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Abstract

Writing correct distributed programs is hard. In spite of
extensive testing and debugging, software faults persist even
in commercial grade software. Many distributed systems,
especially those employed in safety-critical environments,
should be able to operate properly even in the presence of
software faults. Monitoring the execution of a distributed
system, and, on detecting a fault, initiating the appropriate
corrective action is an important way to tolerate such faults.
This gives rise to the predicate detection problem which in-
volves finding a consistent cut of a distributed computation,
if it exists, that satisfies the given global predicate.

Detecting a predicate in a computation is, however, an
NP-complete problem. To ameliorate the associated combi-
natorial explosion problem, we introduce the notion of com-
putation slice in our earlier papers [5, 10]. Intuitively, slice
is aconciserepresentation of those consistent cuts that sat-
isfy a certain condition. To detect a predicate, rather than
searching the state-space of the computation, it is much
more efficient to search the state-space of the slice. In
this paper, we provide efficient algorithms to compute the
slice for several classes of predicates. Our experimental
results demonstrate that slicing can lead to anexponential
improvement over existing techniques in terms of time and
space.

Keywords: predicate detection, testing and debugging,
software-fault tolerance, pruning search-space, partial-
order methods

1. Introduction

Writing distributed programs is an error prone activity;
it is hard to reason about them because they suffer from the�supported in part by the NSF Grants ECS-9907213, CCR-9988225,
Texas Education Board Grant ARP-320, an Engineering Foundation Fel-
lowship, and an IBM grant.

combinatorial explosion problem. Software faults (bugs),in
particular global faults, are caused by subtle interactions be-
tween various components of the system. As such, they may
occur only for specific combinations of inputs and certain
interleavings of events. This makes it difficult to eliminate
them entirely using testing and debugging. In fact, in spite
of extensive testing and debugging, software faults persist
even in commercial grade software. Many distributed sys-
tems, especially those employed in safety-critical environ-
ments, should be able to operate properly even in the pres-
ence of software faults. Monitoring the execution of a dis-
tributed system, and, on detecting a fault, initiating the ap-
propriate corrective action is an important way to tolerate
such bugs.

In this paper, we focus on detecting those faults that
can be expressed as predicates on variables of processes.
For example, “no process has the token” can be written asno token1^no token2^� � �^no tokenn, whereno tokeni
denotes the absence of token on processpi. This gives rise
to thepredicate detection problemwhich involves finding a
consistent cut of a distributed computation, if it exists, that
satisfies the given global predicate. (This problem is also
referred to as detecting a predicate underpossiblymodality
in the literature.) Predicate detection problem also arises in
other areas in distributed systems such as testing and debug-
ging where it can be used to set conditional breakpoints.

Detecting a predicate in a computation is a hard prob-
lem in general [4, 12, 11]. The reason is the combina-
torial explosion in the number of possible consistent cuts.
Given a computation consisting ofn processes each with
at mostk local states, the number of possible consistent
cuts of the computation could be as large asO(kn). Find-
ing a consistent cut that satisfies the given predicate may,
therefore, require looking at a large number of consistent
cuts. In fact, we prove in [11] that detecting a predi-
cate in 2-CNF (conjunctive normal form), even when no
two clauses contain variables from the same process, is
NP-complete, in general. Example of such a predicate is:(x1 _ x2) ^ (x3 _ x4) ^ � � � ^ (xn�1 _ xn), where eachxi
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Figure 1. (a) A computation and (b) its slice
with respect to (x1 > 1) ^ (x3 6 3).

is a boolean variable on processpi.
In our earlier papers [5, 10], we introduce the notion of

computation slice. Intuitively, slice is a succinct representa-
tion of those consistent cuts that satisfy a certain condition.
The slice of a computation with respect to a predicate is a
directed graph with the least number of consistent cuts that
contains all consistent cuts of the computation for which the
predicate evaluates to true. Since we expect global faults to
be relatively rare, their slice will be much smaller than the
computation itself. Therefore, in order to detect a global
fault, rather than searching the state-space of the computa-
tion, it is much more efficient to search the state-space of the
slice. We also identify a class of predicates, calledregular
predicates, for which the slice isexact[5, 10]. That is, the
slice for a regular predicate contains precisely those consis-
tent cuts for which the predicate evaluates to true. In [5], we
also present anO(n2jEj) algorithm to compute the slice for
a regular predicate, wheren is the number of processes andE is the set of events.

