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Abstract combinatorial explosion problem. Software faults (bugs),

particular global faults, are caused by subtle interactios:

Writing correct distributed programs is hard. In spite of tween various components of the system. As such, they may
extensive testing and debugging, software faults pergiste  occur only for specific combinations of inputs and certain
in commercial grade software. Many distributed systems, interleavings of events. This makes it difficult to elimiaat
especially those employed in safety-critical environmsent them entirely using testing and debugging. In fact, in spite
should be able to operate properly even in the presence ofof extensive testing and debugging, software faults persis
software faults. Monitoring the execution of a distributed even in commercial grade software. Many distributed sys-
system, and, on detecting a fault, initiating the approfmia tems, especially those employed in safety-critical emro
corrective action is an important way to tolerate such fault ments, should be able to operate properly even in the pres-
This gives rise to the predicate detection problem which in- ence of software faults. Monitoring the execution of a dis-
volves finding a consistent cut of a distributed computation tributed system, and, on detecting a fault, initiating the a
if it exists, that satisfies the given global predicate. propriate corrective action is an important way to tolerate

Detecting a predicate in a computation is, however, an such bugs.
NP-complete problem. To ameliorate the associated combi- |n this paper, we focus on detecting those faults that

natorial explosion problem, we introduce the notion of com- can be expressed as predicates on variables of processes.
putation slice in our earlier papers [5, 10]. Intuitivelylice For example, “no process has the token” can be written as
is aconciserepresentation of those consistent cuts that sat- y,4_token, Ano_tokensA- - -Ano_token,,, whereno_token;

iSfy a certain condition. To detect a predicate, rather than denotes the absence of token on proq;esghis gives rise
searching the state-space of the computation, it is muchto thepredicate detection problemhich involves finding a
more efficient to search the state-space of the slice. Inconsistent cut of a distributed computation, if it exiskett

this paper, we provide efficient algorithms to compute the satisfies the given global predicate. (This problem is also
slice for several classes of predicates. Our experimental referred to as detecting a predicate unpessiblymodality

results demonstrate that slicing can lead to@onential  in the literature.) Predicate detection problem also arise
improvement over existing techniques in terms of time andother areas in distributed systems such as testing and éebug
space. ging where it can be used to set conditional breakpoints.

Keywords: predicate detection, testing and debugging,  Detecting a predicate in a computation is a hard prob-

software-fault tolerance, pruning search-space, pastial lem in general [4, 12, 11]. The reason is the combina-

order methods torial explosion in the number of possible consistent cuts.

Given a computation consisting of processes each with

at mostk local states, the number of possible consistent

cuts of the computation could be as large’sg™). Find-

ing a consistent cut that satisfies the given predicate may,

therefore, require looking at a large number of consistent
Writing distributed programs is an error prone activity; cuts. In fact, we prove in [11] that detecting a predi-

itis hard to reason about them because they suffer from thecate in 2-CNF (conjunctive normal form), even when no
~supported in part by the NSF Grants ECS-9907213, CCR-9gBg22 WO clauses contain variables from the same process, is

Texas Education Board Grant ARP-320, an Engineering Fdiomd&el- NP-complete, in general. Example of such a predicate is:
lowship, and an IBM grant. (z1 Vz2) AN (x3 Vaa) AN A (21 V), Where each;
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Figure 1. (a) A computation and (b) its slice
with respectto (z; > 1) A (z3 < 3).

is a boolean variable on process

In our earlier papers [5, 10], we introduce the notion of
computation slicelntuitively, slice is a succinct representa-
tion of those consistent cuts that satisfy a certain comaliti

The slice of a computation with respect to a predicate is a

tion slicing, we are forced to examine all consistent cuts of
the computation, twenty eight in total, to ascertain whethe
some consistent cut satisfies the predicate. Alternatively
we can compute a slice of the computation with respect to
the predicatdx; > 1) A (z3 < 3) as portrayed in Fig-
ure 1(b). A slice is modeled by a directed graph. Each
vertex of the graph corresponds tareeta-eventwhich is

a subset of events. If a vertex is contained in a consis-
tent cut, the interpretation is that all events correspond-
ing to the vertex are contained in the cut. Moreover, a
vertex belongs to a consistent cut only if all its incoming
neighbours are also present in the cut. We can now re-
strict our search to the consistent cuts of the slice whieh ar
only six in number, namelya, e, f,u, v}, {a,e, f,u,v,b},
{a,e, f,u,v,w}, {a,e, f,u,v,b,w}, {a,e, f,u,v,w,qg}
and{a,e, f,u,v,b,w, g}. The slice has much fewer consis-
tent cuts than the computation itself—exponentially serall

in many cases—resulting in substantial savings.

