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Abstract area of fault-tolerance, the order relationship is usedeto d
termine if a process isrphanand needs to be rolled back
Determining order relationship between events in dis- [19, 2].

tributed computations is a fundamental problem with ap-  viector clocks introduced by Fidge [5] and Mattern [15]
plications in distributed monitoring systems and fault- (e for short) is widely used to capture causality and con-
tolerance. Fidge and Mattern’s vector clocks capture the cyrrency between events in distributed systems. This rela-
N processes. Since many distributed applicationssyse  pefore relation [14]. However, vector clock mechanism
chronousmessages, it is natural to ask if the overhead can gpes not scale well because it impossV) of local stor-

be reduced for these applications. In this paper, we presentage on each process adN) message overhead in a sys-
a new method of timestamping messages and events in SyRam with N’ processes.

chronous computations that capture the order relationship
with vectors of size less than or equal to the size of the ver-

tex cover of the communication topology of the system. Our "~ .
. : ) of size at leasiV are required to capture happened before
method is fundamentally different from that of Fidge and .
relation and concurrency between events. In [8], we have

Mattern’s technique. The timestamps in our method do nOtshown that Fidge and Mattern’s vectors are equivalent to
use one component per process but still guarantee that the g R

order relationship is captured accurately. Our algorithm string realizers of the poset corresponding to the distributed

. . : : . . computation and the vectors of size equal to the string di-
is online and only requires piggybacking of timestamps on ) -

: ; . mension [4, 8] of the poset are necessary and sufficient for
program messages. It is applicable to all programs that ei-

. . timestamping events. However, timestamps that are deter-
ther use programming languages which use synchronous . : . . . .
ined using dimension theory cannot be used in an online

communication such as CSP, or use synchronous rernOtermnanner because the knowledge of the entire poset is nec
procedure calls. 9 P

essary to determine a realizer. Further, the problem of de-
termining the size of the smallest realizer is NP-complete
) [24]. Although, these results show that in the worst case the

1. Introduction timestamps may requi® -dimensional vector clocks, they

do not exclude timestamps which use less thaoordi-

Determining order relationship between events in dis- nates for interesting subset of computationg\oprocesses.

tributed computations is a fundamental problem with ap- From the practical point of view, the natural question to ask
plications in distributed monitoring systems and fault- is whether there exists an efficient algorithm for an interes
tolerance. For example, it is used to provide visualization ing class of applications in which timestamping is scalable

of the computation for debugging in systems such as POET | this paper, we show that timestamping can be done
[13], XPVM [12], and Object-Level Trace [11]. Itis also more efficiently in distributed computations that usgs-
used in the area of global property evaluation [5, 9]. In the chronousmessages. A message is cagdchronousvhen
*supported in part by the NSF Grants ECS-9907213, CCR-998822 the send is bk.)Ckmg’ Le., the S?nder waits for th.e mes-
Texas Education Board Grant ARP-320, an Engineering Fdioi&el- sage to be delivered by the receiver be_fore executing fll“"
lowship, and an IBM grant. ther. Synchronous communication is widely supported in

Charron-Bost [1] has shown that for evely > 2, there
exists a computation oN processes such that vector clocks




many programming languages and standards such as CSP
[10], Ada Rendezvous, and synchronous Remote Procedure
Calls (RPC). While programming using asynchronous com- )
munication allows higher degree of parallelism and is less

prone to deadlocks, algorithms using synchronous message-  P3

passing are easier to develop and verify. Also, the imple- M2 m,
mentation of asynchronous communication requires buffer Py
management and flow control mechanisms. Implementa-
tion of synchronous messages requires that the sender wait
for an acknowledgment from the receiver before executing
further.

