1 andm5 of size4.

To perform precedence-test based on synchronously-
precede relation, we need a timestamping mechanism that
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Figure 2. Examples of the communication
topologies. (a) The system where every pro-
cess can communicate directly with each
other. (b) The system where not every pair
of processes communicate directly with each
other.

assigns a vector to each messagem (or equivalently, the
send and the receive event). Letv(m) denote the vector as-
signed to messagem. Our goal is to assign timestamps that
satisfies the following property,m1 7! m2 () v(m1) < v(m2) (1)

Given any two vectorsu andv of sizet, we define the
relation< as follows.u < v () � 8k : 1 � k � t : u[k℄ � v[k℄ ^9j : 1 � j � t : u[j℄ < v[j℄ (2)

We call the relation given in Equation (2)vector order.
From Equations (1) and (2), one can determine ifm1 7!m2 by checking whetherv(m1) < v(m2). If v(m1) is not

less thanv(m2) andv(m2) is not less thanv(m1), then we
know thatm1jjm2.
3. Online Algorithm

In this section, we give an algorithm to assignv(m) for a
messagem such that Equation (1) is satisfied. Whereas FM
vectors are based on the idea of assigning one component
for each process, our algorithm assigns one component to
eachedge group. We first define the notion ofedge decom-
positionandedge group.

3.1. Edge Decomposition

The communication topology of a synchronous system
that consists ofN processes,P1; : : : ; PN , can be viewed as
an undirected graphG = (V;E) whereV = fP1; : : : ; Png,
and (Pi; Pj) 2 E whenPi andPj can communicate di-
rectly. Figure 2(a) gives the communication topology of
a system in which every process can communicate directly
with each other. Figure 2(b) gives the communication topol-
ogy of another system in which not every pair of processes
communicate directly with each other.

Some particular topologies that will be useful to us are
the star and thetriangle topologies. An undirected graphG = (V;E) is a star if there exists a vertexx 2 V such that
all edges inE are incident tox. We call such a star asrooted
at nodex. An undirected graphG = (V;E) is a triangle ifjEj = 3, and these three edges form a triangle. We denote a
triangle by a triple such as(x; y; z) denoting its endpoints.

The star and triangle topologies are useful because mes-
sages in a synchronous computation with these topologies
are always totally ordered. In fact, we have the following.

Lemma 1 The message sets for all synchronous computa-
tions in a system withG = (V;E) as the communication
topology are totally ordered if and only ifG is a star or a
triangle.

Proof: Given any two messages in a star topology, there is
always one process (the center of the star) which is a partic-
ipant (a sender or a receiver) in both the messages. Since all
message events within a process are totally ordered it fol-
lows that both these messages are comparable. The similar
argument holds for the triangle topology.

Conversely, assume that the graph is not a star or a tri-
angle. This implies that there exists two distinct edges(Pi; Pj) and (Pk; Pl) such that none of their endpoints is
common. Consider a synchronous computation in whichPi
sends a synchronous message toPj andPk sends a syn-
chronous message toPl concurrently. These messages are
concurrent and therefore the message set is not totally or-
dered.

Note that the above Lemma does not claim that message
set cannot be totally ordered for a topology that is neither a
star nor a triangle. It only claims that for every such topol-
ogy there exists a synchronous computation in which mes-
sages do not form a total order. Now based on the defini-
tions of star and triangle graphs, we are ready to define the
edge decomposition ofG.

Definition 2 (Edge Decomposition)Let G = (V;E) be
communication topology of a synchronous system. A par-
tition of the edge set,fE1; E2; : : : ; Edg, is called an edge
decomposition ofG if E = E1 [ E2[; : : : ;[Ed such that
(1) 8i; j : Ei \ Ej = ;, and (2)8i : (V;Ei) is either a star
or a triangle.

We refer to eachEi in the edge decomposition as an edge
group. In our algorithm, we will assign one component of
the vector for every edge group. Note that there is possi-
bly more than one decomposition for a topology. Our goal
is to get the smallest possible decomposition. Consider a
fully-connected system consisting ofN processes. The first
decomposition consists ofN � 3 stars and1 triangle. The
second decomposition consists ofN � 1 stars. Figure 3
presents the two decompositions of a fully-connected sys-
tem with5 processes.
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Figure 3. Edge decompositions of the fully-
connected system with 5 processes. (a) The
first decomposition consisting of 2 stars and
1 triangle. (b) The second decomposition
consisting of 4 stars.
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Figure 4. A tree-based computation with 20
processes.