We prove in [10] that it is, in general, intractable to com-
pute the slice for an arbitrary predicate. Nonetheless it i
still useful to be able to compute @pproximate slicgor
such a predicate efficiently. An approximate slice may be
bigger than the actual slice but will be much smaller than the
computation itself. We also provide a polynomial-time al-
gorithm in [10] to compute an approximate slice for a pred-
icate composed from regular predicates usipgh and vV
operators.

Our contributions in this paper are as follows. First, we

directed graph with the least number of consistent cuts thatprovide a faster algorithm for computing the slice fode

contains all consistent cuts of the computation for whieh th  composable regular predicatevhich can be expressed as
predicate evaluates to true. Since we expect global fawlts t conjunction of clauses where each clause is again a regular
be relatively rare, their slice will be much smaller than the predicate but depends on variables of only a small num-
Computation itself. Therefore, in order to detect a g|0ba| ber of processes. For examp|e’ consider the regu'ar predi_

fault, rather than searching the state-space of the computacate “counters of all processes are approximately synchro-
tion, itis much more efficient to search the state-spacesofth pized”. It can be expressed as: for all procegseandp;,

slice. We also identify a class of predicates, calegular
predicatesfor which the slice isxact[5, 10]. That s, the
slice for a regular predicate contains precisely thoseisens
tent cuts for which the predicate evaluates to true. In [, w
also present a®(n?|E|) algorithm to compute the slice for
a regular predicate, whereis the number of processes and f processes. In general, the time-complexity of the al-
E s the set of events. gorithm is given byO((n + k?s)|F|), whereFE is the set

As an illustration, suppose we want to detect the pred- of eventsk is the maximum number of processes spanned
icate (z1 *x zo + x3 < 5) Alzy = 1) A (z3 < 3) in the by a clause, and is the maximum number of clauses any
computation shown in Figure 1(a). The computation con- single process appears in. For example, for the aforemen-
sists of three processes, p» andps; hosting integer vari-  tioned predicatek = 2 ands = n. Second, we give an
ablesz;, xo andz3, respectively. The events are repre- efficient algorithm to compute the slice forkalocal pred-
sented by circles. Each event is labeled with the value oficate for constantt. A k-local predicate depends on vari-
the respective variable immediately after the event is exe-ables of at most processes [12]. The time-complexity of
cuted. For example, the value of variable immediately  the algorithm isO(nm*~'|E|), wherem is the maximum
after executing the evenrtis —1. The first event on each  number of events on a process. Third, we provide an effi-
process initializes the state of the process and every con<ient algorithm to compute the slice fodiaear predicate
sistent cut contains these initial events. Without computa and its dualpost-linear predicatd4]. The class of linear

|counter; — counter;| < A;;, where eaclrounter; is a
monotonically non-decreasing variable pn Here, each
clause depends on variables of at most two processes. For
this predicate, the slicing algorithm given in this paper is
n times faster than the one in [5], whemeis the number