As an illustration, suppose we want to detect the pred-
icate(x1 � x2 + x3 < 5) ^(x1 > 1) ^ (x3 6 3) in the
computation shown in Figure 1(a). The computation con-
sists of three processesp1, p2 andp3 hosting integer vari-
ablesx1, x2 andx3, respectively. The events are repre-
sented by circles. Each event is labeled with the value of
the respective variable immediately after the event is exe-
cuted. For example, the value of variablex1 immediately
after executing the event is �1. The first event on each
process initializes the state of the process and every con-
sistent cut contains these initial events. Without computa-

tion slicing, we are forced to examine all consistent cuts of
the computation, twenty eight in total, to ascertain whether
some consistent cut satisfies the predicate. Alternatively,
we can compute a slice of the computation with respect to
the predicate(x1 > 1) ^ (x3 6 3) as portrayed in Fig-
ure 1(b). A slice is modeled by a directed graph. Each
vertex of the graph corresponds to ameta-event, which is
a subset of events. If a vertex is contained in a consis-
tent cut, the interpretation is that all events correspond-
ing to the vertex are contained in the cut. Moreover, a
vertex belongs to a consistent cut only if all its incoming
neighbours are also present in the cut. We can now re-
strict our search to the consistent cuts of the slice which are
only six in number, namelyfa; e; f; u; vg, fa; e; f; u; v; bg,fa; e; f; u; v; wg, fa; e; f; u; v; b; wg, fa; e; f; u; v; w; gg
andfa; e; f; u; v; b; w; gg. The slice has much fewer consis-
tent cuts than the computation itself—exponentially smaller
in many cases—resulting in substantial savings.

We prove in [10] that it is, in general, intractable to com-
pute the slice for an arbitrary predicate. Nonetheless, it is
still useful to be able to compute anapproximate slicefor
such a predicate efficiently. An approximate slice may be
bigger than the actual slice but will be much smaller than the
computation itself. We also provide a polynomial-time al-
gorithm in [10] to compute an approximate slice for a pred-
icate composed from regular predicates using:, ^ and_
operators.

Our contributions in this paper are as follows. First, we
provide a faster algorithm for computing the slice for ade-
composable regular predicate, which can be expressed as
conjunction of clauses where each clause is again a regular
predicate but depends on variables of only a small num-
ber of processes. For example, consider the regular predi-
cate “counters of all processes are approximately synchro-
nized”. It can be expressed as: for all processespi andpj ,jounteri � ounterj j 6 4ij , where eachounteri is a
monotonically non-decreasing variable onpi. Here, each
clause depends on variables of at most two processes. For
this predicate, the slicing algorithm given in this paper isn times faster than the one in [5], wheren is the number
of processes. In general, the time-complexity of the al-
gorithm is given byO((n + k2s)jEj), whereE is the set
of events,k is the maximum number of processes spanned
by a clause, ands is the maximum number of clauses any
single process appears in. For example, for the aforemen-
tioned predicate,k = 2 ands = n. Second, we give an
efficient algorithm to compute the slice for ak-local pred-
icate for constantk. A k-local predicate depends on vari-
ables of at mostk processes [12]. The time-complexity of
the algorithm isO(nmk�1jEj), wherem is the maximum
number of events on a process. Third, we provide an effi-
cient algorithm to compute the slice for alinear predicate
and its dualpost-linear predicate[4]. The class of linear



predicates is a generalization of the class of regular predi-
cates. The algorithm has the time-complexity ofO(n2jEj).
As a corollary, it is now possible to compute an approxi-
mate slice—in polynomial-time—for a much more general
class of predicates than described in [10]. Finally, we dis-
cuss our experimental results in evaluating the effectiveness
of slicing in pruning the search-space for predicate detec-
tion. This is the first experimental study of slicing for any
application. As such, our objective in this paper is not to
measure the efficacy of the slicing algorithms described in
this paper only, but to evaluate the effectiveness of slicing
algorithms in general including those in our earlier papers
[5, 10]. Our results indicate that slicing can lead to anex-
ponentialimprovement over existing techniques in terms of
time and space. Furthermore, other techniques for reduc-
ing the time-complexity [13] and/or the space-complexity
[1] are orthogonal to slicing, and as such can actually be
used in conjunction with slicing. For instance, Alagar and
Venkatesan’s polynomial space algorithm [1] for searching
the state-space of a computation can also be used for search-
ing the state-space of a slice.