The complete graph is the worst case for edge decom-
position, resulting inN � 3 stars and1 triangle. In gen-
eral, the number of edge groups may be much smaller thanN � 2. Given a tree-based synchronous system consisting
of 20 processes, Figure 4 shows how to decompose edges
into three edge groupsE1, E2, andE3 where each group is
a star.

We will discuss techniques for edge decomposition that
minimize the number of edge groups in Section 3.3.

3.2. Algorithm

Each process maintains a vector of sized, whered is the
size of the edge decomposition. We assume that informa-
tion about edge decomposition is known by all processes in
the system.

The online algorithm is presented in Figure 5. Due to the
implementation of synchronous message ordering [16], we
assume that for each message sent fromPi to Pj , there ex-
ists an acknowledgement sent fromPj toPi. Essentially, to
timestamp each message, the sender and the receiver must
first exchange their vector clocks. Then, each process com-
putes the component-wise maximum between the local vec-
tor and the vector received (Line (5) and (9)). Finally, both
the sender and the receiver increment thegth element of
their vectors where the channel that the message is sent be-
longs to thegth group in the edge decomposition (Line (6)
and (10)). The resulting vector clock is the timestamp of

Pi ::
var vi : array[1::d] of integers, initially 0;ED : edge decomposition,(fE1; : : : ; Edg);
(01) On sending m to Pj ;
(02) send(m; vi) to Pj ;
(03) On receiving (m; v) from Pj ;
(04) sendacknowledgement(vi) to Pj ;
(05) 8k : vi[k℄ = max(vi[k℄; v[k℄);
(06) vi[g℄++ where edge (i; j) 2 Eg;
(07) Timestamp of m is vi;
(08) On receiving acknowledgement(v) of m from Pj ;
(09) 8k : vi[k℄ = max(vi[k℄; v[k℄);
(10) vi[g℄++ where edge (i; j) 2 Eg;
(11) Timestamp of m is vi;

Figure 5. The Online Algorithm.
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Figure 6. A synchronous computation with 5
processes, and its edge decomposition.

this message.
Figure 6 shows a sample execution of the proposed algo-

rithm on a fully-connected system with5 processes. Edge
decomposition consists of2 stars (E1 andE2) and 1 tri-
angle (E3). For example, message sent fromP2 to P3 is
timestamped(1; 1; 1) because the channel betweenP2 andP3 is in edge groupE2, and the local vector onP2 andP3
before transmission are(1; 0; 0) and(0; 0; 1), respectively.

Next, we prove that our online algorithm creates vec-
tor timestamps for messages in synchronous systems such
that these timestamps encode poset(M; 7!). The channel in
which a messagemx is sent through must be a member of a
group in the edge decomposition. We usee(mx) to denote
the index of the group to which this channel belongs in the
edge decomposition. Clearly,

Lemma 3 mijjmj ) e(mi) 6= e(mj)
Theorem 4 Given an edge decomposition of a synchronous



system, the algorithm in Figure 5 timestamps messages such
thatm1 7! m2 () v(m1) < v(m2)
Proof: First, we show thatm1 7! m2 ) v(m1) < v(m2).
Since vector clocks are exchanged between the sender and
the receiver, and the component-wise maximum is com-
puted between the received vector and the local vector, it
is easy to see that ifm1 synchronously precedesm2, thenv(m1) � v(m2). We now claim thatm1 7! m2 ) v(m1)[e(m2)℄ < v(m2)[e(m2)℄ (3)

This is true because before the vector is assigned tom2,v(m2)[e(m2)℄ is incremented. Thus, we havem1 7! m2 )v(m1) < v(m2).
We now show the converse,m1 67! m2 ) :(v(m1) < v(m2))

Due to the definition of vector order, it is sufficient to show
that m1 67! m2 ) v(m2)[e(m1)℄ < v(m1)[e(m1)℄
We do a case analysis.