It is known that a synchronous computation, i.e., a com-
putation based on synchronous messages, is logically-equiv
alent to a computation in which all messages are instanta-tion 5, we discuss how the proposed algorithms can be ex-
neous. In other words, we can always draw the time dia- tended for timestamping internal events. Section 6 com-
grams for synchronous computations wittrticalmessage ~ pares our work with others.
arrows [1, 16]. If we ignorénternal events in a computa-
tion, then timestamping events is equivalent to timestamp-2. Model and Notations
ing messages in the computation. We define a partial order

(M, ), wherel is the set of messages in the computation We assume a loosely-coupled message-passing system
and— is the order relationship between messages (defined ;i ot any shared memory or a global clock. A dis-
formally in Section 2). We then provide an algorithm that ;.ipted program consists oN processes, denoted by
assigns vector clocks to the messages such that for any twc‘{P]_P2 ..., Py}, communicating via messages. In this

messages:; andimn., paper, we assume that all messagessgrechronous A
computation that uses only synchronous messages is called
a synchronous computation. It can be shown that a compu-

Our method captures the order relationship with vectors tation is synchronous if itis possible to timestamp send and
of size less than or equal to the size of the vertex cover of '€Ceive events with integers in such a way that (1) times-
the communication topology of the system. Our method is f&mps increase within each process and (2) the sending and
fundamentally different from that of Fidge and Mattern’s the receiving events associated W|_th eac_h message have the
technique. The timestamps in our method do not use oneSame timestamp. Therefore, the time diagram of the com-
component per process but still guarantee that the ordePutation can be drawn such that all messages arrows are
relationship is captured accurately. We use the notion of vertical [1] (see Figure 1). _ o
edge decompositiotefined in Section 3 to partition edges ~ Detérmining the order of messages is crucial in observ-
in the communication topology graph of the system. We ing distributed systems. We write< f when event oc-
assign each component of the vector clock to each edgefurs beforef ina process. Here, we define th? order_ among
group in the edge decomposition. Our algorithm is online Synchronous messages. The set of messaf@s a given
and only requires piggybacking of timestamps on program Synchronous computation forms a poset = (M, ),
messages and acknowledgements. We exploit the commuWwhere— is the transitive closure a# defined as follows.

my

Figure 1. A synchronous computation with 4
processes.

my = my <= vector(my) < vector(ms)

nication topology of the system to. reduc_e_the size of vector my.send < mg.send or
plocks. For e>.<ample, an m_teger is sufficient to t|m_estamp I my.send < my.receive or
in a system with atar or atriangle topology. For a client- 1 EERSS my.receive < mq.send or

server based system with a constant number of servers and
a variable number of clients, vectors in our timestamps re-
quire a constant number of coordinates. We saym; synchronously precedes, whenm; — m..

We also present an offline algorithm and show that times- And when we haven, — my — ... — my, we say that
tamping of messages does not take more tN@a compo- there is asynchronous chaiof sizek from m to m;. We
nents for any synchronous computation. This result is de-denotem, ||ms whenm; v my andms 4 m;.
rived using dimension theory of posets. In the example given in Figure I, ||ms, m; > ms,

The remainder of this paper is organized as follows. Sec-my — mg, andms — ms. There is a synchronous chain
tion 2 provides technical background for the problem dis- betweenn; andm; of size4.
cussed in this paper. The online algorithm is given in Sec- To perform precedence-test based on synchronously-
tion 3. Section 4 describes the offline algorithm. In Sec- precede relation, we need a timestamping mechanism that

my.receive < Msy.Treceive



Some particular topologies that will be useful to us are
the star and thetriangle topologies. An undirected graph
G = (V, E) is a star if there exists a vertaxe V such that
all edges ink are incident ta:. We call such a star asoted

@ ®) at nodez. An undirected grapli = (V, E) is a triangle if
|E| = 3, and these three edges form a triangle. We denote a
Figure 2. Examples of the communication triangle by a triple such as:, y, z) denoting its endpoints.
topologies. (a) The system where every pro- The star and triangle topologies are useful because mes-
cess can communicate directly with each sages in a synchronous computation with these topologies
other. (b) The system where not every pair are always totally ordered. In fact, we have the following.
of processes communicate directly with each Lemma 1 The message sets for all synchronous computa-
other. tions in a system witl = (V, E) as the communication
topology are totally ordered if and only (¥ is a star or a
triangle.