predicates is a generalization of the class of regular predi Observe that the empty s@tand the set of verticeg(G)
cates. The algorithm has the time-complexityx(f:?| E|). trivially belong toC(G). We call themtrivial consistent
As a corollary, it is now possible to compute an approxi- cuts. Also, letP(G) denote the set of pairs of verticgs v)
mate slice—in polynomial-time—for a much more general such that there is a path fromto v in G. We assume that
class of predicates than described in [10]. Finally, we dis- every vertex has a path to itself.
cuss our experimental results in evaluating the effectéigsn A distributed computatior{or simply a computation
of slicing in pruning the search-space for predicate detec-(F, —) is a directed graph with vertices as the set of events
tion. This is the first experimental study of slicing for any FE and edges as». To limit our attention to only those
application. As such, our objective in this paper is not to consistent cuts that can actually occur during an execution
measure the efficacy of the slicing algorithms described in we assume tha®((E, —)) contains at least the Lamport’s
this paper only, but to evaluate the effectiveness of glicin happened-before relation [8]. A distributed computation i
algorithms in general including those in our earlier papers our model can contain cycles. This is because, whereas
[5, 10]. Our results indicate that slicing can lead toexn a computation in the traditional or happened-before model
ponentialimprovement over existing techniques in terms of captures thebservablerder of execution of events, a com-
time and space. Furthermore, other techniques for reduc-putation in our model captures the set of possible congisten
ing the time-complexity [13] and/or the space-complexity cuts. Intuitively, each strongly connected component of a
[1] are orthogonal to slicing, and as such can actually be computation can be viewed asrata-eventall events in a
used in conjunction with slicing. For instance, Alagar and meta-event should be executed atomically.
Venkatesan’s polynomial space algorithm [1] for searching  We assume the presence of fictitious initial and final
the state-space of a computation can also be used for searclevents on each process. The initial event on proggsie-
ing the state-space of a slice. noted by ;, occurs before any other event pn Likewise,
Although, in this paper, we focus on application of slic- the final event on procegs, denoted byT ;, occurs after all
ing to predicate detection, slicing can be employed to re- other events om;. We assume that all initial events belong
duce the search-space when monitoring a predicate undeto the same strongly connected component. Similarly, all
other modalities as well includindefinitely[2, 4], invari- final events belong to the same strongly connected compo-
ant[10] andcontrollable[4]. nent. This ensures that any non-trivial consistent cut will
The paper is organized as follows. In Section 2, we de- contain all initial events and none of the final events. As
scribe our model and notation. In Section 3, we discussa result, every consistent cut of a computation in the tra-
the background on computation slicing necessary to under-ditional model is a non-trivial consistent cut of the corre-
stand the rest of the paper. Section 4 describes efficient al.sponding computation in our model and vice versa. Only
gorithms to compute the slice for three classes of predicate non-trivial consistent cuts are of real interest to us.
In Section 5, we discuss our experimental results on slicing A global predicate(or simply apredicatg is defined as
Finally, Section 6 concludes the paper. a boolean-valued function on variables of processes. Given
a consistent cut, a predicate is evaluated with respeceto th
values of variables resulting after executing all eventb@
cut. If a predicaté) evaluates to true for a consistent cut
C, we say that ' satisfiesh”. We leave the predicate un-
Traditionally, a distributed computation is modeled as a gefined for the trivial consistent cuts. A global predicate

partial order on a set of events [8]. In this paper, we re- js |ocal if it depends on variables of a single process. It is
lax the restriction that the order on events must be a partialsaig to bek-local if it depends on variables of at mokt

order. Instead we use directed graphs to model distributedprocesses [12].

computations as well as slices. Directed graphs allow us to

handle both of them in a uniform and convenient manner.
Given a directed graply, let V(G) and E(G) denote

its set of vertices and edges, respectively. A subset of ver-

2. Model and Notation

3. Background

tices of a directed graph formscansistent cuif the subset ~The notion of computation slice is based on the
contains a vertex only if it also contains all its incoming Birkhoff’s Representation Theorem for Finite Distribugiv
neighbours. Formally, Lattices [3] which we describe next.
. . a .
C'is a consistent cut afF = 3.1. Birkhoff’s Theorem

Ve, feV(G): (e,f) €EG): feC = ecC)

Observe that a consistent cut either contains all vertices We first describe some concepts needed to understand
in a strongly connected component or none of them. Letthe theorem. A lattice is said to liéstributiveif its meet op-
C(@) denote the set of consistent cuts of a directed géaph  erator distributes over its join operator [3]. It can be pFdv



that meet distributes over join if and only if join distrilest SecondD forms a sublattice of (E). Last, among all sub-

over meet. An element of a lattice is callgih-irreducible lattices that fulfill the first two conditions, it is themallest
if it cannot be expressed as join of two distinct elements (of one. From Birkhoff's TheoremJZ(D), the set of join-
the lattice), both different from itself [3]. irreducible elements db, completely characteriz€3. We