(Case 1:m2 7! m1)
From Equation (3), by changing roles ofm1 andm2, we get
thatv(m2)[e(m1)℄ < v(m1)[e(m1)℄.

(Case 2:m1jjm2)
We prove by induction onk, the size of the longest syn-
chronous chain from aminimal messagein the poset(M; 7!) tom2. A messagem is minimal if there is no messagem0
in the computation such thatm0 7! m.
(Base:k = 1) m2 is a minimal message.

From Lemma 3 andm1jjm2, e(m1) 6= e(m2). Sincem2
is a minimal message by the initial assignment of the vector
clock, both sender and the receiver have0 as the component
for e(m1) and the componentwise maximum also results in0 for e(m1). Further, sincee(m1) 6= e(m2) the component
for e(m1) is not incremented. Hence,v(m2)[e(m1)℄ = 0.

We now claim thatv(m1)[e(m1)℄ � 1. This is true be-
cause we increment the component fore(m1) before assign-
ing the timestamp form1. Since the value of all entries are
at least0, it will be at least1 after the increment operation.

From, v(m2)[e(m1)℄ = 0 andv(m1)[e(m1)℄ � 1, we
get thatv(m2)[e(m1)℄ < v(m1)[e(m1)℄.

(Induction: k > 1)
Letm3 be any message such thatm3Bm2. We know thatm1 67! m3, otherwisem1 7! m2. By induction hypothesis,m1 67! m3 ) v(m3)[e(m1)℄ < v(m1)[e(m1)℄
To obtainv(m2), the sender and receiver ofm2 exchange

timestamps of any immediately preceding message (if any).
We also know that thee(m1)th component of vectors from

both the sender and receiver are less thanv(m1)[e(m1)℄
due to induction hypothesis. Hence, it stays less after the
component-wise maximum. Further, sincee(m1) 6= e(m2)
the component fore(m1) is not incremented. Therefore,v(m2)[e(m1)℄ < v(m1)[e(m1)℄.

Given an edge decomposition of sized, our online algo-
rithm hasO(d) message and space overhead.

3.3. Good Edge Decompositions

As discussed in Section 3.2, the overhead of our algo-
rithm is crucially dependent upon the size of the edge de-
composition. Let�(G) denote the size of a smallest edge
decomposition (note that there may be multiple edge de-
composition of the same size). In our edge decomposition,
we decompose the graph into stars and triangles. If we re-
stricted ourselves to decomposing the edge set only in stars
then the problem is identical to that of vertex cover. A ver-
tex cover of an undirected graphG = (V;E) is a subsetV 0 � V such that if(u; v) is an edge ofG, then eitheru 2 V 0 or v 2 V 0 (or both)

We can now provide a bound for the size of the vector
clocks based on the vertex cover.

Theorem 5 Let G = (V;E) be communication topology
of a synchronous system. Let�(G) be the size of the
optimal vertex cover ofG. Then vector clocks of sizemin(�(G); N � 2) is sufficient to timestamp messages.

Proof: From the definition of vertex cover, every edge is
incident to some vertex in the vertex cover. For every edge
we assign some vertex in the vertex cover. If some edge
has both the endpoints in the vertex cover, then we arbitrar-
ily choose one. By the definition of vertex cover problem,
all edges are partitioned in this manner into stars. When�(G) = N � 1, we can simply use trivial edge decompo-
sition of N � 3 stars and one triangle. Thus, there exists
an edge decomposition of size at mostmin(�(G); N � 2).

Since vertex cover does not use triangles in edge decom-
position, it is natural to ask how bad can a pure star decom-
position be compared to star and triangle decomposition.
We claim that�(G) � 2 �(G) This bound holds because
any decomposition of the graph into stars and triangles can
be converted into a decomposition purely of stars by de-
composing every triangle into two stars. The above bound
is tight in general because if the graph consisted of justt
disjoint triangles, then�(G) = t and�(G) = 2t.

Since the problem of obtaining minimum vertex cover
is NP-hard [7], it is unlikely that there exists an optimal
algorithm for edge decomposition of a general graph. We
now present an algorithm that returns an edge decompo-
sition which is at most twice the size of the optimal edge



decomposition. Further, our algorithm returns an optimal
edge decomposition when the graph is acyclic.