assigns a vector to each messaggor equivalently, the
send and the receive event). kéin) denote the vector as-
signed to message. Our goal is to assign timestamps that
satisfies the following property,

Proof: Given any two messages in a star topology, there is
always one process (the center of the star) which is a partic-
ipant (a sender or a receiver) in both the messages. Since all
message events within a process are totally ordered it fol-
lows that both these messages are comparable. The similar

= my <= < ; 1 .
e v(ma) <v(m:) @) argument holds for the triangle topology.
Given any two vectors andv of sizet, we define the Conversely, assume that the graph is not a star or a tri-
relation< as follows. angle. This implies that there exists two distinct edges
(P;, P;) and (P, P;) such that none of their endpoints is
w< v Vik:1<k<t:ulk] <v[k] A @) common. Consider a synchronous computation in wiich
Jj: 1< <t:ulj] <olj] sends a synchronous messageioand P, sends a syn-
_ o _ chronous message # concurrently. These messages are
We call the relation given in Equation (&gctor order concurrent and therefore the message set is not totally or-
From Equ_atlons (1) and (2), one can determm@if»—) dered. -
my by checking whethev(m;) < v(ms). If v(my) is not ]
less than(m.) andv(m.) is not less tham (m; ), then we Note that the above Lemma does not claim that message
know thatm ||m.. set cannot be totally ordered for a topology that is neither a

star nor a triangle. It only claims that for every such topol-
ogy there exists a synchronous computation in which mes-
sages do not form a total order. Now based on the defini-

tions of star and triangle graphs, we are ready to define the
In this section, we give an algorithm to assigmn) for a edge decomposition @¥.

messagen such that Equation (1) is satisfied. Whereas FM o -
vectors are based on the idea of assigning one componenp€finition 2 (Edge Decomposition)Let ¢ = (V. E) be

for each process, our algorithm assigns one component t°@mmunication topology of a synchronous system. A par-
eachedge groupWe first define the notion afdge decom-  tition of the edge se{ Ey, E», ..., Eq}, is called an edge

3. Online Algorithm

positionandedge group decomposition off if E = E; U EqU, ..., .UEr.l such that
(Q)Vi,j: E;NE; =0,and (2)Vi : (V, E;) is either a star
or a triangle.

3.1. Edge Decomposition

We refer to eaclts; in the edge decomposition as an edge
The communication topology of a synchronous system group. In our algorithm, we will assign one component of

that consists ofV processest, . .., Py, can be viewed as  the vector for every edge group. Note that there is possi-
an undirected grap&y = (V, E) whereV = {P,...,P,}, bly more than one decomposition for a topology. Our goal
and (P;, P;) € E whenP; and P; can communicate di- is to get the smallest possible decomposition. Consider a

rectly. Figure 2(a) gives the communication topology of fully-connected system consisting &f processes. The first

a system in which every process can communicate directlydecomposition consists @f — 3 stars andl triangle. The
with each other. Figure 2(b) gives the communication topol- second decomposition consists &f — 1 stars. Figure 3
ogy of another system in which not every pair of processes presents the two decompositions of a fully-connected sys-
communicate directly with each other. tem with 5 processes.



P;
; ‘ v; . array[1..d] of integers, initially 0;
~ ~ \@
(@

7 ED : edge decomposition,({Ex, ..., Eq});
® (01) On sending m to P;;
(02) sendm, v;) to P;;

Figure 3. Edge decompositions of the fully- (03) On receiving (m, v) from P;;
connected system with 5 processes. (a) The (04)  sendacknowledgement(v;) to P;;
first decomposition consisting of 2 stars and (05)  VEk:wvi[k] = maz(vi[k], v[k]);
1 triangle. (b) The second decomposition (06)  wv;[g]++ where edge (i, j) € Eg;
consisting of 4 stars. (07) Timestamp of m is v;;

(08) On receiving acknowledgement(v) of m from P;;
(09) VE : v;[k] = max(v;[k], v[k]);