Although, in this paper, we focus on application of slic-
ing to predicate detection, slicing can be employed to re-
duce the search-space when monitoring a predicate under
other modalities as well includingdefinitely[2, 4], invari-
ant [10] andcontrollable[4].

The paper is organized as follows. In Section 2, we de-
scribe our model and notation. In Section 3, we discuss
the background on computation slicing necessary to under-
stand the rest of the paper. Section 4 describes efficient al-
gorithms to compute the slice for three classes of predicates.
In Section 5, we discuss our experimental results on slicing.
Finally, Section 6 concludes the paper.

2. Model and Notation

Traditionally, a distributed computation is modeled as a
partial order on a set of events [8]. In this paper, we re-
lax the restriction that the order on events must be a partial
order. Instead we use directed graphs to model distributed
computations as well as slices. Directed graphs allow us to
handle both of them in a uniform and convenient manner.

Given a directed graphG, let V(G) and E(G) denote
its set of vertices and edges, respectively. A subset of ver-
tices of a directed graph forms aconsistent cutif the subset
contains a vertex only if it also contains all its incoming
neighbours. Formally,C is a consistent cut ofG ,h8e; f 2 V(G) : (e; f) 2 E(G) : f 2 C ) e 2 Ci

Observe that a consistent cut either contains all vertices
in a strongly connected component or none of them. LetC(G) denote the set of consistent cuts of a directed graphG.

Observe that the empty set; and the set of verticesV(G)
trivially belong to C(G). We call themtrivial consistent
cuts. Also, letP(G) denote the set of pairs of vertices(u; v)
such that there is a path fromu to v in G. We assume that
every vertex has a path to itself.

A distributed computation(or simply a computation)hE;!i is a directed graph with vertices as the set of eventsE and edges as!. To limit our attention to only those
consistent cuts that can actually occur during an execution,
we assume thatP(hE;!i) contains at least the Lamport’s
happened-before relation [8]. A distributed computation in
our model can contain cycles. This is because, whereas
a computation in the traditional or happened-before model
captures theobservableorder of execution of events, a com-
putation in our model captures the set of possible consistent
cuts. Intuitively, each strongly connected component of a
computation can be viewed as ameta-event; all events in a
meta-event should be executed atomically.

We assume the presence of fictitious initial and final
events on each process. The initial event on processpi, de-
noted by?i, occurs before any other event onpi. Likewise,
the final event on processpi, denoted by>i, occurs after all
other events onpi. We assume that all initial events belong
to the same strongly connected component. Similarly, all
final events belong to the same strongly connected compo-
nent. This ensures that any non-trivial consistent cut will
contain all initial events and none of the final events. As
a result, every consistent cut of a computation in the tra-
ditional model is a non-trivial consistent cut of the corre-
sponding computation in our model and vice versa. Only
non-trivial consistent cuts are of real interest to us.

A global predicate(or simply apredicate) is defined as
a boolean-valued function on variables of processes. Given
a consistent cut, a predicate is evaluated with respect to the
values of variables resulting after executing all events inthe
cut. If a predicateb evaluates to true for a consistent cutC, we say that “C satisfiesb”. We leave the predicate un-
defined for the trivial consistent cuts. A global predicate
is local if it depends on variables of a single process. It is
said to bek-local if it depends on variables of at mostk
processes [12].

3. Background

The notion of computation slice is based on the
Birkhoff’s Representation Theorem for Finite Distributive
Lattices [3] which we describe next.

3.1. Birkhoff’s Theorem

We first describe some concepts needed to understand
the theorem. A lattice is said to bedistributiveif its meet op-
erator distributes over its join operator [3]. It can be proved



that meet distributes over join if and only if join distributes
over meet. An element of a lattice is calledjoin-irreducible
if it cannot be expressed as join of two distinct elements (of
the lattice), both different from itself [3].