Let L be a lattice and7Z(L) be the set of its join-  call the poset (partially ordered set) induced on the censis
irreducible elements. In caskis a distributive lattice, it  tent cuts of7Z(D) by the relationC as the slicd £, —),.
satisfies an important property. Specifically, every eleimen Alternatively, the slice can also be represented by a ditect
in L can be expressed as the join of some subset of ele-graph drawn on the set of everfssuch that its set of con-
ments in7Z(L) and vice versa [3, Birkhoff's Theorem]. sistent cuts is given bfp. Whereas th@oset representation
In other words,7Z(L) completely characterizeb. This of a slice is better for presentation purposes,ghaph rep-

is significant because/Z(L)| is generally much smaller—  resentatioris more suited for slicing algorithms.
exponentially in many cases—th&h. Hence if some com- Every slice derived from the computatid#, —) has
putation onL can instead be performed ghZ(L), we ob- the trivial consistent cutgj(and E) among its set of consis-
tain a significant computational advantage. tent cuts. A slice iemptyif it has no non-trivial consistent

Consider a computatioffz, —) and letC(E) denotethe  cuts [10]. In the rest of the paper, unless otherwise stated,
set of its consistent cuts. In [5], we show tig4f) forms a consistent cut refers to a non-trivial consistent cut. In-ge
distributive lattice under the relation; its join and meetop-  eral, a slice will contain consistent cuts that do not sgtisf
erators correspond to set unian)(and set intersectiomy, the predicate (besides trivial consistent cuts). In casiea s
respectively. Furthermore, no additional structural gy~ does not contain any such cut, itis calleen[10]. We now
is satisfied byC(E). There is a one-to-one correspondence describe the class of predicates for which the slice is lean.
between the set of join-irreducible elements(df) and
the set of strongly connected component$/of —) 3.3. Regular Predicate

Now, consider a subs@& C C(E). We say thaD forms ) ) .
asublatticeof C(E) if D is closed under set union and set ~_ Informally, if a predicate is regular, then the set of con-
intersection. That is, given two consistent cutsIafthe sistent cuts satisfying the predicate is closed under satin
consistent cuts obtained by their set union and set intersecSection and set union [5]. Equivalently,

tion also belong td. It can be proved that a sublattice of - pefinition 2 (regular predicate [5]) A predicate is said to

a distributive lattice is also a distributive lattice [3]hTs if beregularif, given two consistent cuts that satisfy the pred-
D is a sublattice of (E), then, using Birkhoff’s Theorem, jcate, the consistent cuts obtained by their set intersacti
JZI(D) completely characterizeB. This forms the basis  5nq set union also satisfy the predicate. Formally, given a

for the notion of computation slice. regular predicateh, and consistent cut§ and D,

. . (C satisfied)A(D satisfied) =
3.2. Computation Slice (C N D satisfied) A (C U D satisfiesd)

Roughly speaking, a computation slice (or simply slice)  some examples of regular predicates are: conjunction of
is a succinct representation of all those consistent cutseof  |5cal predicates such as “all processes amedstate”, and

computation that satisfy a certain predicate. More prégise certain channel predicates including “at mésmessages
o _ . . . are in transit from procegs; to procesg;” and “at leastk
Definition 1 (slice [10]) A slice of a computation with re-  messages are in transit from processo proces;”. We

spect to a predicate is the smallest directed graph (with the prove in [5] that the conjunction of two regular predicates i
least number of consistent cuts) that contains all consiste also a regular predicate.