(10) v;[g]++ where edge (4, j) € Ey;

(12) Timestamp of m is v;;

Figure 5. The Online Algorithm.

b E, Eq
! (1,00 23 || 34
. . . P 24 || 35
Figure 4. A tree-based computation with 20 2 i) (122) 25 || 45
processes. Py
0,0,1 (1,1,3)
4 Py )
002
The complete graph is the worst case for edge decom- s b Py
position, resulting inV — 3 stars andl triangle. In gen- ®
eral, the number of edge groups may be much smaller than o
N — 2. Given a tree-based synchronous system consisting ¢
of 20 processes, Figure 4 shows how to decompose edges
into three edge groups, , E», andE3 where each group is Figure 6. A synchronous computation with 5
a star. processes, and its edge decomposition.

We will discuss techniques for edge decomposition that
minimize the number of edge groups in Section 3.3.

i this message.
3.2. Algorithm Figure 6 shows a sample execution of the proposed algo-
rithm on a fully-connected system withprocesses. Edge

Each process maintains a vector of sizevhered is the decomposition consists &f stars ¢; and E,) and 1 tri-
size of the edge decomposition. We assume that informa—ang|e ;). For example, message sent frda to P is
tion about edge decomposition is known by all processes i”timestampec{l, 1,1) because the channel betweBnand
the system. P; is in edge groupk,, and the local vector o®, and P;

The online algorithm is presented in Figure 5. Due to the pefore transmission af@, 0,0) and(0,0, 1), respectively.
implementation of synchronous message ordering [16], we  Next, we prove that our online algorithm creates vec-
assume that for each message sent figrto P;, there ex-  tor timestamps for messages in synchronous systems such
ists an acknowledgement sent frafato P;. Essentially, o that these timestamps encode p@dét —). The channel in
timestamp each message, the sender and the receiver mugjhich a message:, is sent through must be a member of a
first exchange their vector clocks. Then, each process comyroup in the edge decomposition. We uge:, ) to denote

putes the component-wise maximum between the local vecthe index of the group to which this channel belongs in the
tor and the vector received (Line (5) and (9)). Finally, both eqge decomposition. Clearly,

the sender and the receiver increment i element of

their vectors where the channel that the message is sent bg-emma 3 m;l|lm; = e(m;) # e(m;)

longs to thegt® group in the edge decomposition (Line (6)

and (10)). The resulting vector clock is the timestamp of Theorem 4 Given an edge decomposition of a synchronous



system, the algorithm in Figure 5 timestamps messages suchoth the sender and receiver are less théam;)[e(m;)]

thatm, — me <= v(m1) < v(ms) due to induction hypothesis. Hence, it stays less after the
component-wise maximum. Further, sinden;) # e(ms-)

Proof: First, we show thatn, — m2 = v(mi) <v(m2).  the component for(m,) is not incremented. Therefore,

Since vector clocks are exchanged between the sender ang(ma)[e(ml)] < v(my)[e(my)]. -

the receiver, and the component-wise maximum is com- _ N _ )
puted between the received vector and the local vector, it Given an edge decomposition of sizeour online algo-
is easy to see that if,; synchronously precedes,, then  fithm hasO(d) message and space overhead.
v(m1) < v(ms). We now claim that .
3.3. Good Edge Decompositions
my — my = v(my)le(ms)] < v(ms)le(msa)] ()
As discussed in Section 3.2, the overhead of our algo-
This is true because before the vector is assigned:to  rithm is crucially dependent upon the size of the edge de-

v(mg)[e(ms)] is incremented. Thus, we hawe — my = composition. Letr(G) denote the size of a smallest edge
v(my) < v(ma). decomposition (note that there may be multiple edge de-
We now show the converse, composition of the same size). In our edge decomposition,
we decompose the graph into stars and triangles. If we re-
my A may = —(v(m) < v(ms)) stricted ourselves to decomposing the edge set only in stars

then the problem is identical to that of vertex cover. A ver-
tex cover of an undirected grapgh = (V, F) is a subset
V' C V such that if(u,v) is an edge of7, then either
u € V'orv e V' (or both)

We can now provide a bound for the size of the vector
We do a case analysis. clocks based on the vertex cover.