Let L be a lattice andJ I(L) be the set of its join-
irreducible elements. In caseL is a distributive lattice, it
satisfies an important property. Specifically, every element
in L can be expressed as the join of some subset of ele-
ments inJI(L) and vice versa [3, Birkhoff’s Theorem].
In other words,J I(L) completely characterizesL. This
is significant becausejJ I(L)j is generally much smaller—
exponentially in many cases—thanjLj. Hence if some com-
putation onL can instead be performed onJ I(L), we ob-
tain a significant computational advantage.

Consider a computationhE;!i and letC(E) denote the
set of its consistent cuts. In [5], we show thatC(E) forms a
distributive lattice under the relation�; its join and meet op-
erators correspond to set union ([) and set intersection (\),
respectively. Furthermore, no additional structural property
is satisfied byC(E). There is a one-to-one correspondence
between the set of join-irreducible elements ofC(E) and
the set of strongly connected components ofhE;!i

Now, consider a subsetD � C(E). We say thatD forms
a sublatticeof C(E) if D is closed under set union and set
intersection. That is, given two consistent cuts ofD, the
consistent cuts obtained by their set union and set intersec-
tion also belong toD. It can be proved that a sublattice of
a distributive lattice is also a distributive lattice [3]. Thus ifD is a sublattice ofC(E), then, using Birkhoff’s Theorem,JI(D) completely characterizesD. This forms the basis
for the notion of computation slice.

3.2. Computation Slice

Roughly speaking, a computation slice (or simply slice)
is a succinct representation of all those consistent cuts ofthe
computation that satisfy a certain predicate. More precisely,

Definition 1 (slice [10]) A slice of a computation with re-
spect to a predicate is the smallest directed graph (with the
least number of consistent cuts) that contains all consistent
cuts of the given computation for which the predicate eval-
uates to true.

We denote the slice of a computationhE;!i with re-
spect to a predicateb by hE;!ib. We prove in [10] that the
slice exists and is uniquely defined for all predicates. The
main idea behind the proof is as follows. Consider a com-
putationhE;!i and a predicateb. Let C(E) denote the set
of consistent cuts ofhE;!i and, further, letCb(E) � C(E)
be the subset of those consistent cuts that satisfyb. We show
that there exists a subsetD � C(E) satisfying the follow-
ing conditions. First,D containsCb(E), that is,Cb(E) � D.

Second,D forms a sublattice ofC(E). Last, among all sub-
lattices that fulfill the first two conditions, it is thesmallest
one. From Birkhoff’s Theorem,J I(D), the set of join-
irreducible elements ofD, completely characterizesD. We
call the poset (partially ordered set) induced on the consis-
tent cuts ofJ I(D) by the relation� as the slicehE;!ib.
Alternatively, the slice can also be represented by a directed
graph drawn on the set of eventsE such that its set of con-
sistent cuts is given byD. Whereas theposet representation
of a slice is better for presentation purposes, thegraph rep-
resentationis more suited for slicing algorithms.

Every slice derived from the computationhE;!i has
the trivial consistent cuts (; andE) among its set of consis-
tent cuts. A slice isemptyif it has no non-trivial consistent
cuts [10]. In the rest of the paper, unless otherwise stated,a
consistent cut refers to a non-trivial consistent cut. In gen-
eral, a slice will contain consistent cuts that do not satisfy
the predicate (besides trivial consistent cuts). In case a slice
does not contain any such cut, it is calledlean[10]. We now
describe the class of predicates for which the slice is lean.

3.3. Regular Predicate

Informally, if a predicate is regular, then the set of con-
sistent cuts satisfying the predicate is closed under set inter-
section and set union [5]. Equivalently,

Definition 2 (regular predicate [5]) A predicate is said to
beregularif, given two consistent cuts that satisfy the pred-
icate, the consistent cuts obtained by their set intersection
and set union also satisfy the predicate. Formally, given a
regular predicateb, and consistent cutsC andD,(C satisfiesb)^(D satisfiesb) )(C \D satisfiesb) ^ (C [D satisfiesb)

Some examples of regular predicates are: conjunction of
local predicates such as “all processes are inredstate”, and
certain channel predicates including “at mostk messages
are in transit from processpi to processpj” and “at leastk
messages are in transit from processpi to processpj”. We
prove in [5] that the conjunction of two regular predicates is
also a regular predicate.