cuts of the given computation for which the predicate eval-  In[5, 10], we provide efficient algorithms to compute the
uates to true. slice for a regular predicate and its complement—referred
to as aco-regular predicate Time-complexities of the
We denote the slice of a computati¢f, —) with re- two algorithms areé)(n?|E|) andO(n?|E|?), respectively,

spect to a predicateby (E, —),. We prove in [10] thatthe  wheren is the number of processes amtlis the set of
slice exists and is uniquely defined for all predicates. The events. We also give optimél(| £|) algorithms to compute
main idea behind the proof is as follows. Consider a com- the slice for special cases of regular predicates in [10].
putation(E, —) and a predicaté. LetC(E) denote the set

of consistent cuts ofE, —) and, further, let, (E) C C(E) 3.4. Grafting Two Slices

be the subset of those consistent cuts that sdtidfye show

that there exists a subsBt C C(E) satisfying the follow- Graftingis used to compose two slices [10]. Specifically,
ing conditions. FirstD containg’, (E), thatis,Cy(E) C D. given two slices, grafting involves computing either (1¢ th



smallest slice that contains all consistent cuts common toables the clause depends on. We then compute the slice of
both the slices, or (2) the smallest slice that contains all the projected computation using the algorithm described in
consistent cuts that belong to at least one of the slices. Thg5]. We show thattombinedtime-complexity of comput-
former is referred to as grafting with respect to conjunefio ing the slice of the projected computation for all clauses is
and the latter as grafting with respect to disjunction. intu given byO((n+k*s)|E|), wheres is the maximum number
itively, given slices for two regular predicatesandb,, the of clauses any single process appears in. For instance, for
former can be used to compute the sliceifpn b, and the the example in the previous paragraphs n. (The time-
latter forb, V b. In [10], we giveO(n|E|) algorithms to complexity includes the time it takes to compute the projec-

graft two slices. tion as well.) In the second step, we combine these slices
together efficiently inO((n + ks)|E|) time to obtain the
4. Computing the Slice desired slice. The overall time-complexity of the two steps

is given byO((n + k?s)|E|). In casek is O(1) ands is
In this section, we provide efficient algorithms for (1), @sis the case with our example, the time-complexity

computing the slice for three classes of predicates. TheiS O(1|E[), which is a factor of less than computing the
first class contains those predicates which can be expressedlice directly using the algorithm in [11].
as conjunction of-local regular predicates for a smaif
they are referred to adecomposable regular predicates 4.2. Computing the Slice fork-Local Predicate, for
Note that although each clause of a decomposable regular Constantk
predicate depends on variables of only a small number of

processes, the predicate itself may span a much larger set |n case the predicate is regular, we can simply use the
of processes, possibly even the entire set. The second clasgpproach described in the previous section to compute the
consists of-local predicatesor constank. This classmay  slice inO(n|E|) time. However, if the predicate is not reg-
contain predicates that are not regular. Fina”y, the third u|ar’ then the slice produced will On|y be an approximate
class consists dinear predicateand their dual. one [9] To Compute the (exact) slice forkalocal predi_
] ] ] cate, which is not regular, we use the technique developed
4.1. Fast Algorithm for Computing the Slice for  py Stoller and Schneider [12]. For a given computation,
Decomposable Regular Predicate their technique can be used to transforimcal predicate
into a predicate ink-DNF (disjunctive normal form) with
In [5], we provide anO(n?|E|) algorithm to compute 4t mostm*~! clauses, wheren is the maximum number
the slice for a regular predicate, wherds the number of  of events on a process. For example, consider the predicate
processes and is the set of events. We now explore the # .. LetV denote the set of values that can take in

possibility of a faster algorithm for the special case when the given computation. Then # z» can be rewritten as:
a regular predicate can be expressed as a conjunction of

clauses where each clause is again a regular predicate but T Fx =\ ((:m =0) A (22 # v))

spans a small number of processes. An example of such VeV

a predicate is “counters of all processes are approximately Note that|V/| < m. Thus the resultant predicate, in the

synchronized”, which can be expressed as: above case, consists of clauses; each clause is a con-

A (lcounter; — counter;| < Ay;) jynction qf local predicates, also referred to asomjunc-

1<i,j<n tive predicate[4]. In general, the resultark-DNF pred-

icate will consist ofm”*~! clauses. To compute the slice

for each clause, we use the optindd]| E|) algorithm given

in [10]. We then graft these slices together with respect

to disjunction to obtain the slice for the given predicate.