(Case 1:my — my)
From Equation (3), by changing roles:f, andm., we get
thatv(ma)[e(ma)] < v(mq)[e(m1)].

(Case 2:m||ms)
We prove by induction ork, the size of the longest syn-

Due to the definition of vector order, it is sufficient to show
that

my v my = v(ma)le(ma)] < v(mi)[e(my)]

Theorem 5 Let G = (V, E) be communication topology
of a synchronous system. Lg{G) be the size of the
optimal vertex cover of7. Then vector clocks of size
min(B(G), N — 2) is sufficient to timestamp messages.

chronous chain from minimal messag® the pose{M, — Proof: From the definition of vertex cover, every edge is

) toms,. A messagen is minimal if there is no message’ incident to some vertex in the vertex cover. For every edge

in the computation such that' +— m. we assign some vertex in the vertex cover. If some edge

(Base:k = 1) m, is a minimal message. has both the endpoints in the vertex cover, then we arbitrar-
From Lemma 3 andn, ||m., e(m,) # e(my). Sincem, ily choose one. By the definition of vertex cover problem,

is a minimal message by the initial assignment of the vector a|| edges are partitioned in this manner into stars. When
clock, both sender and the receiver h\as the component  5(G) = N — 1, we can simply use trivial edge decompo-
for e(m,) and the componentwise maximum also results in sition of N — 3 stars and one triangle. Thus, there exists
0 for e(m ). Further, since(m:) # e(m-) the component  an edge decomposition of size at mosin(5(G), N — 2).

for e(m, ) is not incremented. Hence(m.)[e(m4)] = 0. n
We now claim that(m;)[e(m;)] > 1. This is true be- ) _ _
cause we increment the componentdor. ) before assign- Since vertex cover does not use triangles in edge decom-

ing the timestamp fom, . Since the value of all entries are  POSition, itis natural to ask how bad can a pure star decom-

at leas, it will be at least! after the increment operation, ~ Position be compared to star and triangle decomposition.
From, v(ms)[e(m1)] = 0 andv(mi)[e(ms)] > 1, we We claim that3(G) < 2 a(G) This bound holds because

get that(m.)[e(m1)] < v(m1)[e(m1)]. any decomposition of the graph into stars and triangles can
(Induction: & > 1) be converted into a decomposition purely of stars by de-

Letim; be any message such thag>m.. We know that pomposjng every triangle int.o two stars. The.above b_ound
my v/ ms, otherwisem, — ms. By induction hypothesis, 1S t_|g_ht in general because if the graph consisted of just
disjoint triangles, thea(G) = ¢t and3(G) = 2t.
my v ms = v(ms)[e(m)] < v(mi)[e(m)] Since the problem of obtaining minimum vertex cover
is NP-hard [7], it is unlikely that there exists an optimal
To obtainu(m), the sender and receivereaf, exchange  algorithm for edge decomposition of a general graph. We
timestamps of any immediately preceding message (if any).now present an algorithm that returns an edge decompo-
We also know that the(m;, )" component of vectors from  sition which is at most twice the size of the optimal edge




decomposition. Further, our algorithm returns an optimal | |nput: Undirected graph G = (V, E);

edge decomposition when the graph is acyclic. Output : edge decomposition,({E1, . .., E4});
The algorithm is shown in Figure 7. It works by repeat- | j/ Each E; is either a star or a triangle

edly deleting stars and triangles from the graph. The main| (01) F .= E;

while loop in line (02) has three steps inside. The first step | (02) while F # ¢ do