The algorithm is shown in Figure 7. It works by repeat-
edly deleting stars and triangles from the graph. The main
while loop in line (02) has three steps inside. The first step
chooses any node which has degree1, sayx which is con-
nected to nodey. It outputs a star rooted aty. When no
nodes of degree1 are left, the algorithm goes to the second
step.

In the second step, the algorithm checks if there is a tri-
angle(x; y; z) such that there are no edges inF which are
incident tox or y other than those in the triangle. There
may be other edges incident toz, but the degree of nodesx
andy is exactly2. Once all such triangles have been output,
the algorithm goes to step three.

In the third step, the algorithm chooses an edge(x; y)
with the largest number of adjacent edges. If there is more
than one such edge, it chooses any one of them. Now it
outputs two stars one rooted atx and the other rooted aty.
After the third step, the algorithm goes back to thewhile
loop to check if all edges have been accounted for.

Figure 8 shows the operation of our edge decomposition
algorithm on the communication topology shown in Fig-
ure 2(b). Figure 8(b),(c), and (d) shows the first, second,
and third step of the algorithm, respectively. In Figure 8(e),
the execution loops back to the first step, edge(j; k) is out-
put, and the program exits. Figure 8(f) shows the optimal
edge decomposition consists of4 stars and1 triangle.

The algorithm has time complexity ofO(jV jjEj) be-
cause in every step, the identification of the edge (Line (4),
(8), and (12)) can be done inO(jEj) time, which results in
deletion of all edges incident on at least one vertex.

The following theorem shows that the algorithm pro-
duces an edge decomposition with aratio boundof 2. The
ratio bound is the ratio between the size of the edge de-
composition produced by the algorithm and the size of the
optimal edge decomposition.

Theorem 6 The algorithm in Figure 7 produces an edge
decomposition with the approximation ratio bound of2.

Proof: The algorithm creates edge groups in the first step
(Lines (3)-(7)), the second step (Lines (8)-(11)) or the third
step (Lines (12)-(15)). For every creation of an edge group,
we identify an edge and include it in a setH . In the first
step, we use the edge(x; y) the lone edge incident tox and
put in the setH . In the second step, we use the edge(x; y)
from the triangle and put it inH . Finally, for step 3, we put
the edge chosen in line 12 inH . It is easy to verify that no
two edges inH are incident to a common vertex. This is
because any time we choose an edge in any of the steps, all
adjacent edges are deleted fromF . Since no two edges have
any vertex in common, edges inH must all be in distinct
edge groups in the optimal edge decomposition. However,

Input: Undirected graph G = (V;E);
Output : edge decomposition,(fE1; : : : ; Edg);
// Each Ei is either a star or a triangle
(01) F := E;
(02) while F 6= ; do

//First Step:
(03) while 9 a node x such that degree(x) = 1 do
(04) Let (x; y) be the edge of F incident to x;
(05) output star rooted at y and all incident edges

to y;
(06) remove from F all edges incident on y;
(07) endwhile;

//Second Step:
(08) while there exists a triangle (x; y; z) withdegree(x) = degree(y) = 2 do
(09) output triangle (x; y; z) ;
(10) remove from F the edges in the triangle;
(11) endwhile

//Third Step:
(12) Let (x; y) be an edge of F with largest number of

edges adjacent to it;
(13) output star rooted at y and all incident edges to y;
(14) output star rooted at x and all incident edges to x

except (x; y);
(15) remove from F all edges incident on x or y;
(16) endwhile;

Figure 7. Approximation algorithm for edge
decomposition.

the size of edge decomposition produced is at most twice
the size ofH .

Note that in the above proof we have not used the fact
that in step 3, we choose an edge with the largest number
of adjacent edges. The correctness and the approximation
ratio is independent of that choice. However, by deleting as
large number of edges as possible in each step, one would
expect to have a smaller edge decomposition.

We now show that the above algorithm outputs optimal
edge decomposition for acyclic graphs.

Theorem 7 The algorithm in Figure 7 produces an optimal
edge decomposition for acyclic graphs.

Proof: First note that an acyclic graph can have only stars
as edge groups. Further, when the algorithm is applied to
an acyclic graph all the edges will be deleted in thewhile
loop of the first step. In other words, if we take a forest
(an acyclic graph is equivalent to a forest or a collection
of trees) and repeatedly delete all edges that are adjacent or
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Figure 8. A sample run of the proposed de-
composition algorithm.

one hop away from the leaves then we will eventually delete
all the edges.