The overall time-complexity of the algorithm is given by

O(nm*1|E)).

where eacheounter; is a monotonically non-decreasing
variable on procesg;. In this case, each clause depends on
variables of at most two processes and is therefore 2-local
For this example, our slicing algorithm hé¥n|E|) time-
complexity, which is a factor of less than that of the algo-
rithm in [5]. We describe the algorithm in two steps. First,
we present a fast algorithm to compute the slice for each ) ] ) ]
clause. Second, we show how to combine these slices to4-3- Computing the Slice for Linear Predicate
gether in an efficient manner to obtain the slice for the given
regular predicate. Due to lack of space, we only provide a A predicate is said to bénear if the set of consistent
brief description of each step. For details of the algorithm cuts that satisfy the predicate is closed with respect to set
and its proof of correctness, please refer to [9]. intersection [4]. Apost-linear predicatean be defined du-

In the first step, for each clause, we first take fre- ally. Evidently, the class of linear predicates includes th
jection of the computation on those processes whose vari-class of regular predicates. But the converse does not hold.



An example of a linear predicate that, in general, is not reg- We first compute slices for the linear predicaigs x-, x3

ular is: “at mostk messages destined for procgsshave andz4. We then graft the first two and the last two slices

not been received yet”. The class of linear predicates & als together with respect to disjunction to obtain (approxigat

closed under conjunction [4]. slices for the clauses, V z» andzs V x4, respectively.
We identify and prove that the algorithm to compute the Finally, we graft the slices for both clauses together with

slice for a regular predicate, given in [5], is applicableev  respect to conjunction to obtain an approximate slice for

for a linear predicate. The main idea behind the algorithm (z1 V z2) A (23 V x4).

is as follows. Consider a linear predicdteFor each event The next section describes our experimental results in

e, we defineJy(e) as theleast consistent cuhat containg evaluating the efficacy of slicing in pruning the searchespa

and satisfies [5]. In case no consistent cut containinthat for predicate detection.

also satisfied exists or where € T, J;(e) is set toE. It

can be proved thaf, is uniquely defined for all events [9]. 5.1. Experimental Evaluation

In [9], we give anO(n?|E|) algorithm to compute/;,(e)

for each evene. We also establish in [9] that the slice for

b can be obtained by constructing a graph with vertices as

the set of events, and an edge from an evetat an event

fif Jy(e) C Jo(f). Further, we show a way to restrict the

number of edges in the graphdt(n|E|) without adversely

affecting the time-complexity.

This is the first experimental study of slicing for any ap-
plication. Therefore our aim is to evaluate the effectisne
of slicing algorithms in general including those in our ear-
lier papers [5, 10] and not just the ones described in this
paper.

We compare our approach with Stoller, Unnikrishnan
and Liu’'s approach [13] which is based qartial-order
5. Computing an Approximate Slice methodg[6]. Intuitively, when searching the state-space,
at each consistent cut, partial-order methods allow only a
small subset of enabled transitions to be explored. In par-

predicate [10]. In fact, computing the slice for a predicate ficular, we use partial-order methods employing both per-

in 2-CNF, even when no two clauses contain variables from sistent and sleep sets for comparison. We_ c_onsider two ex-
the same process, is an NP-complete problem. Nonethelesé"}mples that are also used by Stoller, Unnikrishnan and Liu
it is still useful to be able to compute approximate slice  (© €valuate their approach [13].

for such a predicate efficiently. An approximate slice may | n€ first example, calle@rimary-secondaryconcerns

be bigger than the actual slice but may be much smaller thar@" @lgorithm designed to ensure that the system always con-
the computation itself. tains a pair of processes acting together as primary and sec-

In [10], we give an efficient polynomial-time algorithm ondary. _The invariant for the algorithm requirgs thaF there
to compute an approximate slice for a predicate composedOe a par of processes andpj_ such th"’_u (_1)3" Is acting
from regular predicates using, A andv operators. Utiliz- S @ Primary and correctly thinks thay is its secondary,
ing results of this paper, it is now possible to compute an ap- a”?' (_z)pi IS acting as a seco_ndary and correctly thinks that
proximate slice, in polynomial-time, for a much larger glas i i its primary. Both the primary and the secondary may
of predicates. Specifically, we can now compute an approx-CNO0Se New processes as their successor at any time; the al-
imate slice for a predicate composed from co-regular Iored_gorlthm must ensure that the invariant is never falsified. A
icates, linear predicates, post-linear predicates,iakutal glopal faylt, the.refore, corresponds to the complement of
predicates for constait usingA andv operators. the invariant which can be expressed as:

_ To compute an approximate slice for such a pr_edicate, we Ly= A (ﬂisPrimaryi V —isSecondary;V

first construct the parse tree for the corresponding boolean iJE[1..n]} i#]

expression; all predicates occupy leaf nodes whereas-all op (secondary; # p;) V (primary; # pi))
erators occupy non-leaf nodes. We then recursively com-

pute the slice by starting with leaf nodes and moving up,  Note that-I,, is a predicate in CNF where each clause is
level by level, until we reach the root. For a leaf node, we a disjunction of two local predicates. An approximate slice
use the slicing algorithm appropriate for the predicate-con for —1,; can be computed i®(n?|E|) time. In the second
tained in the node. For example, if the leaf node containsexample, calledlatabase partitioninga database is parti-
a linear predicate, we use the algorithm described in Sec-tioned among processes throughp,,, while process;
tion 4.3. For a non-leaf node, we use the suitable grafting assigns tasks to these processes based on the current parti-
algorithm depending on the operator. tion. A proces®;, i € [2...n], can suggest a new partition

As an illustration, suppose we wish to compute an ap- at any time by setting variablehange; to true and then
proximate slice of a computation with respect to the predi- broadcasting a message containing the proposed partition.
cate(z1 Vo)A (z3Vrs), where each; is alinear predicate.  An invariant that should be maintained is: if no process is

It is, in general, intractable to compute the slice for a
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changing the partition, then all processes agree on the parfactor ofn.

tition. Its complement, corresponding to a global fault) ca
be expressed as:

—Ig, = =changes A\ =changes A - - - A ~change, N\

V

(partition; # partitionj))
ij€(1...n], i

Note that the firsk — 1 clauses of-1y, are local predi-
cates and the last clause, 9a¢/, is a disjunction of 2-local

We use the simulator implemented in Java by Stoller,
Unnikrishnan and Liu to generate computations of these
protocols. Further details of the two protocols and the sim-
ulator can be found elsewhere [13]. We consider two differ-
ent scenariosfault-freeandfaulty. The simulator always
produces fault-free computations. A faulty computation
is generated by randomly injecting faults into a fault-free
computation. Note that in the first (fault-free) scenarie, w

predicates. Thus, using the technique described in Secknowa priori that the computation does not contain a faulty

tion 4.2, LC can be rewritten as a predicate in DNF with

consistent cut. We cannot, however, assume the availabilit

O(n|E|) clauses. To reduce the number of clauses, we of such knowledge in general. Thus it is important to study

proceed as follows. LeV denote the set of values that
partition; assumes in the given computation. Then it can
be verified that.C' is logically equivalent to:

V \V (partition; # v)))

((partition] =v) A (
veV 2<i<n

This decreases the number of clauses, wlign is
rewritten in a form suitable for slice computation, to
O(n|V]). Note thaiV’| is bounded by the number of events
on the first process, and therefore we expe@t| to be

O(|E|). As a result, the number of clauses reduces by a

the behaviour of the two predicate detection techniques in
the fault-free scenario as well.

Algorithms for slicing a computation are implemented
in Java. We compare the two predicate detection techniques
with respect to the following metrics: amount of time spent
and amount of memory used. In case of the former tech-
nigque, both metrics also include the overhead of computing
the slice. We run our experiments on a machine with Pen-
tium 4 processor operating at 1.8GHz clock frequency and
512MB of physical memory.