In [5, 10], we provide efficient algorithms to compute the
slice for a regular predicate and its complement—referred
to as aco-regular predicate. Time-complexities of the
two algorithms areO(n2jEj) andO(n2jEj2), respectively,
wheren is the number of processes andE is the set of
events. We also give optimalO(jEj) algorithms to compute
the slice for special cases of regular predicates in [10].

3.4. Grafting Two Slices

Grafting is used to compose two slices [10]. Specifically,
given two slices, grafting involves computing either (1) the



smallest slice that contains all consistent cuts common to
both the slices, or (2) the smallest slice that contains all
consistent cuts that belong to at least one of the slices. The
former is referred to as grafting with respect to conjunction,
and the latter as grafting with respect to disjunction. Intu-
itively, given slices for two regular predicatesb1 andb2, the
former can be used to compute the slice forb1 ^ b2 and the
latter for b1 _ b2. In [10], we giveO(njEj) algorithms to
graft two slices.

4. Computing the Slice

In this section, we provide efficient algorithms for
computing the slice for three classes of predicates. The
first class contains those predicates which can be expressed
as conjunction ofk-local regular predicates for a smallk;
they are referred to asdecomposable regular predicates.
Note that although each clause of a decomposable regular
predicate depends on variables of only a small number of
processes, the predicate itself may span a much larger set
of processes, possibly even the entire set. The second class
consists ofk-local predicatesfor constantk. This class may
contain predicates that are not regular. Finally, the third
class consists oflinear predicatesand their dual.

4.1. Fast Algorithm for Computing the Slice for
Decomposable Regular Predicate

In [5], we provide anO(n2jEj) algorithm to compute
the slice for a regular predicate, wheren is the number of
processes andE is the set of events. We now explore the
possibility of a faster algorithm for the special case when
a regular predicate can be expressed as a conjunction of
clauses where each clause is again a regular predicate but
spans a small number of processes. An example of such
a predicate is “counters of all processes are approximately
synchronized”, which can be expressed as:V16i;j6n(jounteri � ounterj j 6 4ij)
where eachounteri is a monotonically non-decreasing
variable on processpi. In this case, each clause depends on
variables of at most two processes and is therefore 2-local.
For this example, our slicing algorithm hasO(njEj) time-
complexity, which is a factor ofn less than that of the algo-
rithm in [5]. We describe the algorithm in two steps. First,
we present a fast algorithm to compute the slice for each
clause. Second, we show how to combine these slices to-
gether in an efficient manner to obtain the slice for the given
regular predicate. Due to lack of space, we only provide a
brief description of each step. For details of the algorithm
and its proof of correctness, please refer to [9].

In the first step, for each clause, we first take thepro-
jectionof the computation on those processes whose vari-

ables the clause depends on. We then compute the slice of
the projected computation using the algorithm described in
[5]. We show thatcombinedtime-complexity of comput-
ing the slice of the projected computation for all clauses is
given byO((n+k2s)jEj), wheres is the maximum number
of clauses any single process appears in. For instance, for
the example in the previous paragraph,s is n. (The time-
complexity includes the time it takes to compute the projec-
tion as well.) In the second step, we combine these slices
together efficiently inO((n + ks)jEj) time to obtain the
desired slice. The overall time-complexity of the two steps
is given byO((n + k2s)jEj). In casek is O(1) ands isO(n), as is the case with our example, the time-complexity
is O(njEj), which is a factor ofn less than computing the
slice directly using the algorithm in [11].