chooses any node which has degtesayx which is con- /[First Step:
nected to nodg. It outputs a star rooted at When no (03) while 3 a node z such that degree(z) = 1 do
nodes of degree are left, the algorithm goes to the second | (04) Let (z,y) be the edge of F incident to z;
step. (05) output star rooted at y and all incident edges
In the second step, the algorithm checks if there is a tri- to y;
angle(z, y, z) such that there are no edgeshAnwhich are (06)  remove from F all edges incident on y;
incident tox or y other than those in the triangle. There | (07) endwhile;
may be other edges incident4pbut the degree of nodas /ISecond Step:
andy is exactly2. Once all such triangles have been output, | (08) while there exists a triangle (z, y, z) with
the algorithm goes to step three. degree(z) = degree(y) = 2 do
In the third step, the algorithm chooses an edggy) (09) output triangle (z,y, 2) ;

with the largest number of adjacent edges. If there is more| (10) remove from F the edges in the triangle;
than one such edge, it chooses any one of them. Now itf (11) endwhile

outputs two stars one rooted:atand the other rooted at /[Third Step:
After the third step, the algorithm goes back to thikile (12) Let (z,y) be an edge of F with largest number of
loop to check if all edges have been accounted for. edges adjacent to it;

Figure 8 shows the oper.atio.n of our edge decom_posi.tion (13) output star rooted at y and all incident edges to y;
algorithm on the communication topology shown in Fig- | (14) output star rooted at = and all incident edges to =

ure 2(b). Figure 8(b),(c), and (d) shows the first, second, except (z,y);
and third step of the algorithm, respectively. In Figure)8(e (15) remove from F all edges incident on z or y;
the execution loops back to the first step, edgé) is out- (16) endwhile;

put, and the program exits. Figure 8(f) shows the optimal
edge decomposition consistsdb$tars and triangle.

The algorithm has time complexity aP(|V||E|) be-
cause in every step, the identification of the edge (Line (4),
(8), and (12)) can be done ®(| E|) time, which results in
deletion of all edges incident on at least one vertex.

The following theorem shows that the algorithm pro-
duces an edge decomposition withaéio boundof 2. The the size of edge decomposition produced is at most twice

Figure 7. Approximation algorithm for edge
decomposition.

ratio bound is the ratio between the size of the edge de-the size ofH. [
composition produced by the algorithm and the size of the
optimal edge decomposition. Note that in the above proof we have not used the fact

that in step 3, we choose an edge with the largest number
Theorem 6 The algorithm in Figure 7 produces an edge of adjacent edges. The correctness and the approximation
decomposition with the approximation ratio boundof ratio is independent of that choice. However, by deleting as
large number of edges as possible in each step, one would
Proof:  The algorithm creates edge groups in the first step expect to have a smaller edge decomposition.
(Lines (3)-(7)), the second step (Lines (8)-(11)) or thedhi We now show that the above algorithm outputs optimal
step (Lines (12)-(15)). For every creation of an edge group, edge decomposition for acyclic graphs.
we identify an edge and include it in a sEt In the first
step, we use the edde, y) the lone edge incidenttoand  Theorem 7 The algorithm in Figure 7 produces an optimal

put in the sefd. In the second step, we use the edggy) edge decomposition for acyclic graphs.
from the triangle and put it if7. Finally, for step 3, we put

the edge chosenin line 12 i. It is easy to verify that no  Proof: First note that an acyclic graph can have only stars
two edges inH are incident to a common vertex. This is as edge groups. Further, when the algorithm is applied to
because any time we choose an edge in any of the steps, alin acyclic graph all the edges will be deleted in tigle
adjacent edges are deleted frémSince no two edges have loop of the first step. In other words, if we take a forest
any vertex in common, edges i must all be in distinct  (an acyclic graph is equivalent to a forest or a collection
edge groups in the optimal edge decomposition. However,of trees) and repeatedly delete all edges that are adjacent o



output

d e hoi d e h i p -
. v I:I € . From a given poset M,
® A > — : (1) Let w be the width of poset M. From Theorem 8,
] c J c
) 9 _ g w< 5]