Thus, the setH constructed in the proof of Theorem 6
consists of edges added only in step 1. Since we add exactly
one edge group for every edge added toH, the optimality
follows.

While the size of the vector for the fully-connected sys-
tem is stillO(N), the vector size of the system with tree-
based topology may not grow considerably. In particular,
if the number of processes in the system increases without
changing the size of itsedge decomposition, the size of our
vector clocks is constant. This has a significant impact be-
cause tree is a popular structure used as a communication
topology for distributed computing systems.

As another example, consider a client-server based sys-
tem where (1) clients can only communicate with servers
and (2) all interactions in the system are through syn-
chronous RPC or RMI. In this case, the communication
topology can be decomposed with one star rooted at each
server. Thus, it is sufficient to use vector clocks of size
equal to the number of servers to timestamp messages in
the system.

4. Offline Algorithm

We present an offline timestamping algorithm which
takes a completed computation as an input and assigns a
vector timestamp for each message in the given computa-
tion. Our offline algorithm is based on applying dimension

From a given poset M,
(1) Let w be the width of poset M. From Theorem 8,w � bN2 
.
(2) Construct a set of linear extensions, fL1; : : : ; Lwg,

such that
wTi=1Li = M. (Procedure for constructing

this linear realizer is given in [21])
(3) Timestamp each message m with Vm, where Vm[i℄

is the number of elements less than m in Li.
Figure 9. Offline Algorithm.

theory to the poset formed by messages in the synchronous
computations. We first provide the technical background
for dimension theory.

4.1. Dimension Theory

A pair (X;P ) is called an irreflexive partially ordered set
or a poset ifX is a set andP is an irreflexive, and transitive
binary relation onX . A poset(X;P ) is calledchainif every
distinct pair of points fromX is comparable inP . Similarly,
we call a poset anantichain if every distinct pair of points
from X is incomparable inP . The width of poset(X;P ),
denoted bywidth(X;P ), is the size of the longest antichain
of P .

A family of linear extensions of(X;P ) denoted byR = fL1; L2; : : : ; Ltg is called achain realizerof (X;P )
if P = \R. For any poset(X;P ), the dimension of(X;P ),
denoted bydim(X;P ), is the least positive integert for
which there exists a familyR = fL1; L2; : : : ; Ltg of linear
extensions ofP so thatP = \R = \ti=1Li.
4.2. The Algorithm

The offline algorithm is based on the result of the follow-
ing theorem.

Theorem 8 Given a poset(M; 7!) formed by messages in
a synchronous computation withN processes, vector clocks
of sizebN2 
 can be used to encode poset(M; 7!).
Proof: For any subsetL � M such thatjLj > bN2 
, there
existsmi;mj 2 L : mi 7! mj or mj 7! mi. This
is because each message involves two processes. From a
set ofbN2 
 + 1 messages, there must be at least two mes-
sages that share a common process. Hence, the size of the
longest antichain of(M; 7!) (or width(M; 7!)) is at mostbN2 
. From Dilworth’s theorem [3], for any posetP ,dim(P ) � width(P ). Hence,dim(M; 7!) � bN2 
.

As a result from Theorem 8, we get the offline algorithm
as shown in Figure 9.



As an example, if we use offline algorithm to times-
tamp messages in the computation shown in Figure 6, 2-
dimensional vectors are sufficient to capture concurrency

5. Timestamping Events

Thus far, we had focused our attention on timestamp-
ing send/receive (external) events in synchronous systems.
We now show how to extend our algorithm to timestamp
internal events such that the resulting timestamps capture
Lamport’s happened before relation.

For simple exposition, let us first assume that we have
exactly one internal event between any two external events.
Later we show how this algorithm can be extended easily to
handle the general case. Recall that for each synchronous
messagem sent from a processPi to another processPj ,
there is an acknowledgement sent fromPj to Pi. It is im-
portant to note that happened before relation between events
uses messages and their acknowledgements as well.