4.2. Computing the Slice fork-Local Predicate, for
Constantk

In case the predicate is regular, we can simply use the
approach described in the previous section to compute the
slice inO(njEj) time. However, if the predicate is not reg-
ular, then the slice produced will only be an approximate
one [9]. To compute the (exact) slice for ak-local predi-
cate, which is not regular, we use the technique developed
by Stoller and Schneider [12]. For a given computation,
their technique can be used to transform ak-local predicate
into a predicate ink-DNF (disjunctive normal form) with
at mostmk�1 clauses, wherem is the maximum number
of events on a process. For example, consider the predicatex1 6= x2. Let V denote the set of values thatx1 can take in
the given computation. Thenx1 6= x2 can be rewritten as:x1 6= x2 � Wv2V �(x1 = v) ^ (x2 6= v)�

Note thatjV j 6 m. Thus the resultant predicate, in the
above case, consists ofm clauses; each clause is a con-
junction of local predicates, also referred to as aconjunc-
tive predicate[4]. In general, the resultantk-DNF pred-
icate will consist ofmk�1 clauses. To compute the slice
for each clause, we use the optimalO(jEj) algorithm given
in [10]. We then graft these slices together with respect
to disjunction to obtain the slice for the given predicate.
The overall time-complexity of the algorithm is given byO(nmk�1jEj).
4.3. Computing the Slice for Linear Predicate

A predicate is said to belinear if the set of consistent
cuts that satisfy the predicate is closed with respect to set
intersection [4]. Apost-linear predicatecan be defined du-
ally. Evidently, the class of linear predicates includes the
class of regular predicates. But the converse does not hold.



An example of a linear predicate that, in general, is not reg-
ular is: “at mostk messages destined for processpi have
not been received yet”. The class of linear predicates is also
closed under conjunction [4].

We identify and prove that the algorithm to compute the
slice for a regular predicate, given in [5], is applicable even
for a linear predicate. The main idea behind the algorithm
is as follows. Consider a linear predicateb. For each evente, we defineJb(e) as theleast consistent cutthat containse
and satisfiesb [5]. In case no consistent cut containinge that
also satisfiesb exists or whene 2 >, Jb(e) is set toE. It
can be proved thatJb is uniquely defined for all events [9].
In [9], we give anO(n2jEj) algorithm to computeJb(e)
for each evente. We also establish in [9] that the slice forb can be obtained by constructing a graph with vertices as
the set of events, and an edge from an evente to an eventf if Jb(e) � Jb(f). Further, we show a way to restrict the
number of edges in the graph toO(njEj) without adversely
affecting the time-complexity.

5. Computing an Approximate Slice

It is, in general, intractable to compute the slice for a
predicate [10]. In fact, computing the slice for a predicate
in 2-CNF, even when no two clauses contain variables from
the same process, is an NP-complete problem. Nonetheless,
it is still useful to be able to compute anapproximate slice
for such a predicate efficiently. An approximate slice may
be bigger than the actual slice but may be much smaller than
the computation itself.

In [10], we give an efficient polynomial-time algorithm
to compute an approximate slice for a predicate composed
from regular predicates using:, ^ and_ operators. Utiliz-
ing results of this paper, it is now possible to compute an ap-
proximate slice, in polynomial-time, for a much larger class
of predicates. Specifically, we can now compute an approx-
imate slice for a predicate composed from co-regular pred-
icates, linear predicates, post-linear predicates, andk-local
predicates for constantk, using^ and_ operators.

To compute an approximate slice for such a predicate, we
first construct the parse tree for the corresponding boolean
expression; all predicates occupy leaf nodes whereas all op-
erators occupy non-leaf nodes. We then recursively com-
pute the slice by starting with leaf nodes and moving up,
level by level, until we reach the root. For a leaf node, we
use the slicing algorithm appropriate for the predicate con-
tained in the node. For example, if the leaf node contains
a linear predicate, we use the algorithm described in Sec-
tion 4.3. For a non-leaf node, we use the suitable grafting
algorithm depending on the operator.

As an illustration, suppose we wish to compute an ap-
proximate slice of a computation with respect to the predi-
cate(x1_x2)^(x3_x4), where eachxi is a linear predicate.

We first compute slices for the linear predicatesx1, x2, x3
andx4. We then graft the first two and the last two slices
together with respect to disjunction to obtain (approximate)
slices for the clausesx1 _ x2 andx3 _ x4, respectively.
Finally, we graft the slices for both clauses together with
respect to conjunction to obtain an approximate slice for(x1 _ x2) ^ (x3 _ x4).