(2) Construct a set of linear extensions, {L1, ..., Ly},
b w
@ ® such that (| L; = M. (Procedure for constructing
i=1
_ this linear realizer is given in [21])
*i:i e hooi i (3) Timestamp each message m with V,,,, where V., [i]
, W T I © I is the number of elements less than m in L;.
k
ouiput j output k . . .
Figure 9. Offline Algorithm.
() (d)

theory to the poset formed by messages in the synchronous

computations. We first provide the technical background
5 /K@ v Y I—O @_I for dimension theory.
®

output

© 4.1. Dimension Theory
Apair (X, P) is called an irreflexive partially ordered set
or a poset ifX is a set and’ is an irreflexive, and transitive
binary relation onX. A poset( X, P) is calledchainif every
distinct pair of points fromX is comparable i?. Similarly,
we call a poset aantichainif every distinct pair of points
one hop away from the leaves then we will eventually delete from X is incomparable inP. The width of posetX, P),
all the edges. denoted byvidth(X, P), is the size of the longest antichain
Thus, the sef{ constructed in the proof of Theorem 6 f p.
consists of edges added only in step 1. Since we add exactly A family of linear extensions of X, P) denoted by
one edge group for every edge addedothe optimality —  — (1, 1, ... L,}is called achain realizerof (X, P)

Figure 8. A sample run of the proposed de-
composition algorithm.

follows. u if P = NR. Forany posetX, P), the dimension of X, P),
While the size of the vector for the fully-connected sys- denoted bydim (X, P), is the least positive integerfor
tem is still O(N'), the vector size of the system with tree- Which there exists a familR = {Li, L,, ..., L;} of linear

based topology may not grow considerably. In particular, €xtensions of> so that? = NR = Nj_, L;.

if the number of processes in the system increases without

changing the size of itsdge decompositiothe size of our ~ 4.2. The Algorithm

vector clocks is constant. This has a significant impact be-

cause tree is a popular structure used as a communication The offline algorithm is based on the result of the follow-
topology for distributed computing systems. ing theorem.

As another example, consider a client-server based sys- . ]
tem where (1) clients can only communicate with servers 1h€orem 8 Given a pose{M, ) formed by messages in
and (2) all interactions in the system are through syn- asynch}r\?nous computation wiffi processes, vector clocks
chronous RPC or RMI. In this case, the communication Of Sizé[ 5 | can be used to encode pog8t, —).
topology can be decomposed with one star rooted at eac

po'ogy . g ; r1:>roof: For any subset. C M such thatZ| > [ %], there
server. Thus, it is sufficient to use vector clocks of size = . 2 .

existsm;,m; € L : m; = mj; or m; + m;. This

equal to the number of servers to timestamp messages in !
IS because each message involves two processes. From a

the system. set of | 5] + 1 messages, there must be at least two mes-
. ) sages that share a common process. Hence, the size of the
4. Offline Algorithm longest antichain of M, —) (or width(M, —)) is at most
L%J. From Dilworth’s theorem [3], for any poseP,
We present an offline timestamping algorithm which dim(P) < width(P). Hencedim(M, —) < L%J- -

takes a completed computation as an input and assigns a
vector timestamp for each message in the given computa- As a result from Theorem 8, we get the offline algorithm
tion. Our offline algorithm is based on applying dimension as shown in Figure 9.



As an example, if we use offline algorithm to times- than or equal to that of: ;. From the property of message
tamp messages in the computation shown in Figure 6, 2-timestamps (Theorem 4), we get that — my or m, =
dimensional vectors are sufficient to capture concurrency m . From the definition of-, there must be a causal chain

from e to f formed by either the application messages or

5. Timestamping Events the acknowledgements or both. ]

If there are more than one internal event between any

Thus far, we had focused our attention on timestamp- two external events, the timestamp for each internal event
ing send/receive (external) events in synchronous systemsbecomes a tripléprev(e), succ(e), c(e)), wherec(e) is the
We now show how to extend our algorithm to timestamp value of counter; an integer maintained by each process
internal events such that the resulting timestamps captureP;. Initially, counter; is zero, and is reset to zero when-
Lamport’s happened before relation. ever a new external event occurs . Further,counter;