For primary-secondary example, the simulator is run un-
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Figure 3. Database partitioning example with the number of e vents on a process upper-bounded by
80 for (c) no faults and (d) one injected fault.

til the number of events on some process reaches 90. Withcesses for the two approaches.

computation slicing, for fault-free computations, thecsli The worst-case performance of the partial-order meth-
is always empty. As the number of processes is increasecbds approach is quite bad. With 12 processes in the system
from 6 to 12, the amount of time spent increases from 356sand the limit on the memory set to 100MB, the approach
to 2,849s, whereas the amount of memory used increasesuns out of memory in approximately 6% of the cases. In
from 1.21M to 2.16M. On the other hand, with partial-order around two-thirds of such cases, the computation actually
methods, they increase, almost exponentially, from 69s tocontains a consistent cut that does not satisfy the inviarian
4,997s and 0.62M to 21.56M, respectively. Even on inject- It may be noted that we do not include the above-mentioned
ing a fault, the slice stays quite small. After computing the cases in computing the average amount of time spent and
slice, in our experiments, we only need to examine at the memory used. Including them will only make the average
most 13 consistent cuts to locate a faulty consistent cut, if performance of the partial-order methods approach worse.
any. The amount of time spent and the amount of mem- Further, performance of the partial-order methods apgroac
ory used, with computation slicing, increase from 366s to appears to be very sensitive to the location of the fault, in
2,765s and 1.38M to 2.43M, respectively, as the number of particular, whether it occurs earlier during the search or
processes is increased from 6 to 12. However, with partial- much later or perhaps does not occur at all. Consequently,
order methods, they again increase almost exponentiallythe variation or standard deviation in the two metrics is/ver
from 46s to 3,510s and 0.41M to 14.13M, respectively. large. This has implications when predicate detection is em
Clearly, with slicing, both time and space complexities for ployed for achieving software fault tolerance. Specifigalll
detecting a global fault, if it exists, in primary-secorglar it becomes hard to provision resources (in our case, mem-
example are polynomial in input size for the specified range ory) when using partial-order methods approach. If too lit-
of parameters. In contrast, with partial-order methodsyth  tle memory is reserved, then, in many cases, the predicate
are exponential in input size. Figure 2(a) and Figure 2(b) detection algorithm will not be able to run successfully to
plot the variation in the two metrics with the number of pro- completion. On the other hand, if too much memory is re-



served, the memory utilization will be sub-optimal.
For database partitioning example, the simulator is run

(4]

V. K. Garg. Elements of Distributed Computingohn Wiley
and Sons, Incorporated, New York, NY, 2002.

until the number of events on some process reaches 80. Fig- [5] V. K. Garg and N. Mittal. On Slicing a Distributed Compu-

ure 3(c) and Figure 3(d) plot the variation in the two metrics
with the number of processes for the two approaches. As it
can be seen, the average performance of partial-order meth-
ods is much better than computation slicing. This is because
substantial overhead is incurred in computing the slice Th
slice itself is quite small. Specifically, for the fault-Gsce-
nario, the slice is always empty. On the other hand, for the
faulty scenario, only at most 4 transitions need to be ex-
plored after computing the slice to locate a faulty consiste
cut, if any.

Even for database partitioning example, for 10 pro-
cesses, the partial-order methods approach runs out of
memory in a small fraction—approximately 1%—of the
cases. Therefore the worst-case performance of computa-
tion slicing is better than partial-order methods. To get th

(6]

(7]

(8]

(9]

best of both worlds, predicate detection can be first done [10]

using the partial-order methods approach. In case it turns
out that the approach is using too much memory, say more
thancn|E| for some small constart and still has not ter-

minated, it can be aborted and the computation slicing ap- [11]

proach can then be used for predicate detection.

6. Conclusion and Future Work

In this paper, we present efficient algorithms for comput-
ing the slice for several classes of predicates. In addition
we also provide heuristics to compute an approximate slice
for predicates for which it is otherwise intractable to com-
pute the actual slice. We experimentally demonstrate that
slicing can indeed be used to prune a large fraction of the
set of consistent cuts in an efficient manner.

At present, our algorithms for computing a slice and
therefore for detecting a predicate work in an off-line fash
ion. In the future, we plan to develop slicing algorithms
that are incremental in nature. As the execution of the sys-
tem progresses and more and more events become available,
the current slice is updated to reflect the newly generated
events.
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