The next section describes our experimental results in
evaluating the efficacy of slicing in pruning the search-space
for predicate detection.

5.1. Experimental Evaluation

This is the first experimental study of slicing for any ap-
plication. Therefore our aim is to evaluate the effectiveness
of slicing algorithms in general including those in our ear-
lier papers [5, 10] and not just the ones described in this
paper.

We compare our approach with Stoller, Unnikrishnan
and Liu’s approach [13] which is based onpartial-order
methods[6]. Intuitively, when searching the state-space,
at each consistent cut, partial-order methods allow only a
small subset of enabled transitions to be explored. In par-
ticular, we use partial-order methods employing both per-
sistent and sleep sets for comparison. We consider two ex-
amples that are also used by Stoller, Unnikrishnan and Liu
to evaluate their approach [13].

The first example, calledprimary-secondary, concerns
an algorithm designed to ensure that the system always con-
tains a pair of processes acting together as primary and sec-
ondary. The invariant for the algorithm requires that there
be a pair of processespi andpj such that (1)pi is acting
as a primary and correctly thinks thatpj is its secondary,
and (2)pj is acting as a secondary and correctly thinks thatpi is its primary. Both the primary and the secondary may
choose new processes as their successor at any time; the al-
gorithm must ensure that the invariant is never falsified. A
global fault, therefore, corresponds to the complement of
the invariant which can be expressed as::Ips = Vi;j2[1:::n℄; i6=j�:isPrimaryi _ :isSeondaryj_(seondaryi 6= pj) _ (primaryj 6= pi)�

Note that:Ips is a predicate in CNF where each clause is
a disjunction of two local predicates. An approximate slice
for :Ips can be computed inO(n3jEj) time. In the second
example, calleddatabase partitioning, a database is parti-
tioned among processesp2 throughpn, while processp1
assigns tasks to these processes based on the current parti-
tion. A processpi, i 2 [2 : : : n℄, can suggest a new partition
at any time by setting variablehangei to true and then
broadcasting a message containing the proposed partition.
An invariant that should be maintained is: if no process is
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Figure 2. Primary-Secondary example with the number of even ts on a process upper-bounded by 90
for (a) no faults and (b) one injected fault.

changing the partition, then all processes agree on the par-
tition. Its complement, corresponding to a global fault, can
be expressed as::Idb = :hange2 ^ :hange3 ^ � � � ^ :hangen^� Wi;j2[1:::n℄; i6=j(partitioni 6= partitionj)�

Note that the firstn� 1 clauses of:Idb are local predi-
cates and the last clause, sayLC, is a disjunction of 2-local
predicates. Thus, using the technique described in Sec-
tion 4.2,LC can be rewritten as a predicate in DNF withO(njEj) clauses. To reduce the number of clauses, we
proceed as follows. LetV denote the set of values thatpartition1 assumes in the given computation. Then it can
be verified thatLC is logically equivalent to:Wv2V �(partition1 = v) ^ � W26i6n(partitioni 6= v)��

This decreases the number of clauses, whenLC is
rewritten in a form suitable for slice computation, toO(njV j). Note thatjV j is bounded by the number of events
on the first process, and therefore we expectnjV j to beO(jEj). As a result, the number of clauses reduces by a

factor ofn.
We use the simulator implemented in Java by Stoller,

Unnikrishnan and Liu to generate computations of these
protocols. Further details of the two protocols and the sim-
ulator can be found elsewhere [13]. We consider two differ-
ent scenarios:fault-freeand faulty. The simulator always
produces fault-free computations. A faulty computation
is generated by randomly injecting faults into a fault-free
computation. Note that in the first (fault-free) scenario, we
knowa priori that the computation does not contain a faulty
consistent cut. We cannot, however, assume the availability
of such knowledge in general. Thus it is important to study
the behaviour of the two predicate detection techniques in
the fault-free scenario as well.

Algorithms for slicing a computation are implemented
in Java. We compare the two predicate detection techniques
with respect to the following metrics: amount of time spent
and amount of memory used. In case of the former tech-
nique, both metrics also include the overhead of computing
the slice. We run our experiments on a machine with Pen-
tium 4 processor operating at 1.8GHz clock frequency and
512MB of physical memory.