For simple exposition, let us first assume that we have is incremented for each occurrence of an internal event. It
exactly one internal event between any two external events.is easy to verify that — f <= c¢(e) < ¢(f) when
Later we show how this algorithm can be extended easily to prev(e) = prev(f) andsucc(e) = succ(f).
handle the general case. Recall that for each synchronous
messagen sent from a procesg®; to another procesg’;, 6. Related Work
there is an acknowledgement sent frétnto F;. It is im-

portant to note that happened before relation between®vent  pifferent implementations of Fidge [5] and Mattern
uses messages and their acknowledgements as well. [15] Vector Clock have been proposed. Singhal and
We now give the timestamping algorithm for inter- Kshemkalyani's [18] approach reduces the amount of data
nal events. Each event is assigned with a tuple sent over the network. This is possible because of the
(prev(e), succ(e)) whereprev(e) is the timestamp of the  jncrease in the amount of data stored by each process.

message immediately prior to andsucc(e) is the times-  Fowler and Zwaenepoel [6] proposed an implementation
tamp of the message |mmed|ately atteffthereisnomes-  \yhere each process only keeps direct dependencies on oth-
sage before, prev(e) is a zero vector (denoted ). If ers. Thus, only one scalar is required to represent a vector

there is no message aftersucc(e) is a vector where allele-  clock. However, for capturing transitive causal relatioins
ments arex. Observe that an internal event can be assignedis necessary to recursively trace causal dependencies. Thi
a timestamp only after the process knows the timestamp oftechnique is therefore more suitable for applications wher
the message after precedence test can be performed off-line.

In the following, we show that the proposed times-  Torres-Rojas and Ahamad [20] introduced a class of
tamps capture causal relationship between events in the synscalable vector clocks called Plausible Clocks. It is scal-
chronous systems. That is, able because it can be implemented using fixed-length vec-
tors. Plausible Clocks do not characterize causality com-
pletely, that is, they do not guarantee that certain pairs of

where—s denotes Lamport's happened before relation. We concurrent events will not be ordered. As a result, plaesibl

e = [ < succ(e) < prev(f)

say that there is a causal chain of sizbetweere, andey, plocks are useful_for any application where imposing order-
whene, — ey — ... — eg. ings on some pairs of concurrent events hgve no effects on
We now ready to prove the property of the proposed the correctne_ss of the results. Mutual cc_)nS|_stency prégoco
timestamp algorithm. for sh_ared objects are examples of applications that can use
plausible clocks.
Theorem9 e — f <= succ(e) < pref(f) Ward [22] presents an algorithm to create vector times-

tamps whose size can be as small as the dimension of the
partial order of execution. The algorithm incrementally
e = f = succ(e) < prev(f) (4) builds a realizer using Rabinovitch and Rival's Theorem
[17], and then creates timestamp vectors based on that re-
If e andf are on the same process then the result is trivially alizer. Therefore, vector timestamps that have already bee
true. Otherwise, since — f, there must be a causal chain assigned to events may have to be changed later. Further, all
betweene and f. If m, is the message immediately after timestamps may not be of the same length. This leads to a
e, andmy is the message immediately befgfewe know complicated precedence test. Moreover, each coordinate is

Proof: First, we have to prove that

thatm, — my orm, = my. From Theorem 4succ(e) < required to be a real number. Our algorithm does not suffer
prev(f). from any of these disadvantages.
Conversely, we have to prove thatcc(e) < prev(f) = A hierarchical cluster algorithm for online, centralized

e — f. We know that the vector timestamp of. is less timestamp was presented in [23]. The algorithm is based on



the fact that events within a cluster can only be causally de-[13]
pendent on events outside the cluster through receive®vent
from transmissions that occurred outside the cluster. The
precedence-test method in this algorithndig:) wherec is [14]
the size of the cluster.

Our proposal generates vector timestamps that com-
pletely captures the relations between synchronous mes
sages. We exploit the configuration of the system topology
to reduce the size. The length of our vector clocks is never
changed during the execution of the algorithm. Once the
timestamp is assigned, it is never changed. Our precedenc
test is therefore straightforward.
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