We now give the timestamping algorithm for inter-
nal events. Each evente is assigned with a tuple(prev(e); su

(e)) whereprev(e) is the timestamp of the
message immediately prior toe, andsu

(e) is the times-
tamp of the message immediately aftere. If there is no mes-
sage beforee, prev(e) is a zero vector (denoted by0). If
there is no message aftere, su

(e) is a vector where all ele-
ments are1. Observe that an internal event can be assigned
a timestamp only after the process knows the timestamp of
the message aftere.

In the following, we show that the proposed times-
tamps capture causal relationship between events in the syn-
chronous systems. That is,e! f () su

(e) � prev(f)
where! denotes Lamport’s happened before relation. We
say that there is a causal chain of sizek betweene1 andek
whene1 ! e2 ! : : :! ek.

We now ready to prove the property of the proposed
timestamp algorithm.

Theorem 9 e! f () su

(e) � pref(f)
Proof: First, we have to prove thate! f ) su

(e) � prev(f) (4)

If e andf are on the same process then the result is trivially
true. Otherwise, sincee ! f , there must be a causal chain
betweene andf . If me is the message immediately aftere, andmf is the message immediately beforef , we know
thatme 7! mf orme = mf . From Theorem 4,su

(e) �prev(f).

Conversely, we have to prove thatsu

(e) � prev(f))e ! f . We know that the vector timestamp ofme is less

than or equal to that ofmf . From the property of message
timestamps (Theorem 4), we get thatme 7! mf or me =mf . From the definition of7!, there must be a causal chain
from e to f formed by either the application messages or
the acknowledgements or both.

If there are more than one internal event between any
two external events, the timestamp for each internal event
becomes a triple(prev(e); su

(e); 
(e)), where
(e) is the
value of 
ounteri an integer maintained by each processPi. Initially, 
ounteri is zero, and is reset to zero when-
ever a new external event occurs inPi. Further,
ounteri
is incremented for each occurrence of an internal event. It
is easy to verify thate ! f () 
(e) < 
(f) whenprev(e) = prev(f) andsu

(e) = su

(f).
6. Related Work

Different implementations of Fidge [5] and Mattern
[15] Vector Clock have been proposed. Singhal and
Kshemkalyani’s [18] approach reduces the amount of data
sent over the network. This is possible because of the
increase in the amount of data stored by each process.
Fowler and Zwaenepoel [6] proposed an implementation
where each process only keeps direct dependencies on oth-
ers. Thus, only one scalar is required to represent a vector
clock. However, for capturing transitive causal relations, it
is necessary to recursively trace causal dependencies. This
technique is therefore more suitable for applications where
precedence test can be performed off-line.

Torres-Rojas and Ahamad [20] introduced a class of
scalable vector clocks called Plausible Clocks. It is scal-
able because it can be implemented using fixed-length vec-
tors. Plausible Clocks do not characterize causality com-
pletely, that is, they do not guarantee that certain pairs of
concurrent events will not be ordered. As a result, plausible
clocks are useful for any application where imposing order-
ings on some pairs of concurrent events have no effects on
the correctness of the results. Mutual consistency protocols
for shared objects are examples of applications that can use
plausible clocks.

Ward [22] presents an algorithm to create vector times-
tamps whose size can be as small as the dimension of the
partial order of execution. The algorithm incrementally
builds a realizer using Rabinovitch and Rival’s Theorem
[17], and then creates timestamp vectors based on that re-
alizer. Therefore, vector timestamps that have already been
assigned to events may have to be changed later. Further, all
timestamps may not be of the same length. This leads to a
complicated precedence test. Moreover, each coordinate is
required to be a real number. Our algorithm does not suffer
from any of these disadvantages.

A hierarchical cluster algorithm for online, centralized
timestamp was presented in [23]. The algorithm is based on



the fact that events within a cluster can only be causally de-
pendent on events outside the cluster through receive events
from transmissions that occurred outside the cluster. The
precedence-test method in this algorithm isO(
) where
 is
the size of the cluster.

Our proposal generates vector timestamps that com-
pletely captures the relations between synchronous mes-
sages. We exploit the configuration of the system topology
to reduce the size. The length of our vector clocks is never
changed during the execution of the algorithm. Once the
timestamp is assigned, it is never changed. Our precedence
test is therefore straightforward.
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