For primary-secondary example, the simulator is run un-
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Figure 3. Database partitioning example with the number of e vents on a process upper-bounded by80 for (c) no faults and (d) one injected fault.

til the number of events on some process reaches 90. With
computation slicing, for fault-free computations, the slice
is always empty. As the number of processes is increased
from 6 to 12, the amount of time spent increases from 356s
to 2,849s, whereas the amount of memory used increases
from 1.21M to 2.16M. On the other hand, with partial-order
methods, they increase, almost exponentially, from 69s to
4,997s and 0.62M to 21.56M, respectively. Even on inject-
ing a fault, the slice stays quite small. After computing the
slice, in our experiments, we only need to examine at the
most 13 consistent cuts to locate a faulty consistent cut, if
any. The amount of time spent and the amount of mem-
ory used, with computation slicing, increase from 366s to
2,765s and 1.38M to 2.43M, respectively, as the number of
processes is increased from 6 to 12. However, with partial-
order methods, they again increase almost exponentially
from 46s to 3,510s and 0.41M to 14.13M, respectively.
Clearly, with slicing, both time and space complexities for
detecting a global fault, if it exists, in primary-secondary
example are polynomial in input size for the specified range
of parameters. In contrast, with partial-order methods, they
are exponential in input size. Figure 2(a) and Figure 2(b)
plot the variation in the two metrics with the number of pro-

cesses for the two approaches.
The worst-case performance of the partial-order meth-

ods approach is quite bad. With 12 processes in the system
and the limit on the memory set to 100MB, the approach
runs out of memory in approximately 6% of the cases. In
around two-thirds of such cases, the computation actually
contains a consistent cut that does not satisfy the invariant.
It may be noted that we do not include the above-mentioned
cases in computing the average amount of time spent and
memory used. Including them will only make the average
performance of the partial-order methods approach worse.
Further, performance of the partial-order methods approach
appears to be very sensitive to the location of the fault, in
particular, whether it occurs earlier during the search or
much later or perhaps does not occur at all. Consequently,
the variation or standard deviation in the two metrics is very
large. This has implications when predicate detection is em-
ployed for achieving software fault tolerance. Specifically,
it becomes hard to provision resources (in our case, mem-
ory) when using partial-order methods approach. If too lit-
tle memory is reserved, then, in many cases, the predicate
detection algorithm will not be able to run successfully to
completion. On the other hand, if too much memory is re-



served, the memory utilization will be sub-optimal.
For database partitioning example, the simulator is run

until the number of events on some process reaches 80. Fig-
ure 3(c) and Figure 3(d) plot the variation in the two metrics
with the number of processes for the two approaches. As it
can be seen, the average performance of partial-order meth-
ods is much better than computation slicing. This is because
substantial overhead is incurred in computing the slice. The
slice itself is quite small. Specifically, for the fault-free sce-
nario, the slice is always empty. On the other hand, for the
faulty scenario, only at most 4 transitions need to be ex-
plored after computing the slice to locate a faulty consistent
cut, if any.

Even for database partitioning example, for 10 pro-
cesses, the partial-order methods approach runs out of
memory in a small fraction—approximately 1%—of the
cases. Therefore the worst-case performance of computa-
tion slicing is better than partial-order methods. To get the
best of both worlds, predicate detection can be first done
using the partial-order methods approach. In case it turns
out that the approach is using too much memory, say more
thannjEj for some small constant, and still has not ter-
minated, it can be aborted and the computation slicing ap-
proach can then be used for predicate detection.

6. Conclusion and Future Work

In this paper, we present efficient algorithms for comput-
ing the slice for several classes of predicates. In addition,
we also provide heuristics to compute an approximate slice
for predicates for which it is otherwise intractable to com-
pute the actual slice. We experimentally demonstrate that
slicing can indeed be used to prune a large fraction of the
set of consistent cuts in an efficient manner.

At present, our algorithms for computing a slice and
therefore for detecting a predicate work in an off-line fash-
ion. In the future, we plan to develop slicing algorithms
that are incremental in nature. As the execution of the sys-
tem progresses and more and more events become available,
the current slice is updated to reflect the newly generated
events.
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